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Abstract

Are capital depreciation allowances when coupled

with capital income taxes good instruments for

redistribution in the long run? In a simple two‐
agent‐economy I find that accelerated depreciation

is good for growth, but bad for redistribution. The

opposite holds for capital income taxes. However, in

a feedback Stackelberg equilibrium, where the

government is the leader and the private sector

the follower, the depreciation allowance is maximal

in the long run, time‐consistent optimum. This

removes the accumulation distortion of capital

income taxes. Furthermore, the latter, and so

redistribution, is found to be generically nonzero

in the time‐consistent optimum, and depends on the

social weight of transfers receivers, the pretax factor

income distribution, the intertemporal elasticity of

substitution and the time preference rate. Thus,

accelerated depreciation allowances are an impor-

tant indirect tool for redistribution. The tax scheme

allows for a separation of “efficiency” and “equity”
concerns for redistributive policies.
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1 | INTRODUCTION

Important economic stimuli in normal and crisis times are capital depreciation allowances.
They imply that investment outlays can be deducted from taxable income within a certain time
period. The motivation for such measures is seen in the investment promoting effect of capital
depreciation allowances. This is well known.

However, the long‐run distributional implication of depreciation allowances is less clear.
For instance, if redistributive transfers are financed with taxes, then higher capital depreciation
allowances reduce tax revenues and appear to be a bad instrument for redistributive policies.
The opposite is often found to hold for capital income taxes. This is the problem that is being
analyzed in this paper.

In particular, in the present analysis capital income taxes are coupled with depreciation
allowances in a neoclassical growth setup. Therefore, I relate to the literature on optimal capital
income taxation. According to the “celebrated” result by Judd (1985) and Chamley (1986) capital
income taxes are not a good instrument for pure redistribution in a neoclassical growth framework.1

Subsequent research considered other capital income policy packages, including consump-
tion taxes, and found the same result as in, for instance, Judd (1999).2

Most contributions in this context have focussed on open‐loop Stackelberg set‐ups which
may feature problems of time‐inconsistency. On this point see, for example, Kemp et al. (1993).

I relate to these findings in a simple two‐agent, neoclassical growth framework and analyze
a closed‐loop Stackelberg equilibrium with a focus on a particular tax scheme. Closed‐loop
Stackelberg equilibria are, of course, time‐consistent by construction. This is the novel feature
of the present contribution.

It is shown that coupling capital income taxes with accelerated depreciation allowances to finance
pure redistributive transfers to the nonaccumulated factor of production ("workers”) may also imply a
nondistortionary policy package, similar to a consumption tax on “capitalists.”3

In this context, I build on Sinn (1987), ch. 3, and use a simple way to analyze the granting of
accelerated depreciation allowances. The latter are usually granted above the true depreciation rate of
a capital good. Depreciation allowances are similar in nature to granting investment subsidies. See,
for example, Atkinson and Stiglitz (1989), ch. 5.3.4 I relate to this and analyze a (simple) two‐agent,
closed economy framework with a capital‐income‐cum‐depreciation‐allowance (CICDA) tax scheme.

1The intuition for the result is astounding. Even workers who may not own capital and may, therefore, not accumulate
resources might benefit more from higher steady state wages resulting from nondistorted accumulation with zero taxes
than having redistributive transfers now at the expense of a lower steady state capital stock and so wages in the long
run. Sargent and Ljungqvist (2004) call this a “celebrated result.” Guo and Lansing (1999), fn. 1, point out that a similar
result had already been discussed by Arrow and Kurz (1970), p. 191‐203, in the context of a neoclassical growth model
with inelastic labor supply and productive public expenditures.
2But the result that capital income taxes are not good instruments for redistribution need not always hold. This has
been shown by many contributions and is well‐known. See, for example, Kemp et al. (1993), Aiyagari (1995), Uhlig and
Yanagawa (1996), Lansing (1999) Grüner and Heer (2000), Chamley (2001), Erosa and Gervais (2002), Domeij and
Heathcote (2004), Abel (2005), Mathieu‐Bolh (2006), Werning (2007), Spataro and de Bonis (2008), Conesa et al. (2009),
Zhang et al. (2008), Selim (2010), Saez (2013), Reinhorn (2018), Straub and Werning (2020) and others.
3Most governments redistribute resources but also grant depreciation allowances to be deducted from collectable tax
revenues. This appears to be a pervasive phenomenon in most countries. Hence, these realistic features may justify the
policy package under consideration.
4The present paper also relates to, for example, Jones et al. (1997) who show for a representative agent framework that
an investment subsidy can offset the growth distortion associated with a capital income tax and that a consumption tax
is the optimal second best policy. For a related argument see also Guo and Lansing (1999). A similar point was made by
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The following results then emerge under that tax scheme: Depreciation allowances and capital
income taxes appear to have opposite effects on redistribution and capital accumulation in the model.
However, when a benevolent government represents the weighted interests of the workers and the
capitalists and the latter act optimally things are different. In particular, I analyze a dynamic, closed‐
loop (feedback) Stackelberg game between the government and the private sector. The government is
the Stackelberg leader and the private sector is the Stackelberg follower. The feedback structure of the
game implies that the optima derived in this paper are time‐consistent.5

In this environment the government finds it optimal for the long run to grant maximal
depreciation allowances. The reason is that it would remove the distorting effect policy has on
capital accumulation. Consequently the paper shows that full expensing of investment outlays
is optimal for the long run.6

The present paper derives that optimality result in a simple dynamic, heterogeneous agent model
with potential distributional conflicts. Having maximal capital depreciation allowances in the long‐
run, time‐consistent optimum does not depend on the social weights attached to the interests of
different factor owners or any other things in this model. Importantly, even an entirely pro‐labor
government would choose maximal depreciation allowances, even though this could mean less tax
revenues and so less redistributive transfers. Thus, in the model accelerated capital depreciation
allowances work like a synthetic consumption tax and serve as an important indirect redistribution
device, because transfers ultimately depend on the capital income tax rate chosen.

As regards the latter, it turns out that optimal capital income tax rates are generically
nonzero in the paper's time‐consistent optima. That result complements, for example, Long and
Shimomura (2002) and holds under quite plausible conditions.

As one might expect from actual taxation by governments the optimal choice of capital income
taxes and so redistribution in the long run depends on the social weight of those who receive
redistributive transfers, the physical wear and tear of capital, the distribution of pretax income among
individuals, the intertemporal elasticity of substitution and the rate of time preference.

Interestingly, it is found the optimal long‐run capital income tax can be negative. The
reason appears to be that labor is supplied inelastically in the model. Thus, given certain
parameter constellations it may be better from a welfare point of view to have maximal
depreciation allowances with no distortion to accumulation so that the combined income tax
scheme is tantamount to a tax on consumption, which may also be levied on the workers',
instead on the capital owners' consumption.

The intuition for these results is similar to the “celebrated result” in the following sense. No
matter whether the government is more pro capital or labor, it chooses not to distort accumulation.
That can be taken to represent the essence of the “celebrated result.” However, the redistribution
implied in this paper is different from the long‐run zero‐tax results. Here social preferences are

Kaldor (1955) and Fisher (1937) as well who basically proposed that taxable “income” should be “income after savings
are taken out.” See Fisher (1937), p. 54.
5It is well‐known that open‐loop Stackelberg tax policy games such as the ones analyzed by, for instance, Judd and
Chamley may yield time‐inconsistent solutions. See, for example, Kemp et al. (1993), Xie (1997) and others. A previous
version of the present project also analyzed an open‐loop setup of the problem under study. See, Rehme (2007).
6That finding has, for example, also been obtained in partial equilibrium analyses by Samuelson (1964), Hall and
Jorgenson (1967) and Hall and Jorgenson (1971). In a representative agent, dynamic general equilibrium framework
Abel (2007) established the same result. In that sense the assumption of full expensing of investment outlays made in
Rehme (1995), and Rehme (1995), which provided verbal arguments why this may be optimal in a general equilibrium,
endogenous growth framework, is endogenized and found to be optimal in the present neoclassical growth framework.
For a recent related result see, for example, Davies et al. (2009).
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important for how the nondistorted accumulation proceeds are distributed among the agents. In this
paper that implies that long‐run, time‐consistent capital income tax rate is optimally nonzero and
(pure) redistribution can go either way for the workers and the capital owners.

