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Abstract
This article examines neural network-based approxima-
tions for the superhedging price process of a contingent
claim in a discrete time market model. First we prove
that the 𝛼-quantile hedging price converges to the super-
hedging price at time 0 for 𝛼 tending to 1, and show
that the 𝛼-quantile hedging price can be approximated
by a neural network-based price. This provides a neu-
ral network-based approximation for the superhedging
price at time 0 and also the superhedging strategy up
to maturity. To obtain the superhedging price process
for 𝑡 > 0, by using the Doob decomposition, it is suf-
ficient to determine the process of consumption. We
show that it can be approximated by the essential supre-
mum over a set of neural networks. Finally, we present
numerical results.

KEYWORDS
deep learning, quantile hedging, superhedging

1 INTRODUCTION

In this paper, we study neural network approximations for the superhedging price process for a
contingent claim in discrete time.
Superhedgingwas first introduced in El Karoui andQuenez (1995) and then thoroughly studied

in various settings and market models. It is impossible to cover the complete literature here, but
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we name just a few references. For instance, in continuous time, for general càdlàg processes
we mention Kramkov (1996), for robust superhedging Nutz (2015), Touzi (2014), for pathwise
superhedging on prediction sets Bartl et al. (2020), Bartl et al. (2019), or for superhedging under
proportional transaction costs (Campi & Schachermayer, 2006), Cvitanić and Karatzas (1996),
Kabanov and Last (2002), Schachermayer (2014), Soner et al. (1995). Also in discrete time, there
are various studies in the literature, like the standard case (Föllmer & Schied, 2016), robust super-
hedging Carassus et al. (2019), Obłój andWiesel (2021), superhedging under volatility uncertainty
(Nutz & Soner, 2012), or model-free superhedging Burzoni et al. (2017). The superhedging price
provides an opportunity to secure a claim, but it may be too high or reduce the probability to profit
from the option. In order to solve this problem, quantile hedging was introduced in Föllmer and
Leukert (1999), where the authors propose to either fix the initial capital and maximize the prob-
ability of superhedging with this capital or fix a probability of superhedging and minimize the
required capital. In this way, a trader can determine the desired trade-off between costs and risk.
In certain situations, it is possible to calculate explicitly or recursively the superhedging or

quantile hedging price, see for example, Carassus et al. (2007), but in general incomplete markets,
it may be complicated to determine superhedging prices or quantile hedging prices. In this article,
we investigate neural network-based approximations for quantile- and superhedging prices. Neu-
ral network-based methods have been recently introduced in financial mathematics, for instance
for hedging derivatives, see Buehler et al. (2019), determining stopping times, see Becker et al.
(2019), or calibration of stochastic volatility models, see Cuchiero et al. (2020), and many more.
For an overview of applications of machine learning to hedging and option pricing, we refer to
Ruf and Wang (2020) and the references therein.
This paper contributes to the literature on hedging in discrete time market models in several

ways. First, we prove that the 𝛼-quantile hedging price converges to the superhedging price for
𝛼 tending to 1. Further, we show that it is feasible to approximate the 𝛼-quantile hedging and
thus also the superhedging price for 𝑡 = 0 by neural networks. We extend our machine learning
approach also to approximate the superhedging price process for 𝑡 > 0. By the first step, we obtain
an approximation for the superhedging strategy on the whole interval up tomaturity. By using the
uniform Doob decomposition, see Föllmer and Schied (2016), we then only need to approximate
the process of consumption 𝐵 to generate the superhedging price process. We prove that 𝐵 can
be obtained as the the essential supremum over a set of neural networks. Finally, we present and
discuss numerical results for the proposed neural network methods.
The paper is organized as follows. In Section 2, we present the discrete time market model of

Föllmer and Schied (2016) and recall essential definitions and results on superhedging. Section 3
contains the study of the superhedging price for 𝑡 = 0. More specifically, in Section 3.1, we prove in
Theorem 3.4 that the 𝛼-quantile hedging price converges to the superhedging price as 𝛼 tends to 1.
We also present a similar result in Corollary 3.9 in Section 3.1.2, where 𝛼-quantile hedging is given
in terms of success ratios. In Section 3.2, we show in Theorem 3.14 that the superhedging price
can be approximated by neural networks. This concludes the approximation for 𝑡 = 0. Then, we
consider the case for 𝑡 > 0 in Section 4. In Section 4.1, we explain how the uniform Doob decom-
position can be used to approximate the superhedging price process. In that account, we prove
an explicit representation of the process of consumption, see Proposition 4.1. Proposition 4.3 and
Theorem 4.4 show that the process of consumption and thus the superhedging price process can
be approximated by neural networks. The numerical results are presented in Section 5. The sec-
tion is divided in the case 𝑡 = 0, see Section 5.1, and 𝑡 > 0, see Section 5.2.We present details on the
algorithm and the implementation. Appendix B contains a version of the universal approximation
theorem, derived from Hornik (1991).
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2 PRELIMINARIES

In this section, we introduce the discrete time financial market model from Föllmer and Schied
(2016) and recall some basic notions on superhedging.
Consider a finite time horizon 𝑇 > 0. Let (Ω, , 𝐏) be a probability space endowed with a fil-

tration 𝔽 ∶= (𝑡)𝑡=0,1,…,𝑇 . Further, we suppose that  = 𝑇 and that 𝑌0 is constant 𝐏-a.s. Then0 = {∅,Ω}.
In our market model on (Ω, , 𝔽, 𝐏), the asset prices are modeled by a non-negative,

adapted, stochastic process �̄� = (𝑆0, 𝑆) = (𝑆0𝑡 , 𝑆
1
𝑡 , … , 𝑆𝑑𝑡 )𝑡=0,1,…,𝑇 , with 𝑑 ≥ 1, 𝑑 ∈ ℕ. Further,

we assume that 𝑆0𝑡 > 0 𝐏-a.s. for all 𝑡 = 0, 1, … , 𝑇. The discounted price process �̄� = (𝑋0, 𝑋) =

(𝑋0
𝑡 , 𝑋

1
𝑡 , … , 𝑋𝑑

𝑡 )𝑡=0,1,…,𝑇 is given by

𝑋𝑖
𝑡 ∶=

𝑆𝑖𝑡

𝑆0𝑡
, 𝑡 = 0, 1, … , 𝑇, 𝑖 = 0, … , 𝑑.

Wedenote by the set of all equivalentmartingalemeasures for𝑋 and assume ≠ ∅. By Theorem
5.16 of Föllmer and Schied (2016), this is equivalent to the market model being arbitrage-free.

Definition 2.1. A trading strategy is a predictable ℝ𝑑+1-valued stochastic process �̄� = (𝜉0, 𝜉) =

(𝜉0𝑡 , 𝜉
1
𝑡 , … , 𝜉𝑑𝑡 )𝑡=1,…,𝑇 with (discounted) value process 𝑉 = (𝑉𝑡)𝑡=0,…,𝑇 given by

𝑉0 ∶= �̄�1 ⋅ �̄�0 and 𝑉𝑡 ∶= �̄�𝑡 ⋅ �̄�𝑡 for 𝑡 = 1, … , 𝑇.

A trading strategy �̄� is called self-financing if

�̄�𝑡 ⋅ �̄�𝑡 = �̄�𝑡+1 ⋅ �̄�𝑡 for 𝑡 = 1, … , 𝑇 − 1.

A self-financing trading strategy is called an admissible strategy if its value process satisfies𝑉𝑇 ≥ 0.
By, we denote the set of all admissible strategies �̄� and by  the associated value processes,

that is,

 ∶=
{
𝑉 = (𝑉𝑡)𝑡=0,1,…,𝑇 ∶ 𝑉0 = �̄�1 ⋅ �̄�0, 𝑉𝑡 = �̄�𝑡 ⋅ �̄�𝑡 for 𝑡 = 1, … , 𝑇, and �̄� ∈ }

A discounted European contingent claim is represented by a non-negative, 𝑇-measurable
random variable 𝐻 such that sup𝐏∗∈ 𝔼∗[𝐻] < ∞.

Definition 2.2. Let𝐻 be a European contingent claim. A self-financing trading strategy �̄� whose
value process 𝑉 satisfies

𝑉𝑇 ≥ 𝐻 𝐏-a.s.

is called a superhedging strategy for𝐻. In particular, any superhedging strategy is admissible since
𝐻 ≥ 0 by definition.
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The upper Snell envelope for a discounted European claim 𝐻 is defined by

𝑈↑
𝑡 (𝐻) = 𝑈↑

𝑡 ∶= ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑡], for 𝑡 = 0, 1, … , 𝑇.

Set

𝑡 ∶=

{
�̃�𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ ∃�̃� pred. s.t. �̃�𝑡 +

𝑇∑
𝑘=𝑡+1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻 𝐏-a.s.

}
. (1)

In the sequel, ess inf 𝑡 denotes the essential infimum of the set of random variables𝑡, which is
defined by Theorem A.37 and Definition A.38 of Föllmer and Schied (2016), see also Appendix C.

Corollary 2.3 Corollary 7.3, Theorem 7.5, Corollary 7.15, Föllmer and Schied (2016). The process(
ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑡]

)
𝑡=0,1,…,𝑇

,

is the smallest -supermartingale whose terminal value dominates 𝐻. Furthermore, there exists an
adapted increasing process𝐵 = (𝐵𝑡)𝑡=0,…,𝑇 with𝐵0 = 0 and a 𝑑-dimensional predictable process 𝜉 =
(𝜉𝑡)𝑡=1,…,𝑇 such that

ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑡] = sup
𝐏∗∈

𝔼∗[𝐻] +

𝑡∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐵𝑡 𝐏-a.s. for all 𝑡 = 0, … , 𝑇. (2)

Moreover, ess sup𝐏∗∈ 𝔼∗[𝐻 ∣ 𝑡] = ess inf 𝑡 and

ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑡] +

𝑇∑
𝑘=𝑡+1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻, for all 𝑡 = 0, … , 𝑇. (3)

The process 𝐵 in Equation (2) is sometimes called process of consumption, see Kramkov (1996).
Equations (2) and (3) yield

sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 ≥ 𝐵𝑡 ≥ 𝐵𝑡−1 ≥ 0 for all 𝑡 = 1, … , 𝑇. (4)

Corollary 7.18 of Föllmer and Schied (2016) and Equation (3) guarantee that𝑈↑
𝑡 is the minimal

amount needed at time 𝑡 to start a superhedging strategy and thus there exists a predictable process
𝜉 such that

ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑡] +

𝑇∑
𝑘=𝑡+1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻.

Further,𝑈↑
0 is called the superhedging price at time 𝑡 = 0 of𝐻 and coincides with the upper bound

of the set of arbitrage-free prices.
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3 SUPERHEDGING PRICE FOR 𝒕 = 𝟎

In this section, we approximate the superhedging price for 𝑡 = 0 in two steps. In the first part,
we introduce the theory of quantile hedging, see Föllmer and Leukert (1999). In Theorem 3.4,
we prove that the quantile hedging price for 𝛼 ∈ (0, 1) converges to the superhedging price as 𝛼
tends to 1. Analogously, in Corollary 3.9, we prove that for 𝛼 tending to 1 also the success ratios
for 𝛼 ∈ (0, 1) converge to the superhedging price.
In the second part, we prove in Theorem 3.14 that the superhedging price and the associated

strategies can be approximated by neural networks.

3.1 Quantile hedging

3.1.1 Success sets

In incomplete markets, perfect replication of a contingent claim may not be possible. Superhedg-
ing offers an alternative hedging method but it presents two main disadvantages. On the one
hand, investing by using the superhedging strategy may reduce the possibility to profit. On the
other hand, the superhedging price may result to be too high.
Quantile hedging was proposed for the first time in Föllmer and Leukert (1999) to address these

problems. Fix 𝛼 ∈ (0, 1). Given probability of success 𝛼 ∈ (0, 1), we consider the minimization
problem

inf  𝛼
0 ∶= inf {𝑢 ∈ ℝ ∶ ∃𝜉 = (𝜉𝑡)𝑡=1,…,𝑇 predictable process with values in ℝ𝑑 such that

(𝑢, 𝜉) is admissible and 𝐏

(
𝑢 +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼}. (5)

Here 1 − 𝛼 is called the shortfall probability. Quantile hedging may be considered as a dynamic
version of the value at risk concept.
For an admissible strategy (𝑢, 𝜉) with associated value process 𝑉, we call

{𝑉𝑇 ≥ 𝐻}

the success set.

Remark 3.1. Note that in Equation (5), we need to require that (𝑢, 𝜉) is admissible since this is
not automatically implied by the definition of quantile hedging as in the case of superhedging
strategies in Definition 2.2.

Proposition 3.2 below provides an equivalent formulation of quantile hedging (5), see also Föllmer
and Leukert (1999). The proof is given in Appendix A.

Proposition 3.2. Fix 𝛼 ∈ (0, 1). Then

inf  𝛼
0 = inf

{
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ∶ 𝐴 ∈ 𝑇, 𝐏(𝐴) ≥ 𝛼

}
.
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Corollary 7.15 of Föllmer and Schied (2016) guarantees that there exists a superhedging strategy
with initial value inf 0. In contrast, there might be no explicit solution to the quantile hedging
approach (5). If a solution to the quantile hedging approach exists, then Proposition 3.2 states
that it is given by the solution of the classical hedging formulation for the knockout option 𝐻𝟙𝐴
for some suitable 𝐴 ∈ 𝑇 . However, such a set 𝐴 ∈ 𝑇 does not always exist. In particular, quan-
tile hedging does not always admit an explicit solution in general. The Neyman–Pearson lemma
suggests to consider so-called success ratios instead of success sets. We will briefly discuss suc-
cess ratios below. For further information, we refer the interested reader to Föllmer and Leukert
(1999).
We now show that the superhedging price inf 0, can be approximated by the quantile hedging

price inf  𝛼
0 for 𝛼 tending to 1.

