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Summary

We study the multifaceted effects of trade policy shocks on financial markets

using a structural vector autoregression identified via event day hetero-

skedasticity. We find that restrictive US trade policy shocks affect US and

international stock prices heterogeneously, but generally negatively. They

increase market uncertainty, lower US interest rates, and lead to an apprecia-

tion of the US dollar. The effects are significant for several weeks or quarters.

Decomposing the trade policy shocks further suggests that trade policy uncer-

tainty dominates tariff level effects. Chinese trade policy shocks against the

United States further hurt US stocks.

1 | INTRODUCTION

Threats of a more restrictive trade policy are seen among the major risks for the course of the world economy.
Average US tariffs on goods from China, for example, increased from 3.1% in January 2018 to 21.0% at the end of
2019 (Bown, 2020b), covering about two-thirds of these imports (Amiti et al., 2020). Many observers are afraid of a
trade war due to retaliation by other countries, especially China, which may increase the intensity far beyond the
existing level. Even if such a scenario does not materialize, the US administration practiced one-sided trade policy
initiatives during our sample period (2017 until early 2020), thus bringing this instrument back into international
economic policy.

In this paper, we use a structural vector autoregression (SVAR) model to analyze the impact of this trade policy on
financial markets. Our aim is twofold: First, we want to estimate the importance and persistence of unexpected trade
policy interventions. Second, we want to shed light on the potential heterogeneity of trade policy shocks and their
effects across firms, industries, and countries. Specifically, our analysis applies an SVAR for the daily frequency identi-
fied through heteroskedasticity surrounding trade policy events, adapting the approach of Wright (2012), who studies
unconventional monetary policy. The resulting time series of trade policy shocks, evolving from the empirical model, is
based economically on the days where important information on US trade policy (with a focus on China) becomes pub-
lic. The approach allows for precise identification of the impulse responses to structural trade policy shocks based on
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mild econometric assumptions, while at the same time it facilitates an assessment of their effects at macroeconomically
relevant horizons.1

The identification strategy singles out days on which the variance of latent trade policy shocks is particularly high
between 2017 and 2020. These are days of important announcements by US (or Chinese) authorities that alter the views
of market participants about the likelihood and direction of trade policy interventions. The heteroskedasticity approach
assumes that the structural macro-financial relations in our SVAR remain constant over the sample while one struc-
tural shock changes its variance on the set of event days, that is, it occurs on average with a relatively larger size on
these days. We denote this shock as the structural trade policy shock. All other shocks are assumed to have an
unchanged variance on the set of event days compared with the remaining sample. Importantly, this strategy allows for
the possibility that other structural shocks occur on event days. It does not require exclusion restrictions, which might
be problematic in a model of high-frequency financial market variables. Moreover, it avoids the difficulty of measuring
market expectations and their dispersion, or of quantifying what investors have learned from the announcements. It is
only necessary to identify days on which important announcements reached financial markets and to find an asset price
that is highly responsive to such news. For the latter, we compute a stock price index (“China Exposure Stock Index”)
for the S&P 500 firms with the highest trade exposure to China according to their 10-K filings.

We find heterogeneous effects of restrictive trade policy shocks on stock prices of firms, industries, and countries.
Overall, there is a decline of stock prices, an increase in volatility, and a significant impact on other financial markets.
These results are derived from an SVAR model with six variables, where just one type of trade policy shock is assumed.
Due to its characteristics, in particular the volatility increase and the US-dollar appreciation (at least in part due to
increased demand for a safe asset), we further classify this shock as a “trade policy uncertainty shock,” reflecting the
uncertainty created by the many and inconsistent trade policy announcements by the US government between 2017
and 2020.

Considering major US trade policy announcements, our estimates suggest that a positive trade policy uncertainty
shock leads, on average, to an immediate increase in general uncertainty, proxied by the VIX. Market volatility returns
to pre-shock levels after 2 weeks. US stock market indices for a broad set of firms (i.e. the Russell 2000 index) and for
firms being heavily exposed to trade with China suffer a drop of about 0.6% and 1%, respectively. This decline is statisti-
cally significant for about 2–3 months. Moreover, we find that shorter and longer-term interest rates fall significantly
for several months. Importantly, the US dollar appreciates significantly, consistent with safe haven net demand. Fur-
thermore, the identified shock series has a significant contemporaneous positive correlation with external measures of
trade policy uncertainty, and there is some evidence that it leads the alternative measures. Due to the series' forward-
looking character, it is not really related to the more sluggish measures of actual tariff changes, and due to its focus on
trade policy, it is not significantly related to general measures of economic uncertainty. Extending the SVAR to specific
assets, we see that more than 90% of S&P 500 firms' stock prices and nine of the 11 S&P 500 sector indices are signifi-
cantly negatively affected. The more internationally oriented sectors of the US economy, that is, IT and materials, suffer
the most.

Regarding 49 considered international stock markets, we find that 44 of them decline significantly following positive
US trade policy uncertainty shocks. We observe a clear pattern whereby Latin-American countries are affected most
negatively, followed by the United States, China, and European, other Asian, and, finally, African countries. Likewise,
increased stock market volatility is not merely a US phenomenon. Volatility indices for Chinese and emerging stock
markets increase significantly. Finally, we find evidence that restrictive trade policy shocks by China also hurt the US
economy.

As we cannot rule out entirely that there may be more than one type of trade policy shock, we later on relax the
assumption that only one shock occurs with larger magnitude on the set of event dates and thus follow the standard
approach in Rigobon (2003). This model permits the identification of different types of trade policy shocks by allowing
all shock variances to change over time so that we can find more than one shock with high variance on trade policy
announcement days. We confirm the existence of one dominating trade policy shock, which is quite similar
(as assessed by the impulse responses) to the trade policy uncertainty shock in the main model. In addition, there is
potentially a second type of trade policy shock that has characteristics of a level shock, that is, announcements of future
tariff changes, as the VIX does not respond significantly to this shock but stock prices of firms being particularly

1Identification through heteroskedasticity is developed in Rigobon (2003) and is applied thereafter, for example, by Rigobon and Sack (2004)
analyzing monetary policy effects and by Hébert and Schreger (2017) analyzing the impact of respective news on default costs of Argentina. We use
the specific implementation proposed by Wright (2012).
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engaged with China fall stronger than the market. Variance decompositions show that the trade policy uncertainty
shock accounts for about 10%–20% of the unexpected variability in the VIX (depending on horizon), but less than 10%
of the variability in the stock indices. In contrast, the trade policy level shock accounts for 25%–40% of the forecast
errors of the “China Exposure Stock Index” and for 10%–20% of the variation in the Russell 2000, a broader US stock
market index. Overall, these multifaceted results suggest a new perspective on the impact of US trade policy: Trade pol-
icy uncertainty affects mainly stock price volatility and related financial market variables such as treasury yields, as well
as the exchange rate, whereas the effect on the level of stock prices is muted. Tariff changes on the other hand have a
muted effect on financial market volatility and interest rates but a stronger effect on the level of stock prices.

