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DIRECTED GRAPHS AND VARIABLE SELECTION IN LARGE VECTOR
AUTOREGRESSIVE MODELS
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bDepartment of Economics, University of Konstanz, Konstanz, Germany
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We represent the dynamic relation among variables in vector autoregressive (VAR) models as directed graphs. Based on these
graphs, we identify so-called strongly connected components. Using this graphical representation, we consider the problem of
variable choice. We use the relations among the strongly connected components to select variables that need to be included
in a VAR if interest is in impulse response analysis of a given set of variables. Our theoretical contributions show that the set
of selected variables from the graphical method coincides with the set of variables that is multi-step causal for the variables
of interest by relating the paths in the graph to the coefficients of the ‘direct’ VAR representation. An empirical application
illustrates the usefulness of the suggested approach: Including the selected variables into a small US monetary VAR is useful
for impulse response analysis as it avoids the well-known ‘price-puzzle’.
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1. INTRODUCTION

Vector autoregressive (VAR) models are popular tools in the analysis of multiple time series to conduct structural
analysis in form of an impulse response analysis. The popularity of the VAR model is at least partly due to the fact
that it typically does not require strong economic theory assumptions. Often VAR models without any restrictions
on the parameters are used to describe the joint dynamics of a set of economic time series. While the general
VAR lag structure allows to uncover dynamic relations between the variables included in the system, the use of
unrestricted VARs comes at a cost: The number of parameters to be estimated from the data increases with the
square of the number of variables in the system. Even in moderately large VARs the degrees of freedom exhaust
quickly. Thus, applied researchers have to choose the number of variables to be included in the VAR wisely. On
the one hand, a researcher would like to include all relevant variables to avoid omitted variable bias and to get a
complete picture of the underlying dynamics. On the other hand, including too many variables makes parameter
estimates unreliable and estimation uncertainty may lead to rather uninformative results such as estimated impulse
responses with very wide confidence intervals.

Given variables of interest, our article suggests to use a graphical modeling approach to select a ‘minimal’ VAR
containing only variables that are relevant to model the dynamics of the variables of interest. This approach is
helpful in selecting the relevant variables for VAR analysis in a data-driven way. We argue that this is a useful
addition to the toolbox of time series econometricians as on the one hand, it exploits the information from large
dimensional data sets but on the other hand eventually uses smaller VAR models for structural analysis.
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To fix ideas, suppose a researcher is interested in a set of variables denoted by yI, including say GDP growth,
the consumer price (CPI) inflation, and a key interest rate. She wants to conduct an impulse response analysis
for the variables in yI. For this purpose, she has to decide which variables to include from a large cross-section
of available time series on, for example, output, income, consumption, the labor market, orders and inventories,
money and credit, interest and exchange rates, financial market variables and various price measures.1

In recent years, suggestions have been made on how to include the information from a large dimensional data set
into VARs. Factor-augmented VARs (FAVARs) (see e.g. Bernanke et al., 2005; Stock and Watson, 2016) condense
the information from a large time series data set into a few factor time series, which are then included in a VAR
model. Factor-augmented models have also been widely used for structural analysis.2 Clearly, these models are
only suitable if the underlying data has a factor structure, that is, if the large number of time series are really driven
by a small number of common factors (see e.g. Uhlig, 2009 on this point). An alternative are large Bayesian VARs
(BVARs) as suggested by Banbura et al. (2010).3 In large dimensional settings, however, these models require to
use a very tight prior. Consequently, using a large BVAR might impose more structure on the model than typical
VAR users feel comfortable with. Other shrinkage methods have also been used for large VAR models, includ-
ing the least absolute shrinkage and selection operator (LASSO) (see e.g. Kascha and Trenkler, 2015; Barigozzi
and Brownlees, 2019).4 The LASSO approach can handle large dimensional VAR models by setting some VAR
coefficients to zero and at the same time shrinking the remaining coefficients. It is well known that LASSO may
lead to biased estimates and recently, inference methods based on debiased estimators have been suggested (see
e.g. Javanmard and Montanari, 2014; Van de Geer et al., 2014; Zhang and Zhang, 2014, and in the VAR context
Basu et al. (2019) and Zheng and Raskutti (2019) with references therein).5 We argue below that using an esti-
mated LASSO-VAR directly for impulse response analysis may be daunting in large VARs because it complicates
the economic interpretation of results.

Consequently, the mentioned modeling approaches may not be ideal in some situations faced by applied time
series econometricians. Researchers may also prefer to use smaller VARs because they are easier to interpret and
resemble more closely small scale dynamic stochastic general equilibrium (DSGE) models used in macroeco-
nomics. At the same time, the researcher would like to include additional ‘relevant’ variables that affect impulse
responses for the variables of interest. Against the background of the large number of time series available today,
this entails a variable selection procedure.

Our article is concerned with the question of how to choose variables for the smallest (‘minimal’) VAR con-
taining all variables that are ‘relevant’ for the impulse responses of variables of interest yI. In other words, we are
suggesting a procedure on how to choose a suitable information set for a VAR modeling exercise. This consists of
the following steps: In the first step, a data-driven model selection technique (e.g. LASSO) can be used to obtain
a subset VAR. In the second step, we then use the subset VAR structure and concepts from graphical modeling
to select those variables that need to be in a smaller VAR to capture all relevant information for the variables of
interest. The final step of the procedure then consists of estimating and using an unrestricted VAR in all selected
variables.

The main novelty of this article is in introducing and theoretically analyzing the second step. The first contri-
bution here is to use so-called strongly connected components (SCCs) and the relation among these components
for variable selection. The concept of SCCs is well-established in the graphical modeling literature but to the best
of our knowledge, this concept has not been used in econometrics. We first represent a sparse VAR structure as a
directed graph with vertices and edges. From this graph we identify all SCCs by using a simple graphical modeling
algorithm. We show how the SCCs and their connections to other SCCs are helpful in determining the variables

1 Large data sets of this type have been used in various studies. See, for example, Stock and Watson (2003) or McCracken and Ng (2016) with
references therein. They typically contain up to 130 variables.
2 See, for example, Stock and Watson (2002), Ludvigson and Ng (2007), Eickmeier and Ziegler (2008), Ludvigson and Ng (2009), Stock and
Watson (2012), Clements (2016) and Cheng and Hansen (2015) for applications of factor-augmented regressions and FAVARs.
3 See, for example, Carriero et al. (2009, 2012, 2015), Giannone et al. (2014), and Koop (2013) for applications of this method.
4 See also Stock and Watson (2012).
5 Other theoretical properties like, for example, oracle inequalities for LASSO estimators in VARs are discussed in, for example, Basu and
Michailidis (2015), Kock and Callot (2015), and Medeiros and Mendes (2016).
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that need to be included in a VAR modeling exercise. Effectively, the set of relevant variables can be found from
the graphical representation of the SCCs, known as a component graph. Thus, the first innovation of our procedure
is to combine an existing method of the graph theoretic literature with the problem of variable selection for VAR
analysis. For VAR practitioners this may be more useful compared to just using standard regularization techniques
as a LASSO-VAR, since our method enables researchers to work with smaller VAR models, which may be easier
to interpret from an economic point of view. In a second theoretical contribution, we show the relation between
the SCCs and the concept of multi-step causality as in Dufour and Renault (1998). In particular, given the vari-
ables of interest yI, we show that a minimal VAR chosen by SCCs is identical to the VAR that contains yI and all
variables that are multi-step causal for yI. Here we contribute to the literature by relating two existing concepts
from the econometric and the graph theoretic literature.