In summary, the main message of the paper is that capital depreciation allowances may well
serve as a redistributive device, especially in the long run and when the private sector and the
government would act optimally and in a time‐consistent way. Complementing previous results
it is corroborated that the long‐run, optimal time‐consistent capital income tax rate is
generically not equal to zero.

The paper is organized as follows: Section 2 presents the model. Section 3 analyzes the
optimality for depreciation allowances and tax rates in long‐run equilibrium. Section 5 provides
concluding remarks.

2 | THE MODEL

The model is set in continuous time and the following conventions are used. A variable m

functionally depending on another variable z is denoted by m m z= [ ] , that is, square brackets ⋅[ ]

denote a functional dependence. For all variables that are continuous functions of time the subscript t
denotes their dependence on time. Thus, we define ≡h h t[ ]t for some variable h depending on time
t . As is common, the change of a variable depending on time, that is, ∂ ∕∂h tt , is denoted by ḣt . In
contrast, a change in a variable z with its effect onm is interchangeably denoted bymz or ∂ ∕∂m z.
For a simple derivative I use the convention ≡ ≡ ∕m m z dm dz′ ′[ ] .

In terms of the description of the economy the model is set in the following environment. The
economy consists of a government, identical competitive firms and two types of infinitely‐lived,
equally patient and price taking individuals called workers and capitalists. All agents derive utility
from the consumption of a homogenous, malleable good. For simplicity, we normalize the population
so that the group of capitalists and workers can be treated as one individual each.

The model abstracts from population growth, uncertainty, and technological progress. We
assume the workers supply one unit of labor inelastically and do not save or invest.7 Thus, all
the wealth is concentrated in the hands of the capitalists who do not work.

2.1 | Capitalists

In each period the capital owners choose how much of their income to consume or invest, and
they take prices and policy as given. The instantaneous budget constraint of a representative
capitalist is given by

c i r k T i k δk+ = − and = ˙ + ,t t t t t t t t (1)

where ct denotes consumption of the representative capitalist, it his/her (gross) investment,
andTt taxes to be paid to the government. Thus, the capitalists derive income from renting their
capital, kt , to competitive firms at the rate rt .

7The assumption may be rationalized by imposing transaction costs on the workers when borrowing small amounts.
Thus, the model uses the commonly used framework of Kaldor (1956) and Pasinetti (1962), which is also employed by
Judd (1985) and Lansing (1999).
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The capitalist's investment must cover the change in net assets, k̇t , and the depreciation of
the capital stock, δkt . The latter is assumed to happen in a linear way and is determined by
technological wear and tear of capital that is not under the control of agents. For simplicity we
assume the depreciation rate δ is constant over time. In this paper δkt captures the true
(technological) depreciation of capital. Finally, the capital owners have to pay taxes Tt to the
government which is taken into account when they make their decisions about consumption
and investment.

The representative capital owner derives the following intertemporal utility stream

∞ u c e dt[ ] ,t
ρt

0

−

where ρ is the constant rate of time preference, common to all agents, that is, common to the
capitalists and workers.

The instantaneous utility function u c[ ]t satisfies the properties u u′ > 0, ″ < 0, as well as

→∞ulim ′ = 0ct and ∞→ ulim ′ =c 0t
where ≡ ∕u du c dc′ [ ]t t and ≡ ∕u d u c dc″ [ ]t t

2 2 .

2.2 | Workers

The workers do not invest and are not taxed by assumption. Each worker supplies one unit of
labor inelastically at each date and derives utility from consuming his/her entire wage and
transfer income. A worker's consumption equals income, xt , which depends on wage income,
wt , and lump‐sum transfers, TRt , granted by the government,

x w TR= + .t t t

The intertemporal utility of the worker is given by
∞ v x e dt[ ]t

ρt

0

− where the instantaneous

utility v x[ ]t function need not be the same as that of the capitalists, but it is also assumed to
satisfy v v′ > 0, ″ < 0 and the conditions →∞vlim ′ = 0xt and ∞→ vlim ′ =x 0t

where
≡ ∕v dv x dx′ [ ]t t and ≡ ∕v d v x dx″ [ ]t t

2 2 .

2.3 | Firms

The firms operate in a perfectly competitive environment and maximize profits. The capital
owners rent capital to and demand shares of the firms, which are collateralized one‐to‐one by
capital. The markets for assets, capital and labor clear at each point in time so that the firms
face a path of uniform, market clearing rental rates for capital and labor, rt and wt . Given
perfect competition the firms rent capital and hire labor in spot markets in each period. Output
serves as numéraire and its price is set equal to 1 at each date, implying that the price of capital,
kt , in terms of overall consumption stays at unity.

Aggregate production is constant returns to scale in capital and labor inputs. The (total)
labor input equals 1. Thus, kt can also be interpreted as the capital labor‐ratio. Furthermore,
the paper's normalization implies that kt corresponds to the capital stock held by a
representative capital owner.
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The production function f k[ ]t for the representative firm is assumed to be increasing and
strictly concave in kt with →∞ f klim ′[ ] = 0k tt

and ∞→ f klim ′[ ] =k t0t
. Perfect competition and

profit maximization imply

⋅r f k w f k r k= ′[ ] and = [ ] −t t t t t t (2)

and free entry and exit of firms means that profits, f k r k w[ ] − −t t t t , are zero. By implication
the share of capital, called α, is then given by ⋅ ∕ ⋅ ∕α r k f k f k k f k= ( ) [ ] = ( ′[ ] ) [ ]t t t t where

α0 < < 1. For a Cobb‐Douglas production α would be a constant when f k Ak[ ] =t t
α denotes

per‐capita output.

2.4 | Government

As in Judd (1985) and Lansing (1999), I rule out a market for government bonds. A missing
bond market may be a justified for an analysis that focuses on the long‐run and where
Ricardian Equivalence holds. Thus, the paper concentrates on pure redistribution financed
by real resources in a two‐class model, and abstracts from the intricate issues associated
with an analysis of the link between public debt, pure redistribution and capital
accumulation.

By assumption the government taxes capital income. But taxable income is such that the
government allows for a depreciation allowance on capital as is the case in most countries, that
is, it allows for a deduction of taxable income related to the depreciation of capital. As shown
above, we will consider true economic capital depreciation, δkt , and the possibility of
accelerated tax depreciation.

For analyzing the latter I relate it to capital investment as in Sinn (1987), ch. 3. In particular,
assume that a proportion ∈p [0, 1]t , of an investment expenditure is depreciated immediately
and the remainder p1 − t gradually over time by keeping the tax depreciation at a level of

p1 − t times the true economic depreciation. At each point in time gross investment of the
capital owner is i k δk= ˙ +t t t .

As the true economic depreciation is δkt , the flow of immediate depreciation on new
investment is p it t and the flow of depreciation on existing assets is p δk(1 − )t t . Thus, the
current flow of tax depreciation (see Sinn, 1987, p. 59, eq. 3.16, and fn. 26) is

≡D p i p δk p k δk+ (1 − ) = ˙ + .t t t t t t t t (3)

The government taxes capital income net of the depreciation allowance and uses the tax
revenues for transfers to the workers. The latter are not taxed by assumption.