Definition 3.3. For 𝛼 ∈ (0, 1), we define

𝛼 ∶= {𝐴 ∈ 𝑇 ∶ 𝐏(𝐴) ≥ 𝛼}.

Theorem 3.4. The 𝛼-quantile hedging price converges to the superhedging price as 𝛼 tends to 1, that
is,

inf  𝛼
0

𝛼↑1
***→ inf 0.

We assume 𝑡 = 𝜎(𝑌0, … , 𝑌𝑡) for 𝑡 = 0, … , 𝑇 and for some ℝ𝑚-valued process 𝑌 = (𝑌𝑡)𝑡=0,…,𝑇 for
some𝑚 ∈ ℕ, and write 𝑡 = (𝑌0, … , 𝑌𝑡) for 𝑡 ≥ 0.

Proof. We first note that using Proposition 3.2, it suffices to prove

inf
𝐴∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴]
𝛼↑1
***→ sup

𝐏∗∈
𝔼∗[𝐻].

Let (𝛼𝑛)𝑛∈ℕ ⊂ (0, 1) be an increasing sequence such that 𝛼𝑛 converges to 1 as 𝑛 tends to infinity.
Note that

inf
𝐴∈𝛼𝑛

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ≤ inf
𝐴∈𝛼𝑛+1

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ≤ sup
𝐏∗∈

𝔼∗[𝐻], (6)

because 𝛼𝑛+1 ⊂ 𝛼𝑛 . Therefore, the limit of (inf𝐴∈𝛼𝑛 sup𝐏∗∈ 𝔼∗[𝐻𝟙𝐴])𝑛∈ℕ exists because the
sequence is monotone and bounded. Let 𝜀 > 0 be arbitrary. For each 𝑛 ∈ ℕ there exists 𝐴𝑛 ∈ 𝛼𝑛

such that

inf
𝐴∈𝛼𝑛

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ≤ sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴𝑛
] < inf

𝐴∈𝛼𝑛
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] + 𝜀. (7)

Then, by Lemma 1.70 of Föllmer and Schied (2016), there exists a sequence 𝜓𝑛 ∈

conv{𝟙𝐴𝑛
, 𝟙𝐴𝑛+1

, … }, 𝑛 ∈ ℕ, which converges 𝐏-a.s. to some 𝜓 ∈ 𝐿∞([Ω,𝑇, 𝐏; [0, 1]). Note
that it is not clear if 𝜓 is an indicator function of some 𝑇-measurable set. We will show that
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𝜓 = 1 𝐏-a.s. For 𝑛 ∈ ℕ, 𝜓𝑛 is of the form

𝜓𝑛 =

∞∑
𝑘=𝑛

𝜆𝑛
𝑘
𝟙𝐴𝑘

, (8)

for some (𝜆𝑛
𝑘
)∞
𝑘=𝑛

≥ 0 such that
∑∞

𝑘=𝑛
𝜆𝑛
𝑘
= 1, where for each 𝑛 ∈ ℕ only finitely many 𝜆𝑛

𝑘
are

nonzero. By dominated convergence and Equation (8), we obtain

𝔼𝐏[𝜓] = lim
𝑛→∞

𝔼𝐏[𝜓𝑛] = lim
𝑛→∞

𝔼𝐏

[
∞∑
𝑘=𝑛

𝜆𝑛
𝑘
𝟙𝐴𝑘

]
= lim

𝑛→∞

(
∞∑
𝑘=𝑛

𝜆𝑛
𝑘
𝔼𝐏

[
𝟙𝐴𝑘

])
. (9)

Because
∑∞

𝑘=𝑛
𝜆𝑛
𝑘
= 1 and by the definition of the limes inferior, Equation (9) yields

𝔼𝐏[𝜓] ≥ lim
𝑛→∞

(
∞∑
𝑘=𝑛

𝜆𝑛
𝑘
inf
𝑙≥𝑛 𝔼𝐏

[
𝟙𝐴𝑙

])
= lim

𝑛→∞

(
inf
𝑙≥𝑛 𝔼𝐏

[
𝟙𝐴𝑙

])
= lim inf

𝑛→∞
𝔼𝐏[𝟙𝐴𝑛

] = lim inf
𝑛→∞

𝐏(𝐴𝑛) ≥ lim inf
𝑛→∞

𝛼𝑛 = 1. (10)

Since 0 ≤ 𝜓 ≤ 1, it follows that 𝜓 = 1 𝐏-a.s. By Equation (7) and with similar arguments as in
Equations (9) and (10) using the supremum instead of the infimum, we obtain by dominated
convergence for any �̄�∗ ∈  that

lim sup
𝑛→∞

(
inf

𝐴∈𝛼𝑛
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] + 𝜀

)
≥ lim sup

𝑛→∞
sup
𝐏∗∈

𝔼[𝐻𝟙𝐴𝑛
]

≥ lim
𝑛→∞

𝔼�̄�∗[𝐻𝜓𝑛] = 𝔼∗[𝐻𝜓] = 𝔼�̄�∗[𝐻]. (11)

Since the limit on the left hand side in Equation (11) exists by Equations (6) and (11) holds for all
�̄�∗ ∈  , we get

lim
𝑛→∞

(
inf

𝐴∈𝛼𝑛
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] + 𝜀

)
≥ sup

𝐏∗∈
𝔼∗[𝐻]. (12)

Thus, we observe that Equations (6) and (12) yields

lim
𝑛→∞

(
inf

𝐴∈𝛼𝑛
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴]

)
≤ sup

𝐏∗∈
𝔼∗[𝐻] ≤ lim

𝑛→∞

(
inf

𝐴∈𝛼𝑛
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] + 𝜀

)
.

As 𝜀 > 0 was arbitrary this implies that

lim
𝑛→∞

(
inf

𝐴∈𝛼𝑛
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴]

)
= sup

𝐏∗∈
𝔼∗[𝐻].

□
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3.1.2 Success ratios

Let  ∶= 𝐿∞(Ω,𝑇, 𝐏; [0, 1]) be the set of randomized tests. For 𝛼 ∈ (0, 1) we denote by 𝛼 the
set

𝛼 ∶= {𝜑 ∈  ∶ 𝔼𝐏[𝜑] ≥ 𝛼}.

We now consider the following minimization problem

inf

{
sup
𝐏∗∈

𝔼∗[𝐻𝜑] ∶ 𝜑 ∈ 𝛼

}
. (13)

In a first step, we prove that this problem admits an explicit solution. In a second step, we show
that the solution is given by the so-called success ratio, see Definition 3.6 below. In particular,
Equation (13) can be formulated in terms of success ratios, see also Föllmer and Leukert (1999).
In Propositions 3.5 and 3.8, we provide a proof for some result of Föllmer and Leukert (1999) for
the sake of completeness.

Proposition 3.5. There exists a randomized test �̃� ∈  such that

𝔼𝐏[�̃�] = 𝛼,

and

inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑] = sup
𝐏∗∈

𝔼∗[𝐻�̃�]. (14)

Proof. Take a sequence (𝜑𝑛)𝑛∈ℕ ⊂ 𝛼 such that

lim
𝑛→∞

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝑛] = inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑]. (15)

By Lemma 1.70 of Föllmer and Schied (2016), there exists a sequence of convex combinations
�̃�𝑛 ∈ conv{𝜑𝑛, 𝜑𝑛+1, … } converging 𝐏-a.s. to a function �̃� ∈  because 𝜑𝑛 ∈ [0, 1] for all 𝑛 ∈ ℕ.
Clearly �̃�𝑛 ∈ 𝛼 for each 𝑛 ∈ ℕ. Hence, dominated convergence yields that

𝔼𝐏[�̃�] = lim
𝑛→∞

𝔼𝐏[�̃�𝑛] ≥ 𝛼, (16)

andwe get that �̃� ∈ 𝛼. In the following, we use similar arguments as in the proof of Theorem 3.4.
In particular, �̃�𝑛 is of the form

�̃�𝑛 =

∞∑
𝑘=𝑛

𝜆𝑛
𝑘
𝜑𝑘, (17)
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for some (𝜆𝑘)∞𝑘=𝑛 such that
∑∞

𝑘=𝑛
𝜆𝑛
𝑘
= 1, where for each 𝑛 ∈ ℕ only finitely many 𝜆𝑛

𝑘
are nonzero.

By Equation (17), we obtain for any �̄�∗ ∈  that

lim sup
𝑛→∞

𝔼�̄�∗[𝐻𝜑𝑛] = lim
𝑛→∞

(
sup
𝑘≥𝑛

𝔼�̄�∗[𝐻𝜑𝑘]

)
≥ lim

𝑛→∞

(
∞∑
𝑘=𝑛

𝜆𝑛
𝑘
𝔼�̄�∗[𝐻𝜑𝑘]

)

= lim
𝑛→∞

𝔼�̄�∗[𝐻�̃�𝑛] = 𝔼�̄�∗[𝐻�̃�], (18)

where we used monotone convergence. Moreover, we obtain by Equations (15), (18) and
dominated convergence that

inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑] = lim sup
𝑛→∞

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝑛] ≥ lim sup
𝑛→∞

𝔼∗[𝐻𝜑𝑛] ≥ lim
𝑛→∞

𝔼∗[𝐻�̃�𝑛] = 𝔼∗[𝐻�̃�]. (19)

Since Equation (19) holds for all 𝐏∗ ∈  we obtain

inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑] ≥ sup
𝐏∗∈

𝔼∗[𝐻�̃�].

Furthermore, �̃� ∈ 𝛼 by Equation (16) yields

inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑] = sup
𝐏∗∈

𝔼∗[𝐻�̃�].

So �̃� is the desired minimizer.
We now show that 𝔼𝐏[�̃�] = 𝛼 holds. If 𝔼𝐏[�̃�] > 𝛼, then we can find 𝜀 > 0 such that 𝜑𝜀 ∶= (1 −

𝜀)�̃� ∈ 𝛼, and

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝜀] = (1 − 𝜀) sup
𝐏∗∈

𝔼∗[𝐻�̃�] < sup
𝐏∗∈

𝔼∗[𝐻�̃�], (20)

which contradicts the minimality property of �̃�. Thus,

𝔼𝐏[�̃�] = 𝛼.

□

Definition 3.6. For an admissible strategy with value process 𝑉 ∈  , we define its success ratio
by

𝜑𝑉 ∶= 𝟙{𝑉𝑇≥𝐻} +
𝑉𝑇

𝐻
𝟙{𝑉𝑇<𝐻}. (21)

For 𝛼 ∈ (0, 1), we denote by 𝛼 the set

𝛼 ∶= {𝜑𝑉 ∈  ∶ 𝑉 ∈  , 𝔼𝐏[𝜑𝑉] ≥ 𝛼}.

Remark 3.7. Note that for 𝑉 ∈  , we have that 𝑉𝑇 ≥ 0 𝐏-a.s. In particular, 𝐏({𝐻 = 0} ∩ {𝑉𝑇 <

𝐻}) = 0 and hence Equation (21) is well-defined.
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In the following, we formulate the optimization problem (5) in terms of success ratios and prove
that it is equivalent to Equation (13), see Proposition 3.8 below.
Consider the minimization problem

inf

{
sup
𝐏∗∈

𝔼∗[𝜑𝑉] ∶ 𝑉 ∈ 𝛼

}
. (22)

Proposition 3.8. There exists an admissible strategy with value process �̃� such that

𝔼𝐏[𝜑�̃�] = 𝛼,

and

inf
𝑉∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝑉] = sup
𝐏∗∈

𝔼∗[𝐻𝜑�̃�], (23)

where 𝜑𝑉 denotes the success ratio associated to a portfolio𝑉 ∈  as in Equation (21). Moreover, 𝜑�̃�
coincides with the solution �̃� from Proposition 3.5.

Proof. Note that

{𝜑𝑉 ∈  ∶ 𝑉 ∈ 𝛼} ⊆ 𝛼,

and thus

inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑] ≤ inf
𝑉∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝑉]. (24)

By Proposition 3.5, we know that the left-hand side of Equation (24) admits a solution �̃� ∈ . We
prove that there exists �̃� ∈ 𝛼 such that

�̃� = 𝜑�̃� 𝐏-a.s.

Define the the modified claim

�̃� ∶= 𝐻�̃�.

By Theorem 7.13 of Föllmer and Schied (2016), there exists a minimal superhedging strategy �̃�
with value process �̃� for �̃� such that

�̃�0 = sup
𝐏∗∈

𝔼∗[�̃�].

First, �̃� can be assumed to be admissible by Remark 3.1 and hence �̃� ∈  . Now, we show that
�̃� ∈ 𝛼. We have

𝜑�̃� = 𝟙{�̃�𝑇≥𝐻} +
�̃�𝑇

𝐻
𝟙{�̃�𝑇<𝐻} ≥ �̃�𝟙{�̃�𝑇≥𝐻} +

𝐻�̃�

𝐻
𝟙{�̃�𝑇<𝐻} = �̃�, (25)



156 BIAGINI et al.

where we used that �̃� is the value process of the minimal superhedging strategy of �̃� = 𝐻�̃� and
0 ≤ �̃� ≤ 1. Therefore, we get

𝔼𝐏[𝜑�̃�] ≥ 𝔼𝐏[�̃�] ≥ 𝛼,

so �̃� ∈ 𝛼 and 𝜑�̃� ∈ 𝛼. It is left to show that �̃� = 𝜑�̃� 𝐏-a.s. By Equation (25), we obtain 𝜑�̃� ≥ �̃�.
For the reverse direction, we first show that 𝜑�̃� is also a minimizer of the problem (14), that is,

sup
𝐏∗∈

𝔼∗[𝐻𝜑�̃�] ≤ sup
𝐏∗∈

𝔼∗[𝐻�̃�].