Methodologically, our article is related to the literature on using graphical models in econometrics. Following
the work on causal analysis of multivariate data (see e.g. Lauritzen, 1996; Edwards, 2000; Pearl, 2000), graphical
models have also been introduced for time series models. Brillinger (1996) and Dahlhaus (2000) are the first
papers mentioning the use of graphical modeling for time series data and present concepts based on the partial
correlation and partial spectral coherence.6 Dahlhaus and Eichler (2003) introduce causality graphs based on the
autoregressive representation. Our work is most closely related to the work of Eichler (2006, 2007, 2012), who
shows the close relation of different causality concepts (Granger-causality and multi-step causality) to graphical
representations in vector autoregressive models. We add to this work the link from causality structures to variable
selection using the concept of strongly connected components.7

Our article is also related to the work of Jarociński and Maćkowiak (2017), who also investigate the ques-
tion of variable choice for VAR analysis, albeit with a different econometric approach. Based on the concept of
Granger-causal priority (see Sims, 1982, 2015; Doan and Todd, 2010), their paper evaluates in a Bayesian setup
the posterior probability of Granger-causal priority. For a given set of variables of interest yI, Jarociński and
Maćkowiak (2017) would drop a variable yj, say, if the variables in yI are likely to be Granger-causal prior to yj.
Thus, their method may also be used to choose variables for VAR analysis.

Shrinkage in the form of LASSO is also sometimes referred to as a variable selection technique. This approach
typically involves shrinking individual VAR coefficients (but not deleting variables from the VAR system) and has
been used in VAR models for forecasting and to estimate networks and measures of connectivity (see e.g. Davis
et al., 2016; Medeiros and Mendes, 2016; Barigozzi and Hallin, 2017; Barigozzi and Brownlees, 2019). Our
approach is different in the sense that we use a LASSO-VAR in the first part of our procedure only as an interme-
diate step to select the relevant variables. Our goal is to compute impulse responses. In contrast to the mentioned
studies above, we do not base the final structural analysis on the large-dimensional VAR. Rather, in our setup the
final choice of variables for the VAR analysis is based on the relation among the variables of interest and the SCCs.
The structural (impulse response) analysis is then conducted within the smaller VAR containing only the selected
variables. This may be preferred over using a large subset or LASSO-VAR because the smaller VARs can be better
linked to theoretical macroeconomic (DSGE) models. Furthermore, in contrast to the other approaches, this allows
for a detailed analysis of the transmission channels among (blocks of) variables and is therefore especially useful
for understanding and interpreting the effects of economic shocks. Finally, while LASSO may be used in the first
step to determine the subset VAR, it is important to note that other subset techniques can be applied as well.

We illustrate the usefulness of our suggested variable selection approach in an application to US macroeconomic
data. The variables of interest in yI are US output, CPI inflation and the federal funds rate, three variables often
used in stylized three-variable VARs for the US. Given yI, we use our variable selection method based on SCCs to
select a minimal VAR from 41 US time series for a period between 1975 and 2014. Starting point is a sparse VAR
structure obtained from applying the LASSO to the large VAR. Regardless of the considered estimation period, six
out of the 41 variables are always selected into the model and the selection is fairly stable over different samples

6 See also Flamm et al. (2012) for an overview of different approaches.
7 Graphical modeling has also been used for identifying the instantaneous relations. The first work in this area is the paper by Swanson and
Granger (1997), followed by a number of studies that use graphical modeling for identifying structural VAR models (see e.g. Demiralp and
Hoover, 2003; Hoover et al., 2009; Heinlein and Krolzig, 2012).
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226 D. BERTSCHE, R. BRÜGGEMANN AND C. KASCHA

before the financial crisis in 2008/2009. Moreover, additional variables are selected into the model in a number
of periods. Consequently, the ‘minimal VAR’ is still relatively large, indicating that the underlying relations are
typically quite complex and may not be captured adequately in a three-variable VAR. We also find that including
the selected variables into the VAR leads to more reasonable responses to a monetary policy shock, indicating that
the selection is useful.

The remainder of the article is structured as follows. Section 2 shows how VARs can be represented as directed
graphs. We also introduce the concept of strongly connected components and explain how this can be used for
variable selection and for finding a ‘minimal VAR’. Section 3 relates the graph-theoretical concepts to multi-step
causality and shows how variable selection based on both concepts leads to the same set of relevant variables. In
Section 4, we illustrate the usefulness of our method in an empirical application. Section 5 concludes. All proofs
are deferred to the appendix.

2. VECTOR AUTOREGRESSIVE MODELS, DIRECTED GRAPHS AND STRONGLY CONNECTED
COMPONENTS

We explain how VAR models can be represented by directed graphs. We then review the concept of SCCs in
directed graphs. Finally, we explain how SCCs can be used for selecting relevant variables. This latter part provides
a novel contribution to the econometrics literature since, to the best of our knowledge, the concept of SCCs has
not yet been used in econometrics.

We denote the VAR model of order p, a VAR(p) for the K-dimensional time series vector yt = (y1,t, y2,t, … , yK,t)′
by:

yt = A1yt−1 + · · · + Apyt−p + ut, (2.1)

where A1, … ,Ap are K × K coefficient matrices and ut is a zero mean white noise disturbance vector with
non-singular covariance matrix Σu. We have not included deterministic terms (e.g. intercepts) into the VAR in
(2.1) to simplify the notation. Adding deterministic terms would not change the results discussed below and they
can be included in empirical work.

To make use of graphical modeling concepts, we represent the VAR in (2.1) as a directed graph. Following
the standards in graphical modeling, a directed graph G is described by a set of vertices V and a set of edges E
that are ordered pairs of vertices. In our application, the vertices correspond to the K elements in vector yt and
the edges are determined by the elements of the autoregressive matrices A1, … ,Ap as in the following definition
(Eichler, 2007):

Definition 2.1. (Directed VAR graph). Given a VAR(p) model as in (2.1), the associated directed graph is G =
(V ,E) with V = {1, … ,K} and

(i, j) ∈ E ⇔ ∃s ∈ {1, … , p} ∶ Aij,s ≠ 0, (2.2)

where Aij,s denotes the element in row i and column j of As.

Remark 2.1. In this graph, a directed edge (i, j) leads from vertex i to vertex j. This is standard in the graphical
modeling literature. In our context, using this definition (i, j) ∈ E implies that the ith variable depends on the jth
component in yt, however, the arrow would point from vertex i to vertex j. Thus, the direction of the arrows is
reversed compared to the type of arrows sometimes used to denote (Granger-)causality.

Given a sparse VAR structure, that is, a VAR with zero restrictions on the VAR coefficients, we may use the
associated directed graph to learn about the set of relevant variables. We do so by using the notion of the SCCs
in a graph (Tarjan, 1972). In order to define these, one makes use of the concept of a path or a pathway. A path is
defined to be a sequence of vertices to go from one vertex to another. More formally, a path P of length k leading
from vertex u to u′ in graph G = (V ,E) is a sequence P = (v0, v1, … , vk) of vertices such that u = v0 and u′ = vk

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. 44: 223–246 (2023)
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DIRECTED GRAPHS AND VARIABLE SELECTION 227

and (vi−1, vi) ∈ E for i = 1, 2, … , k. If there is a path from u to u′, we say that u′ is reachable from u, denoted as

u
P
⇝ u′. We may now define the strongly connected components of a directed graph:

Definition 2.2. (Strongly connected components (Tarjan, 1972)). Let G = (V ,E) be a directed graph and let

two vertices u and v in G be equivalent if u
P
⇝ v and v

P
⇝ u, that is, u and v are mutually reachable. Call the

corresponding equivalence classes of vertices Vi and let Ci = (Vi,Ei) where Ei = {(u, v) ∈ E ∶ u, v ∈ Vi} for
i = 1, … , k. The subgraphs Ci are called the strongly connected components of G.

Remark 2.2. Note that if we refer to SCC Ci in the following, we mean the corresponding set of vertices Vi that
belongs to Ci in the sense of Definition 2.2. For example, if we write j ∈ Ci, we mean j ∈ Vi.

Remark 2.3. Note that each vertex of graph G belongs to exactly one strongly connected component. Conse-
quently, the set of all equivalence classes V1, … ,Vk belonging to the strongly connected components C1, … ,Ck

forms a partition of the set of vertices V such that V = V1 ∪ · · · ∪ Vk (see e.g. Duff and Reid, 1978).

Remark 2.4. Following Tarjan (1972), a depth-first search algorithm may be used to compute the strongly con-
nected components efficiently. We have implemented a variant of Tarjan’s algorithm using Matlab according to
the exposition in Cormen et al. (2009).