The total tax revenues are denoted by Tt and the total transfers to the workers by TRt . The
government runs a balanced budget by assumption and, thus, we have

⋅T θ r k p k δk TR= ( − ˙ − ) =t t t t t t t t (4)

for the government where θt denotes the tax rate on (net) capital income.
The tax rate θ is not restricted at this stage of the analysis. Thus, we leave it an open

question now whether and how θt is bounded from below. In fact, it may turn out in this paper
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that the optimal solution implies negative θ. On the other hand, θ cannot be greater than one in
the model's optima.8

2.5 | The private sector

Inserting the tax Tt to be paid by the capital owner in Equation (4) into Equation (1) and
rearrangement of the resulting expression yields the capital owner's budget constraint

k
θ r δ k c

θ p
˙ =

(1 − )( − ) −

(1 − )
.t

t t t t

t t
(5)

From that one can then state the capital owner's problem as

∞ u c e dtmax [ ]
c

t
ρt

0

−

t

subject to the budget constraint in (5) and a given initial capital stock k k(0) = 0 .
We solve that intertemporal problem by dynamic programming, which always yields time‐

consistent solutions. Thus, the capitalist's problem is then

≡
∞V k u c e dt k

θ r δ k c

θ p
k k[ ] max [ ] s.t. ˙ =

(1 − )( − ) −

(1 − )
, (0) = ,c

c
t

ρt
t

t t t t

t t

0
0

−
0

t

where the capital owner takes policy as given.
For this autonomous problem the value function of the capital owners, indexed by subscript

c, is simply denoted byV k( )c t , with the understanding that it depends on time as well, and must
satisfy the Hamilton–Jacobi–Bellman (HJB) equation
















ρV k u c V k
θ r δ k c

θ p
[ ] = max [ ] + ′ [ ]

(1 − )( − ) −

(1 − )
,c t

c
t c t

t t t t

t tt

where the value function is assumed to be twice continuously differentiable, and the usual initial as
well terminal boundary point conditions are imposed. For convenience let ≡ ∂ ∕∂V k V k k[ ] [ ]c t c t t

′ and
≡ ∂ ∕∂V k V k k″[ ] [ ]c t c t t

2 2 and note these expressions are also functions of time t .9

As is well‐known, the first order necessary conditions for this problem involve the following
equations to be met,

u c
V k

θ p
′[ ] =

′ [ ]

1 −
t

c t

t t
(6)

8Thus, the support of θ is ∈ ∞θ (− , 1) which is simply assumed to hold from now on. An earlier version of this project
restricted the choice of θ to be nonnegative. See Rehme (2011). Thus, allowing for a larger potential solution space
offers interesting new insights in the present paper.
9This form of the HJB equation for our autonomous problem with exponential discounting follows, for example,
Kamien and Schwartz (1991), sec. 21, or Acemoglu (2009), ch. 7.
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













ρV k V k

θ r δ

θ p
V k

θ r δ k c

θ p
′ [ ] = ′ [ ]

(1 − )( − )

(1 − )
+ ′′ [ ]

(1 − )( − ) −

(1 − )
c t c t

t t

t t

c t
t t t t

t t
(7)

plus an initial and a transversality condition.
Important here is Equation (6), because it implicitly defines the capital owners'

optimal decision rule. The latter is of the feedback type, because it depends only on the
current state k, and the current policy variables θ and p. Thus, in the optimum for the
capitalist we have c c k θ p= [ ; , ]t t t t . It is important to note that the capitalist follows a
rule for the state of the problem, that is, a rule following the state variable kt . The
policy variables θt and pt are parameters and beyond the control of the capital owner.
Then10

⋅








dV k

dt
V k k V k

θ r δ k c

θ p

′ [ ]
= ′′ [ ] ˙ = ′′ [ ]

(1 − )( − ) −

(1 − )
.c t

c t t c t
t t t t

t t

Thus, we get









V k

V k
ρ

θ r δ

θ p

˙ ′ [ ]

′ [ ]
= −

(1 − )( − )

(1 − )
c t

c t

t t

t t
(8)

which is commonly referred to as the Euler equation, showing how agents evaluate the
evolution of their capital stock in terms of their welfare.

Equation (6) implies u c θ p V k′[ ](1 − ) = ′[ ]t t t t . Taking time derivatives yields

⋅ ⋅ ⋅u c c θ p u c θ p θ p V k″[ ] ˙ (1 − ) − ′[ ] ( ˙ + ˙ ) = ˙ ′ [ ].t t t t t t t t t c t

Dividing by u c θ p V k′[ ](1 − ) = ′[ ]t t t t and using Equation (8) establishes

⋅
⋅ ⋅

⋅

⋅









u c

u c θ p
c θ p

u c θ p θ p

u c θ p

V k

V k
ρ

θ r δ

θ p

″[ ]

′[ ] (1 − )
˙ (1 − ) −

′[ ] ( ˙ + ˙ )

′[ ] (1 − )
=

˙ ′[ ]

′[ ]
= −

(1 − )( − )

(1 − )
t

t t t

t t t
t t t t t

t t t

c t

c t

t t

t t

⋅ ⋅

⋅ ⋅
















































c
u c

u c

c

c

θ p θ p

θ p
ρ

θ r δ

θ p

c

c

u c

u c
c ρ

θ r δ

θ p

θ p θ p

θ p

c

c
η

θ r δ

θ p

θ p θ p

θ p
ρ

˙
″[ ]

′[ ]
−

( ˙ + ˙ )

1 −
= −

(1 − )( − )

(1 − )

˙ ″[ ]

′[ ]
= −

(1 − )( − )

(1 − )
+

( ˙ + ˙ )

1 −

˙
=

(1 − )( − )

(1 − )
−

( ˙ + ˙ )

1 −
− ,

t
t

t

t

t

t t t t

t t

t t

t t

t

t

t

t
t

t t

t t

t t t t

t t

t

t

t t

t t

t t t t

t t

10Notice that under the optimal choice and state variable solutions there is a link between a Hamiltonian and the HJB.
Furthermore, in the general case V k λ[ ] =c t t

′ , where λt is commonly interpreted as the costate variable, representing
the shadow value of more capital. Of course, the same interpretation applies toV k( ]c t

′ for the optimal kt in the dynamic
programming problem. Thus, Equation (8) represents the evolution the shadow value of more capital.
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where ≡
⋅

η c[ ] − < 0t
u c

c u c

′[ ]

″[ ]
t

t t
denotes the intertemporal elasticity of substitution of the capital

owners.

Lastly, one has to check for the terminal, that is, the transversality condition of the
optimum. To that end and for our case we simply require

⋅ ⋅
→∞

V k k elim ′[ ] = 0
t

t t
ρt−

which is satisfied because kt approaches a positive constant in the steady state.11

Furthermore, Equation (6) implies V k u c θ p′[ ] = ′[ ](1 − )t t t t which, under the paper's
assumptions, is finite and positive for c > 0t , ∈p [0, 1] and θ < 1t . But then the transversality
condition is indeed satisfied.

Thus, the time‐consistent household optimum is characterized by the following equations:

k
θ r δ k c

θp
˙ =

(1 − )( − ) −

(1 − )
,t

t t t
(9)

⋅ ⋅












c c η c

θ r δ

θ p

θ p p θ

θ p
ρ˙ = [ ]

(1 − )( − )

1 −
−

˙ + ˙

1 −
− .t t t

t t

t t

t t t t

t t
(10)

In general the consumption growth rate is not necessarily constant, when policy changes,
that is, when pt and θt move over time. That is interesting, but most private sector agents
expect the tax code and policy not to change systematically over time. For realism's sake that is
what is assumed below.

When the factor and goods markets clear the representative worker's income and so
consumption is

⋅x w TR f k r k θ r k p k δk= + = [ ] − + ( − ˙ − ),t t t t t t t t t t t t

where Equations (2) and (4) have been used. In equilibrium the overall resource constraint is
such that the agents satisfy their budget constraints. By substitution of Equation (5) into the
expression for xt above one then obtains12

















x f k
θ

θ p
r k

θ p δk

θ p

θ p c

θ p

f k
θ

θ p
r δ k δk

θ p c

θ p

= [ ] −
1 −

1 −
−

(1 − )

1 −
+

1 −
,

= [ ] −
1 −

1 −
( − ) − +

1 −
.

t t
t

t t

t t
t t t

t t

t t t

t t

t
t

t t

t t t
t t t

t t

(11)

As a consequence in equilibrium the income of the representative worker is increasing in
the consumption of the capital owner, for given θt and pt .