Indeed, since �̃� is the value process of an admissible strategy, 𝑉 is a 𝐏∗-martingale for all 𝐏∗ ∈ 
by Theorem 5.14 of Föllmer and Schied (2016) and thus we get that

sup
𝐏∗∈

𝔼∗[𝐻𝜑�̃�] = sup
𝐏∗∈

𝔼∗
[
𝐻

(
𝟙{�̃�𝑇≥𝐻} +

�̃�𝑇

𝐻
𝟙{�̃�𝑇<𝐻}

)]
≤ sup

𝐏∗∈
𝔼∗[�̃�𝑇] = �̃�0 = sup

𝐏∗∈
𝔼∗[𝐻�̃�],

(26)
where we used in the last equality that �̃�0 is the superhedging price of �̃� = 𝐻�̃�. In particular,
𝜑�̃� ∈ 𝛼 is a minimizer. By the same arguments as in Equation (20), it follows that

𝔼𝐏[𝜑�̃�] = 𝛼. (27)

Thus, we get by Equations (20) and (27) that

𝔼𝐏[𝜑�̃�] = 𝛼 = 𝔼𝐏[�̃�],

that is, 𝔼[𝜑�̃� − �̃�] = 0. Together with Equation (25), this implies 𝜑�̃� = �̃� 𝐏-a.s. We have proved
that �̃� ∈ 𝛼 and

sup
𝐏∗∈

𝔼∗[𝐻𝜑�̃�] = inf
𝜑∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑] ≤ inf
𝑉∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝑉].

In particular, 𝜑�̃� solves Equation (23) and the quantile hedging formulations of Equations (13)
and (22) are equivalent. □

Corollary 3.9. The following convergence holds:

inf
𝑉∈𝛼

sup
𝐏∗∈

𝔼∗[𝐻𝜑𝑉]
𝛼↑1
***→ sup

𝐏∗∈
𝔼∗[𝐻],

where 𝜑𝑉 denotes the success ratio associated to a portfolio 𝑉 ∈  as in Equation (21).

Proof. The proof is similar to the one of Theorem 3.4 and is omitted. □

3.2 Neural network approximation for 𝒕 = 𝟎

We now study how to approximate the superhedging price at 𝑡 = 0 by using neural networks.
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We recall the following definition, see for example, Buehler et al. (2019). Common choices for
𝜎 below are 𝜎(𝑥) = 1

1−𝑒−𝑥
and 𝜎(𝑥) = tanh(𝑥).

In order to use the neural network approximation, we assume from now on that 𝑡 =

𝜎(𝑌0, … , 𝑌𝑡) for 𝑡 = 0, … , 𝑇 and for someℝ𝑚-valued process 𝑌 = (𝑌𝑡)𝑡=0,…,𝑇 for some𝑚 ∈ ℕ, and
write 𝑡 = (𝑌0, … , 𝑌𝑡) for 𝑡 ≥ 0.

Definition 3.10. Consider 𝐿,𝑁0,𝑁1, … ,𝑁𝐿 ∈ ℕwith 𝐿 ≥ 2, 𝜎 ∶ (ℝ,(ℝ)) → (ℝ,(ℝ))measur-
able and for any 𝓁 = 1,… , 𝐿, let𝑊𝓁 ∶ ℝ

𝑁𝓁−1 → ℝ𝑁𝓁 be an affine function. A function 𝐹 ∶ ℝ𝑁0 →

ℝ𝑁𝐿 defined as

𝐹(𝑥) = 𝑊𝐿◦𝐹𝐿−1◦⋯◦𝐹1 with 𝐹𝓁 = 𝜎◦𝑊𝓁 for 𝓁 = 1,… , 𝐿 − 1,

is called a (feed forward) neural network. Here the activation function 𝜎 is applied component-
wise. 𝐿 denotes the number of layers, 𝑁1,… ,𝑁𝐿−1 denote the dimensions of the hidden layers
and 𝑁0, 𝑁𝐿 the dimension of the input and output layers, respectively. For any 𝓁 = 1,… , 𝐿, the
affine function 𝑊𝓁 is given as 𝑊𝓁(𝑥) = 𝐴𝓁𝑥 + 𝑏𝓁 for some 𝐴𝓁 ∈ ℝ𝑁𝓁×𝑁𝓁−1 and 𝑏𝓁 ∈ ℝ𝑁𝓁 . For
any 𝑖 = 1, …𝑁𝓁, 𝑗 = 1,… ,𝑁𝓁−1, the number 𝐴𝓁

𝑖𝑗
is interpreted as the weight of the edge connect-

ing the node 𝑖 of layer 𝓁 − 1 to node 𝑗 of layer 𝓁. The number of nonzero weights of a network
is

∑𝐿

𝓁=1
‖𝐴𝓁‖0 + ‖𝑏𝓁‖0, that is, the sum of the number of nonzero entries of the matrices 𝐴𝓁,

𝓁 = 1,… , 𝐿, and vectors 𝑏𝓁, 𝓁 = 1,… , 𝐿.

For 𝑘 = 1,… , 𝑇 + 1, we denote the set of all possible neural network parameters corresponding to
neural networks mapping ℝ𝑚𝑘 → ℝ𝑑 by

Θ𝑘 = ∪𝐿≥2 ∪(𝑁0,…,𝑁𝐿)∈{𝑚𝑘}×ℕ𝐿−1×{𝑑}

(
×𝐿
𝓁=1

ℝ𝑁𝓁×𝑁𝓁−1 × ℝ𝑁𝓁

)
.

With𝐹𝜃𝑘 , we denote the neural networkwith parameters specified by 𝜃𝑘 ∈ Θ𝑘, seeDefinition 3.10.
Recall that 𝑡 = 𝜎(𝑌0, … , 𝑌𝑡) = 𝜎(𝑡) for 𝑡 = 0, … , 𝑇, and for some ℝ𝑚-valued stochastic process
𝑌. Then, any 𝑡-measurable random variable 𝑍 can be written as 𝑍 = 𝑓𝑡(𝑡) for some measur-
able function 𝑓𝑡. Using Theorem B.1, 𝑓𝑡 can be approximated by a deep neural network in a
suitable metric.
The approximate superhedging price is then

inf  Θ
0 = inf

{
𝑢 ∈ ℝ ∶ ∃ 𝜃𝑘,𝜉 ∈ Θ𝑘, 𝑘 = 1,… , 𝑇, s.t. 𝑢 +

𝑇∑
𝑘=1

𝐹𝜃𝑘,𝜉 (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻 𝐏-a.s.

}
. (28)

For 𝛼 ∈ (0, 1), the approximate 𝛼-quantile hedging price is then

inf  Θ,𝛼
0 = inf

{
𝑢 ∈ ℝ ∶ ∃ 𝜃𝑘,𝜉 ∈ Θ𝑘, 𝑘 = 1,… , 𝑇 s.t. 𝐏

(
𝑢 +

𝑇∑
𝑘=1

𝐹𝜃𝑘,𝜉 (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼

}
. (29)
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For 𝐶 > 0, we also define the truncated approximate superhedging price inf  Θ,𝐶
0 and the

truncated approximate 𝛼-quantile hedging price inf  Θ,𝐶,𝛼
0 with

 Θ,𝐶
0 ∶ =

{
𝑢 ∈ ℝ ∶ ∃𝜃𝑘,𝜉 ∈ Θ𝑘, 𝑘 = 1,… , 𝑇 s.t. 𝑢 +

𝑇∑
𝑘=1

((
𝐹𝜃𝑘,𝜉 ∧ 𝐶

)
∨ (−𝐶)

)
(𝑡−1)⋅

(𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻 𝐏-a.s.

}
(30)

and

 Θ,𝐶,𝛼
0 ∶ =

{
𝑢 ∈ ℝ ∶ ∃𝜃𝑘,𝜉 ∈ Θ𝑘, 𝑘 = 1,… , 𝑇 s.t. 𝐏

(
𝑢 +

𝑇∑
𝑘=1

((
𝐹𝜃𝑘,𝜉 ∧ 𝐶

)
∨ (−𝐶)

)
(𝑡−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼

}
, (31)

where the maximum and minimum are taken component-wise.
In the definitions of the (truncated) approximate superhedging price, in Equations (28) and

(30), and of the (truncated) approximate 𝛼-quantile hedging price, in Equations (29) and (31), it
cannot be guaranteed that the trading strategies given by neural networks are admissible. For this
reason, we need to impose Assumption 3.11 below.

Assumption 3.11. Suppose that

inf 0 = inf  bdd
0 ∶= inf

{
𝑢 ∈ ℝ ∶ ∃𝜉 pred. s.t. 𝜉𝑘 ∈ 𝐿∞ ∀𝑘 ∈ {1, … , 𝑇}, 𝑢 +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻 𝐏-a.s.

}
.

Remark 3.12. Under Assumption 3.11, the superhedging price does not change if we restrict to
bounded strategies. This hypothesis is needed for the approximation result in Theorem 3.14, as
shown in Example 3.15. However, Assumption 3.11 is not very restrictive and holds in a wide range
of settings, for example, in all models with a finite probability space, since in this case, all random
variables are bounded. In particular, Assumption 3.11 is satisfied in any scenario-based model as
considered in the section on numerical results. Furthermore, Assumption 3.11 holds in the case of
𝑑 = 1 and bounded, independent price increments, that is, if for each 𝑡, the price increment 𝑋𝑡 −

𝑋𝑡−1 is bounded and independent of 𝑡−1 under 𝐏, since in this case, any admissible strategy is
necessarily bounded. This can be seen by contraposition. Let 𝑡 ∈ {1, … , 𝑇} be the first time atwhich
𝜉 is unbounded, that is, 𝐏(𝜉𝑡 > 𝑛) > 0 for all 𝑛 ∈ ℕ (the case 𝐏(𝜉𝑡 < −𝑛) > 0 for all 𝑛 ∈ ℕ can be
treated analogously) and ‖𝜉𝑘‖∞ < ∞ for 𝑘 < 𝑡. Note that  ≠ ∅, and for 𝐏∗ ∈  , the property
𝔼∗[𝑋𝑡 − 𝑋𝑡−1] = 0 and 𝐏 ≈ 𝐏∗ imply that 𝐏(𝑋𝑡 − 𝑋𝑡−1 ≤ −𝐶) > 0 for some 𝐶 > 0. Therefore, for
𝑛 ≥ 𝐶−1∑𝑡−1

𝑘=0
‖𝜉𝑘‖∞‖𝑋𝑘 − 𝑋𝑘−1‖∞, it follows that 𝑉𝑡−1 ≤ 𝐶𝑛 𝐏-a.s. and

𝐏(𝑉𝑡 < 0) ≥ 𝐏(𝑉𝑡−1 ≤ 𝐶𝑛, 𝜉𝑡(𝑋𝑡 − 𝑋𝑡−1) < −𝐶𝑛) ≥ 𝐏(𝜉𝑡 > 𝑛)𝐏(𝑋𝑡 − 𝑋𝑡−1 < −𝐶) > 0.

Hence, the strategy associated to 𝜉 can not be admissible.
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Finally, in a large class of models and for many commonly considered options, the optimal
superhedging strategy is static, as shown in Carassus et al. (2007). Consequently, Assumption 3.11
also holds in these settings.

Theorem 3.14 shows that inf  Θ,𝐶,𝛼
0 can be used as an approximation of the superhedging price

inf 0. We start with a preliminary result.
For 𝛼 ∈ (0, 1], 𝐶 > 0 define 𝐶,𝛼

0 by

 𝐶,𝛼
0 ∶=

{
𝑢 ∈ ℝ ∶ ∃𝜉 pred. s.t. sup

1≤𝑘≤𝑇
‖𝜉𝑘‖∞ ≤ 𝐶, 𝐏

(
𝑢 +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼

}
.