In the next step, we condense the information of the graph G by moving from graph G to a graph of the SCCs.
The resulting graph is called a component graph, which is defined next.

Definition 2.3. (Component graph). A component graph is defined as GSCC = (VSCC
,ESCC), where VSCC =

{C1, … ,Ck} is the set of strongly connected components of graph G. There is an edge (Ci,Cj) ∈ ESCC ⇔ ∃x ∈
Ci ∶ ∃y ∈ Cj ∶ (x, y) ∈ E.

Remark 2.5. Definition 2.3 implies that there is only an edge (Ci,Cj) between two strongly connected components
if the original graph G has a directed edge from one member of the SCC Ci to a member of the SCC Cj.

Remark 2.6. Duff and Reid (1978) suggest to order the SCCs such that there is no path from one strongly con-
nected component to another later in the sequence, that is, the SCCs C1, … ,Ck may be ordered such that there is
no path from Ci to any Cj for j > i. The associated reordered matrix of the graph is then lower block-triangular.
Each block on the diagonal corresponds to one of the SCCs. In the context of economic applications, the structure
of the SCCs may give additional insights on the relevance of different variables.

Remark 2.7. The component graph may be viewed as a condensed view of the original graph. Essentially, the
component graph collapses all edges of the original graph whose vertices are contained in the same SCC.

Finally, for a given set of variables of interest, say yI
⊆ y, that is, I ⊆ {1, … ,K}, we would like to identify a

‘minimal’ set of variables which have to be taken into account when modeling yI. We denote this set of relevant
variables as R(yI). For that purpose, we define the set RGSCC (Ci) as the set of all variables contained in SCCs that
are reachable from Ci in GSCC (including Ci). Thereby, note that reachability in GSCC is defined analogous to G.
That is, RGSCC (Ci) can be interpreted as the set of variables on which Ci ‘depends’ and which have to be taken into
consideration when modeling variables in Ci. We specify the ‘minimal’ VAR system in Definition 2.4.

Definition 2.4. (Relevant variables). Given a subset of interest yI
⊆ y, the minimal VAR is a VAR composed of

the series that are contained in the relevant SCCs given by:

R(yI) ∶=
⋃

{Ci ∶ yI∩Ci≠∅}

RGSCC (Ci).

Thereby, the set of variables that are reachable from SCC Ci (i = 1, … , k) is defined as:

RGSCC

(
Ci

)
∶=

{
yj ∈ y ∶

(
j ∈ Ci

)
∨
(
∃l ∈ {1, … , k} ∶ j ∈ Cl ∶ Ci

P
⇝ Cl

)}
.

J. Time Ser. Anal. 44: 223–246 (2023) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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Figure 1. VAR matrix, associated directed graph, and component graph

Remark 2.8. Definition 2.4 states that the minimal VAR is the one composed of the series in the SCCs which
contain elements of yI and all SCCs that may be reached from these SCCs.

We illustrate the graph theoretical concepts using a simple example, starting with a four-dimensional VAR(1)
with coefficient matrix as shown on the left side in Figure 1.8 The associated directed graph indicates that this
system has two strongly connected components. The set of vertices of the first SCC C1 consists of variables 1 and
3, that is, V1 = {1, 3}, as vertex 1 may be reached from vertex 3 and vice versa. The set of vertices of the second
SCC C2 consists of variables 2 and 4, that is, V2 = {2, 4}. Note that the vertices within each strongly connected
component are mutually reachable (see Definition 2.2) and each variable (vertex) is contained in exactly one SCC
(see Remark 2.3). Moreover, SCC C1 is reachable from SCC C2 but not vice versa.

We may also illustrate Remark 2.6 as it is easy to see that we may reorder the variables such that a lower
block-triangular matrix results. For this purpose, we order the SCC that has no leaving edges first. In our example,
SCC C1 containing the set of vertices V1 = {1, 3}, has no leaving edges and is hence ordered first. The new
ordering of variables is then (1, 3, 2, 4), which results in the following reordered VAR matrix:

A∗ =

⎛
⎜
⎜
⎜
⎜
⎜⎝

a11 a13 0 0

a31 a33 0 0

a21 0 0 a24

0 a43 a42 a44

⎞
⎟
⎟
⎟
⎟
⎟⎠

=

(
A11 0

A21 A22

)
,

where the coefficients within matrix A∗ still have their original names. Obviously, this matrix has the desired
block-triangular form. After having grouped the variables according to the strongly connected components, we
may now draw a corresponding component graph according to the partition of the matrix A∗. The resulting com-
ponent graph is shown in the right panel of Figure 1. This component graph indicates that component C1 may be
reached from component C2 but not vice versa. Consequently, if the variable(s) of interest are included in com-
ponent C1, then the minimal VAR only includes the variables contained in C1 but not those contained in C2. In
contrast, if the variable(s) of interest are contained in C2, a corresponding VAR needs to include the variables from
C2 and in addition, the variables from C1 as C1 may be reached from C2. For instance, if the variable of interest
is, for example, variable 3, then the VAR needed in structural analysis needs to contain all variables that are in the
corresponding component C1. In our example, these are the variables 1 and 3. In contrast, if the variable of interest
is variable 2, then we need to include all variables in C2 and C1, that is, all four variables, in the VAR model. Simi-
larly, we may find the minimal VAR from the component graph even if we have more than one variable of interest.
In our example, if variables 1 and 3 are of interest, a VAR for just these two variables suffices as both variables
form a strongly connected component (C1) and no other strongly connected component can be reached from C1. In
contrast, if variables 2 and 4 are of interest, we need a VAR with all variables from C1 and C2 as C1 may be reached
from C2. In other words, we need all four variables. Now assume that variables 1 and 2 are of interest. Then again,

8 To avoid cluttering of the graph, we exclude self-loops from the graphical representation.
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DIRECTED GRAPHS AND VARIABLE SELECTION 229

we need to consider all variables from the strongly connected components that include variable 1 and variable 2,
which in our example boils down to again using all variables since there are only the two components C1 and C2.

According to Definition 2.4 our procedure provides us with the minimal set of variables that should be included
in a VAR used, for example, for impulse response analysis. In other words, we employ the graph theoretical
concept of SCCs to select the VAR variables and view our procedure as a tool to choose the VAR information set
in a systematic way. In the final step of our modeling approach, we therefore estimate a VAR using the selected
variables R(yI). Note that on this step, we follow the standard practice in VAR modeling used for impulse response
analysis and estimate a full VAR without any restrictions on the VAR coefficients. Consequently, we estimate the
VAR in this final step by standard multivariate least squares. This simple post-selection estimation approach is
similar in spirit to the approach in Belloni and Chernozhukov (2013).9 A detailed flow chart illustrates the entire
procedure in Appendix C.

3. ECONOMETRIC CAUSALITY CONCEPTS AND GRAPHS

The graph theoretical concepts discussed in Section 2 have a close relation to multi-step causality concepts in time
series econometrics. In this section we explain how the two concepts are related and show that the set of variables
selected for a minimal VAR by the SCC method as in Definition 2.4 of Section 2 coincides with the set of variables
that are multi-step causal for at least one of the variables of interest.

The simple notion of Granger-causality (see Granger, 1969) is known to neglect any indirect effects and influ-
ences of ‘auxiliary’ variables as it is based on 1-step ahead predictability. Consequently, the original definition
of Granger non-causality is not helpful in the context of variable selection. A more general causality concept
that takes into account all indirect effects of auxiliary variables is known as multi-step causality and has been
formally introduced into the literature by Dufour and Renault (1998).10 Informally, a subset yB of the variables
causes another subset yA at a specific horizon h if the best linear forecast for yA at horizon h can be improved by
including the variables in yB in the information set. Dufour and Renault (1998) discuss necessary and sufficient
conditions for non-causality at different forecast horizons h. Dufour et al. (2006) focus on developing correspond-
ing multi-step non-causality tests in the context of VAR models. For our purpose, it is convenient to note that
multi-step non-causality at different horizons may be formulated as linear exclusion restrictions on the so-called
direct VAR model. For h ≥ 1, we write this direct VAR model as:

yt+h = Π
(h)
1 yt + · · · + Π(h)p yt−p+1 + u(h)t+h, (3.3)

where this representation is obtained by successive substitution from the VAR in (2.1). Dufour and Renault (1998)
show that Π(0)1 = IK , Π(1)s = As, Π(h+1)

s = As+h +
∑h

l=1Ah−l+1Π(l)s = Π(h)s+1 +Π
(h)
1 As and the MA(h− 1) innovation term

u(h)t+h =
∑h−1

j=0Π
(h)
1 ut−j.