11That the particular transversality condition used above is applicable, when k approaches a constant value in the
steady state, is based on, for example, Acemoglu (2009), theorem 7.12 and 7.13.
12The second line of this equation follows when one adds and subtracts ∕ ⋅θp θp δk(1 − ) (1 − ) in the first line, collects
terms and rearranges.
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One verifies from Equations (9) and (11) that on impact (a) an increase in investment
subsidies does not appear to raise after‐tax wages and so workers' consumption. So pt looks as if
it is a noneffective redistribution tool; (b) an increase in capital income taxes seems to be
positive for redistribution as it may raise after‐tax wages; (c) higher capital income taxes seem
to imply lower investment; (c) an increase in investment subsidies may imply more investment
and so more capital accumulation.13

2.6 | Nondistortion of accumulation

One important consequence of the Judd (1985) and Chamley (1986) result that capital income
taxes be optimally zero in the long run is that the capital accumulation process will not be
disturbed by political interference in that case.

In the model the impact of any accumulation distortion can be inferred from the Euler
equation in Equation (8). We will rerender it here where the shadow value of more capital is
denoted by V k′[ ]c t ,







V k

θ r δ

θ p
ρV k V k− ′ [ ]

(1 − )( − )

1 −
+ ′ [ ] = ′˙ [ ].c t

t t

t t

c t c t

This equation shows how agents evaluate the evolution of the state variable kt in terms of
their welfare, measured by the evolution of the shadow price V k′[ ]c t , which then leads them to
pursue a particular accumulation programme. Policy would in general distort this evaluation
which is captured by the term θ

θ p

1−

1−
t

t t

.

The government does not distort this evaluation in a long‐run equilibrium with V k˙ ′[ ] = 0c t

when θ = 0t or ∀p t= 1,t , or both. In this paper all these solutions are in principle possible
and I analyze that in detail below.14

If p = 1t , then the tax arrangement with nonzero θt reduces to a tax on the capital owner's
consumption. As is well known, consumption taxes are not distorting accumulation. To see this
consider Equation (5) where k r δ k˙ = ( − ) −t t t

c

θ1−
t

t
when p = 1t . The taxes are then

tantamount to taxing ct . In that sense, a policy with p = 1t and θ > 0 is equivalent to
synthetic, nondistorting consumption tax on the capital owners.

3 | THE OPTIMAL LONG‐RUN CAPITAL DEPRECIATION
ALLOWANCE AND CAPITAL INCOME TAX

Consider a benevolent government that respects the private sector's problem and/or its
optimality conditions and represents the agents' interests by attaching weights to their welfare.
By assumption the government is as impatient as the private sector and so has the same rate of
time preference as the agents.

13See, for example, Goode (1955) for similar arguments, which correspond to what one usually expects.
14Notice that in the case of p = 1t all values of θt in its domain are possible, not just θ = 0t .
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Let ∈ ∞γ (0, ) represent the social weight attached to the welfare of the representative
worker, v x[ ]t , relative to that of the capitalist, u c[ ]t .15 If →γ 0, the government is only
concerned about the representative capitalist, whereas it only cares about the representative
worker when → ∞γ . By assumption the government inherits a capital income tax rate θ (0)

that is less than one and takes this as given at time zero. This makes the tax problem
nontrivial.16

The government keeps the agents on their respective supply and demand curves, and
chooses a policy that can be realized as a competitive equilibrium in quantities. Thus, the
government is taken to choose its policy instruments, but lets the market determine the path of
the (pretax) return on capital. The solution of the government's problem is then compatible
with a private ownership competitive equilibrium in quantities.17 Hence, I relate to the dual
approach for solving Ramsey tax problems as described in, for example, Sargent and Ljungqvist
(2004), ch. 15.3. Similar approaches are used by Judd (1985), Judd (1999), and Lansing (1999).

Furthermore, from now on time subscripts are dropped for convenience whenever it is clear
that a particular variable depends on time, and variables that attain a long‐run equilibrium
position such as a steady state are indexed by an asteristk (*).

Unless stated otherwise the government's problem is to choose a policy pair (θ p, ), where
the choice of θ is in principle unrestricted. Furthermore, in line with most tax provisions and as
the focus of the analysis is on the long run, I only concentrate on optimal long‐run policies that
are constant over time. Thus, the focus is on situations where θ p˙ = ˙ = 0, because that is what
most agents expect to be the case for the long‐run.

Consider now a dynamic game between the private sector and the government. The latter
moves first by announcing a policy which the follower, that is, the private sector takes into
account when making its decision. Thus, the government is the Stackelberg leader, and the
private sector is the Stackelberg follower. For an introduction into these kinds of games see, for
example, Dockner et al. (2000) and Long (2010).

Judd and Chamley focussed on open‐loop‐Stackelberg equilibria in their setups. The
equilibria of such games do require the assumption that the government can commit itself to a
policy announced at the outset of the game. As is known, that may yield time inconsistency
issues.

In turn and building on Kemp et al. (1993), consider now a game in which the government
plays a feedback strategy θ θ k= ( ) and p p k= ( ) , which is time‐consistent by construction. The
representative capitalist treats θ p, and r as known and given functions of time. The equilibria
of such games do not require the assumption that the government can commit itself to a policy
announced at the outset of the game.

Following Kemp et al. (1993), p. 421, assume that the private sector optimum in Equations
(5) and (10), that is,

15The model's normalization implies that we consider a representative capital owner and worker each. As a stronger
microfoundation of the political process is beyond the scope of the paper, I follow the common procedure to attach
fixed (exogenous) weights on the representative agents' welfare. For a similar setup see, for example, Lansing
(1999), p. 432.
16The assumption rules out taxing the initial capital stock via a so‐called capital levy that would constitute a lump sum
tax, since initial capital is in fixed supply. See Judd (1985), and Chamley (1986) or, for example, Sargent and Ljungqvist
(2004), ch. 15.3.
17This builds on Jones (1965), Atkinson and Stiglitz (1989), lec. 6, and Turnovsky (2000), ch. 12.6. Here I follow
Turnovsky's setup.

178 | REHME



⋅ ⋅











k
θ r δ k c

θp

c c η c
θ r δ

θp

θ p p θ

θp
ρ

˙ =
(1 − )( − ) −

(1 − )

˙ = [ ]
(1 − )( − )

1 −
−

˙ + ˙

1 −
−

forms a system that has a unique stationary saddle point. The stable path through that point,
say c k[ ] , is the equilibrium consumption path of the capitalist. Thus, the optimal (feedback)
decision rule of the capital owner satisfies c c k θ p= [ ; , ] where policy is taken parametrically
by the household and policy is constant, that is, θ p˙ = ˙ = 0.

The dynamic problem facing the government is then

≡
∞V k γv x u c k θ p e dt( ) max { [ ] + [ [ ; , ]]} ,g

θ p

ρt
0

, 0

−
(12a)

⋅ ⋅


















v x v f k
θ

θp
r δ k δk

θ p c k θ p

θp
s. t. [ ] = ( ) −

1 −

1 −
( − ) − +

[ ; , ])

1 −
, (12b)

k
θ r δ k c k θ p

θp
k k˙ =

(1 − )( − ) − [ ; , ]

(1 − )
and (0) = .0 (12c)

For this autonomous problem it is known that the value function of the government,
denoted by V k( )g , satisfies the HJB equation18

⋅ ⋅






{

}
( )

( )

ρV k γv f k r δ k δk

u c k θ p V k

( ) = max ( ) − ( − ) − +

+ [ [ ; , ]] + ′ ( ) .

g
θ p

θ

θp

θ p c k θ p

θp

g
θ r δ k c k θ p

θp

,

1−

1−

[ ; , ])

1−

(1− )( − ) − [ ; , ]

(1− )

(13)

The solution to (12) then satisfies

≡

≡

{ }
{ }

( )

( )

θ k γv x u c k θ p V k p

p k γv x u c k θ p V k θ

[ ] arg max [ ] + [ [ ; , ]] + ′ ( ) ,

[ ] arg max [ ] + [ [ ; , ]] + ′ ( ) ,

θ
g

θ r δ k c k θ p

θp

p
g

θ r δ k c k θ p

θp

(1− )( − ) − [ ; , ]

(1− )

(1− )( − ) − [ ; , ]

(1− )

where v x[ ] is given by Equation (12b). Thus, recalling Basar and Olsder (1995), p. 227/8, it is
acceptable to consider c k θ k p k( [ ], [ ], [ ]) as a feedback equilibrium with the government as the
leader. As θ k p k[ ], [ ] are derived from the HJB Equation (13), the equilibrium is time‐
consistent.