Lemma 3.13. Suppose Assumption 3.11 holds. Then for any 𝜀 > 0, there exists 𝐶 ∈ (0,∞) such that
lim𝛼→1 inf  𝐶,𝛼

0 exists and

inf  bdd
0 ≤ lim

𝛼→1
inf  𝐶,𝛼

0 ≤ inf  bdd
0 + 𝜀. (32)

Proof. Let 𝜀 > 0 be fixed. Then, there exists a predictable strategy �̃� such that sup1≤𝑘≤𝑇 ‖�̃�𝑘‖∞ < ∞

and inf  bdd
0 +

𝜀

2
+
∑𝑇

𝑘=1
�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻, 𝐏-a.s. Define 𝐶 = 𝐶(𝜀) by

𝐶 ∶= sup
1≤𝑘≤𝑇

‖�̃�𝑘‖∞ + 1. (33)

Let (𝛼𝑛)𝑛∈ℕ ⊂ (0, 1) be a sequence such that 𝛼𝑛 ↑ 1 as 𝑛 tends to infinity. Then, inf  𝐶,𝛼𝑛
0 ≤

inf  𝐶,𝛼𝑛+1
0 ≤ inf  𝐶,1

0 =∶ inf  𝐶
0 since

 𝐶,𝛼𝑛
0 ⊃  𝐶,𝛼𝑛+1

0 ,

and therefore, 𝑢𝑛 ≤ 𝑢𝑛+1, where 𝑢𝑛 ∶= inf  𝐶,𝛼𝑛
0 , for 𝑛 ∈ ℕ. Thus, the limit 𝑢𝐶 = lim𝑛→∞ 𝑢𝑛 is

well-defined and 𝑢𝐶 ≤ inf  𝐶
0 . Furthermore, for 𝑛 ∈ ℕ and 𝛿 > 0, there exists 𝜉(𝑛) predictable

such that sup1≤𝑘≤𝑇 ‖𝜉(𝑛)𝑘
‖∞ ≤ 𝐶 and

𝐏

(
𝑢𝑛 + 𝛿 +

𝑇∑
𝑘=1

𝜉
(𝑛)
𝑘

⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼𝑛. (34)

For 𝑛 ∈ ℕ, define 𝐴𝑛 ∈ 𝑇 by

𝐴𝑛 ∶=

{
𝑢𝑛 + 𝛿 +

𝑇∑
𝑘=1

𝜉
(𝑛)
𝑘

⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

}
.

Then 𝐏(𝐴𝑛) ≥ 𝛼𝑛 and hence 𝐏(𝐴𝑛) ↑ 1 as 𝑛 tends to infinity. Since sup1≤𝑘≤𝑇 ‖𝜉(𝑛)𝑘
‖∞ ≤ 𝐶 for all

𝑛 ∈ ℕ, we get by Theorem 5.14 of Föllmer and Schied (2016) for any �̄�∗ ∈  that

𝑢𝑛 + 𝛿 = 𝔼�̄�∗

[
𝑢𝑛 + 𝛿 +

𝑇∑
𝑘=1

𝜉
(𝑛)
𝑘

⋅ (𝑋𝑘 − 𝑋𝑘−1)

]
(35)
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≥ 𝔼�̄�∗
[
𝐻𝟙𝐴𝑛

]
+ 𝔼�̄�∗

[(
𝑢𝑛 + 𝛿 +

𝑇∑
𝑘=1

𝜉
(𝑛)
𝑘

⋅ (𝑋𝑘 − 𝑋𝑘−1)

)
𝟙𝐴𝑐

𝑛

]

≥ 𝔼�̄�∗[𝐻𝟙𝐴𝑛
] + 𝔼�̄�∗

[(
𝑢𝑛 + 𝛿 −

𝑇∑
𝑘=1

𝑑∑
𝑖=1

|𝜉𝑖,(𝑛)
𝑘

||𝑋𝑖
𝑘
− 𝑋𝑖

𝑘−1
|)𝟙𝐴𝑐

𝑛

]

≥ 𝔼�̄�∗[𝐻𝟙𝐴𝑛
] + 𝔼�̄�∗

[(
𝑢𝑛 + 𝛿 − 𝐶

𝑇∑
𝑘=1

𝑑∑
𝑖=1

|𝑋𝑖
𝑘
− 𝑋𝑖

𝑘−1
|)𝟙𝐴𝑐

𝑛

]
. (36)

Recall that 𝑋 = (𝑋1, … , 𝑋𝑑) is a 𝑑-dimensional 𝐏∗-martingale, 𝑢𝑛 ≤ 𝑢𝐶 ≤ inf  bdd
0 +

𝜀

2
, 𝑛 ∈ ℕ

and thus for all 𝑛 ∈ ℕ

||||||𝑢𝑛 + 𝛿 − 𝐶

𝑇∑
𝑘=1

𝑑∑
𝑖=1

|𝑋𝑖
𝑘
− 𝑋𝑖

𝑘−1
||||||| ≤

(||𝑢𝐶 + 𝛿|| + |𝐶| 𝑇∑
𝑘=1

𝑑∑
𝑖=1

‖𝑋𝑘 − 𝑋𝑘−1‖
)
∈ 𝐿1(Ω,𝑇, 𝐏

∗).

Furthermore, 𝟙𝐴𝑛
converges to 1 in probability as 𝑛 tends to infinity, since for any 𝛾 ∈ (0, 1), we

have

𝐏
(|||𝟙𝐴𝑛

− 1
||| > 𝛾

)
= 𝐏

(
𝟙𝐴𝑐

𝑛
> 𝛾

)
= 𝐏(𝐴𝑐

𝑛)
𝑛→∞
*****→ 0,

because of Equation (34). By dominated convergence, we obtain that

lim
𝑛→∞

𝔼∗[𝐻𝟙𝐴𝑛
] = 𝔼∗[𝐻],

and

lim
𝑛→∞

𝔼∗

[(
𝑢𝑛 + 𝛿 − 𝐶

𝑇∑
𝑘=1

𝑑∑
𝑖=1

|𝑋𝑖
𝑘
− 𝑋𝑖

𝑘−1
|)𝟙𝐴𝑐

𝑛

]
= 0.

Note that for dominated convergence, it is sufficient that 𝟙𝐴𝑛
converges only in probability. Taking

𝑛 to infinity in Equations (35) and (36) yields

lim
𝑛→∞

𝑢𝑛 + 𝛿 = 𝑢𝐶 + 𝛿 ≥ lim
𝑛→∞

(
𝔼∗[𝐻𝟙𝐴𝑛

] + 𝔼∗

[(
𝑢𝑛 + 𝛿 − 𝐶

𝑇∑
𝑘=1

𝑑∑
𝑖=1

|𝑋𝑖
𝑘
− 𝑋𝑖

𝑘−1
|)𝟙𝐴𝑐

𝑛

])
= 𝔼∗[𝐻]. (37)

As Equation (37) holds for all 𝐏∗ ∈  , we get by the superhedging duality that
lim
𝑛→∞

inf  𝐶,𝛼𝑛
0 + 𝛿 = 𝑢𝐶 + 𝛿 ≥ sup

𝐏∗∈
𝔼∗[𝐻] = inf 0 = inf  bdd

0 .

Because 𝛿 > 0 was arbitrary, this implies

lim
𝛼→1

inf  𝐶,𝛼
0 ≥ inf 0 = inf  bdd

0 .
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To conclude the proof of Equation (32), we note that (inf  bdd
0 +

𝜀

2
) ∈  𝐶

0 by definition. This
implies that

lim
𝛼→1

inf  𝐶,𝛼
0 ≤ inf  𝐶

0 ≤ inf  bdd
0 + 𝜀,

hence Equation (32) follows. □

We can now prove the main result.

Theorem 3.14. Assume 𝜎 is bounded and nonconstant. Further, suppose Assumption 3.11 is ful-
filled. Then, for any 𝜀 > 0, there exists 𝛼0 = 𝛼0(𝜀) ∈ (0, 1) and 𝐶 = 𝐶(𝜀) ∈ (0,∞) such that for all
𝛼 ∈ (𝛼0, 1)

inf 0 + 𝜀 ≥ inf  Θ,𝐶,𝛼
0 ≥ inf 0 − 𝜀. (38)

Proof. By Assumption 3.11, we can consider inf  bdd
0 instead of inf 0. Then for 𝜀 > 0, there

exists a predictable strategy �̃� such that sup1≤𝑘≤𝑇 ‖�̃�𝑘‖∞ < ∞ and inf  bdd
0 +

𝜀

2
+
∑𝑇

𝑘=1
�̃�𝑘 ⋅ (𝑋𝑘 −

𝑋𝑘−1) ≥ 𝐻, 𝐏-a.s. Define 𝐶 = 𝐶(𝜀) as in Equation (33) in the proof of Lemma 3.13. Then, we
observe that  Θ,𝐶,𝛼

0 ⊂  𝐶,𝛼
0 for all 𝛼 ∈ (0, 1) and Equation (32) implies that there exists 𝛼0 =

𝛼0(𝜀) ∈ (0, 1) such that for all 𝛼 ∈ (𝛼0, 1)

inf 0 − 𝜀 = inf  bdd
0 − 𝜀 ≤ inf  𝐶,𝛼

0 ≤ inf  Θ,𝐶,𝛼
0 , (39)

which proves the second inequality in Equation (38).
To prove the first inequality in Equation (38), let 𝛼 be given. Consider

𝑀𝑛 =

{
inf  bdd

0 +
𝜀

2
+

𝑇∑
𝑘=1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

}
∩ {‖𝑋𝑘 − 𝑋𝑘−1‖ ≤ 𝑛 for 𝑘 = 1,… , 𝑇},

for 𝑛 ∈ ℕ. Then𝑀𝑛 ⊂ 𝑀𝑛+1 and therefore, by continuity from below

1 = 𝐏

(
inf  bdd

0 +
𝜀

2
+

𝑇∑
𝑘=1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
= 𝐏(∪𝑛∈ℕ𝑀𝑛) = lim

𝑛→∞
𝐏(𝑀𝑛).

Thus, wemay choose𝑛 ∈ ℕ such that𝐏(𝑀𝑛) ≥ 𝛼+1

2
. As �̃� is predictable, for each 𝑘 = 1,… , 𝑇, there

exists a measurable function 𝑓𝑘 ∶ (ℝ𝑚𝑘,(ℝ𝑚𝑘)) → (ℝ𝑑,(ℝ𝑑)) such that �̃�𝑘 = 𝑓𝑘(𝑘−1). By the
universal approximation theorem (Hornik, 1991, Theorem 1 and Section 3), see also Theorem B.1
in the appendix, with measure 𝜇 given by the law of 𝑘−1 under 𝐏, for each 𝑘 = 1,… , 𝑇, there
exists 𝜃𝑘,�̃� ∈ Θ such that

𝐏(𝐷𝑘) <
1 − 𝛼

2𝑇
, where 𝐷𝑘 =

{
𝜔 ∈ Ω ∶ ‖𝑓𝑘(𝑘−1(𝜔)) − 𝐹𝜃𝑘,�̃� (𝑘−1(𝜔))‖ > (

𝜀

2𝑛𝑇
∧
1

2

)}
.

(40)
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Define

�̃�𝜃𝑘,�̃� ∶=
(
𝐹𝜃𝑘,�̃� ∧ 𝐶

)
∨ (−𝐶), 𝑘 = 1,… , 𝑇.

By the definition of 𝐶 in Equation (33), we get that

‖�̃�𝑘‖∞ +

(
𝜀

2𝑛𝑇
∧
1

2

)
< 𝐶 for all 𝑘 = 1,… , 𝑇.

On 𝐷𝑐
𝑘
, we have for 𝑖 ∈ {1, … , 𝑑} that

||||𝐹𝜃𝑘,�̃�
𝑖

(𝑘−1)
|||| ≤ ‖‖‖𝐹𝜃𝑘,�̃� (𝑘−1)

‖‖‖ ≤ ‖‖‖�̃�𝑘‖‖‖∞ +

(
𝜀

2𝑛𝑇
∧
1

2

)
< 𝐶,

and hence �̃�
𝜃𝑘,�̃�
𝑖

(𝑘−1) = 𝐹
𝜃𝑘,�̃�
𝑖

(𝑘−1) on 𝐷𝑐
𝑘
. Conversely, for 𝜔 ∈ Ω such that

‖𝑓𝑘(𝑘−1(𝜔)) − �̃�𝜃𝑘,�̃� (𝑘−1(𝜔))‖ ≤
(

𝜀

2𝑛𝑇
∧
1

2

)
,

we get for 𝑖 ∈ {1, … , 𝑑} that

||||�̃�𝜃𝑘,�̃�
𝑖

(𝑘−1(𝜔))
|||| ≤ ‖‖‖�̃�𝜃𝑘,�̃� (𝑘−1(𝜔))

‖‖‖ ≤ ‖‖‖�̃�𝑘‖‖‖∞ +

(
𝜀

2𝑛𝑇
∧
1

2

)
< 𝐶,

and hence �̃�
𝜃𝑘,�̃�
𝑖

(𝑘−1(𝜔)) = 𝐹
𝜃𝑘,�̃�
𝑖

(𝑘−1(𝜔)). In particular,{
𝜔 ∈ Ω ∶ ‖𝑓𝑘(𝑘−1(𝜔)) − �̃�𝜃𝑘,�̃� (𝑘−1(𝜔))‖ ≤

(
𝜀

2𝑛𝑇
∧
1

2

)}

=

{
𝜔 ∈ Ω ∶ ‖𝑓𝑘(𝑘−1(𝜔)) − 𝐹𝜃𝑘,�̃� (𝑘−1(𝜔))‖ ≤

(
𝜀

2𝑛𝑇
∧
1

2

)}
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=𝐷𝑐
𝑘

,

for all 𝑘 = 1,… , 𝑇. Therefore, we get that 𝐷𝑘 = �̃�𝑘 with

�̃�𝑘 =

{
𝜔 ∈ Ω ∶ ‖𝑓𝑘(𝑘−1(𝜔)) − �̃�𝜃𝑘,�̃� (𝑘−1(𝜔))‖ > (

𝜀

2𝑛𝑇
∧
1

2

)}
,

and

𝐏(�̃�𝑘) <
1 − 𝛼

2𝑇
.
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On𝑀𝑛 ∩ �̃�𝑐
1 ∩ … ∩ �̃�𝑐

𝑇 , we have

𝑇∑
𝑘=1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) =

𝑇∑
𝑘=1

(�̃�𝑘 − �̃�𝜃𝑘,�̃� (𝑘−1)) ⋅ (𝑋𝑘 − 𝑋𝑘−1) +

𝑇∑
𝑘=1

�̃�𝜃𝑘,�̃� (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1)

≤
𝑇∑

𝑘=1

‖𝑓𝑘(𝑘−1) − �̃�𝜃𝑘,�̃� (𝑘−1)‖‖𝑋𝑘 − 𝑋𝑘−1‖
+

𝑇∑
𝑘=1

�̃�𝜃𝑘,�̃� (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1)

≤ 𝜀

2
+

𝑇∑
𝑘=1

�̃�𝜃𝑘,�̃� (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1)

and therefore,

𝑀𝑛 ∩ �̃�𝑐
1 ∩ … ∩ �̃�𝑐

𝑇 ⊂

{
inf  bdd

0 + 𝜀 +

𝑇∑
𝑘=1

�̃�𝜃𝑘,�̃� (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

}
.