Our study relates to the field of trade policy—more specifically, to the effects of tariff policy during the recent US–
Chinese trade dispute. We relate to and differ from three lines of related studies. First, regarding the literature using
empirical or quantitative-theoretical trade models (e.g., Amiti et al., 2019, 2020; Fajgelbaum et al., 2020), we share with
these studies the ambition to capture the consequences of trade restrictions for the whole economy.2 However, we use a
different approach, as our SVAR considers major interdependencies between financial markets, operates at a higher fre-
quency, and allows for the existence of trade policy uncertainty and level shocks.

Second, we also connect with high-frequency event studies that analyze trade policy effects on stock markets
(e.g., Breinlich, 2014; Egger & Zhu, 2020; Huang et al., 2019; Moser & Rose, 2014).3 Our SVAR approach shares with
these papers the sharp identification using high-frequency data, while still yielding a longer-term and comprehensive
view on how the effects come to pass. Moreover, our econometric assumptions are weaker in that we allow for other
shocks on event days.

Third, several papers examine the impact of trade-related uncertainty on economic outcomes, such as Baker et al.
(2016), Pierce and Schott (2016), Handley and Limão (2017), and Caldara et al. (2020).4 Although we also show that
trade policy announcements have strong uncertainty effects, we apply high-frequency financial data to identify a series
of structural trade policy shocks. Moreover, we do not need to assume that trade policy uncertainty is exogenous
with respect to the macroeconomy; we only need to assume that the variance of trade policy shocks is higher on
event days.

Overall, we believe that our combination of high-frequency identification (and data) with the longer-term perspec-
tive of a SVAR-approach is unique in this literature and allows for complementing insights. In particular, this approach
provides a multifaceted picture regarding the impact and persistence of trade policy shocks on financial markets,
a result that is rare.

The remaining paper is organized in five more sections. Section 2 characterizes the SVAR model, describes the data,
and shows specification tests. Sections 3 and 4 contain core and extended results for the impact of US–China trade
shocks on financial markets, respectively. Section 5 documents robustness tests, and Section 6 concludes.

2 | METHOD AND DATA

In this section, we first discuss the SVAR model (Section 2.1), then we introduce and describe the data (Section 2.2),
and, finally, we show the appropriateness of our model with specification tests (Section 2.3).

2Amiti et al. (2019) estimate the annual reaction of import prices and quantities to tariff changes for detailed product categories and infer the welfare
effects within a partial-equilibrium international trade model (Amiti et al., 2020, provide an extension). Fajgelbaum et al. (2020) estimate trade
elasticities on monthly observations and apply them in a full-blown general-equilibrium model to find small negative short-run welfare implications
for the US. Tariffs are almost completely passed through (see also Cavallo et al., 2021, or Flaaen et al., 2020).
3Huang et al. (2019) show in their event study that US tariff announcements have larger negative effects on firms that are more dependent on trade
with China. Egger and Zhu (2020) find that US tariff announcements and changes also have negative effects on international stock markets; these are
larger for domestic than for Chinese firms. Inference covers a few days around the events in each study.
4Pierce and Schott (2016) as well as Handley and Limão (2017) study reductions in trade policy uncertainty due to China's entry into the World Trade
Organization (WTO) while US tariffs did not change. This reduced uncertainty makes respective Chinese exports more attractive and leads to larger
employment declines in the competing US manufacturing industries. Baker et al. (2016) measure the relative occurrence of news articles featuring
economic policy uncertainty related to trade policy. Caldara et al. (2020) construct a similar monthly trade policy uncertainty index based on the
relative coverage in seven US newspapers. In line with Baker et al. (2016), the authors find significant decreases in investment when their uncertainty
indices rise.
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2.1 | The SVAR model

The reduced form VAR is represented as

A Lð ÞYt ¼ μþut, ð1Þ

where Yt is a kx1 vector with k variables of interest and μ a vector of constants. A Lð Þ denotes the parameter matrix
polynomial in a lag operator, and ut are the reduced form errors. In analyzing the impact of trade policy shocks on
financial markets, the core financial market is the United States. Thus, the variables in Yt in the baseline model refer to
US markets.

The stock markets are represented by three indices. First, we construct a stock price index for large listed US firms,
a subset of S&P 500 constituents, with a high trade exposure to the Chinese market through imports and exports. We
explain the construction of the index in detail below. The index is crucial for identification as this asset price is highly
responsive to announcements about trade policy. Second, we include the Russell 2000 index, which covers the firms
ranking in between 1000 and 3000 regarding their size; size is here proxied by stock market capitalization. The index
represents approximately 8% of the total market capitalization of the United States with an average market capitaliza-
tion per firm of around US$ 2.3 billion. These smaller firms are often more domestically oriented than S&P 500 firms.
Third, we include the VIX, measuring expected volatility of the S&P 500 over the next 30 days, to consider uncertainty
in this financial market (and the economy).

To paint a more comprehensive picture of US financial markets, we add further variables to our VAR. We include
two kinds of interest rates. The 1-year treasury rate reflects expectations about monetary policy actions. The 10-year rate
rather reflects expectations on growth and inflation as well as demand for safe assets. Another important group of
financial markets for an open economy is foreign exchange markets, which we capture by relying on the US-dollar
effective exchange rate, that is, the value of the dollar measured against a basket of other currencies. It improves char-
acterization of the nature of the identified trade policy shocks as it reflects both relative growth expectations and safe
haven demand.

All variables enter the model in levels, and we take logarithms of the exchange rate, the VIX, and the stock price
indices. Therefore, we follow most of the literature, which relies on similar kinds of VARs (e.g., Wright, 2012). Kilian
and Lütkepohl (2017, Section 2.3.5) show that the least-squares reduced form estimates are consistent and asymptoti-
cally normal when estimating a level VAR for integrated variables.