Given sets of indices A and B, let Π(h)AB,s denote the submatrix of Π(h)s consisting of the intersection of rows with

indices in A and columns with indices in B. If A and B are singletons, say A = {k}, B = {l}, we simply write Π(h)kl,s.
We reproduce Theorem 3.1 of Dufour and Renault (1998) tailored to the regular, finite VAR case.

Theorem 3.1. (Dufour and Renault (1998)). Given yA
, yB

⊆ y and y is generated by a regular, finite-order VAR(p)
as in (2.1), it is:

yB
�hyA ⇔ ∀s = 1, … , p ∶ Π(h)AB,s = 0,

9 We point out, however, that this method ignores the uncertainty due to selection and standard inference confidence intervals for impulse
responses may understate the true uncertainty somewhat. Accounting for selection uncertainty is left for future research.
10 The effect of intermediate variables have also been pointed out earlier by, for example, Lütkepohl (1993), Penm and Terrell (1986), and
Sims (1980) but Dufour and Renault (1998) were the first who formalized the concept of multi-step causality in a general framework.
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where 0 indicates a zero matrix of appropriate dimension. That is, yB does not cause yA at horizon h if and only if
all the relevant coefficients in the direct VAR model for horizon h are zero.

By definition, yB causes yA at lag h if at least one of the parameter matrices in the above theorem is not zero.
For some indices I, we denote by C(yI) the set consisting of the variables in yI itself and all variables that cause yI

at any horizon in the above sense. When I is a singleton, say I = {i}, we write C(yi) instead. Formally, we define
the causal variables in Definition 3.1.

Definition 3.1. (Causal variables). Given yI
⊆ y, the set of variables that cause yI is given by:

C
(
yI
)
∶=

{
yj ∈ y ∶

(
yj ∈ yI

)
∨
(
∃h ∈ N ∶ yj →h yI

)}
.

First, we investigate the case of a VAR with p = 1. For this case, we show that the coefficients of the direct VAR
representation Π(h)1 are related to the set of paths in the directed graph representing the VAR model. To show this,
note that the direct VAR representation for p = 1 is:

yt+h = Π
(h)
1 yt + u(h)t+h, with Π(h)1 = Ah

1 for all h ∈ N. (3.4)

By induction, each element Π(h)ij,1 in Π(h)1 can be linked to the set of all paths that lead from the associated vertices i
to j in h steps. We state this result formally in Theorem 3.2.

Theorem 3.2. Given two variables yi, yj ∈ y following a regular VAR(1) as in (2.1), the entry at position (i, j),
Π(h)ij , corresponds to the set of paths:

P
(h)
ij =

{
P ∶ P = (e1, … , eh) ∶ ∀k = 1, … , h ∶ ek = (vk−1, vk) ∈ E, v0 = i, vh = j

}
, (3.5)

leading from vertex i to vertex j for all h ∈ N in that:

Π(h)ij =
∑

P∈P
(h)
ij

∏

(l,m)∈P

alm. (3.6)

Proof. See Appendix A.1. ◾

P
(h)
ij is the set of all paths of length h leading from vertex i to vertex j. Theorem 3.2 essentially states, that the

coefficients of the direct VAR Π(h)ij can be written in terms of sums of products of autoregressive coefficients in A1,
where the indices correspond to edges on different paths from i to j. To illustrate this, consider again our simple
VAR(1) from Figure 1. In this example, there are two paths of length h = 2 from variable 2 to variable 3, thus the
set of paths is:

P
(2)
23 = {⟨(2, 1), (1, 3)⟩, ⟨(2, 4), (4, 3)⟩}.

Using the result from Theorem 3.2, we find for h = 2, i = 2 and j = 3:

Π(2)23,1 = a21a13 + a24a43.

Note that the indices of the VAR coefficients match with the edges of the path set P
(2)
23 . Obviously, the same Π(2)23,1

would be obtained from the direct VAR coefficient definition.
At first sight, the result of Theorem 3.2 seems to imply that variable j would be multi-step causal for variable i,

whenever there exists at least one path from i to j. However, P
(h)
ij ≠ ∅ does not imply that variable yj causes yi as
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the following example illustrates. Consider a VAR(1) with the associated directed graph:

A

In this example, we have P
(1)
31 = ∅ and P

(2)
31 = {⟨(3, 2), (2, 1)⟩, ⟨(3, 4), (4, 1)⟩} but variable y3 is not caused by y1

at neither horizon one nor horizon two since:

Π(2)31 = a32a21 + a34a41 = 1∕4 − 1∕4 = 0.

Furthermore, one can easily verify Π(h)31 = 0 and P
(h)
31 ≠ ∅ for all h ≥ 2. This ‘canceling-out’ effect of course

happens very rarely with any real data set and most reasonable estimation methods. Therefore, one might exclude
it by assumption.

Assumption 3.1. Given a VAR(1) system with Π(h1)
ij = 0 for all h1 > 1, then it is:

∀h2 ∈ N ∶ ∀k ∈ {1, … ,K} ∶ aikΠ
(h2)
kj = 0.

We basically assume that if variable j is multi-step non-causal for variable i, then this is because there is no
path from i to j and not because there is a path from i to j with VAR coefficients such that there is ‘canceling-out’.
Assumption 3.1 thus ensures the correspondence between paths and causality as in Lemma 3.1.

Lemma 3.1. Given a VAR(1) system and Assumption 3.1, for all h ≥ 1:

P
(h)
ij ≠ ∅ ⇔ Π(h)ij ≠ 0. (3.7)

Proof. See Appendix A.2. ◾

This result states that variable j is multi-step causal for variable i if and only if there is at least one path from
variable i to variable j. Under Assumption 3.1, the strongly connected components can be now be interpreted very
easily.

Lemma 3.2. Given a VAR(1) system and Assumption 3.1, the strongly connected components are sets of variables
that are mutually causal.

Proof. See Appendix A.3. ◾

This follows immediately from the definition of a SCC as for each pair i and j, there is a path from i to j and
from j to i.

Since we have proven Theorem 3.2 as well as Lemmas 3.1 and 3.2 for p = 1 only, we consider the companion
form, that is, the VAR(1) representation of a general VAR(p) model (2.1) to generalize this result:

Yt = AYt−1 + Ut, (3.8)
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where Yt = (y′t , y
′
t−1, … , y′t−p+1)

′ and Ut = (u′t , 0, … , 0)′ are Kp × 1 vectors and:

A ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

A1 A2 A3 … Ap

IK 0 0 … 0

0 IK 0 … 0

0 0 ⋱ ⋮

0 0 … IK 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

. (3.9)

The ultimate goal is to show that under mild conditions, the set of causal variables and the set of relevant variables
coincide. For that purpose, we need another auxiliary result. Therefore, we first show that if Assumption 3.1 holds
for the companion matrix (3.9), causality is equivalent to a non-zero entry in the very first autogressive matrix of
the direct VAR(p) (3.3) for at least one horizon:

Lemma 3.3. Given a finite-order VAR(p) model (2.1), Assumption 3.1 for the companion matrix (3.9) of the
corresponding VAR(1) representation (3.8) and yI

⊆ y:

∃h1 ∈ N ∶ yj →h1
yI ⇔ ∃h2 ∈ N ∶ Π(h2)

Ij,1 ≠ 0. (3.10)

Proof. See Appendix A.4. ◾

The final step is to analyze multi-step causality across SCCs. Consider a strongly connected component Ci and,
as in Section 2, denote the set of all SCCs that are reachable from Ci by RGSCC (Ci). Then, due to Lemma 3.2, all
variables in RGSCC (Ci) are multi-step causal for variables in Ci as there is a path from any variable in Ci to the
variables in RGSCC (Ci).