This inclusion and the Fréchet inequalities yield

𝐏

(
inf  bdd

0 + 𝜀 +

𝑇∑
𝑘=1

�̃�𝜃𝑘,�̃� (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)

≥𝐏(𝑀𝑛 ∩ �̃�𝑐
1 ∩ … ∩ �̃�𝑐

𝑇)

≥𝐏(𝑀𝑛) + 𝐏(�̃�𝑐
1) +⋯+ 𝐏(�̃�𝑐

𝑇) − 𝑇 ≥ 𝛼 + 1

2
+ 𝑇

(
1 −

1 − 𝛼

2𝑇

)
− 𝑇 = 𝛼.

This proves the left inequality of Equation (38). □

We now provide a counterexample, which shows that Assumption 3.11 is necessary for Equa-
tion (38) to hold. In particular, this implies that the approximation result in Theorem 3.14 cannot
be applied without Assumption 3.11.

Example 3.15. Let 𝑍1, 𝑍2 be independent standard uniform random variables under 𝐏 and let
Φ be the standard normal cumulative distribution function. Consider the market model with
𝑇 = 2,𝑑 = 1, 𝑆0𝑡 = 1 for 𝑡 ∈ {0, 1, 2},𝑋0 = 1,𝑋1 = 𝑍1 + 0.5,𝑋2 = 𝑋1 + (𝑍2 − 0.5)∕(1 + |Φ−1(𝑍1)|),
and 𝑌 = 𝑋. Then, 𝐏 ∈  and 𝐻 = 1 + Φ−1(𝑍1)(𝑋2 − 𝑋1) is a bounded contingent claim, since|Φ−1(𝑍1)(𝑋2 − 𝑋1)| ≤ |𝑍2 − 0.5| < 1. The self-financing strategy induced by the predictable pro-
cess 𝜉∗ with 𝜉∗1 = 0, 𝜉∗2 = Φ−1(𝑍1) and initial wealth 1 is a replicating strategy for 𝐻, hence
inf 0 = 1. On the other hand, let 𝑣 > 0 and consider 𝜉 predictable and bounded. If 𝑉𝑇 = 𝑣 +∑𝑇

𝑘=1
𝜉𝑘(𝑋𝑘 − 𝑋𝑘−1) super-replicates𝐻, then

(1 + |Φ−1(𝑍1)|)𝜉1(𝑍1 − 0.5) + 𝜉2(𝑍2 − 0.5) + 𝑣 − 1 ≥ |Φ−1(𝑍1)|[1 − 𝑣 + (𝑍2 − 0.5)sign(Φ−1(𝑍1))].

(41)
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If 𝜉1 > 0, then the left-hand side is negative on the event {𝑍1 <
1

𝑅
} for 𝑅 > 0 large enough, since 𝜉2

is bounded. Thus, for 𝑅 > 0 large enough, on the event {𝑍1 <
1

𝑅
} ∩ {0.3 ≤ 𝑍2 ≤ 0.4}, the left-hand

side of Equation (41) is negative, whereas the right-hand side is non-negative for 𝑣 < 1.1. This
means that necessarily 𝑣 ≥ 1.1, otherwise 𝑉𝑇 ≥ 𝐻 can not be satisfied 𝐏-a.s. In the case 𝜉1 < 0,
the same conclusion can be made using the set {𝑍1 > 1 −

1

𝑅
} ∩ {0.6 ≤ 𝑍2 ≤ 0.7}. This proves that

inf  bdd
0 ≥ 1.1 > inf 0, that is, Assumption 3.11 is not satisfied.

We now argue that in this example, the first inequality in Equation (38) does not hold, that
is, for all 𝛼0 ∈ (0, 1), 𝐶 > 0 there exists 𝛼 ≥ 𝛼0 such that inf  Θ,𝐶,𝛼

0 > inf 0 + 0.05. To prove
this, let 𝑣 > 0 and 𝜉 predictable satisfy sup1≤𝑘≤𝑇 ‖𝜉𝑘‖∞ ≤ 𝐶 and 𝐏(𝑣 +

∑𝑇

𝑘=1
𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥

𝐻) ≥ 𝛼0. The super-replication condition can again be rewritten as Equation (41) and same
reasoning as above shows that there exists 𝑅 > 0 such that for all 𝑣 < 1.1, we have 𝐏(𝑣 +∑𝑇

𝑘=1
𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻) ≤ 1 −

1

10𝑅
, since 𝐏({𝑍1 <

1

𝑅
} ∩ {0.3 ≤ 𝑍2 ≤ 0.4}) = 𝐏({𝑍1 > 1 −

1

𝑅
} ∩

{0.6 ≤ 𝑍2 ≤ 0.7}) =
1

10𝑅
. Thus, for all 𝛼 > 1 −

1

10𝑅
, it follows that inf  𝐶,𝛼

0 ≥ 1.1. The inclusion

 Θ,𝐶,𝛼
0 ⊂  𝐶,𝛼

0 then implies inf  Θ,𝐶,𝛼
0 ≥ inf  𝐶,𝛼

0 ≥ 1.1 > inf 0 + 0.05.

Remark 3.16. Note that in the proof of Theorem 3.14, we compute both the price at 𝑡 = 0 and the
superhedging strategy for the complete interval.

Remark 3.17. Thanks to the universal approximation theorem in Hornik (1991), we could in fact
restrict our attention to neural networks with one hidden layer and the result in Theorem 3.14
remains valid. Thus, for each 𝑘 = 1,… , 𝑇, we could fix 𝐿 = 2, 𝑁0 = 𝑚𝑘, 𝑁2 = 𝑑 and consider
instead the simpler parameter sets

Θ𝑘 = ∪𝑁1∈ℕ(ℝ
𝑁1×𝑚𝑘 × ℝ𝑁1) × (ℝ𝑑×𝑁1 × ℝ𝑑)

Θ𝐶
𝑘
= ([−𝐶, 𝐶]𝐶×𝑚𝑘 × [−𝐶, 𝐶]𝐶) × ([−𝐶, 𝐶]𝑑×𝑁1 × [−𝐶, 𝐶]𝑑).

Note the simpler form ofΘ𝐶
𝑘
, which is due to the fact that all one-hidden layer networkswith𝑁1 ≤

𝐶 hidden nodes can bewritten as one-hidden layer networkswith𝐶 hidden nodes and appropriate
weights set to 0.

4 SUPERHEDGING PRICE FOR 𝒕 > 𝟎

In this section, we establish a method to approximate superhedging prices for 𝑡 > 0. Using a
version of the uniform Doob decomposition, see Theorem 7.5 of Föllmer and Schied (2016), the
problem reduces to the approximation of the so-called process of consumption. In the first part,
we build the theoretical basis for this approach. In the second part, we prove that this method can
be used to approximate the superhedging price for 𝑡 > 0 by neural networks.

4.1 Uniform Doob decomposition

We briefly summarize some results on superhedging in discrete time in Corollary 2.3 below. For
a more detailed overview, we refer to Chapter 7 of Föllmer and Schied (2016).
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Recall that𝐻 denotes a discounted European claim satisfying

sup
𝐏∗∈

𝔼∗[𝐻] < ∞.

The superhedging price at 𝑡 = 0, sup𝐏∗∈ 𝔼∗[𝐻] and the associated strategy 𝜉 can be calculated
as in Section 3 and so we consider them as known. The remaining unknown component is the
process of consumption 𝐵 given by Equation (2). By Corollary 2.3,(

ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑡]

)
𝑡=0,1,…,𝑇

is the smallest -supermartingale whose terminal value dominates 𝐻. Consider the stochastic
process �̃� = (�̃�𝑡)𝑡=0,…,𝑇 defined as �̃�0 ∶= 0 and for 𝑡 = 1, … , 𝑇,

�̃�𝑡 ∶= ess sup𝑡, (42)

where

𝑡 ∶=

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ �̃�𝑡−1 ≤ 𝐷𝑡 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
. (43)

Proposition 4.1. We have that

𝐵𝑡 = �̃�𝑡 𝐏-a.s., for all 𝑡 = 0, … , 𝑇,

where 𝐵 is given in Equation (2) and �̃� in Equation (42), respectively.

Proof. The proof follows by induction. For 𝑡 = 0, we have 𝐵0 = 0 = �̃�0 by definition. For the
induction step, assume that𝐵𝑡−1 = �̃�𝑡−1 𝐏-a.s. for some 1 ≤ 𝑡 ≤ 𝑇. First, we observe that𝐵𝑡 ≥ �̃�𝑡−1
because 𝐵 is increasing and by the assumption of the induction step. In addition, by Equation (4),
we obtain

sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 ≥ 𝐵𝑡. (44)

In particular, 𝐵𝑡 ∈ 𝑡 and thus 𝐵𝑡 ≤ �̃�𝑡 𝐏-a.s. Define �̃� = (�̃�𝑠)𝑠=0,…,𝑇 by

�̃�𝑠 ∶= sup
𝐏∗∈

𝔼∗[𝐻] +

𝑠∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − �̃�𝑠.

First, we note that

sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻 ≥ 0 𝐏-a.s.,
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and thus by Theorem 5.14 of Föllmer and Schied (2016), we have that(
sup
𝐏∗∈

𝔼∗[𝐻] +

𝑠∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1)

)
𝑠=0,…,𝑇

is a �̄�∗-martingale for all �̄�∗ ∈  . Further, by Equations (42) and (43), we obtain

0 ≤ �̃�𝑠 ≤ sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 for all 𝑠 = 0,… , 𝑇, 𝐏-a.s.

and

sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 ∈ 𝐿1(Ω, , �̄�∗) for all �̄�∗ ∈  ,

implies that �̃�𝑠 ∈ 𝐿1(Ω,𝑠, 𝐏
∗) for all 𝐏∗ ∈  and all 𝑠 = 0,… , 𝑇. In particular, since �̃� is

increasing and non-negative, we can conclude that �̃� is a 𝐏∗-supermartingale for all 𝐏∗ ∈  . Fur-
thermore, �̃�𝑠 ≥ 0 𝐏-a.s. for all 𝑠 = 0,… , 𝑇. To this end, let 𝐏∗ ∈  be arbitrary, then we have by
the 𝐏∗-supermartingale property that

�̃�𝑠 ≥ 𝔼∗[�̃�𝑇 ∣ 𝑠]

= 𝔼∗

[
sup
�̄�∗∈

𝔼�̄�∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − �̃�𝑇 ∣ 𝑠

]

≥ 𝔼∗[𝐻 ∣ 𝑠] ≥ 0.

The terminal value of �̃� dominates 𝐻 by construction and since 𝐵𝑠 ≤ �̃�𝑠 for all 𝑠 = 0,… , 𝑇, we
have

�̃�𝑠 ≤ ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑠] 𝐏-a.s. for all 𝑠 = 0, 1… , 𝑇.

Therefore, we get

�̃�𝑠 = ess sup
𝐏∗∈

𝔼∗[𝐻 ∣ 𝑠] = sup
𝐏∗∈

𝔼∗[𝐻] +

𝑠∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐵𝑠 𝐏-a.s. for all 𝑠 = 0, 1… , 𝑇,

and thus 𝐵𝑡 = �̃�𝑡 𝐏-a.s. This concludes the proof. □

Remark 4.2. In the definition of Equation (42), we can equivalently consider ess sup ̂𝑡, where

̂𝑡 ∶=

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ 0 ≤ 𝐷𝑡 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
,



BIAGINI et al. 167

for 𝑡 = 1, … , 𝑇. This is due to the fact that, on the one hand,𝑡 ⊂ ̂𝑡 for all 𝑡 = 1, … , 𝑇. On the other
hand, for 𝐷𝑡 ∈ ̂𝑡, we have that �̃�𝑡 ∶= 𝐷𝑡 ∨ 𝐵𝑡−1 ∈ 𝑡 and 𝐷𝑡 ≤ �̃�𝑡 𝐏-a.s. Therefore, ess sup ̂𝑡 =

ess sup𝑡 = 𝐵𝑡 for all 𝑡 = 1, … , 𝑇.

4.2 Neural network approximation for 𝒕 > 𝟎

We now study a neural network approximation for the superhedging price process for 𝑡 > 0.
Throughout this section, we use the notation of Section 3. For 𝜀, 𝜀 ∈ (0, 1), we define the set

𝜃∗𝑡 ,𝜀,𝜀

𝑡 ∶=
{
𝐹𝜃𝑡 (𝑡) ∶ 𝜃𝑡 ∈ Θ𝑡+1 and

𝐏

(
𝐵𝑡−1 − 𝜀 ≤ 𝐹𝜃𝑡 (𝑡) ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 + 𝜀

)
> 1 − 𝜀

}
,

where 𝐵 is the consumption process for 𝐻 introduced in Equation (2). We now construct an
approximation of 𝐵 by neural networks.