The structural VAR model is identified via heteroskedasticity, following the approach in Wright (2012). The author
analyzes the effects of US monetary policy shocks on interest rates at the zero lower bound. Wright identifies days on
which the Federal Open Market Committee (FOMC) meets as dates when monetary policy shocks have especially high
variance. In our case, the event dates include major announcements of US trade policy changes.

The identification strategy works as follows. The reduced form errors ut from Equation (1) are related to the struc-
tural shocks εt via the linear transformation ut ¼B εt ¼

Pk
i¼1biεt,i. The structural shocks are uncorrelated, implying a

diagonal covariance matrix. The approach does not rely on a Cholesky decomposition, and, hence, without loss of gen-
erality, we order the trade policy shock first within εt. We are only interested in this shock (i.e., εt,1) and do not try to
identify the remaining shocks for now. We do so later in a generalization of the identification strategy (see Section 3.2).
b1 represents the first column of B and, thereby, the contemporaneous effect of the trade policy shock on the
endogenous variables in Yt. The approach assumes that the trade policy shock has mean zero and variance σ21 and σ20
on announcement days and non-announcement days, respectively, whereas the impact effects are assumed to be
constant. The variances σ21 and σ20 are assumed to be significantly different, providing the first identifying assumption.
All other shocks, εt,2 ,… ,εt,k, have unit variances on all dates—our second identifying assumption. We test the two
assumptions in Section 2.3, which shows that they are supported by the data.

Then, the reduced form covariance matrix for announcement dates is

Σ1 ¼Е utu
0
t

� �¼Е Bεtε
0
tB

0� �¼BЕ εtε
0
t

� �
B0 ¼b1b

0
1σ

2
1þ
Xk

i¼2
bibi

0: ð2Þ

Subtracting Σ0 from this term yields
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Σ1�Σ0 ¼b1b
0
1σ

2
1�b1b

0
1σ

2
0 ¼ b1b

0
1 σ21�σ20
� �

: ð3Þ

To solve for the elements in b1, the difference in variances σ21�σ20
� �

is normalized to 1. Following Wright (2012), we
solve for b1 via GMM and, hence, minimize the following objective:

JW b1ð Þ¼ vech cΣ1�cΣ0�b1b
0
1

� �0 cV 0

T0
þ
cV 1

T1

 !�1

vech cΣ1�cΣ0�b1b
0
1

� �
ð4Þ

with respect to b1: bVi is the estimate of the variance–covariance matrix of the reduced form variance on announcement
or non-announcement dates. It can be calculated via

cVi ¼ 1
Ti

X
Ti

vech but but
0 �bubu0

� �
vech but but

0 �bubu0
� �0

ð5Þ

(Kilian & Lütkepohl, 2017, chapter 14.3.1). The identification conditions for b1 are based on economic reasoning
through the choice of the set of announcement dates t�T1.

Finally, if the impact vector b1, the reduced form errors ut, and the reduced form covariance matrix over the whole
sample Σu are given, the first structural shock can be obtained as

ε1t ¼ b1
0Σu

�1ut= b1
0Σu

�1b1
� � ð6Þ

(see Stock & Watson, 2018, footnote 6, p.933).
The main advantages of the identification strategy are that it allows for other shocks on trade event days and that

some of its main assumptions are testable. At the same time, it assumes that the impact effects b1 are constant across
volatility regimes, which is untestable in our setup. However, this assumption does not seem particularly strong, given
the daily frequency of the data and our definition of regimes, which together imply that we only assume that the impact
effects of trade policy shocks do not change within a day when switching from non-announcement days to announce-
ment days. Moreover, the identification strategy requires a specification of the heteroskedasticity, that is, a definition of
the event windows and the number of volatility regimes. We could potentially misspecify both. However, Rigobon
(2003) shows that the estimates, while being less precise, would nevertheless be consistent.

There are potential alternative identification strategies. For example, one can use exclusion restrictions to identify
relative price effects by treating statuary tariff changes as exogenous (e.g., Amiti et al., 2019). In contrast, the literature
on trade policy uncertainty treats this uncertainty as contemporaneously unaffected by other variables, such as tariff
changes (e.g., Caldara et al., 2020). Although these assumptions might be plausible when working with macroeconomic
data, they are unlikely to hold for asset prices that respond to each other in nearly continuous time. Sign restrictions,
on the other hand, allow for contemporaneous responses of all variables to trade policy shocks. However, theory pro-
vides contradicting predictions for the signs of key effects (e.g., Caldara et al., 2020, show that tariff uncertainty may
induce a decrease in the policy rate, whereas Lindé & Pescatori, 2019, show that the increased prices may induce a rise
in the policy rate), and it is precisely our aim to determine them empirically.

2.2 | Data

Our baseline model uses daily financial data from Bloomberg from January 2, 2017, through January 17, 2020, inclu-
sive. We start in 2017 to reduce the risk of structural breaks due to the start of a new US administration during January
2017. In the sensitivity analysis, we show that our results are robust to starting the sample earlier. Our sample ends in
January 2020 before the Covid-19 pandemic started.

We construct a China-exposure US stock price index. The stock prices of firms with high imports from and/or
exports to China are expected to be more sensitive to trade announcements than other firms. The high
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responsiveness of the index to new information on trade policy helps identification as the variance of the index is
particularly high on announcement days. The index draws from the Hoberg and Moon (2017, 2019) offshoring data-
base. This database is a firm-nation-year network that extracts publicly traded US firms' disclosures from their
annual 10-K filings. For each year, the database lists the number of times each firm mentions selling or purchasing
goods from a given nation. We explicitly look for S&P 500 firms that either mention using inputs from China or
exporting to China in 2017.

To create an index of firms especially exposed to trade with China, we only include firms with a substantial number
of export and import mentions in our index. For 2017, we find that 248 of the S&P 500 firms display some entries con-
cerning trade with China. The mean number of mentions is 5.2. For our index, we only keep those firms that have dis-
closed a number of mentions that lies more than one standard deviation above the mean, that is, these firms mentioned
trade relations with China more than 15 times in their 10-K filings for 2017. This yields a list of 47 S&P 500 firms with
especially strong exposure to the Chinese market. The final index is an equally weighted mean of these 47 firms' stock
prices.