I now simplify the analysis by assuming that η c[ ] is a negative constantη. Again we look for
constant optimal policies. A tilde over a variable will denote that we look for a solution that
depends on the feedback rule c c k θ p˜ = ˜[ , , ] or, expressed in reduced form, simply c c k˜ = ˜[ ] .

18Again, as in Kamien and Schwartz (1991), section 21, assume thatV k( )g is twice continuously differentiable, or that it
satisfies the conditions for the infinite horizon leading to Theorem 3.4 in Dockner et al. (2000).
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Thus, the capitalists' consumption follows a rule and is not a state variable anymore in the
subsequent problem.

Then the current‐value Hamiltonian associated with the problem formulated in Equation
(12), called F , is then19

 ⋅ ≡











γv x u c ν
θ r δ k c k θ p

θp
= [˜] + [˜] + Δ̃ where Δ̃

(1 − )( − ) − ˜[ , , ]

(1 − )
,F

where k̇ = Δ̃, and c c k θ p˜ = ˜[ , , ] , as well as ⋅
⋅

x f k r δ k δk˜ = [ ] − ( − ) − +
θ

θp

θpc

θp

1−

1−

˜[ ]

1−
.

Here the control variables are θ and p. The single state variable is k.20 The first order
conditions for θ p, and k are

⋅ ⋅ ⋅ ⋅ ⋅γv x u c ν′[ ] ˜ + ′[ ] ˜ + Δ̃ = 0,θ θ θ (14a)

⋅ ⋅ ⋅ ⋅ ⋅γv x u c ν′[ ] ˜ + ′[ ] ˜ + Δ̃ = 0,p p p (14b)

⋅ ⋅ ⋅ ⋅ ⋅γv x u c ν ρν ν′[ ] ˜ + ′[ ] ˜ + Δ̃ = − ˙ .k k k (14c)

Plus the requirements that

→∞
k

θ r δ k c k θ p

θp
νke˙ =

(1 − )( − ) − ˜[ , , ]

(1 − )
and lim = 0.t

t

ρt−

The co‐state variable ν denotes the shadow price of capital for the government. The
requirement for k̇ is, of course, that the budget constraint be obeyed, and the second one
captures the transversality condition, ruling out asymptotic left‐overs or running infinite debt.
The partial derivatives of x c˜, ˜ and Δ̃ are derived in Appendix A.

As we are interested in finding constant optimal policies for the long run we evaluate the
first order conditions in a steady state. In such a state we must then have k ν˙ = ˙ = 0. For a long‐
run equilibrium we also require that ċ = 0 in Equation (10).

In Appendix A.2 the partial derivatives are derived that are necessary to evaluate the first
order conditions in a steady state. From that it is not difficult to verify that the Equations (14a)
to (14c) evaluated in a steady state, indexed by an asterisk, become
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⋅

⋅ ⋅
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r δ k θp c

θp
u c ν

r δ k c

θp
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( − ) * + ˜*

1 −
+ ′[ ] ˜* −

( − ) * + ˜*

1 −
= 0,θ

θ
θ

(15a)
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
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u c ν

c

θp
′[ ]

˜*

1 −
+ ′[ ] ˜* −

˜*

1 −
= 0,

p
p

p
(15b)

19Here the solution procedure in Kemp et al. (1993), sec. 4, is followed.
20The feedback setup eliminates c as a state variable. This is an important point because in open‐loop formulations that
is one reason one may obtain time‐inconsistent solutions. Also the present problem is quite different from a command
(nudge) approach of the government which may also yield a time‐consistent solution. That is analyzed in a companion
paper to this one.
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˜*

1 −
= .

k
k

k

(15c)

One also verifies that k̇ = 0 implies c c k θ p θ r δ k˜* = ˜*[ , , ] = (1 − )( − ) *.

3.1 | Is θ = 0 with Îp [0, 1) an optimum?

If θ = 0, then c̃ = 0p (see Appendix A.2) so that from Equation (15b) any p is optimal. In this
case, that is, when θ = 0, Equation (15a) becomes

⋅ ⋅ ⋅γv r δ k u c ν r δ k νc′[ ]( − ) * + ′[ ] ˜* − ( − ) * − ˜* = 0.θ θ

From Appendix A.2 one verifies for θ = 0 that

⋅ ⋅
⋅ ⋅c

η c p

θp
η p c η p r δ k˜* =

− ˜*

1 −
= − ˜* = − ( − ) *.θ

Substitution then yields that Equation (15a) must satisfy

⋅ ⋅ ⋅ ⋅γv u η p ν β p′[ ] + ′[ ] (− ) = (1 − ).

Given this and the assumption θ = 0 we can substitute in Equation (15c) to obtain

⋅ ⋅ ⋅
⋅ ⋅

⋅
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
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

γv f r δ δ u c

γv u ηp

ηp
ρ r δ c′[ ]{ ′ − ( − ) − } + ′[ ] ˜* =

′[ ] − ′[ ]

1 −
− ( − ) + ˜* .k k

By profit maximization we have f r′ = , and Equation (10) implies r δ ρ( − ) = when ċ = 0

and θ = 0. It is then not difficult to verify that an optimum with θ = 0 as a feedback solution
would require

γv f k r k u ρk′[ [ *] − * *] = ′[ *],

where, again, k* is determined by f k r δ ρ′ [ *] = = + . But an optimum that simultaneously
satisfies θ = 0 and the last equation is generically impossible.

Proposition 1. A time‐consistent, feedback solution with θ = 0 and ∈p [0, 1) as long‐
run policy optima in a steady state equilibrium does generically not exist.

The result, therefore, casts doubt on the general validity of the celebrated Judd–Chamley
result and corroborates earlier findings such as Long and Shimomura (2000), Long and
Shimomura (2002) and others.
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3.2 | Is ≠θ 0 with p = 1 an optimum?

If θ is nonzero, then so is c̃*p . In that case we can divide Equation (15b) by c̃*p to obtain

⋅ ⋅ ⋅ ⋅γv
θp

θp
u

ν

θp
γv θp u θp ν′[ ]

1 −
+ ′[ ] =

1 −
i. e. ′[ ] + ′[ ](1 − ) = . (16)

We can substitute for ν in Equation (15a) to get
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.θ

θ
θ

Collecting terms, rearranging and division by r δ k( − ) * yield γv x u c′[ *] = ′[ *] .21 Thus, in
the long‐run optimum the social marginal utilities of the agents must be equated.

Again by profit maximization f r′ = so that substitution of ν from Equation (16) into the
optimality condition for the capital stock in Equation (15c) implies that
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must be satisfied.
In a steady state equilibrium ċ = 0 so that

θ r δ

θp
ρ

(1 − )( − )

1 −
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But then Equation (17) is only satisfied when = 1
θ

θp

1−

1−
, because ⋅γv′[ ] and r δ( − ) are

nonzero. Thus, the solution requires θ = 0 or p = 1.

As was shown in the previous subsection a solution with θ = 0 is generically impossible.
Thus, we now concentrate on solutions with p = 1 and θ being nonzero. This is not difficult to
see since the optimum must satisfy γv u′ = ′. With p = 1 it amounts to the condition

γv x u c c θ r δ k θ ρk

x f k rk f k rk θρk

′[˜*] = ′[˜*] where  ̃ * = (1 − )( − ) * = (1 − ) *

and  ˜* = ( *) − * + = ( *) − * + *.
θc

θ

˜*

1−

Hence, the optimal tax rate θ, when p = 1, is implicitly determined by

21The intermediate step is
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γv f k rk θρk u θ ρk′[ ( *) − * + *] = ′[(1 − ) *] (18)

and is denoted by θ *͠ where the tilde indicates the feedback solution and the asterisk that this
would be a long‐run optimum. Of course, the feedback solution is time‐consistent by
construction, and the optimal tax rate θ *͠ is implicitly determined by the model's parameters.