Proposition 4.3. Assume 𝜎 is bounded and nonconstant. Then, for any 𝜀, 𝜀 > 0, there exist neural
networks (𝐹𝜃0,𝜀,𝜀, … , 𝐹𝜃𝑇,𝜀,𝜀) such that 𝐹𝜃𝑡,𝜀,𝜀(𝑡) ∈ 𝜃∗𝑡 ,𝜀,𝜀

𝑡 for all 𝑡 = 0, … , 𝑇 and

𝐏
(|||𝐹𝜃𝑡,𝜀,𝜀(𝑡) − 𝐵𝑡

||| > 𝜀
)
< 𝜀, for all 𝑡 = 0, … , 𝑇.

In particular, there exists a sequence of neural networks (𝐹𝜃𝑛
0 , … , 𝐹𝜃𝑛𝑇 )𝑛∈ℕ with 𝐹𝜃𝑛𝑡 (𝑡) ∈ 𝜃∗𝑡 ,

1

𝑛
,
1

𝑛
𝑡

for all 𝑛 ∈ ℕ and for all 𝑡 = 0, … , 𝑇 such that

(
𝐹𝜃𝑛

0 (0), … , 𝐹𝜃𝑛𝑇 (𝑇)
) 𝐏-a.s.
*****→ (𝐵0, … , 𝐵𝑇) for 𝑛 → ∞.

Proof. Fix 𝜀, 𝜀 > 0 and 𝑡 ∈ {1, … , 𝑇}. Note that 𝐵0 = 0 by definition. Let 𝐵 be given by the repre-
sentation (42). Observe that the set 𝑡 from Equation (43) is directed upwards. By Theorem A.33
of Föllmer and Schied (2016), there exists an increasing sequence

(𝐵𝑘𝑡 )𝑘∈ℕ ⊂ 𝑡,

such that 𝐵𝑘𝑡 converges 𝐏-almost surely to �̃�𝑡 = 𝐵𝑡 as 𝑘 tends to infinity. Since almost sure
convergence implies convergence in probability, there exists 𝐾 = 𝐾(𝜀, 𝜀) ∈ ℕ such that

𝐏
(|||𝐵𝑘𝑡 − 𝐵𝑡

||| > 𝜀

2

)
<

𝜀

2
, for all 𝑘 ≥ 𝐾. (45)

For all 𝑘 ≥ 𝐾, there exist measurable functions 𝑓𝑘𝑡 ∶ ℝ
𝑚𝑡 → ℝ such that 𝐵𝑘𝑡 = 𝑓𝑘𝑡 (𝑡). Fix 𝑘 ≥

𝐾. By the universal approximation theorem (Hornik, 1991, Theorem 1 and Section 3), see also
Theorem B.1 in the appendix, (with measure 𝜇 given by the law of 𝑡 under 𝐏) there exists
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𝜃𝑡 = 𝜃𝑘𝑡 ∈ Θ𝑡+1 and 𝐹𝜃𝑡 = 𝐹𝜃𝑘𝑡 ,𝜀,𝜀 such that

𝐏
(|||𝑓𝑘𝑡 (𝑡) − 𝐹𝜃𝑡 (𝑡)

||| > 𝜀

2

)
<

𝜀

2
.

By the triangle inequality and by De Morgan’s law, we obtain that{
𝜔 ∈ Ω ∶

|||𝐵𝑡(𝜔) − 𝐹𝜃𝑡 (𝑡(𝜔))
||| > 𝜀

}
⊆
{
𝜔 ∈ Ω ∶

|||𝐵𝑡(𝜔) − 𝐵𝑘𝑡 (𝜔)
||| + |||𝐵𝑘𝑡 − 𝐹𝜃𝑡 (𝑡(𝜔))

||| > 𝜀
}

⊆
{
𝜔 ∈ Ω ∶

|||𝐵𝑡(𝜔) − 𝐵𝑘𝑡 (𝜔)
||| > 𝜀

2

}
∪
{
𝜔 ∈ Ω ∶

|||𝐵𝑘𝑡 (𝜔) − 𝐹𝜃𝑡 (𝑡(𝜔))
||| > 𝜀

2

}
.

In particular, we obtain by subaddidivity that

𝐏
(|||𝐵𝑡 − 𝐹𝜃𝑡 (𝑡)

||| > 𝜀
) ≤ 𝐏

(|||𝐵𝑡 − 𝐵𝑘𝑡
||| > 𝜀

2

)
+ 𝐏

(|||𝐵𝑘𝑡 − 𝐹𝜃𝑡 (𝑡)
||| > 𝜀

2

)
<

𝜀

2
+
𝜀

2
= 𝜀.

Next, we show that 𝐹𝜃𝑡 ∈ 𝜃∗𝑡 ,𝜀,𝜀

𝑡 . For this purpose, we note that

𝐵𝑡−1 ≤ 𝐵𝑡 ≤ sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

Therefore, we have that

𝐏

(
𝐵𝑡−1 − 𝜀 ≤ 𝐹𝜃𝑡 (𝑡) ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 + 𝜀

)
≥ 𝐏

(||𝐵𝑡 − 𝐹𝜃𝑡 (𝑡)|| ≤ 𝜀
)
> 1 − 𝜀,

which implies that 𝐹𝜃𝑡 (𝑡) = 𝐹𝜃𝑘𝑡 ,𝜀,𝜀(𝑡) ∈ 𝜃∗𝑡 ,𝜀,𝜀

𝑡 . We set 𝜀 = 1

𝑛
= 𝜀 for 𝑛 ∈ ℕ and consider the

neural network

𝐹𝜃𝑛𝑡 ∶= 𝐹
𝜃
𝐾(𝑛)
𝑡 ,

1

𝑛
,
1

𝑛 , 𝑡 ∈ {1, … , 𝑇}, 𝑛 ∈ ℕ,

where 𝐾(𝑛) = 𝐾(
1

𝑛
,
1

𝑛
) is given by Equation (45). Then, 𝐹𝜃𝑛𝑡 ∈ 𝜃∗𝑡 ,

1

𝑛
,
1

𝑛
𝑡 for all 𝑛 ∈ ℕ and for all

𝑡 = 1, … , 𝑇. Further, we have

𝐏

(|||𝐹𝜃𝑛𝑡 (𝑡) − 𝐵𝑡
||| > 1

𝑛

)
<

1

𝑛
for all 𝑡 = 1, … , 𝑇,

which implies convergence in probability, that is,

𝐹𝜃𝑛𝑡 (𝑡)
𝐏
*→ 𝐵𝑡 for 𝑛 → ∞, for all 𝑡 = 0, … , 𝑇.

By passing to a suitable subsequence, convergence also holds 𝐏-a.s. simultaneously for all 𝑡 =
0, … , 𝑇. □
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Let 𝜀 > 0. Recursively, we define the set

̃𝜃∗𝑡 ,𝜀

𝑡 ∶= {𝐹𝜃𝑡 (𝑡)𝟙𝐴 + 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐 ∶ 𝜃𝑡 ∈ Θ𝑡+1, 𝐴 ∈ 𝑡,

𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 ≤ 𝐹𝜃𝑡 (𝑡)𝟙𝐴 + 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐 ≤ sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 + 𝜀}

(46)

for 𝑡 = 1, … , 𝑇, and the approximated process of consumption by 𝐵
𝜃∗
0
,𝜀

0 = 0 and

𝐵
𝜃∗𝑡 ,𝜀

𝑡 ∶= ess sup ̃𝜃∗𝑡 ,𝜀

𝑡 for 𝑡 = 1, … , 𝑇. (47)

Theorem 4.4. Assume 𝜎 is bounded and non-constant. Then

||||𝐵𝜃∗𝑡 ,𝜀𝑡 − 𝐵𝑡
|||| ≤ 𝜀 𝐏-a.s. for all 𝑡 = 0, … , 𝑇.

Proof. We prove the statement by induction. For 𝑡 = 0, we have by definition 𝐵
𝜃∗
0
,𝜀

0 = 𝐵0 = 0.
Assume now that

||||𝐵𝜃∗𝑡−1,𝜀𝑡−1 − 𝐵𝑡−1
|||| ≤ 𝜀 𝐏-a.s.

for some 𝑡 ∈ {1, … , 𝑇}. First, we note that 𝐵𝜃
∗
𝑠 ,𝜀
𝑠 ≤ 𝐵

𝜃∗
𝑠+1

,𝜀

𝑠+1 by Equations (46) and (47), and because

𝐵
𝜃∗
0
,𝜀

0 = 0, it follows that 𝐵𝜃
∗
𝑠 ,𝜀
𝑠 ≥ 0 for all 𝑠 = 1,… , 𝑇. Let 𝜃𝑡 ∈ Θ𝑡+1 and 𝐴 ∈ 𝑡 such that

0 ≤ 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 ≤ 𝐹𝜃𝑡 (𝑡)𝟙𝐴 + 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐 ≤ sup
𝐏∗∈

𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 + 𝜀.

Then, we can easily see that

𝐹𝜃𝑡 (𝑡)𝟙𝐴 + 𝐵
𝜃∗𝑡−1,𝜀

𝑡−1 𝟙𝐴𝑐 ∈

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡 , 𝐏) ∶ 0 ≤ 𝐷𝑡 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 + 𝜀 𝐏-a.s.

}
.

We now prove that

𝐵𝑡 + 𝜀 = ess sup

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡 , 𝐏) ∶ −𝜀 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
. (48)

On the one hand, we have{
�̃�𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ 0 ≤ �̃�𝑡 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
+ 𝜀

=

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ 0 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
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⊆

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ −𝜀 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
,

which by Remark 4.2 implies that

𝐵𝑡 + 𝜀 ≤ ess sup

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡 , 𝐏) ∶ −𝜀 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
.

On the other hand, let

𝐷𝑡 ∈

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ −𝜀 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
,

and define �̃�𝑡 ∶= 𝐷𝑡 ∨ 𝜀. Then 𝐷𝑡 ≤ �̃�𝑡 𝐏-a.s. and

�̃�𝑡 ∈

{
�̄�𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ 0 ≤ �̄�𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
,

which implies that

𝐵𝑡 + 𝜀 ≥ ess sup

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡 , 𝐏) ∶ −𝜀 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
,

and hence Equation (48) follows. Further, we also have that{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ 0 ≤ 𝐷𝑡 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 + 𝜀 𝐏-a.s.

}

=

{
𝐷𝑡 ∈ 𝐿0(Ω,𝑡, 𝐏) ∶ −𝜀 ≤ 𝐷𝑡 − 𝜀 ≤ sup

𝐏∗∈
𝔼∗[𝐻] +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻 𝐏-a.s.

}
.

Therefore, we obtain by Equation (48) that

𝐹𝜃𝑡 (𝑡)𝟙𝐴 + 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐 ≤ 𝐵𝑡 + 𝜀 𝐏-a.s.,

and hence

𝐵
𝜃∗𝑡 ,𝜀

𝑡 ≤ 𝐵𝑡 + 𝜀 𝐏-a.s. (49)

For the converse direction let 𝜀 ∈ (0, 1). By the proof of Proposition 4.3, there exists a neural
network 𝐹�̃�𝑡 = 𝐹�̃�𝑡,𝜀,𝜀 such that

𝐏
(|||𝐹�̃�𝑡 (𝑡) − 𝐵𝑡

||| > 𝜀
)
< 𝜀.
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Define the sets 𝐴1,𝐴2 ∈ 𝑡 by

𝐴1 ∶=
{
𝜔 ∈ Ω ∶ 𝐵𝑡(𝜔) − 𝜀 ≤ 𝐹�̃�𝑡 (𝑡(𝜔)) ≤ 𝐵𝑡(𝜔) + 𝜀

}
,

and

𝐴2 ∶=
{
𝜔 ∈ Ω ∶ 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 (𝜔) ≤ 𝐹�̃�𝑡 (𝑡(𝜔))
}
.

Then, 𝐏(𝐴1) > 1 − 𝜀. Note that by the assumption of the induction

𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 ≤ 𝐵𝑡−1 + 𝜀 ≤ 𝐵𝑡 + 𝜀 𝐏-a.s.

For 𝐴 ∶= 𝐴1 ∩ 𝐴2, we have by construction,

𝐹�̃�𝑡 (𝑡)𝟙𝐴 + 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐 = 𝐹�̃�𝑡 (𝑡)𝟙𝐴1∩𝐴2
+ 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐
1
∪𝐴𝑐

2
∈ ̃𝜃∗𝑡 ,𝜀

𝑡 .

For 𝜔 ∈ 𝐴1 ∩ 𝐴𝑐
2, we get that

𝐹�̃�𝑡 (𝑡(𝜔))𝟙𝐴1∩𝐴2
(𝜔) + 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 (𝜔)𝟙𝐴𝑐
1
∪𝐴𝑐

2
(𝜔) = 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 (𝜔)

and

𝐵𝑡(𝜔) − 𝜀 ≤ 𝐹�̃�𝑡 (𝑡(𝜔)) < 𝐵
𝜃∗
𝑡−1

,𝜀

𝑡−1 (𝜔) ≤ 𝐵𝑡(𝜔) + 𝜀.

For 𝜔 ∈ 𝐴1 ∩ 𝐴2, we have

𝐹�̃�𝑡 (𝑡(𝜔))𝟙𝐴1∩𝐴2
(𝜔) + 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 (𝜔)𝟙𝐴𝑐
1
∪𝐴𝑐

2
(𝜔) = 𝐹�̃�𝑡 (𝑡(𝜔))

and

|||𝐹�̃�𝑡 (𝑡(𝜔)) − 𝐵𝑡(𝜔)
||| ≤ 𝜀.