Table A2 in the Supporting Information contains a list of these firms including a short business description and the
industry. According to the S&P Global Industry Classification Standard, 16 firms operate in the consumer discretionary
sector, 10 in IT, six in materials, five in health care, five in industrials, two in consumer staples, and one firm each in
communication services, energy and real estate. According to the North American Industry Classification, 38 of the
47 firms are manufacturing firms.

In further analyses, we use stock prices for all S&P 500 companies and the S&P 500 sector indices. We also consider
MSCI country stock price indices for 49 countries and volatility indices like the VIX for 13 international stock price
indices.

We obtain the event dates from an outside source: the Peterson Institute for International Economics (PIIE), which
is an established US economic policy think tank. Bown and Kolb (2020) from the PIIE have published a list called
“Trump's Trade War Timeline: An Up-to-Date Guide,” which provides an overview of US trade dispute events. Our
baseline specification takes policy announcements concerning trade with China from their list of “Battle #2: Steel and
Aluminum as National Security Threats” and “Battle #3: Unfair Trade Practices for Technology, Intellectual Property.”
Choosing these two battles, which contain the largest tariff changes to the largest volumes of US imports from China,
we obtain 32 announcement dates. The smaller samples of policy dates used in event studies like Egger and Zhu (2020)
and Huang et al. (2019) are mostly included within these 32 dates. In robustness checks, we also add Battle #1 or delete
Battle #2; neither substantially alters our findings. For the baseline case, we do not include the other three PIIE catego-
ries (Battles 4, 5 and 6), which pertain to the EU, Mexico, and specific Chinese telecommunications firms.

Note that we merely choose dates on which a change in US trade policy is announced or displayed for the first time
to the public. We do not include dates on which trade policy is altered when the change has been announced or become
public knowledge beforehand. Asset prices should immediately respond to new information such that an eventual
imposition of tariffs does not result in a further significant response of prices. Table A1 lists all 32 announcement dates
from the PIIE and briefly describes these measures. The first two took place in April 2017, when the United States
started investigations concerning a threat to national security via steel and aluminum imports. At the last event in our
sample, on January 15, 2020, China and the United States signed the so-called “Phase One Deal,” whereby China
agreed to adhere to prespecified export targets with the United States over the next 2 years while most tariffs remained
in effect. Appendix S1 contains a detailed account of the trade disputes of the US during our sample period. Changes in
the “China Exposure Stock Index” on event dates show that it is ex ante not always clear whether we can speak of a
restrictive or easing trade policy shock when tariff lists are altered or policy changes announced. This supports our het-
eroskedasticity identification where we do not make any assumptions about the sign of the shock on event dates.

To cleanly identify trade policy shocks, it is important to ensure that the event dates do not systematically mix with
other major macroeconomic events that affect financial markets. We explicitly consider a potential impact from mone-
tary policy. Regarding the initial 32 dates, we find one FOMC statement (August 1, 2018, without a change in the fore-
casted federal funds rate) and two further statements by chairman Jerome Powell (March 1, 2018, and August
23, 2019). We discard the three dates to obtain a baseline specification with 29 event dates. Four events (March 1, 2018,
August 1, 2018, December 1, 2018, and August 1, 2019) fall together with releases of the ISM Manufacturing Index,
arguably the most important US index of expected business conditions. In a robustness check, we show that the results
remain largely unaltered when we add events of Fed information or discard ISM releases (see Section 5).

When the event takes place over the weekend (four occasions), we specify the following Monday as the event day.
When the policy announcement takes place in the evening after 4 pm Eastern Time when the New York stock
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exchange has closed, we specify the following day as the event day. The resulting 29 event dates seem to be scattered
randomly across weekdays (five on Mondays, six on Tuesdays, two on Wednesdays, nine on Thursdays, and seven on
Fridays) and do not follow an obvious pattern. This further bolsters the assumption of an unchanged variance for the
remaining shocks.

At first sight, the assumption of zero-mean trade policy shocks over the sample period from 2017 to 2020 might be
seen as unrealistic. However, these shocks measure the unexpected part of trade policy, not the systematic stance. To
see whether the stance of trade policy matters, we extend the sample back to 2008 in a robustness analysis to give fur-
ther room for easing trade policy (see Figure B10 in the Supporting Information).

2.3 | Specification tests

We estimate the reduced form VAR in Equation (1) with six variables in (log-) levels with a lag length of 5 (trading)
days and obtain a stable VAR(5) process. Moreover, we follow Wright (2012) in testing the two major identifying
assumptions of our model. First, we test the hypothesis that there exists no difference between announcement and non-
announcement date residuals, namely, H0 : Σ1 ¼Σ0. This is tested via the test statistic

vech cΣ1�cΣ0

� �0 cV 0

T0
þ
cV 1

T1

 !�1

vech cΣ1�cΣ0

� �
: ð7Þ

The null hypothesis assumes equal covariances, and, thus, for this test, we set cV0 ¼cV 1 ¼ bV , the covariance over all
residuals in the full sample. We compare this test statistic to a distribution obtained from a bootstrap sample where
announcement and non-announcement dates are randomly scattered while retaining the total number of announce-
ment dates. By construction, this should give equal variance–covariance matrices for the two sets of dates in the boot-
strap sample. The resulting bootstrap p-value is the fraction of bootstrap test statistics that exceed the Wald statistic in
Equation (7).

The second model assumption states that there exists a single trade policy shock. In other words, the assumption
postulates that only one shock changes its variance on event dates. We apply the moving-block bootstrap from Jentsch
and Lunsford (2019). We arrange the residuals in blocks of equal length from which we draw with replacement to join
the draws end-to-end. We follow the authors' rule of thumb l¼ 5:03T1=4 and thus select a residual block size of 27. The
assumed heteroskedasticity is maintained in each bootstrap sample even though the total number of event dates might
slightly change across samples. Brüggemann et al. (2016) show that this bootstrap ensures high asymptotic coverage
accuracy of impulse responses that, for instance, the residual wild bootstrap might lack in the presence of conditional
heteroskedasticity. Apart from testing the second model assumption, we use this bootstrap to construct confidence
intervals for impulse responses.