It remains to check whether the transversality condition is met for the conditions identified
so far. Notice that the transversality condition can be written as

⋅ ⋅
→∞ →∞ →∞ →∞

νke ν k elim = lim lim lim = 0.
t

ρt

t t t

ρt− −

We know that →k k*, a positive constant in the steady state. Furthermore, →∞ elim = 0t
ρt− .

Thus, it remains to determine that in the optimum ν will nonnegative and finite in the long‐run
equilibrium The following arguments show that that is the case, when ruling out implausible
policy solutions.

From Equation (14b) one obtains

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∕
⋅ ⋅

⋅

ν
γv x u c γv u c

c θp
γv θp u θp= −

′[ ] + ′[ ]

Δ
= −

′[ ] + ′[ ]

− (1 − )
= ′[ ] + ′[ ](1 − )

p p

p

θp c

θp p

p

1−

p

and by Equation (18) the optimum involves p = 1 and ⋅ ⋅γv u′[ ] = ′[ ] . Thus, ν equals ⋅u′[ ] or
⋅γv′[ ] and is positive, because ⋅u′[ ] and ⋅γv′[ ] are positive by assumption.
In the long‐run optimum we have γv x′[˜*] and u c′[ *˜ ] . But then any viable optimum must

rule out a tax rate such that →c θ ρk˜* = (1 − ) * 0 implying → ∞u c′[ *˜ ] . As a consequence for a
finite ν one must have that θ * < 1͠ in any optimum.

Similarly, any solution with →x̃* 0 must be ruled out. So θ *͠ has to be such that x̃* is
positive. That does not preclude a negative θ *͠ , however. One verifies that x̃* = 0 would require

a θ < 0min such that ≡θ =
α f k

ρk

α r

αρmin
( − 1) ( *)

*

( − 1) which is a negative number because the capital

share is less than one, α < 1. Thus, for any optimum the lower bound on any optimal θ *͠ is
θ < 0min so that θ θ* >͠

min .

But if the optimal θ *͠ is bounded in the way shown above then ∞ν0 < < as → ∞t (in the
long‐run steady state) so that the transversality condition is indeed satisfied.

Summarizing, in the optimum the long‐run ∈θ θ* ( , 1)͠
min and p * = 1͠ . Furthermore, total

differentiation of Equation (18) reveals that θ *͠ is increasing in γ .22

Proposition 2. In an interior, time‐consistent feedback Stackelberg optimum the
following holds for the steady state equilibrium.

22The total differential implies

⋅ ⋅ ⋅ ⇔
⋅ ⋅

⋅
v dγ γv u ρk dθ

dγ

dθ

γv u ρk

v
′[ ] + ( ″[ ] + ″[ ]) * = 0 = −

( ″[ ] + ″[ ]) *

′[ ]
> 0.

The expression is positive because ⋅v″[ ] and ⋅u″[ ] are negative and the other terms positive.
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1. Generically the social marginal utilities of the worker's and capitalist's consumption are
equated in a long‐run equilibrium, and the optimal, long‐run capital income tax θ *͠

solves

γv f k r k θρk u θ ρk′[ ( *) − * * + *] = ′[(1 − ) *].

Where r ρ δ* = + , and k k α ρ δ* = *[ , , ] .
2. The long‐run, optimal depreciation allowances are maximal, that is, p * = 1͠ , and that

implies nondistortion of capital accumulation.
3. The optimal, long‐run time‐consistent solution does not distort accumulation and turns

the capital income tax scheme into a (synthetic) consumption tax scheme.
4. Depending on the strength of the reaction of the marginal utilities of consumption to

taxes, the optimal, long‐run capital income tax rate θ *͠ , can be positive or negative,.

∈θ θ θ
α f k

ρk

α r

αρ
* ( , 1) where =

( − 1) ( *)

*
=

( − 1)
< 0.͠

min min

And depends in an important way on the parameters characterizing the economy.
5. The optimal tax rate θ θ γ α ρ δ* = *[ , , , ]͠ ͠ is higher when the social weight on the

marginal utility of the workers' consumption γ is higher.

Notice that the results do not depend on production externalities or any other things, the
capital income taxes may be used for, except for using an accelerated capital depreciation
allowance scheme.

Thus, high capital income depreciation allowances are good for the workers in an indirect
way, because, with a maximal accelerated depreciation allowance, there exists the possibility of
positive redistributive effects of capital income taxes, namely when the optimal capital income
tax is positive. These effects become strongest in a long‐run equilibrium when the accelerated
depreciation allowance is maximal. In that sense depreciation allowances are an indirect
redistributive device in the long run.

Clearly, the result is in contrast to the model's predictions for the short run and arbitrary
behavior. In the short run p may be a bad instrument for redistribution. Hence, the effects of
the policy instrument p depends on behavior and the time horizon.

The fact that the optimal tax rate is increasing in γ appears quite realistic. Thus, as the
workers's welfare gets more social weight the government would choose higher capital income
taxes in this tax scheme with capital depreciation allowances.23

An important implication of the model is that the long‐run optimal capital income tax rate
can be negative. This is, for example, the case if γ is low. Thus, political preferences are not
important when considering the policy distortion on accumulation. Irrespective of γ it is
optimal not to distort accumulation. But then the often identified redistribution‐accumulation
trade‐off is separated out in this setup. As a consequence the benefits of a nondistorted

23Notice that the steady state capital stock k* would be the same under any other capital income tax scheme for which
it is shown that the long‐run capital income tax should be zero. This is an important point, because overall welfare
(sum of utilities) may be higher under the present tax scheme in comparison to those other capital income tax schemes.
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economy are redistributed, and that redistribution can go either way, to the workers or the
capital owners.24

In summary, the deep structural parameters of the economy determine the optimal policy
mix for the long run. Maximal accelerated capital depreciation allowances and nonzero capital
income taxes are found to be optimal for the long‐run. Redistributive taxation depends in an
important way on social preferences and other deep structural variables characterizing the
economy.

4 | A PARAMETRIZATION

Proposition 2 provides a general result for the tax scheme under study. Clearly the optimal tax
rate will depend on many parameters. To consider the possible effects of the latter consider an
example based on the observation that it is not entirely clear why workers should evaluate a
consumption good any differently than a capital owner. For that reason now assume that the
two representative agents have the same form of the utility function, which is taken to be of the
often‐used and well‐known constant intertemporal elasticity of substitution (CIES) type,

u c
c

v x
x

[ ] =
− 1

1 −
and [ ] =

− 1

1 −
η η

1−

1

1−

1

η η
1 1

with η as the constant intertemporal elasticity of substitution. Then Equation (18) boils down to

γ f k ρ δ k θρk θ ρk[ [ ] − ( + ) * + *] = [(1 − ) *] ,η η− 1 − 1

where ρ δ r+ = *. This equation is not easily solvable, but clearly the optimal solution is a
function of the form θ θ γ k η ρ δ= [ , *, , , ] .

Notice that k* is a function of parameters too. To this end assume that the production
function is of the standard type f Ak= α where α0 < < 1. Then f αAk′ = α−1 and f r′ = and so

( )k* =
αA

r

α
1

1− . Thus, in steady state the output‐capital ratio is given by

∕f k A k A* * = ( *) = =α r

αA

r

α
−1 * * . With this one can rearrange the equation above and divide

by k* to get

∕γ
ρ
f k r θ γ=

1
( * * − *) + (1 + ).η η

Now notice that ∕ ∕f k r α* * = * . Thus, the optimal θ, called θ *͠ , satisfies

24Of course, that result depends on the assumption of an inelastic labor supply, just as assumed in the previous research
this paper relates to. Again, it is important to notice that the optimum with nondistorted capital accumulation implies
that the redistribution question can be separated from accumulation considerations. Hence, more generally speaking,
the optimum implicitly implies a separation of “efficiency” and “equity” concerns.
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




 






θ θ γ α η ρ δ γ
r

ρ α
γ* = [ , , , , ] = +

*
1 −

1
(1 + ) ,͠ ͠ η η −1 (19)

where r ρ δ* = + . As > 1
α

1 the sign of the optimal tax rate θ *͠ depends in an important way on

the social weight going to the workers. As it is very unlikely that { }( )γ = − 1
r

ρ α

* 1 η
1

, the long‐

run capital income tax rate θ *͠ is generically nonzero.