Finally, based on the foregoing discussion and for a given set of variables of interest yI, we note that the variables,
which are multi-step causal for yI are all the variables in the SCCs that contain elements of yI and all variables in
all SCCs that may be reached from these SCCs.11 Note that under Assumption 3.1 for companion matrix (3.9), this
coincides with Definition 2.4 of the minimal set of relevant variables R(yI) from Section 2. Moreover, remember
Definition 3.1 of causal variables C(yI). In case of ‘canceling-out’, the set of relevant variables R(yI) will be larger
than the set of causal variables C(yI). We summarize this result more formally in Theorem 3.3.

Theorem 3.3. Given a VAR(p) system, C(yI) ⊆ R(yI), that is, all variables that cause yI are contained in the set
of relevant variables. If Assumption 3.1 is true for companion matrix (3.9), then the set of relevant variables is
identical to the set of causal variables, C(yI) = R(yI).

Proof. See Appendix A.5. ◾

This establishes the relation between the set of relevant variables found from the graph of strongly connected
components and the variables that are multi-step causal for the variables of interest.

Remark 3.1. Given that Assumption 3.1 holds for the companion matrix of the VAR(1) representation of a general
finite-order VAR(p) model, all results transfer to VAR(p) processes. We also note again that Assumption 3.1 is not
restrictive at all as the ‘canceling-out’ effect will essentially never occur in practice.

Hence, we have shown that under very mild conditions, the set of relevant variables coincides with the set of
variables that are causal for yI. This is a useful result, as we note that the multi-step non-causality tests of Dufour
et al. (2006) may be inapplicable when considering high-dimensional VARs because they require the estimation
of large covariance matrices. Consequently, in large VARs they cannot be used as a variable selection tool. Our
graphical approach is not affected by that shortcoming and can therefore be superior for some scenarios.

11 Thereby, note that though we are considering system (3.8) of dimension Kp, the variables of interest yI are still a subset of y, that is, I ⊂
{1, … ,K}.
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4. EMPIRICAL ILLUSTRATION

To illustrate the usefulness of the graph theoretical approach for selecting the relevant information set, we apply
the method to a large set of US economic time series. We focus on the selection of variables and on impulse
response analysis of the selected models.

We start from a set of 41 quarterly economic time series that includes a large variety of macroeconomic and
financial series over a period from 1975Q1 to 2014Q4. The collection of variables is similar to related studies
as, for example, Jarociński and Maćkowiak (2017) and Kascha and Trenkler (2015) and includes real GDP and
its components, business cycle indicators, various price measures and interest rates, monetary aggregates and a
number of labor market variables. In addition, the data includes exchange rate data together with three key variables
for the Euro area (Euro area GDP, Euro area CPI and a Euro area interest rate). A detailed list with variables and
data sources is provided in Table B1 in Appendix B.

To apply the approach discussed in Section 2, we first transform the data to stationarity. This involves taking
logarithms and/or differences depending on the property of the respective variable.12 We describe the details of
data preparation and document the transformations by reporting the transformation codes in Appendix B.

In what follows, we apply the graph theoretical methods to a sparse VAR, that is, a VAR with a number of zero
coefficients in the autoregressive matrices. In our application, these sparse VARs are selected by applying the least
absolute selection and shrinkage operator (LASSO) in the context of the VAR model. There is ample evidence in
the literature that LASSO is a useful device and often performs more precise than standard (unrestricted or subset)
VARs (see e.g. Kascha and Trenkler, 2015 and references therein). While in principle other methods for subset
selection may be employed, we only use LASSO and point out that the subset selection is not the main focus of
our article. Instead, we start from a given subset structure and explore how this can be used to detect the smallest
possible VAR system.

4.1. Variable Selection

To illustrate the variable selection, we choose real US GDP, the US consumer prices (CPI), and the federal funds
rate as variables of interest yI. This includes three key economic variables often analyzed with VARs and also
corresponds to the variables chosen by Jarociński and Maćkowiak (2017). For a given sample period, we estimate
a LASSO-VAR(4) in all 41 variables such that the system contains lags up to 1 year (p = 4). The shrinkage
parameter in the LASSO approach is chosen by the Bayesian information criterion (BIC).13 The variables that
should be included in the VAR are then determined based on the SCCs according to Definition 2.4.

To investigate which of the 41 variables should be selected into a VAR and how the selection changes over
time, we use our method recursively in an expanding window setup. The initial estimation period covers data
from 1975Q1 to 2002Q2 (sample size T1 = 112). We apply the LASSO-VAR and record the relevant variables
according to the SCC structure as in Definition 2.4. We then add recursively observations to the estimation sample
and re-estimate the LASSO-VAR with T1 + 1,T1 + 2, … ,T observations, where the final estimation period ends
in 2014Q4 (with a sample size of T = 160). For each estimation window considered in this recursive setup, we use
the respective LASSO-VAR results to determine the relevant variables according to Definition 2.4. Thus, for each
of the estimation periods ending between 2002Q4 and 2014Q4, we have a set of selected variables and show these
selection results in graphical form in Figure 2. The rows in the checkerboard graph correspond to the different
economic variables, whereas the columns refer to different ends of estimation samples. The filled green squares
correspond to the variables of interest (here: GDP, CPI, and the Federal Funds Rate), a filled blue square in a
specific row indicates that the variable in that row is selected into the minimal VAR using the sample terminating
in the period corresponding to the column. Accordingly, a white square indicates that the variable has not been
selected into the minimal VAR in a particular period.

12 Transforming the variables to stationarity cancels possible common trends and cointegration relations between the variables. Extending the
graphical methods to models with common trends such as cointegrated VARs and vector error correction models is left for future research.
13 As for the implementation of the LASSO-VAR we follow the paper by Kascha and Trenkler (2015) and refer to their paper for details.
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Figure 2. Variable selection results. Variables of interest yI: US Real GDP, CPI and FFR (green). Relevant variables as selected
by graphical method (blue) and variables not selected (white). Sample period: 1975Q1–2014Q4

We find that six variables are always selected into the minimal VAR in each of the periods considered. This
includes employment, the 1-year T-Bill rate, the mortgage interest rate, the CPI less food and energy price index,
residential investment and the purchasing manager’s index. A tentative interpretation of this result may be that these
variables form the minimal set of additional variables that should be considered if a VAR in output, inflation and
interest rate is of interest. We note that some of these variables have typically not been included in related empirical
studies on the effects of monetary policy shocks. We also compared our set of selected variables with those from
Jarociński and Maćkowiak (2017) and note that the variables of interest yI show a very low posterior probability
(<0.1) of being Granger-causally prior to the variables (except residential investment) that have been always
selected by our graphical methods. However, based on table 1 of Jarociński and Maćkowiak (2017), one would
select 22 series since yI has a posterior probability of less than 0.1 to be Granger-causal prior to them. Hence, though
the variables selected by our approach are also chosen using the method of Jarociński and Maćkowiak (2017), the
graphical technique applied in this article seems to be more in favor of a small VAR system of relevant variables.

In a number of periods additional variables are selected into the minimal VAR. The number of selected variables
is quite large (on average 21.5 out of the 41 are selected). This provides evidence that the dynamic relationship
between economic variables is more complex than small scale VARs tend to suggest. While there are some changes
as we increase the estimation sample, the overall selection of variables is relatively stable for the period before
the 2008/2009 economic crisis. Interestingly, when the estimation sample extends beyond the crisis period, we
observe that our method tends to select more variables, possibly suggesting that the linkages between variables
have become more pronounced.14

14 We are grateful to one of the referees suggesting that the large number of selected variables may point to a factor structure of the underlying
data. Consequently, controlling for common factors may be useful. We have done this by running our selection method after removing the
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4.2. Impulse Response Analysis

We illustrate the effect of including the selected variables into a small VAR system on estimated impulse responses.
As in Section 4.1, the small VAR consists of the variables of interest with real GDP, the CPI and the federal
funds rate (FFR). These type of systems have also been used by Jarociński and Maćkowiak (2017) and Banbura
et al. (2010).