To test the assumption of a single trade policy shock, given by Σ1�Σ0 ¼ b1b
0
1, we use the test statistic in

Equation (4), that is, the GMM objective function to estimate b1. The null hypothesis is Σ1�Σ0�b1b
0
1 ¼ 0. The alterna-

tive is Σ1�Σ0�b1b
0
1 < 0. We compare the Wald statistic one-sided to its distribution in the bootstrap sample with the

maintained heteroskedasticity assumption. The p-value is the fraction of bootstrapped J�W b1ð Þs that exceed JW b1ð Þ.5 A
rejection of this null hypothesis would imply that our identification of a single trade policy shock is not valid, that is,
that there is more than one distinct change in the shock variances.

Table 1 displays the p-values of the two identification tests. Using our baseline specification with 29 announcement
dates (i.e., all 32 dates without monetary policy announcements), we can reject the null hypothesis of equal announce-
ment and non-announcement dates; we cannot reject the hypothesis of a single identified trade policy shock. The first
test indicates an even stronger change in variances for all 32 dates and a slightly weaker change for the specification
without ISM release dates. The second assumption of a single trade policy shock is never rejected across specifications.

5Formally, the bootstrap simulates the distribution of

vech cΣ1�cΣ0� bb1 bb1 0� �
� cΣ�
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0� bb�1 bb�1 0� �� �0 bV �
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� ��1
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where variables with stars denote the

bootstrap sample analogues of the estimated objects in the original sample (Wright, 2012).
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3 | RESULTS

We present results in this section in two steps. First, we take the indication for the existence of a single trade policy
shock from the Wald test at face value and discuss impulse responses for the baseline six-variable model in Section 3.1.
Then, we relax the assumption of a single shock in Section 3.2 and allow for multiple shocks with higher variance on
event days to see whether there are more dimensions that can be disentangled.

3.1 | Main model

Before we show the estimated responses to trade policy shocks, we first discuss the estimated structural shocks. How
well do they match the narrative account of the US–China trade dispute? Figure 1 provides a graphical representation
of our shock series, which has mean zero in line with the model approach and is aggregated at the monthly level to pro-
vide a clearer picture. Looking at the spikes and troughs, that is, large positive and negative cumulated shocks, the fig-
ure shows that the shock series is closely related to important events of US–China trade policy, as described in
Table A1. An example is the spike in March 2018, occurring when the US Department of Commerce releases its report
finding that China is conducting unfair trade practices and announcing tariffs on steel and aluminum. The maximum

TABLE 1 Specification tests

Hypothesis Wald statistic Bootstrap p-value

29 baseline events

Σ0 ¼Σ1 76.66 0.002

Σ1�Σ0 ¼ b1b1
0 70.02 0.976

27 dates: no ISM releases

Σ0 ¼Σ1 65.13 0.003

Σ1�Σ0 ¼ b1b1
0 66.72 0.988

32 event dates

Σ0 ¼Σ1 81.43 0.001

Σ1�Σ0 ¼ b1b1
0 61.95 0.981

Notes: Wald statistic 1 displayed in Equation (7). In each sample, the variance–covariance matrix is calculated over all observations. The moving-block
bootstrap uses 1000 draws to obtain the p-values. Wald statistic 2 is displayed in Equation (4). All VAR models use five lags.

FIGURE 1 Monthly aggregated and standardized US trade policy shock series
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peak occurs in May 2019 when the US government unexpectedly announces to increase tariffs on $200 billion of Chi-
nese imports from 10% to 25% and indicates further tariffs on goods not yet targeted. The month with the second largest
accumulated restrictive shocks is August 2019. During that month, the US government first announces a 10% tariff on
additional $300 billion of imports from China, then revises the level to 15% instead, and additionally announces a
future tariff increase on already taxed goods from China.

Regarding the signs of the impact effects, we expect that restrictive trade policy shocks affect the overall economy,
represented by stock price indices, negatively. Moreover, those firms actively trading with China are expected to lose
more than those firms that are more domestically oriented. Results are provided in Figure 2, which shows the estimated
dynamic impact of a trade policy shock on the endogenous variables, together with 90% confidence bands. The impact
effects correspond to the estimated b1.

We look at positive shocks that increase the VIX on impact. We interpret such a shock as being restrictive. This
interpretation is supported by an analysis of the estimated trade policy shocks on event days (see Table A1). For exam-
ple, we identify large restrictive shocks on March 22, 2018, when the administration released a report on China con-
ducting unfair trade practices, and on May 29, 2018, when the White House stated that it will impose tariffs of $50
billion on Chinese goods. In contrast, we identify a large easing shock on October 11, 2019, when the US President post-
poned announced tariff hikes and indicated negotiations over a phase one deal (Figure A1 and the accompanying table
in the Supporting Information show the daily shock series and list the largest daily shocks, of which about 80% can be
linked to trade news).

Indeed, concerning the effect on values of firms being exposed to trade with China, the shock leads to an instanta-
neous decline of their stock price index of about 1.1%, which remains significantly negative for nearly 3 months. The
impact on relatively smaller firms covered by the Russell 2000 is smaller, with a size of about �0.6% but also holds for
several months. Comparing the two stock index responses, the shock seems to affect operations of firms that are heavily
involved in international trade more strongly than domestically operating firms. Moreover, there is an increase in
uncertainty by 6.2%, which remains significantly above trend for about 2 weeks. This increase in volatility in the mar-
kets raises risk premia, which contributes to depressed stock prices.

Additionally, for 1-year treasuries, interest rates fall over time and persistently by about 2 basis points. They do not
fall significantly on impact, indicating that monetary policy does not react directly to this trade policy shock. This result

FIGURE 2 Estimated impulse responses to US trade policy shock in baseline model. Notes: The figure shows impulse responses to a

restrictive US trade policy and 90% moving-block bootstrap confidence intervals from a bootstrap sample size 1000. An increase in the US$

eff. exchange rate denotes an appreciation of the US$.
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is in line with the stance of the Federal Reserve (and other central banks) that it does not respond to one-time events,
such as an expected tariff increase. But then, the short-term rate falls persistently below trend. This could reflect an
endogenous response on monetary policy to elevated uncertainty (Bekaert et al., 2013). Additionally, 10-year treasuries
decline by about 3 basis points, reacting significantly on impact. This seems to reflect the depressed economic outlook.