Thus, using that 𝐴1 = (𝐴1 ∩ 𝐴2) ∪ (𝐴1 ∩ 𝐴𝑐
2) and 𝐏(𝐴1) > 1 − 𝜀, we get

𝐏

(||||
(
𝐹�̃�𝑡 (𝑡)𝟙𝐴 + 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐

)
− 𝐵𝑡

|||| > 𝜀

)
≤ 𝐏(𝐴𝑐

1) < 𝜀. (50)

Then, Equation (50) implies

𝐏
(
𝐵
𝜃∗𝑡 ,𝜀

𝑡 < 𝐵𝑡 − 𝜀
) ≤ 𝐏

(
𝐹�̃�𝑡 (𝑡)𝟙𝐴 + 𝐵

𝜃∗
𝑡−1

,𝜀

𝑡−1 𝟙𝐴𝑐 < 𝐵𝑡 − 𝜀
)
< 𝜀. (51)

Because 𝜀 ∈ (0, 1) was arbitrary, it follows that 𝐵𝑡 ≤ 𝐵
𝜃∗𝑡 ,𝜀

𝑡 + 𝜀 𝐏-a.s. by Equation (51). By
Equations (49) and (51), we conclude that |𝐵𝜃∗𝑡 ,𝜀𝑡 − 𝐵𝑡| ≤ 𝜀 𝐏-a.s. for all 𝑡 = 0, … , 𝑇. □
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5 NUMERICAL RESULTS

In this section, we present some numerical applications for the results in Sections 3 and 4. Com-
bining Theorems 3.4 and 3.14, we obtain a two-step approximation for the superhedging price at
𝑡 = 0. Then, we use Theorem 4.4 to simulate the superhedging process for 𝑡 > 0.

5.1 Case 𝒕 = 𝟎

5.1.1 Algorithm and implementation

Let𝑁 ∈ ℕ denote a fixed batch size. For fixed 𝜆 > 0, we implement the following iterative proce-
dure: for each iteration step 𝑖, we generate i.i.d. samples 𝑌(𝜔(𝑖)

0 ), … , 𝑌(𝜔
(𝑖)
𝑁 ) of 𝑌 and consider the

empirical loss function

𝐿
(𝑖)
𝜆
(𝜃) =

||||𝐹𝜃𝑢
(0

(
𝜔
(𝑖)
0

))||||
2

+
𝜆

𝑁

𝑁∑
𝑗=1

𝑙
(
𝐻
(
𝜔
(𝑖)
𝑗

)

−

[
𝐹𝜃𝑢

(0

(
𝜔
(𝑖)
𝑗

))
+

𝑇∑
𝑘=1

𝐹𝜃𝑘,𝜉
(𝑘−1

(
𝜔
(𝑖)
𝑗

))
⋅
(
𝑋𝑘

(
𝜔
(𝑖)
𝑗

)
− 𝑋𝑘−1

(
𝜔
(𝑖)
𝑗

))])
,

with 𝜃 = (𝜃𝑢, 𝜃1,𝜉 , … , 𝜃𝑇,𝜉). In the sequel, we consider two possible choices for the function 𝑙 ∶

ℝ → [0,∞), that is, the squared rectifier function

𝑙(𝑥) = (max {𝑥, 0})
2
, (52)

or the truncated sigmoid function

𝑙(𝑥) =

(
max

{
1

1 + 𝑒−𝑥
−
1

2
, 0

})2

, (53)

see Figure 1 for the truncated sigmoid function.

F IGURE 1 Truncated sigmoid function (53) [Color figure can be viewed at wileyonlinelibrary.com]
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We then calculate the gradient of 𝐿(𝑖)
𝜆
(𝜃) at 𝜃(𝑖) and use it to update the parameters from 𝜃(𝑖)

to 𝜃(𝑖+1) according to the Adam optimizer, see Kingma and Ba (2014). After sufficiently many
iterations 𝑖, we expect (see, e.g., (Goodfellow et al., 2016, Chapter 8) or (Buehler et al., 2019, Sec-
tion 4.3)) that the loss 𝐿𝜆(𝜃(𝑖)) is close to the minimal value of the loss function 𝐿𝜆, where 𝐿𝜆 is
given by

𝐿𝜆(𝜃) =
|||𝐹𝜃𝑢(0)

|||2 + 𝜆𝔼

[
𝑙

(
𝐻 −

(
𝐹𝜃𝑢(0) +

𝑇∑
𝑘=1

𝐹𝜃𝑘,𝜉 (𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1)

))]
. (54)

Note that 0 is constant and hence 𝐹𝜃𝑢(0) is a constant. We obtain a small value for the first
term of 𝐿𝜆 if 𝐹𝜃𝑢(0) representing the superhedging price is small. On the other hand, for our
choices of 𝑙, the second summand in Equation (54) is equal to 0 when the portfolio dominates the
claim𝐻. Thus, minimizing the second summand in Equation (54) corresponds tomaximizing the
superhedging probability. When 𝑙 is given by the truncated sigmoid function (53), it is considered
as an approximation of the indicator function, which corresponds one to one to the method pre-
sented in Section 3. The weight 𝜆 offers the opportunity to balance between a small initial price
of the portfolio and a high probability of superhedging. The superhedging probability can always
be estimated on a test set. In order to guarantee a given superhedging probability, we can retrain
the network with a larger choice of 𝜆 until the desired superhedging probability is achieved. In
particular, if 𝜃 is the minimum for the loss function 𝐿𝜆(𝜃), then 𝐹𝜃𝑢(0) is close to the minimal
price required to superhedge the claim 𝐻 with a certain probability, that is, to the quantile hedg-
ing price for a certain 𝛼 = 𝛼(𝜆). In view of Theorem 3.14, we thus expect 𝐹𝜃𝑢(0) ≈ inf 0 for 𝜆
large enough.

Remark 5.1. We note that also other choices for 𝑙 are possible as for instance the sigmoid function.
However, the standard sigmoid function is very sensitive to the choice of 𝜆 because it is strictly
monotone on the complete real line. In general, for different choices of 𝑙, the stability in the learn-
ing process and the impact of 𝜆 may vary. It appears to be important to choose a loss function
that does not reward higher excess of the superhedging portfolio compared to a perfect hedge
without excess.

The algorithm is implemented in Python, using Keras with backend TensorFlow to build and
train the neural networks. More precisely, we create a Sequential object to build the models and
compile with a customized loss function.
We use a long-short-term-memory network (LSTM), see Hochreiter and Schmidhuber (1997),

with the following architecture: the network has two LSTM layers of size 30, which return
sequences and one dense layer of size 1. Between the layers, the swish activation function is used.
The activation functions within the LSTM layers are set to default, that is, activation between cells
is tanh and the recurrent activation is the sigmoid function. The kernel and bias initializer of the
first LSTM layer are set to truncated normal, that is, the initial weights are drawn from a standard
normal distribution but we discard and redraw values, which are more than two standard devia-
tions from the mean. This gives 11, 191 trainable parameters. The training is performed using the
Adam optimizer with a learning rate of 0.001 or 0.0001. We generate 1024, 000 samples, which
we split in 70% for the training set and 30% for the test set. The batch size is set to 1024. We apply
the procedure described above in two examples, which we present in the following. The code
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is available at https://github.com/tomrtsm/neural_network_approximation_for_superhedging_
prices.

5.1.2 Trinomial model

We consider a discrete time financial market model given by an arbitrage-free trinomial model
with 𝑋0 = 100 and

𝑋𝑡 = 𝑋0

𝑡∏
𝑘=1

(1 + 𝑅𝑡), 𝑡 ∈ {0, … , 𝑇},

where 𝑅𝑡 is 𝑡-measurable for 𝑡 ∈ {1, … , 𝑇}, and takes values in {𝑑,𝑚, 𝑢} with equal probability,
where −1 < 𝑑 < 𝑚 < 𝑢. Here, we set 𝑑 = −0.01, 𝑚 = 0, and 𝑢 = 0.01 and 𝑇 = 29 yielding 329
possible paths. In thismodel, wewant to superhedge a European Call option𝐻 = (𝑋𝑇 − 𝐾)+ with
strike price 𝐾 = 100. For this choice of parameters, the theoretical superhedging price is 2.17, as
it can be easily obtained by Proposition 3.4 of Carassus and Vargiolu (2010).
The network is trained and evaluated for different 𝜆 to illustrate the impact of 𝜆 in Equation (54)

and the relation between 𝛼(𝜆) ∈ (0, 1) and the corresponding 𝛼(𝜆)-quantile hedging price. For
each 𝜆, the network is trained over 40 epochs.
In Figure 2a–c for 𝑙 given by Equation (52) and Figure 3a–c for 𝑙 given by Equation (53), we

see that 𝛼(𝜆) as well as the 𝛼(𝜆)-quantile hedging price increase in 𝜆, and that the 𝛼(𝜆)-quantile
hedging price increases in 𝛼(𝜆). Figures 2d and 3d show the superhedging performance on the
test set for all 𝜆’s, that is, samples of

𝐹𝜃𝑢(𝜆)(0) +

𝑇∑
𝑘=0

𝐹𝜃𝑘,𝜉(𝜆)(𝑘−1) ⋅ (𝑋𝑘 − 𝑋𝑘−1) − 𝐻, (55)

for each 𝜆. Tables 1 and 2 summarize the values for 𝜆, 𝛼(𝜆) and the 𝛼(𝜆)-quantile hedging price for
𝑙 given by Equations (52) and (53), respectively. In particular, for 𝜆 = 10, 000, we obtain a numer-
ical price of 2.15 and 𝛼(𝜆) = 99.24% for 𝑙 given by Equation (52). For 𝜆 = 300, 000, we obtain a
numerical price of 2.16 and 𝛼(𝜆) = 99.69% for 𝑙 given by Equation (53). Furthermore, the analysis
shows that the impact of 𝜆 significantly depends on the choice of 𝑙.

TABLE 1 Impact of 𝜆 on 𝛼(𝜆) and on the 𝛼(𝜆)-quantile hedging price for 𝑙 = (max{𝑥, 0})2

𝝀 𝜶(𝝀) 𝜶(𝝀)-quantile hedging price
10 15.23% 1.61
50 55.61% 1.81
100 70.75% 1.86
500 92.16% 1.96
1000 95.42% 2.00
2000 96.88% 2.04
4000 98.48% 2.09
10, 000 99.24% 2.15

https://github.com/tomrtsm/neural_network_approximation_for_superhedging_prices
https://github.com/tomrtsm/neural_network_approximation_for_superhedging_prices


BIAGINI et al. 175

F IGURE 2 Impact of 𝜆 on the quantile hedging price and on the superhedging probability for
𝑙 = (max{𝑥, 0})2 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Impact of 𝜆 on 𝛼(𝜆) and on the 𝛼(𝜆)-quantile hedging price for 𝑙 = (max{
1

1+𝑒−𝑥
−

1

2
, 0})2

𝝀 𝜶(𝝀) 𝜶(𝝀)-quantile hedging price
1000 62.11% 1.82
5000 86.92% 1.92
10, 000 93.12% 1.96
50, 000 98.03% 2.04
75, 000 98.97% 2.07
100, 000 99.28% 2.08
150, 000 99.34% 2.10
300, 000 99.69% 2.16
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F IGURE 3 Impact of 𝜆 on the quantile hedging price and on the superhedging probability for
𝑙 = (max{

1

1+𝑒−𝑥
−

1

2
, 0})2 [Color figure can be viewed at wileyonlinelibrary.com]

5.1.3 Discretized Black–Scholes model

Here, we consider a discrete time financial market for the asset price 𝑋 given by a Black–Scholes
model considered at discrete times 𝑡ℎ for 𝑡 ∈ {0, 1, … , 30} and ℎ =

1

250
. We consider a Barrier Up

and Out Call option 𝐻 =
∏𝑇

𝑡=0
𝟙{𝑋𝑡<𝑈}(𝑋𝑇 − 𝐾)+ with strike 𝐾 = 100 and upper bound 𝑈 = 105

such that𝐾 < 𝑈 and𝑋0 < 𝑈. We set𝑋0 = 100, 𝜎 = 0.3, and 𝜇 = 0. We assume to have 250 trading
days per year and a time horizon 𝑇 of 30 trading days with daily rebalancing. In particular, for a
European contingent claim, the time until expiration for the option is 𝜏 = 30∕250.
The weight 𝜆 of the loss function is set to 10, 000, 000 in order to obtain a high superhedging

probability. Indeed, we obtain a superhedging probability of 100% on the training set as well as



BIAGINI et al. 177

F IGURE 4 Hedging losses for 𝜆 = 50, 𝜆 = 10000 and for the 𝛿-hedging strategy [Color figure can be viewed
at wileyonlinelibrary.com]

on the test set with an approximate price of 3.73. By tab. 1 in Carassus et al. (2007), the theoretical
superhedging price 𝜋𝐻 is given by

𝜋𝐻 = 𝑋0

(
1 −

𝐾

𝑈

)
≈ 4.76.