Following standard specifications from the literature (see e.g. Christiano et al., 1999), we have used VAR(4)
models in the (log) levels of the variables of interest for the comparison of impulse responses. For the VAR
with selected variables, we have added the six variables (again in (log) levels) that have been selected for all
considered sample periods in Section 4.1. We use the standard ordering of variables and thus include employ-
ment, the CPI less food and energy price index, residential investment, and the purchasing manager’s index in
the group of ‘slow moving’ variables, that is, they are ordered above the federal funds rate variable. In contrast,
the 1-year T-Bill rate and the mortgage interest rate are in the group of ‘fast moving’ variables and are con-
sequently ordered below the federal funds rate. Using a Cholesky decomposition, this ordering implies that a
shock in the federal funds rate (typically labeled a monetary policy shock) may have an immediate impact on
the ‘fast moving’ variables, while the ‘slow moving’ variables may only react with a lag of one quarter. All VAR
models are estimated by unrestricted multivariate LS (i.e. no shrinkage is applied) and the reported (pointwise)
confidence intervals are asymptotic 95% intervals obtained using the ‘delta method’ (see e.g. Lütkepohl, 2005,
section 3.7).15

In Figure 3, we report results for a sample that ends in 2008 to exclude the effects of the 2008/2009 financial
crisis and to take into account the break in the variable selection after 2008 (see Figure 2). The left panel of the
figure shows the responses of GDP, CPI and the federal funds rate to a contractionary shock in the federal funds
rate within the small VAR containing three variables. We find the typical pattern with a significant and persistent
drop in output. We also find a significant increase in CPI, which is known as the ‘price puzzle’ because economic
theory suggests a decrease rather than an increase in the price level after tightening monetary policy. In other
words, the response of the price level in the small VAR is counter-intuitive. Adding the six selected variables
changes the response patterns substantially. First, the drop in output is now much less persistent. In fact, 2 years
after the shock the response of output is no longer significantly different from zero. Moreover, the price puzzle
disappears: the reaction of consumer prices to a monetary policy shock is not significantly different from zero for
more than 3 years. Thereafter, it shows the expected sign since in line with conventional economic theory it starts
to be significantly negative. Thus, including the variables selected by our method leads to much more reasonable
impulse response patterns and changes the interpretation of the results substantially. Of course, in the context of
our empirical illustration, it has already been shown that including for certain additional variables can mitigate
the price puzzle. However, our method based on SCCs adds a new and more systematic way of how to expand
small VAR systems. It is therefore helpful in finding the right information set, which is of obvious importance for
structural analysis.

For comparison, we have also computed the responses estimated from a simple 41 variable LASSO-VAR(4)
and show the results as dashed lines in Figure 3. Interestingly, the responses are fairly similar to those from the
small 3-variable VAR. In particular, just using a LASSO-VAR does not help to resolve the price puzzle. This nicely
illustrates the value-added of our procedure.

We report the responses for the full sample that ends after 2014 in Figure D1 in Appendix D. Again, the addition
of our six selected variables clearly mitigates the price puzzle, even though it does not impose the reaction of
prices to a monetary policy shock to be significantly negative.

first two principal components from the data. Using the remaining idiosyncratic components we find that almost no additional variables are
selected. We therefore conclude that in our framework controlling for common factors is not helpful in choosing a good information set for a
VAR analysis since too few variables are selected to add any value to the subsequent structural analysis.
15 The construction of the impulse response intervals ignores the uncertainty related to the variable selection. In Appendix D.1, we suggest an
empirical approach to get some indication for the effect of selection uncertainty. As expected, this leads to somewhat wider intervals, however,
the main economic results are qualitatively not affected.
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Figure 3. Impulse responses in small VAR and selected variable VAR. Left: Responses to a shock in FFR in 3-variable (small)
VAR(4) including GDP, FFR, and CPI. Right: Responses to a shock in FFR in 9-variable VAR(4) with six selected additional

variables. The dashed line shows the estimated responses from a LASSO-VAR(4). Sample period: 1975Q1–2008Q4

It is interesting to note that the changes in the response pattern obtained by just adding six variables are to
some extent similar to the changes obtained by Banbura et al. (2010) in their medium (20 variables) and large
(131 variables) system for monthly data. In other words, it seems that our methodology provides a perspective that
complements the ‘large VAR’ idea of Banbura et al. (2010).

5. CONCLUSION

This article uses concepts from graph theory for variable selection in VAR models. To this end, we identify strongly
connected components from the directed graph representing the dynamic relationships among the variables in a
sparse VAR. We suggest to use relations among the strongly connected components in a so-called component
graph to identify a minimal set of variables that we need to include in a VAR analysis for a small set of variables if
impulse response analysis is of interest. The article contributes to the existing literature by introducing a graphical
method, which to the best of our knowledge has not been used for variable selection in econometrics.

We also show that there is a simple relation between the graph theoretical concept and multi-step causality and
relate the paths in the graph to coefficients of a direct VAR system. It follows from the results in the article that the
set of relevant variables selected from the graphical approach coincides with the set of variables that are multi-step
causal for the variables of interest.

We illustrate the usefulness of the variable selection method in a structural analysis of a small US monetary
system (real GDP, CPI inflation and the federal funds rate) as the variables of interest. Given this set, we apply the
graphical approach to select additional variables out of a large set of macroeconomic variables. The selected VAR
typically includes some variables from the real sector (employment and residential investment), a forward looking
indicator (purchasing manager’s index), different interest rates (mortgage interest rate and 1 year T-Bill rate) and
a CPI related measure (CPI less food and energy). The selection of variables seems sensible from an economic
point of view. Interestingly, we find that this list includes some variables that other researchers typically have not
included in small monetary systems. Moreover, we find that including the selected variables for impulse response
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analysis is useful: In the small monetary system in output, inflation and interest rate, we find that including the
selected variables avoids the so-called ‘price puzzle’.

Overall, our empirical results suggest that using graphical modeling for variable selection is a useful addition
to the VAR econometricians’ toolbox. The method complements existing methods for large data sets and is partic-
ularly useful if a researcher prefers to work with smaller scale models, for example, for maintaining consistency
with small scale theoretical models. Moreover, compared to alternative methods for large data sets, a graphical
representation of the strongly connected components may give useful insights on the (causal) relationships and
the transmission channels among the VAR variables.

Extensions of the current article could use graphical models for variable selection taking also the contempo-
raneous relationships among variables into account. Moreover, extending the approach to models with integrated
and cointegrated variables would be of interest. We leave this for future research.
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APPENDIX A: PROOFS

A.1. Proof of Theorem 3.2

Proof. We prove Theorem 3.2 by mathematical induction.
Base Case Let h = 1. Then, it is Π(h)ij = Π(1)ij = aij.

If P
(1)
ij is empty, (i, j) ∉ E what imposes aij = 0 because of Definition 2.1. Then, equality (3.6) holds trivially.

If P
(1)
ij ≠ ∅, it follows that P

(1)
ij = {(i, j)}. Consequently,

∑
P∈P

(1)
ij

∏
(l,m)∈P alm = aij = Π

(1)
ij , which proves (3.6)

for h = 1.
Induction Step Let (3.6) hold for h − 1, that is

∀i, j ∈ {1, … ,K} ∶ Π(h−1)
ij =

∑

P∈P
(h−1)
ij

∏

(l,m)∈P

alm. (A1)

Moreover, define:

Ei ∶= {k ∈ {1, … ,K} ∶ (i, k) ∈ E} ⇒ P
(h)
ij =

⋃

k∈Ei

⋃

P∈P
(h−1)
kj

[{(i, k)} ∪ P] . (A2)

This just means that any path from vertex i to vertex j of length h can be decomposed into a tuple (i, k) and a path
from vertex k to vertex j of length (h−1) for all k ∈ {1, … ,K} with aik ≠ 0 and P

(h−1)
kj ≠ ∅. Using this, we get:

Π(h)ij =
K∑

k=1

aikΠ
(h−1)
kj
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(A1)
=

K∑

k=1

aik

∑

P∈P
(h−1)
kj

∏

(l,m)∈P

alm

=
∑

k∈Ei

∑

P∈P
(h−1)
kj

aik

∏

(l,m)∈P

alm

=
∑

k∈Ei

∑

P∈P
(h−1)
kj

∏

(l,m)∈[{(i,k}∪P]
alm

(A2)
=

∑

P∈P
(h)
ij

∏

(l,m)∈P

alm.