Finally, the US dollar appreciates by 0.2% instantaneously and then falls back over the next year, remaining above
trend significantly for at least 5 months. This conflicts with decreased interest rates that make the US dollar, ceteris par-
ibus, less attractive and suggests that other channels might dominate the exchange rate response. In principle, the
appreciation is consistent with increased import restrictions (consequently increased competitiveness) that create US-
dollar net demand and increase the uncertainty underlying demand for safe assets, such as the US dollar. These effects
seem to dominate the interest rate effect on the US dollar. Thus, overall, the trade policy shocks appear to be dominated
by the characteristics of an uncertainty shock, that is, the strong increase of the VIX, the significant decline in interest
rates, and the US-dollar appreciation. We shed further light on the different dimensions of the announcements in the
next section, where we allow for multiple shocks changing their variance on event dates.

3.2 | A model with multiple shocks

Although the former model (see Section 3.1) was estimated under the assumption of a single trade policy shock, we
now relax this assumption. We use the exact same inputs (variables, event dates, and lags) but consider the possibility
of multiple types of structural shocks related to the event dates by allowing all shock variances to change. In other
words, we lift the two identifying assumptions of the baseline model that one structural variance changes while the
others stay constant to see how restrictive they are.

To identify the model, we decompose the reduced form covariance matrices on non-announcement and announce-
ment days, Σ0 and Σ1, respectively, as follows:

Σ0 ¼BB0 and Σ1 ¼BΛB0, ð8Þ

where Λ¼ diag λ1, λ2, λ3, λ4, λ5, λ6ð Þ is a diagonal matrix with the (positive) structural shock variances on the main diagonal
and otherwise zeros. B is the constant matrix of impact effects, as before. The decomposition relies on the normalization
that the structural shock variances on non-announcement days have unit variance. The diagonal elements of Λ are the
eigenvalues of the matrix Σ1Σ0

�1 (Lütkepohl et al., 2021). Note that Σ1Σ0
�1 ¼BΛB0 BB0ð Þ�1 ¼BΛ B0ð Þ�1, which has the

form of an eigendecomposition where bi, the columns of B, are the corresponding eigenvectors. Estimating cΣ1cΣ0
�1
, the

impact vectors bbi and variance changes bλi,for i¼ 1,…, k can be calculated as eigenvectors and eigenvalues, respectively.
Lanne et al. (2010) show that if the λis are distinct, then the decomposition in Equation (8) is unique up to changes

in the signs of the shocks and corresponding orderings of the columns of B and Λ. In other words, the full model is
point-identified if the λj are all different. As these elements can be interpreted as the variance shifts of the structural
shocks relative to non-announcement days, identification requires that the volatility shifts on announcement days are
not the same for all shocks. This assumption can be tested after estimation, which is an advantage over more conven-
tional just-identifying assumptions that cannot be assessed. If only some of the variance shifts are significantly different,
the model is partially identified. But an analysis of the shocks associated with the distinct λjs may still be informative.

Table 2 shows the point estimates of the relative variances, ordered from largest to smallest, along with their 68%
and 90% intervals based on 1000 draws from the moving-block bootstrap. There is one shock with clearly higher

TABLE 2 Estimated shock variances of the multiple-shocks model

bλ1 bλ2 bλ3 bλ4 bλ5 bλ6
5% 3.28 1.72 1.10 0.59 0.29 0.13

16% 3.84 1.92 1.28 0.70 0.37 0.19

Point 4.74 1.97 1.56 1.50 0.56 0.45

84% 6.47 2.77 1.93 1.31 0.62 0.37

95% 7.73 3.22 2.16 1.48 0.70 0.43

Note: Point estimators for the different bλi and the bootstrap quantile estimates from the moving-block bootstrap with 1000 draws.
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estimated variance on announcement days. The point estimate is bλ1 ¼ 4:74 and significantly larger than 1 according to
the 90% confidence bands. There is another shock with higher variance cλ2ð ¼ 1:97Þ for which the confidence bands do
not cover 1. For the other four shocks, the estimated variance increases (bλ3 ¼ 1:56, bλ4 ¼ 1:50) or decreases
(bλ5 ¼ 0:56, bλ6 ¼ 0:45). The 90% confidence bands suggest that the variance change is distinct for Shocks 1 and 2 as the
bands do not touch each other. Shocks 2 and 3 are difficult to separate, as the 68% bands of the variance change of these
shocks slightly overlap. Together, this informal evidence suggests that in this model, there are two candidate structural
trade policy shocks with higher variance on announcement days, but that the second of these is difficult to separate sta-
tistically from the remaining four shocks.

To test for statistical identification formally, we perform the Wald-type test proposed by Lütkepohl et al. (2021). We
use the estimated bλjs together with the share of event days (τ¼ 0:037) in the total number of observations (T¼ 790) in
the following test statistic:

Qr ¼ c κ1, κ2, τð Þ2 �T
Xsþr

k¼sþ1

log bλk� �
þT r log

1
r

Xsþr

k¼sþ1

bλk !" #
, ð9Þ

where c κ1, κ2, τð Þ2 ¼ 1þκ1
τ þ 1þκ2

1�τ

� ��1
, r is the number of restrictions, s� 0, 1f g, and the kurtosis parameters κ1 and κ2 are

set to zero in line with the conditional Gaussianity assumption. The null hypothesis is that the shock variances are
equal. Under the null, the asymptotic distribution of Qr is χ

2 with 1
2r rþ2ð Þ r�1ð Þ degrees of freedom.

Table 3 shows the results of four tests that follow the procedure outlined in Lütkepohl et al. (2021). The data clearly
reject the assumption that all relative variances are equal. The test statistic is 50.52 and the associated p-value 0.002.
The test does not reject the equality of λ1, λ2, λ3, and λ4 but rejects the equality of λ1, λ2, and λ3 at the 10% level. Impor-
tantly, the assumption λ1 = λ2 obtains a p-value of 0.0731. In sum, the variance heterogeneity provides evidence that
Shock 1 can be separated from Shocks 2 and 3, but Shocks 2 and 3 cannot be disentangled. Considering the informal
inspection of the shock variances and also the relatively small event-date-share τ, we conclude that there is some evi-
dence for two types of trade policy shocks with higher variances on announcement days but that only the first one can
be identified while the second is a borderline case.