Corollary 1. If the agents possess the same CIES utility functions, it is optimal to set
p * = 1͠ in a long‐run equilibrium under a capital‐income‐cum‐depreciation‐allowance tax
scheme (CICDA).

• The value of the optimal, long‐run capital income tax rate θ *͠ is generically nonzero.
• The optimal, long‐run capital income tax rate is positive, that is, θ * > 0͠ , if

{ }( )γ > − 1
r

ρ α

* 1 η
1

.

• Otherwise, the optimal long‐run capital income tax rate is negative, that is, θ * < 0͠ , if

{ }( )γ < − 1
r

ρ α

* 1 η
1

.

In Appendix C it is then shown that θ *͠ depends on the parameters as follows.

Corollary 2. Under CICDA and when the agents all have the same CIES utility functions,
the optimal, long‐run capital income tax rate θ *͠ is

• higher the higher the share of capital (α) is. Thus, the income distribution matters.
• lower the higher is the physical depreciation rate (δ). Thus, technology matters.
• higher, the more impatient (ρ) or the more willing the agents are to exchange current for
future consumption (η). Thus, private‐sector‐preferences matter.

• higher, the more social weight is attached to the marginal utility of the workers'
consumption (γ). Thus, public‐sector‐preferences matter.

Thus, under the capital income tax scheme under consideration (CICDA) distributional and
preference parameters matter for the long‐run equilibrium, and that may complement the
results of Judd (1985) and Chamley (1986). Importantly, the results establish that there capital
income taxes are optimally nonzero in the long run when coupled with accelerated capital
depreciation allowances.

To get a feeling for the nature of the solutions I have conducted a numerical simulation
exercise based on calibrations from the business cycle and other literature. They are presented
in Appendix D and reveal that, unsurprisingly, the weight γ plays a crucial role for the value of
the optimal tax rate.

The simulation is able to mimic income tax rate values that apply today and in history,
particularly for the U.S., under the counterfactual assumption that it pursues a maximal
depreciation allowance policy. Naturally the simulated numbers crucially depend on all the
parameters too. In that sense the numerical exercise highlights a dependency of any nonzero
capital income tax rates on social and other parameters.
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5 | CONCLUSION

In this paper it is analyzed whether politically determined capital depreciation allowances are
bad instruments for redistribution. When coupling the latter with capital income taxes it turns
out that an increase in accelerated capital depreciation allowances is a bad tool for
redistribution, but good for economic growth, when the private sector and the government
act nonoptimally in the short run. In turn, capital income taxes are bad for economic growth
and good for redistribution under these conditions.

However, for the long run and with optimizing behavior things are quite different, when the
agents act in a time‐consistent manner. To capture this a feedback Stackelberg game between
the government and the private sector is analyzed, where the government is the Stackelberg
leader and moves before the private sector. The coupling of capital income taxes with
accelerated capital depreciation allowances for financing pure redistribution implies maximal
depreciation allowances and generically nonzero capital income taxes in the long‐run, time‐
consistent optimum.

The policy package under consideration in this paper is nondistortionary for accumulation
and, importantly, time‐consistent in the optimum. It is found that capital income taxes are
optimally nonzero in the long run which depends on realistic conditions for time‐consistent
taxation policy. The most important conditions identified in this paper are: (a) the social weight
of those who receive redistributive transfers, (b) the distribution and so inequality in pretax
factor incomes, (c) the physical wear and tear of capital, (d) the intertemporal elasticity of
substitution (especially, of the capital owners), and (e) the rate of time preference. The results
imply that pure redistribution may optimally be financed by capital income taxes when using
accelerated capital depreciation allowances as a complementing instrument.

The results suggest that it might be a good thing to use quite generous depreciation
allowance schemes for pure redistribution in the long run and, coupled with it, that a long‐run,
nonzero capital income tax is optimal. The model's optimum also suggests that a separation of
“efficiency” and “equity” concerns seems possible under the tax scheme analyzed in this
contribution.

Several caveats apply. For instance, it may interesting to analyze the medium run properties
of the solutions and what the optimal policy trajectory in the transition to the steady state is.
Issues of public debt and long‐run optimal policy are certainly also interesting to analyze. These
and other questions are left for future research.
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APPENDIX A: REACTIONS OF c, x , AND Δ IN THE FEEDBACK
STACKELBERG GAME
A.1 The general reactions

The static first order condition of the capitalists requires

u c
V k

θp
′[ ] =

′ [ ]

1 −
,c

(A1)

whereV k[ ]c denotes the value function of the capital owner. Thus, the optimal decision rule for
consumption depends on the current value of the state variable k and the policy variables.
Hence, the optimal feedback rule satisfies

c c k θ p˜ = ˜[ ; , ],

where from now on feedback relationships are denoted by a tilde.
We obtain by implicit differentiation
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, which denotes the intertemporal elasticity of substitution of the

capital owners and is a positive number since ⋅u″[ ]< by assumption. Using Equation (A1) we
then get
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Second, with the rule c c k θ p˜ = ˜[ , , ] we have

⋅
⋅ ⋅

x f k
θ

θp
r δ k δk

θp c

θp
˜ = [ ] −

1 −

1 −
( − ) − +

˜[ ]

1 −
.

The partial derivatives of x are given by
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The signs of these derivatives are not immediately clear.
Third, Δ̃ is given by

θ r δ k c k θ p

θp
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So that its partial derivatives amount to
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Again, the signs of these derivatives are not clear.
A.2 Reactions in the steady state

In the steady state ν k˙ = ˙ = 0. Form that latter condition it follows that
⇒k c θ r δ k˙ = 0 ˜* = (1 − )( * − ) * where steady state variables are again marked by an asterisk.

Notice that c̃k must obey (A2a), and must hold in a steady state too. Furthermore, recall that η
is constant in the steady state.

Thus, from the Equations (A1), and (A2a)–(A2c), noting that η− < 0 andV u, ″ < 0c
″ and for

≤θ p, 1, the reactions of c̃ , x̃ and Δ̃ in the steady state are the following.
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< 0, ˜* =

− ˜*

1 −
< 0.k

c
θ p (A5)

With this the partial effects on x̃ become

⋅
x f k

θ r δ

θp
δ

θp c

θp
˜* = ′[ *] −

(1 − )( * − )

1 −
− +

˜*

1 −
,k

k
(A6a)

⋅
x

r δ k

θp

θp c

θp
˜ * =

( * − ) *

(1 − )
+

˜*

1 −
,θ

θ
(A6b)
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⋅
x

θp c

θp
˜* =

˜*

1 −
.p

p
(A6c)

Third, the partial effects on Δ̃ are then given by

θ r δ

θp

c

θp
Δ̃* =

(1 − )( * − )

1 −
−

˜*

1 −
,k

k
(A7a)

r δ k c

θp
Δ̃* = −

( * − ) * + ˜*

1 −
,θ

θ
(A7b)

c

θp
Δ̃* = −

˜*

1 −
.p

p
(A7c)

APPENDIX B: THE SECOND ORDER SUFFICIENT CONDITIONS
To check the sufficiency conditions of the solutions use Arrow's theorem. That requires that
the Hamiltonian evaluated at the optimum solution for the choice variable (as a function of
the state and costate variables) be concave in the state variable for a given co‐state variable.
If the concavity is strict, the solution (for the control variable) is then also the unique
optimizer. Notice that in our case the optimum is restricted to the long‐run, steady state.
Thus, the Hamiltonian is also evaluated at the steady state optimum. For Arrows's theorem
and a similar steady state problem see, for example, Weitzman (2003), ch. 3, especially pp.
85–93.