In the Black–Scholes model, the asset price process at time 𝑡 > 0 has unbounded support and
thus, the additional error, which arises from the discretization of the probability space, is non-
negligible. Although the Barrier option artificially bounds the support of themodel, the numerical
price still significantly deviates from the theoretical price.
Finally, we consider a European call option𝐻 = (𝑋𝑇 − 𝐾)+with strike𝐾 = 100 and parameters

𝑋0 = 100, 𝜎 = 0.1 and 𝜇 = 0. By Carassus et al. (2007), the theoretical price of 𝐻 for the discrete
time version of the Black–Scholes model is equal to𝑋0 = 100. The theoretical price of𝐻 in a stan-
dard Black–Scholes model in the continuous time is 1.38, and by following the 𝛿-hedging strategy,
we superhedge 𝐻 with a probability of 53.69%. We first choose 𝑙 given by Equation (52). Here,
we consider 𝜆 = 50 in Equation (54) in order to compare the result to the discretized 𝛿-hedging
strategy of the Black–Scholes model, and 𝜆 = 10, 000 in order to obtain a high superhedging
probability. For 𝜆 = 50, we obtain an approximate price of 1.41 and a superhedging probability
of 54.43%. In Figure 4a, we compare the 𝛿-hedging strategy with the approximated superhedg-
ing strategy obtained for 𝜆 = 50. Further, in Figure 4b, we compare the results for 𝜆 = 50 and
𝜆 = 10, 000, respectively. For 𝜆 = 10, 000, the superhedging probability on the test set is 99.79%
with an approximated price of 2.18.
For 𝑙 given by Equation (53), we obtain for 𝜆 = 100, 000, a superhedging probability of 99.66%

and a price of 2.10. Again, we can see the different impact of 𝜆 for different choices of 𝑙 in
Equation (54).



178 BIAGINI et al.

5.2 Case 𝒕 > 𝟎

In this section, we approximate the process of consumption by neural networks as proposed in
Section 4.2. We implement the same iterative procedure as introduced in Section 5.1.1. We define
𝐺(𝑖) as the difference of the approximated superhedging strategy obtained from Section 5.1 and
the claim 𝐻, that is,

𝐺
(𝑖)
𝑗
(𝜃∗) ∶=

[
𝐹𝜃∗𝑢

(0

(
𝜔
(𝑖)
𝑗

))
+

𝑇∑
𝑘=1

𝐹
𝜃∗
𝑘,𝜉

(𝑘−1

(
𝜔
(𝑖)
𝑗

))
⋅
(
𝑋𝑘

(
𝜔
(𝑖)
𝑗

)
− 𝑋𝑘−1

(
𝜔
(𝑖)
𝑗

))
−𝐻

(
𝜔
(𝑖)
𝑗

)]
.

Then, the empirical loss function is given by

�̃�
(𝑖)

𝑡,𝛽
(𝜃𝑡) =

1

𝑁

𝑁∑
𝑗=1

−
||||𝐵𝜃𝑡𝑡

(
𝜔
(𝑖)
𝑗

)||||
2

+ 𝛽max
{(

𝐵
𝜃𝑡
𝑡

(
𝜔
(𝑖)
𝑗

)
− 𝐺

(𝑖)
𝑗
(𝜃∗)

)
, 0
}
,

where 𝐵𝜃𝑡𝑡 is given by

𝐵
𝜃𝑡
𝑡

(
𝜔
(𝑖)
𝑗

)
∶= max

{
𝐹𝜃𝑡

(𝑡

(
𝜔
(𝑖)
𝑗

))
, 𝐵

𝜃𝑡−1
𝑡−1

(
𝜔
(𝑖)
𝑗

)}
.

At a local minimum, the two terms of �̃� guarantee that 𝐹𝜃𝑡 is as big as possible but less or equal
than 𝐺(𝜃∗).
Here, we also consider a discretized Black–Scholes model as in Section 5.1.3 but only a time

horizon of 10 trading days and set𝑋0 = 100,𝜎 = 0.1, and𝜇 = 0. For each 𝑡 > 0, the neural network
consists of two LSTM layers of size 30 and 20, respectively, which return sequences, one LSTM
layer of size 20 providing one single value and one dense layer of size 1. The remaining parameters
are chosen as in Section 5.1.1.
As in Section 5.1.3, we compute an approximated superhedging price and strategy for the

complete interval. Setting𝜆 = 1024 yields an approximated price of 1.35 and a superhedging proba-
bility of 98.87% for 𝑡 = 0. For 𝑡 ≥ 1, we choose 𝛽 = 500 and then obtain a superhedging probability
of 98.78%. In Figure 5a, we show trajectories of the approximated superhedging price process gen-
erated by thismethod. Figure 5b illustrates paths given by the 𝛿-hedging strategy of the discretized
Black–Scholes model. Finally, we plot the difference of the approximated superhedging price
processes and the corresponding price process obtained by the 𝛿-hedging strategy in Figure 5c.

5.3 Discussion

In finite market models as in Section 5.1.2, our methodology delivers an approximation of 𝛼-
quantile hedging and approximated superhedging prices with small approximation error. It is
also worth noting that the predicted superhedging price and the corresponding superhedging
probability of the training set are consistent with the values on the test set.
In contrast, inmodels inwhich the price process has unbounded support, our numerical results

indicate that the additional error caused by the discretization of the probability space cannot be
ignored. However, we obtain consistent results of the 𝛼-quantile hedging price for the training set
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F IGURE 5 Superhedging price process compared to the 𝛿-hedging price process [Color figure can be
viewed at wileyonlinelibrary.com]

and test set. Note also that, in Section 5.1.3, the Barrier option can be superhedged with 100% on
the training and on the test set.
A further possible application of our methodology is given by superhedging in a model-free

setting on prediction sets, see Bartl et al. (2020), Bartl et al. (2019), Hou and Obłój (2018), where
prediction sets offer the opportunity to include beliefs in price developments or to select relevant
price paths.
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APPENDIX A: PROOF OF PROPOSITION 3.2
Proof. “≤”: Take 𝐴 ∈ 𝑇 such that 𝐏(𝐴) ≥ 𝛼. We prove that

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ∈

{
𝑢 ∈ ℝ ∶ ∃𝜉 adm. s.t. 𝐏

(
𝑢 +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼

}
. (A.1)

By the well-known superhedging duality, see Theorem 7.13 of Föllmer and Schied (2016), we have
that

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] = inf

{
𝑢 ∈ ℝ ∶ ∃𝜉 pred. s.t. 𝑢 +

𝑇∑
𝑘=1

𝜉𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻𝟙𝐴 𝐏-a.s.

}
,

and that there exists a superhedging strategy �̂� for 𝐻𝟙𝐴 with initial value sup𝐏∗∈ 𝔼∗[𝐻𝟙𝐴], that
is,

sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] +

𝑇∑
𝑘=1

�̂�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻𝟙𝐴 ≥ 0 𝐏-a.s. (A.2)

In particular, by Equation (A.2) we get for �̂� that

𝐏

(
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] +

𝑇∑
𝑘=1

�̂�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝐏(𝐴) ≥ 𝛼.

This implies Equation (A.1) and hence

inf  𝛼
0 ≤ inf

{
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ∶ 𝐴 ∈ 𝑇, 𝐏(𝐴) ≥ 𝛼

}
.
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“≥”: Take �̃� ∈  𝛼
0 and denote by �̃� = (�̃�𝑘)

𝑇
𝑘=1

the corresponding strategy such that

𝐏

(
�̃� +

𝑇∑
𝑘=1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1) ≥ 𝐻

)
≥ 𝛼.

Define the set �̃� by

�̃� ∶=

{
𝜔 ∈ Ω ∶ �̃� +

𝑇∑
𝑘=1

�̃�𝑘(𝜔) ⋅ (𝑋𝑘(𝜔) − 𝑋𝑘−1(𝜔)) ≥ 𝐻(𝜔)

}
.

Clearly �̃� ∈ 𝑇 and 𝐏(�̃�) ≥ 𝛼. By construction we have that(
�̃� +

𝑇∑
𝑘=1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1)

)
𝟙�̃� ≥ 𝐻𝟙�̃� 𝐏-a.s.

and because �̃� is assumed to be admissible, we have(
�̃� +

𝑇∑
𝑘=1

�̃�𝑘 ⋅ (𝑋𝑘 − 𝑋𝑘−1)

)
𝟙�̃�𝑐 ≥ 0 𝐏-a.s.

In particular, �̃� ∈ 0(𝐻𝟙�̃�) and by Theorem 7.13 of Föllmer and Schied (2016) we obtain

�̃� ≥ sup
𝐏∗∈

𝔼∗[𝐻𝟙�̃�] ∈

{
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ∶ 𝐴 ∈ 𝑇, 𝐏(𝐴) ≥ 𝛼

}
. (A.3)

That is, for an arbitrary �̃� ∈  𝛼
0 , we have constructed a set �̃� such that Equation (A.3) holds.

Therefore,

inf  𝛼
0 ≥ inf

{
sup
𝐏∗∈

𝔼∗[𝐻𝟙𝐴] ∶ 𝐴 ∈ 𝑇, 𝐏(𝐴) ≥ 𝛼

}
.

□

APPENDIX B: NEURAL NETWORKS
For the reader’s convenience, we recall some results on neural networks. The following result
essentially follows from Hornik (1991, Theorem 1). For completeness, we include its proof here.

Theorem B.1. Assume 𝜎 is bounded and nonconstant. Let 𝑓 ∶ (ℝ𝑑,(ℝ𝑑)) → (ℝ𝑚,(ℝ𝑚)) be a
measurable function and 𝜇 be a probability measure on (ℝ𝑑,(ℝ𝑑)). Then for any 𝜀, 𝜀 > 0 there
exists a neural network 𝑔 such that

𝜇({𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥) − 𝑔(𝑥)‖ > 𝜀}) < 𝜀.



BIAGINI et al. 183

Proof. Let 𝜀, 𝜀 > 0 be given and let 𝐶 > 0 satisfy that

𝜇({𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥)‖ > 𝐶}) <
𝜀

2
. (B.1)

Define 𝑓 = 𝟙{𝑥∈ℝ𝑑∶‖𝑓(𝑥)‖≤𝐶}𝑓. Then 𝑓 ∈ 𝐿1(ℝ𝑑, 𝜇) and hence (Hornik, 1991, Theorem 1) shows
that there exists a neural network 𝑔 with

∫
ℝ𝑑

‖𝑓(𝑥) − 𝑔(𝑥)‖𝜇(𝑑𝑥) < 𝜀𝜀

4
.

Markov’s inequality thus proves that

𝜇({𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥) − 𝑔(𝑥)‖ > 𝜀

2
}) ≤ 2

𝜀 ∫ℝ𝑑

‖𝑓(𝑥) − 𝑔(𝑥)‖𝜇(𝑑𝑥) < 𝜀

2
. (B.2)

Combining Equations (B.1) and (B.2) and recalling 𝑓 − 𝑓 = 𝑓𝟙{𝑥∈ℝ𝑑∶‖𝑓(𝑥)‖>𝐶} yields
𝜇
(
{𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥) − 𝑔(𝑥)‖ > 𝜀}

) ≤ 𝜇
(
{𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥) − 𝑓(𝑥)‖ > 𝜀

2
} ∪ {𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥) − 𝑔(𝑥)‖ > 𝜀

2
}
)

< 𝜇
(
{𝑥 ∈ ℝ𝑑 ∶ ‖𝑓(𝑥)‖ > 𝐶}

)
+

𝜀

2
< 𝜀.

□

APPENDIX C: FURTHER RESULTS
Theorem C.1 Theorem A.37, Föllmer and Schied (2016). Let Φ be any set of random variables on
(Ω, , 𝐏).
1. There exists a random variable 𝜑∗ with the following two properties.
(a) 𝜑∗ ≥ 𝜑 𝐏-a.s. for all 𝜑 ∈ Φ.
(b) 𝜑∗ ≤ 𝜓 𝐏-a.s. for every random variable 𝜓 satisfying 𝜓 ≥ 𝜑 𝐏-a.s. for all 𝜑 ∈ Φ.

2. Suppose in addition that Φ is directed upwards, that is, for 𝜑, �̃� ∈ Φ there exists 𝜓 ∈ Φ with 𝜓 ≥
𝜑 ∨ �̃�. Then there exists an increasing sequence 𝜑1 ≤ 𝜑2 ≤ … in Φ such that 𝜑∗ = lim𝑛→∞ 𝜑𝑛
𝐏-a.s.

Definition C.2 Definition A.38, Föllmer and Schied (2016). The random variable 𝜑∗ in
Theorem C.1 is called the essential supremum of Φ with respect to 𝐏, and we write

ess supΦ = ess sup
𝜑∈Φ

𝜑 ∶= 𝜑∗.

The essential infimum of Φ with respect to 𝐏 is defined as

ess inf Φ = ess inf
𝜑∈Φ

∶= −ess sup
𝜑∈Φ

(−𝜑).
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For random variables (𝜉𝑛)𝑛∈ℕ ⊂ 𝐿0(Ω, , 𝐏;ℝ𝑑) we denote by conv{𝜉1, 𝜉2, … } the convex hull
of 𝜉1, 𝜉2, … which is defined 𝜔-wise.

Lemma C.3 Lemma 1.70, Föllmer and Schied (2016). Let (𝜉𝑛)𝑛∈ℕ be a sequence in 𝐿0(Ω, , 𝐏;ℝ𝑑)

such that sup𝑛∈ℕ |𝜉𝑛| < ∞ 𝐏-a.s. Then, there exists a sequence of convex combinations

𝜂𝑛 ∈ conv{𝜉𝑛, 𝜉𝑛+1, … }, 𝑛 ∈ ℕ,

which converges 𝐏-almost surely to some 𝜂 ∈ 𝐿0(Ω, , 𝐏;ℝ𝑑).
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