Figure 3 shows the impulse responses to the two shocks, together with the impulse responses derived from the main
model (Section 3.1) and the 90% bootstrap confidence bands for the main model. The two trade-policy news related
shocks are of size þ1•

ffiffiffiffi
λi

p
, their standard deviation on event dates. One can see that the impulse responses of Shock

1, that is, the dashed lines in Figure 3, follow the pattern of the impulse responses of the main model. The main differ-
ence is a smaller and shorter-lived impact on the two stock market indices. By contrast, the impact responses to Shock
2, presented by the dotted lines in Figure 3, are different. The change in the VIX, in the US dollar and in interest rates
is almost zero. However, there is a common feature of Shock 2 with the shock of the main model, that is, the negative
and somewhat persistent impact on stock markets.

The comparison shows that the two shocks capture different dimensions of trade policy. The responses to Shock
1 suggest an interpretation as a trade policy uncertainty shock. Such a shock increases volatility and raises risk premia
in financial markets. Increased uncertainty causes a worse economic development that contributes to lower interest
rates and increases net demand for safe assets, such as US treasuries and the US dollar (see also Erceg et al., 2018).
Despite the strong increase in aggregate market volatility, it is unlikely that Shock 1 captures general macroeconomic
uncertainty, given the identification strategy that singles out days with systematically higher information flows related
to trade policy. Inversely, it seems plausible that higher trade policy uncertainty raises aggregate uncertainty, given the
important changes in trade policy in the sample.

In contrast, the responses to Shock 2 suggest an interpretation as a level or tariff change announcement shock. Such
a shock will primarily affect trade-oriented firms, that is, we expect here a decline in the China Exposure Stock Index.

TABLE 3 Identification tests for the multiple-shocks model

Hypothesis λ1 = λ2 = λ3 = λ4 = λ5 = λ6 λ1 = λ2 = λ3 = λ4 = λ5 λ1 = λ2 = λ3 = λ4 λ1 = λ2 = λ3 λ1 = λ2 λ2 = λ3

χ2 50.52 31.49 13.59 10.12 5.23 0.3664

df 20 14 9 5 2 2

p-values 0.0002 0.0047 0.1378 0.0719 0.0731 0.8326
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Different from an uncertainty shock, volatility will not change much. This is exactly what we find. In particular, stock
prices of firms with larger trade with China fall significantly because importers face higher input costs in the future and
exporters are likely to be negatively affected by retaliation tariffs.

To formally evaluate the relation between the different shocks, we perform a projection of the baseline shock on
Shock 1 and Shock 2 from the multiple-shocks model. In combination, Shock 1 and Shock 2 account for more than 85%
of the variation of the shocks from the main model. In a rolling-window regression, the resulting “loadings” on these
two shocks are rather invariant over time (see Figure A2).

The interpretation of Shocks 1 and 2 as a trade policy uncertainty shock and a trade policy level shock, respectively,
is supported by a forecast error variance decomposition. Table 4 shows the average economic importance of the two
shocks (in rows) to the variability of the endogenous variables (in columns). Shock 1 accounts for about 18.8% of the

FIGURE 3 Estimated impulse responses to restrictive US trade policy shocks. Notes: The figure shows the baseline impulse responses

with 90% moving-block bootstrap confidence bands and the point estimates of the first two shocks on event dates from the multiple-shocks

model. To obtain event-date shocks, the point estimates in the B matrix are multiplied by the square root of the associated bλi. An increase in

the US$ effective exchange rate denotes an appreciation of the US$.

TABLE 4 Forecast error variance decomposition for the multiple-shocks model

1-year
Treasury

10-year
Treasury

US$ eff.
exchange rate VIX Russel 2000

Stock Index
Chn. Exp.

Horizon = 1

Shock 1 58.0 44.6 4.9 18.8 3.3 9.1

Shock 2 1.3 0.5 0.4 0.1 8.3 38.1

Horizon = 100

Shock 1 52.0 27.9 6.0 10.9 1.5 5.8

Shock 2 4.4 0.2 4.0 3.9 16.8 39.6

Horizon = 500

Shock 1 33.6 20.7 5.5 11.5 4.8 11.0

Shock 2 5.0 2.6 5.1 5.4 19.1 24.4
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variation in the VIX at Horizon 1 and for slightly more than 10% at all other horizons. Moreover, it has a 1%–5% impact
(depending on horizon) on the Russell 2000, a 3%–10% impact on the China Exporter Stock Index, a roughly 5% impact
on the US dollar, and high impact on interest rates with one-third to two-thirds for the short-term rate and still 20%–
45% for the 10-year Treasury. In contrast, Shock 2 explains hardly anything of the forecast errors for the VIX, and much
less than Shock 1 of the other variables, except for the stock market indices: Here it explains 24%–40% of the China
Index and still 8%–19% of the Russell 2000.

4 | DISAGGREGATED RESULTS FOR FIRMS, INDUSTRIES, AND
COUNTRIES

After having characterized the overall importance and nature of the identified trade policy shocks, we next turn to a dis-
aggregated analysis of their impact. Throughout the following, we use our daily trade policy shock measure from the
main model with 29 event dates (Section 3.1) and estimate the potentially heterogeneous impact of trade policy shocks
on individual firms, industries, and countries. Finally, we compare the shock time series to other measures proposed in
the literature and conduct a special case study for China. Given that the impacts of the single trade policy shock in the
main model largely resemble those of Shock 1 in the second model (allowing for multiple shocks), and the shock series
are correlated with 0.74, we interpret the following findings mainly as responses to a trade policy uncertainty shock.

For the disaggregated analysis, we use asset prices for the firms included in the S&P 500 index, the industry sectors
of the S&P 500 as classified by Standard and Poor's, stock market indices of many larger countries in the world econ-
omy, and, finally, volatility indices for a range of international stock market indices. We regress the return of the vari-
able of interest rYt on a constant, the trade policy shock εt as well as one lag of the dependent variable and the shock:

rYt ¼α þ β εt þ γ rYt�1 þ δ εt�1 þ vt, ð10Þ

where vt is an error term. We report the point estimate for the coefficient of interest β with autocorrelation and hetero-
skedasticity robust standard errors. The magnitude of the estimated β coefficients is directly comparable to the impact
effects contained in b1.

4.1 | Firms

We run the described analysis for 482 firms in the index for which Bloomberg provides data over the sample horizon
January 2017 to January 2020. The restrictive trade policy shocks affect stock prices negatively on average. The shocks
lead to declining stock prices for 454 or 94% of firms, of which 426 decline significantly at the 1% level. Merely 28 firms
in the sample see their valuations increase (see Figure A3). None of these increase by more than 0.3% on impact. Of the
28 firms that do not lose from trade policy shocks, 19 are identified as utilities and the remaining nine as real estate and
rental and leasing firms by the North American Industry Classification System (NAICS).