◾

A.2. Proof of Lemma 3.1

Proof. We prove both directions of the if-and-only-if statement (3.7):

“
(A.3)
⇒ ” Let P

(h)
ij ≠ ∅. We prove Π(h)ij ≠ 0 by mathematical induction.

Base Case Let h = 1. Then, it is P
(1)
ij = {(i, j)}, that is, aij ≠ 0 due to Definition 2.1. Consequently, it is

Π(1)ij = aij ≠ 0.
Induction Step Let one direction of (3.7) hold for (h − 1), that is

∀i, j ∈ {1, … K} with P
(h−1)
ij ≠ 0, it is Π(h−1)

ij ≠ 0. (A3)

Now, let P
(h)
ij ≠ ∅:

⇒ ∃k ∈ {1, … ,K} ∶ aik ≠ 0 ∧ P
(h−1)
kj ≠ ∅

(A.3)
⇒ Π(h−1)

kj ≠ 0 ⇒ aikΠ
(h−1)
kj ≠ 0

⇒ Π(h)ij =
K∑

l=1

ailΠ
(h−1)
lk ≠ 0

because of Assumption 3.1 and aikΠ
(h−1)
kj ≠ 0.

“⇐” Let Π(h)ij ≠ 0. Assume P
(h)
ij = ∅. Consequently, by Theorem 3.2 it is Π(h)ij =

∑
P∈P

(h)
ij

∏
(l,m)∈P alm = 0 because

it is an empty sum. This is a contradiction. Thus, P
(h)
ij ≠ ∅ has to hold. ◾

A.3. Proof of Lemma 3.2

Proof. Without loss of generality, let i, j ∈ Ck. By Definition 2.2, yi and yj are mutually reachable. Therefore, it is:

∃hi ∈ N ∶ P

(hi)
ij ≠ ∅

Lemma 3.1
⇔ Π(hi)

ij ≠ 0
Theorem 3.1
⇔ yj →hi

yi ⇒ yj ∈ C
(
yi

)
,

∃hj ∈ N ∶ P

(hj)
ji ≠ ∅

Lemma 3.1
⇔ Π(hj)

ji ≠ 0
Theorem 3.1
⇔ yi →hj

yj ⇒ yi ∈ C
(
yj

)
.

Consequently, yi and yj are mutually causal. ◾
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A.4. Proof of Lemma 3.3

Proof. We prove both directions of the if-and-only-if statement (3.10) whereas the second implication is trivial:

“⇒” Let yj be a variable that causes yI, that is, ∃h1 ∈ N ∶ yj →h1
yI. By Theorem 3.1 it follows:

∃s1 ∈ {1, … , p} ∶ Π(h1)
Ij,s1
≠ 0 ⇒ ∃i ∈ I ∶ Π(h1)

ij,s1
≠ 0.

For s1 = 1, Π(h1)
ij,1 ≠ 0 and thus Π(h1)

Ij,1 ≠ 0 follows immediately. So, let s1 ∈ {2, … , p}.
Note that one can easily show that JAh = (Π(h)1 , … ,Π(h)p ) with J = (IK , 0, … , 0) being a (K × Kp) selection

matrix. Consequently, Π(h)ab,s = Ah
a,(s−1)K+b holds for all a, b ∈ {1, … ,K}, s ∈ {1, … , p} and h ∈ N.

Therefore, Ah1

i,(s1−1)K+j
= Π(h1)

ij,s1
≠ 0 holds. Moreover, Al,l−K = 1 for l = K + 1, … ,Kp by construction of the

companion matrix (3.9). Applying this argument for l = (s1−1)K+ j and using Assumption 3.1, it follows that
Π(h1+1)

ij,s1−1 = Ah1+1
i,(s1−2)K+j ≠ 0. Continuing this argument, one shows thatΠ(h1+s1−1)

ij,1 = Ah1+s1−1
ij ≠ 0. So,Π(h1+s1−1)

Ij,1 ≠ 0
is true.

“⇐” Assume that there is a h ∈ N such that Π(h)Ij,1 ≠ 0. Due to Theorem 3.1, this directly implies yj →h yI. ◾

A.5. Proof of Theorem 3.3

Proof. First, we prove the general subset relation C
(
yI
)
⊆ R

(
yI
)
.

“⊆” Let yj ∈ C
(
yI
)

and w.l.o.g. j ∈ Cj∗ . Due to Definition 3.1, either

(a) yj ∈ yI, or
(b) ∃h ∈ N ∶ yj →h yI has to hold.

In case (a), yj ∈ Cj∗ ∩ yI and therefore Cj∗ ∩ yI ≠ ∅. By Definition 2.4, yj ∈ RGSCC

(
Cj∗

)
has to hold what

directly imposes yj ∈ R
(
yI
)
.

In case (b):

∃h ∈ N ∶ yj →h yI
Theorem 3.1

⇔ Ah
Ij ≠ 0 ⇔ ∃i ∈ I ∶ Ah

ij ≠ 0
Theorem 3.2

⇒ ∃i ∈ I ∶ P
(h)
ij ≠ ∅.

Let i ∈ Ci∗ . Obviously, j is reachable from i in G. Hence, Cj∗ is also reachable from Ci∗ in GSCC. Consequently,
it is yj ∈ RGSCC

(
Ci∗

)
. Because of i ∈ Ci∗ and i ∈ I, it is yi ∈ yI ∩ Ci∗ and therefore yI ∩ Ci∗ ≠ ∅. Thus,

RGSCC

(
Ci∗

)
⊆ R

(
yI
)

and therefore yj ∈ R
(
yI
)
.

“⊇” Let Assumption 3.1 hold, yj ∈ R
(
yI
)

and w.l.o.g. j ∈ Cj∗ . Due to Definition 2.4, then:

∃i∗ ∈ {1, … , k} ∶ Ci∗ ∩ yI ≠ ∅ ∶ yj ∈ RGSCC

(
Ci∗

)
.

Again by Definition 2.4, this means that either

(i) j ∈ Ci∗ , or

(ii) Ci∗
P
⇝ Cj∗ has to hold.

In case (i):

Ci∗ ∩ yI ≠ ∅⇒ ∃i ∈ I ∶ i ∈ Ci∗ ⇒ i, j ∈ Ci∗
Lemma 3.2
⇒ yj →h yi ⇒ yj ∈ C

(
yI
)
.
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Note that because of Remark 2.3, j ∈ Ci∗ would also imply i∗ = j∗ and thereby cause yj ∈ C
(
yI
)
. In case (ii):

∃i1 ∈ Ci∗ ∶ ∃j1 ∈ Cj∗ ∶ ∃h ∈ N ∶ P
(h)
i1j1
≠ ∅. (A4)

As Assumption 3.1 holds for companion form (3.9), we can apply Lemma 3.2 and make use of the fact that
the upper left K × K block of the autoregressive matrix of the direct VAR representation of companion form
(3.8), Ah, is identical with Π(h)1 of the corresponding direct representation of the regular VAR(p) model (2.1)
to get:

∀i1 ∈ Ci∗ ∶ ∃h1 ∈ N ∶ yi1
→h1

yi

Lemma 3.3
⇔ ∃h2 ∈ N ∶ Π(h2)

i,i1 ,1
≠ 0 ⇔ Ah2

i,i1
≠ 0

Lemma 3.1
⇔ P

(h2)
i,i1
≠ ∅,

∀j1 ∈ Cj∗ ∶ ∃h3 ∈ N ∶ yj →h3
yj1

Lemma 3.3
⇔ ∃h4 ∈ N ∶ Π(h4)

j1 ,j,1
≠ 0 ⇔ Ah4

j1,j
≠ 0

Lemma 3.1
⇔ P

(h4)
j1 ,j
≠ ∅.