For our problem the Hamiltonian for the feedback solution, F , is given by

 ⋅ ≡











γv x u c ν
θ r δ k c k θ p

θp
= [˜] + [˜] + Δ̃ where Δ̃

(1 − )( − ) − ˜[ , , ]

(1 − )
.F

The choice variables for F are θ and p, the state variable is k and the costate is ν. In the
long‐run optimum p = 1 and θ is implicitly determined from

γv x u c c θ r δ k θ ρk

x f k rk f k r k θρk

′[˜*] = ′[˜*] where ˜* = (1 − )( * − ) * = (1 − ) *

and  ̃ * = [ *] − * + = [ *] − * * + *.
θc

θ

˜*

1−

From that one verifies that in the optimum the HamiltonianF under the optimal long‐run
solution is given by

 ≡ ⋅

⋅

k θ k p k γv f k r k θ k ρk u θ k ρk

ν

* [ *, [ *], [ *]] = [ [ *] − * * + [ *] *] + [(1 − [ *]) *]

+ 0,

F F

where the optimal p satisfies p k[ *] = 1, the optimal tax rate θ k[ *] is, again, implicity
determined by
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γv f k r k θρk u θ ρk′[ [ *] − * * + *] = ′[(1 − ) *]

and Δ̃ = 0 in the long‐run optimum, that is, in the steady state.
Arrow's theorem is satisfied if  *F is concave in k*. To that end we check the sign of the

second derivative of  *F . For simplicity let f f k′ = ′ [ *] and f f k″ = ″[ *] . From

 ⋅
∂

∂
⋅ ⋅

∂

∂
⋅



 


 


 


γv f r

θ

k
ρk θρ u

θ

k
ρk θ ρ* = ′[ ] ′ − * +

*
* + + ′[ ] −

*
* + (1 − )k

F

one obtains the expression for the second derivative as

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

( )
( )

( )

( )

γv f r ρk θρ γv f ρk ρ ρ

u ρk θ ρ u ρk ρ ρ

( *) = ″[ ] ′ − * + * + + ′[ ] ″ + * + +  

+  ″[ ] − * + (1 − ) + ′[ ] − * − − .

F
kk

θ

k

θ

k

θ

k

θ

k

θ

k

θ

k

θ

k

θ

k

*

2

( *) * *

*

2

( *) * *

2

2

2

2

This expression can be simplified to

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅γv D u D γv f γv u D( *) = ″[ ] + ″[ ] + ′[ ] ″ + ( ′[ ] − ′[ ]) ,F
kk 1 2 3

where ≡ ⋅
∂

∂( )D f k r ρk θρ[ *] − * + * + > 0
θ

k1
′

*

2
, ≡ ⋅

∂

∂( )D ρk θ ρ− * + (1 − ) > 0
θ

k2 *

2
, because

they are squared expressions, and ≡ ⋅ ⋚
∂

∂

∂

∂( )D ρk ρ* + 2 0
θ

k

θ

k3 ( *) *

2

2 . Because ⋅ ⋅γv u′[ ] = ′[ ] ,

⋅γv′[ ] > 0, and f k″[ *] < 0, it follows that ( *) < 0F
kk . Hence, the Hamiltonian  *F is concave

in k*.

APPENDIX C: COMPARATIVE STATICS OF THE OPTIMAL INCOME
TAX RATE
The optimal capital income tax rate has to satisfy the following equation:

∕γ
ρ
f k r θ γ=

1
( * * − *) + (1 + ).η η

Where ∕ ∕f k r α* * = * and r ρ δ* = + . Thus, θ has to satisfy

⋅






 


 


γ

δ

ρ α
θ γ= 1 +

1
− 1 + (1 + ).η η

Taking total differentials implies the following.
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⇒ ∕

⋅ ⇒ ∕

∕ ⋅ ⇒ ∕

∕ ⋅ ⇒ ∕

⋅ ⋅

⋅ ⇒ ∕ ∀







 


 






 






 




γ ηγ dγ γ dθ θηγ dγ

θ ηγ dγ γ dθ dθ dγ

α
δ

ρ α
dα γ dθ dθ dα

δ ρ
α

dδ γ dθ dθ dδ

ρ δ ρ
α

dρ γ dθ dθ dρ

η γ e dη θ γ e dη γ dθ

θ γ e dη γ dθ dθ dη γ

: = (1 + ) +

(1 − ) = (1 + ) > 0

: 0 = 1 + −
1

+ (1 + ) > 0

: 0 = (1 )
1
− 1 + (1 + ) < 0

: 0 =−( )
1
− 1 + (1 + ) > 0

: ln = ln + (1 + )

(1 − )ln = (1 + ) > 0, > 1.

η η η

η η

η

η

η

η γ η γ η

η γ η

−1 −1

−1

2

2

ln ln

ln

These results are summarized in the following table.
Table C1

APPENDIX D: NUMERICAL SIMULATION
For the simulation of Equation (19) I use the calibration values in Walsh (2010), ch. 2. He bases
his calibration on quarterly data for the United States and roughly sets α = 0.36, δ = 0.02 and
∕η1 = 2. Jordá et al. (2019) report a long‐run estimate of the return on wealth of ≈r 0.06w for a
weighted panel of countries and the long‐run period 1870–2015. In terms of the model I set the
ρ equal to r ρ δ ρ* = + = + 0.02 = 0.06 so that ρ = 0.04.

It is certainly true that more people receive the major part of their income in the form of
wages than in the form of capital income. For a population‐based justification for values of γ I,
therefore, relate to Lansing (2015) who sets the number of workers relative to capitalists equal
to nine.

Table D1
With these values γ > 7.11 satisfies the condition for positive optimal capital income tax

rates when there is maximal depreciation, that is, p * = 1͠ . Table D2 reports the results of a
numerical simulation for the calibrated economy varying γ , bearing in mind Lansing's
calibration where the relative ratio of workers to capitalists, called nw here, is nine. Thus, when
political representation would be based on that ratio, γ should take a value of nine. If γ = 9

then the optimal tax rate θ *͠ is positive.
The numbers suggest that the social weight γ is an important determinant of the optimal tax

rate. That corresponds to common intuition. Governments that give more weight to the
interests of the workers seem to choose higher capital income tax rates. However, according to
this model the social weight must be sufficiently high for the government to choose positive
capital income tax rates. For example, the (highest marginal) capital income tax rate in the
United States is currently around 35 percent. To obtain such a number would require a γ of
around 20 in this model where the depreciation allowance were maximal. For Germany a γ of
roughly 30 would correspond to the general (top) marginal income tax rate of 42%. The value of
γ = 3600 basically corresponds to the historically most progressive income tax rate in US

TABLE C1 The reaction of θ *͠ to changes in parameters

α δ ρ η γ

+ − + + +
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history of 95% in 1944–1945. That γ would correspond to a social weight of approximately 180
times of the US today's imputed value of the capital income tax rate. That would, of course only
hold, if the fiscal depreciation of capital were maximal.25

That tax rate may seem high. But it is important to realize that the determination of the
social weight that the government attaches to the welfare of a (representative) worker relative
to that of a (representative) capital owner is outside this model. Thus, many things may lead to
a particular value of γ . Furthermore, these numbers crucially depend on the other parameters
too. In that sense the numerical exercise is only intended to highlight a dependency of any
nonnegative capital income tax rates on social parameters.

TABLE D1 Baseline parameter values

α δ ρ
η

1 nw

0.36 0.02 0.04 2 9

TABLE D2 Optimal capital income tax rates θ *͠

γ 1 5 9 15 20 30 40 100 1000 3600

θ* −0.83 −0.13 0.08 0.25 0.33 0.43 0.50 0.67 0.89 0.94

Note: The results are calculated for the optimal capital depreciation allowance p = 1 and as a function of the social weight
factor γ .

25In the United States in 1944 the marginal tax rate was applicable for incomes above 200.000 $ which corresponds to
roughly 2.4 million $ today, given inflation over that period.
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