As we have paths from vertex i to i1, vertex i1 to j1 and vertex j1 to j, there is also a path from vertex i to j as
we can simply connect them, that is

P

(h+h2+h4)
ij ≠ ∅

Lemma 3.3
⇔ ∃h5 ∈ N ∶ Π(h5)

ij,1 ≠ 0 ⇔ Π(h5)
Ij,1 ≠ 0

Theorem 3.1
⇔ yj →h5

yI ⇒ yj ∈ C
(
yI
)
. ◾

APPENDIX B: DATA

We describe the data used in the empirical illustrations. Raw data for most series are obtained from the FRED
database and Table B1 shows the corresponding FRED mnemonics. We construct some variables from splicing
two series to obtain long time series: As a measure for the exchange rate, we use the US/DM exchange rate
(EXGEUS) until 1998Q4. From 1999Q1 we use EXUSEU and splice both series accordingly. The resulting variable
is called EXCH. We follow McCracken and Ng (2016) and use OILPRICE (Spot Oil Price) until 1985Q4 and
MCOILWTICO (Crude Oil Price, Cushing) since 1986Q1, since the former series has been discontinued. The
resulting series is labeled POIL in our data set. To obtain a crude measure of stock market volatility, we simply
use the squared stock market returns, since the time series of volatility indices in FRED are rather short. This
series is called VOLA. Seasonally adjusted series have been taken from FRED where necessary. The time series
on Government Debt (GFDEBTN) has been seasonally adjusted by the authors using X-ARIMA-13. The resulting
series is GFDEBTNSA. The Euro area time series have been added using the update 15 to the AWM database
maintained at the ECB. The AWM mnemonics for the real GDP, CPI, and a short-term interest rates areYER,HICP,
and STN. HICP has been seasonally adjusted by the authors using X-ARIMA-13. We use EMUGDP, EMUHICPSA,
and EMURS to denote the three Euro area variables.

The last columns in Table B1 lists the transformation codes 1–6, corresponding to the following transformations
of the series yt: (1) no transformation, yt, (2)Δyt, (3)Δ2yt, (4) 400×log(yt), (5) 400×Δ log(yt), (6) 400×Δ2 log(yt).

APPENDIX C: ALGORITHM

Input: raw data set y, lag length p, set of interest I

1. Transform y to get ytrans (transformation codes see Table B1) in Appendix B.

2. Estimate LASSO-VAR(p) on ytrans to obtain autoregressive matrices Â
LASSO

1 , … ,Â
LASSO

p (Kascha and Tren-
kler, 2015).
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Table B1. Variables, data sources and transformations: Graph-VAR

Name Mnemonic Transf.Code

Real GDP GDPC96 5

CPI CPIAUCSL 6

Federal Funds Rate FEDFUNDS 2

Real Consumption PCECC96 5

Real Government Consumption GCEC1 5

Real Investment GPDIC1 5

Real Exports EXPGSC1 5

Real Imports IMPGSC1 5

Change in Real Inventories CBIC96 1

Unit Labor Cost ULCNFB 5

Employment PAYEMS 5

Unemployment Rate UNRATE 2

Hours worked HOHWMN02USQ065S 1

1-year T-Bill Rate GS1 2

10-year T-Bill Rate GS10 2

Corporate Bond Spread AAAFFM 1

Lending Rate to NFCs TB3MS 3

Mortgage Rate MORTG 2

M1 M1SL 6

M2 M2SL 6

Government Debt GFDEBTNSA GFDEBTN. seas.adj: X-13 5

Real Estate Loans REALLN 5

Consumer Credits TOTALSL 5

Commercial Loans BUSLOANS 5

Dollar/Euro Exchange Rate (EXCH) spliced from EXGEUS and EXUSEU 5

Effective Exchange Rate NNUSBIS 5

Oil Price (POIL) spliced from OILPRICE and MCOILWTICO 5

Commodity Prices CUSR0000SAC 6

Consumer Prices (excl. food, energy) CPILFESL 6

Producer Price Index PPIACO 5

House Prices USSTHPI 6

Real Housing Investment PRFI 5

Total Share Prices SPASTT01USQ661N 5

Volatility Index VIXCLS 5

Capacity Utilization CUMFNS 2

Consumer Confidence CSCICP03USM665S 2

Industrial Confidence BSCICP03USM665S 2

Purchasing Manager’s Index NAPM 1

Real GDP (Euro Area) AWM mnemonic: YER 5

CPI (Euro Area) AWM mnemonic: HICP, seas.adj: X-13 6

Short term interest rate (Euro Area) AWM mnemonic: STN 2

Note: The table shows FRED and AWM database names together with the transformation codes. See Appendix B for a detailed description of
the transformations.
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3. Based on Â
LASSO

1 , … ,Â
LASSO

p find SCCs C1, … ,Ck (Tarjan, 1972).

4. Based on C1, … ,Ck find minimal VAR R
(
yI

trans

)
(Definition 2.4).

5. Estimate an unrestricted VAR(p) in levels on R
(
yI
)
.

6. Conduct impulse response analysis.

Output: relevant variables R
(
yI

trans

)
, estimated impulse response functions

APPENDIX D: ADDITIONAL RESULTS

D.1. Selection Uncertainty and Impulse Response Intervals
The construction of impulse response confidence intervals in the selected VAR of Section 4.2 does not account
for the uncertainty in the variable selection process. While a theoretical analysis of this issue is beyond the scope
of this article, we try to get some indication of the underlying uncertainty in our empirical application. To this
end, we use a residual bootstrap procedure, which is designed to empirically capture the selection uncertainty.
The approach is similar to the ‘endogenous lag order bootstrap’, which has been used for capturing uncertainty in
VAR lag selection (see e.g. Kilian, 1998). Using the parameter estimates and residuals of the Selected VAR, we
generate B = 999 bootstrap samples. In each bootstrap replication, we repeat the variable selection approach of the
article to determine the set of relevant variables. Based on the VAR in the newly selected variables, we compute
the impulse responses of interest. The confidence intervals are constructed using Hall’s percentile method (see
Hall, 1992) and Appendix D.3 in Lütkepohl (2005)) with nominal coverage of 95%. As the selection is repeated
in each bootstrap replication, the results give some indication of the selection uncertainty.

Using our empirical application from Section 4.2, we illustrate the effect of accounting the selection uncer-
tainty with the above procedure. The first two columns in Figure D2 reproduce the result for the baseline sample
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Figure D1. Impulse responses in small VAR and selected variable VAR. Left: Responses to a shock in FFR in 3-variable
(small) VAR(4) including GDP, FFR, and CPI. Right: Responses to a shock in FFR in 9-variable VAR(4) with six selected
additional variables. The dashed line shows the estimated responses from a LASSO-VAR(4). Sample period: 1975Q1–2014Q4
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Figure D2. Selection uncertainty in impulse responses from selected variable VAR. Left: Responses to a shock in FFR in
3-variable (small) VAR(4) including GDP, FFR, and CPI. Middle: Responses to a shock in FFR in 9-variable VAR(4) with
six selected additional variables. Right: Responses to a shock in FFR in selected VAR with bootstrap intervals accounting for
selection uncertainty. The dashed line shows the estimated responses from a LASSO-VAR(4). Sample period: 1975Q1–2008Q4
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Figure D3. Selection uncertainty in impulse responses from selected variable VAR. Left: Responses to a shock in FFR in
3-variable (small) VAR(4) including GDP, FFR, and CPI. Middle: Responses to a shock in FFR in 9-variable VAR(4) with
six selected additional variables. Right: Responses to a shock in FFR in selected VAR with bootstrap intervals accounting for
selection uncertainty. The dashed line shows the estimated responses from a LASSO-VAR(4). Sample period: 1975Q1–2014Q4
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1975Q1–2008Q4 from Figure 3, while the last column shows the confidence intervals accounting for selection
uncertainty. As expected, these intervals are somewhat wider. We note, however, that the economic results are
qualitatively very similar. For the extended sample (1975Q1–2014Q4, originally shown in Figure D1), a similar
pattern can be observed (see Figure D3). Interestingly, for this extended sample, accounting for selection uncer-
tainty increases the widths of the intervals more than in our baseline sample. Nevertheless, against the background
of these results, we still find that our approach successfully mitigates and helps to solve the price puzzle.
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