On the left side of the distribution, 13 firms' stock prices decrease by more than 1.5%, with 10 of these firms belong-
ing to the manufacturing industry. Specifically, nine are in the semiconductor manufacturing industry according to the
NAICS. Overall, semiconductor manufacturing firms seem to be hit hardest, with 10 out of the 11 firms that lose most
when hit by a US trade policy shock belonging to that category (compare Bown, 2020a, for a qualitative analysis of the
role of semiconductor firms in the US–China trade dispute). The S&P industry classification assigns all semiconductor
firms to the IT sector. In sum, the estimates indicate that a large part of the US economy is negatively affected.

4.2 | Industries

For the next analysis, we use the standard classification of the S&P 500 firms into 11 industry sectors to identify which
industries are most affected by trade policy shocks, expecting that export orientation plays a role. Figure 4 shows for all
industries, except for utilities and real estate, that the point estimates are negative and statistically significant at the 1%
level. The most negatively affected industries are IT, materials, financials, and industrials, which are all internationally
oriented industries. Out of the negatively hit industries, consumer staples is the least affected industry. The
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United States was hesitant to tariff essential goods like food, household, and personal products that belong to this sec-
tor. In general, this pattern seems to fit to the observation that uncertainty about relative price changes due to tariffs
affects industries differently: Internationally oriented industries and those with closer ties to China, such as industrials,
lose more value than domestically oriented industries.

4.3 | Country returns

Next, we focus on the impact of trade policy shocks on countries other than the United States. In a globalized world,
one would expect that most other countries are also negatively affected by restrictive US trade policy shocks. We take
the full universe of 49 MSCI country indices for our calculations, and the results in Figure 5 do indeed conform to our
expectation. The effect for 46 of 49 countries is negative, and for 44 countries, it is statistically significant at the 1%
level.

Looking at regional country groups, the Latin-American stock markets seem to be hardest hit. The next coun-
tries, that is, those hit somewhat less, are dominated by European economies. Even less hit are most Asian coun-
tries, whereas African countries are hardly affected at all. This country pattern is largely consistent with the idea
that geographical proximity to the United States (and thus tentatively closer economic relations) leads to stronger
negative impacts. Interestingly, the MSCI China index decreases by around 0.62%, and thus somewhat less than US
stocks. The index captures 701 large and mid-cap companies, covering about 85% of China's stock market capitaliza-
tion. Overall, the country patterns make sense as the identified trade policy shocks mostly refer to US–China
tensions.

4.4 | Country volatilities

Now, we regard further volatility indices to judge if stock market indices of other countries experience a similar rise in
volatility. Figure 6 shows that all 13 indices rise on impact. The two indices representative for China, the China ETF
(exchange-traded fund) volatility index, and the Hang Seng volatility index, measuring volatility of the Hang Seng, the
leading Hong Kong stock exchange, both increase significantly by around 3.2% and 1.3%, respectively. Moreover, vola-
tility of emerging market stock prices (measured by the EM ETF) increases most by around 4.5%. Thus, US trade policy
shocks increase volatility also outside the United States and China.

FIGURE 4 Impact responses of S&P sector indices to a US trade policy shock. Notes: C. Discr. is consumer discretionary, Com. Serv. are

communication services and C. Staples are consumer staples. 99% HAC standard error confidence bands.
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4.5 | Comparison of estimated trade policy shocks with other measures

Another way to inform about our shocks, shown in Figure 1, is to compare them to other series capturing related infor-
mation. We draw on external data for changes in tariff levels, in general economic uncertainty, and in trade policy
uncertainty. For each, we gather two or three series. For the tariff-level comparison, we use the monthly US tariff

FIGURE 5 Impact responses of MSCI country indices to a US trade policy shock. Note: 99% HAC standard error confidence bands.

FIGURE 6 Impact responses of various volatility indices to a US trade policy shock. Note: 99% HAC standard error confidence bands.
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changes on Chinese goods of Bown (2020b) and compute the change in the average quarterly US tariff rate across all
goods as the ratio of US customs duties over US imports of goods.6

Table 5 shows that the contemporaneous connection between the two tariff-change series and the estimated shocks
is small, either because the shocks capture mainly announcement dates and implementations often happen later or
because they are mainly related to uncertainty and not to level effects. The result is similar if we consider measures of
economic policy uncertainty (Baker et al., 2016) or equity market volatility (Baker et al., 2019). Again, there are positive
but rather small correlations with our shocks.

The picture changes if we take measures of uncertainty about trade policy, that is, the updated trade policy uncer-
tainty (TPU) index of Baker et al. (2016), the TPU index of Caldara et al. (2020), and the measure of equity market vola-
tility related to trade policy by Baker et al. (2019). All these indices result from counting newspaper article occurrences
using search terms related to the economy, trade policy, and uncertainty. Our shocks have consistently positive contem-
poraneous correlations with these series, and the coefficients are highly significant. If there is a lag structure, our series
tends to lead the others by 1 month although the lagged coefficients are insignificant. The lead appears plausible as
asset prices are likely to respond quicker to new information than daily or weekly newspapers. From a policy perspec-
tive, the tentatively leading properties of our shock measure can be useful for policy makers to respond to economic
shocks faster.

4.6 | Impact from China

Due to the special role of China, we further examine this case. It is known that China does not passively accept US
trade policy shocks but responds with its own measures. We collect, from the same database as above, the 14 Chinese
announcements that target the United States (see Table A3 for a list of the events). We identify Chinese trade policy
shocks using the model and the identification strategy outlined in Section 2. Figure 7 demonstrates that a restrictive
Chinese trade policy shock also has significant negative effects on the US economy. They appear slightly larger than
those of US trade policy shocks while the shape is comparable. The impact on stock prices is more persistent when
looking at the statistical significance, but this might also reflect fewer Chinese retaliation events that are, on average, of
larger significance.

5 | ROBUSTNESS

We perform many robustness tests, showing that our results are invariant to changes in trade policy battles, the selec-
tion of event dates, the bootstrap method, the sample size, the lag length in the SVAR, the use of a Minnesota prior,
and the inclusion of day-of-week dummies in the VAR. Results are shown in Appendix S2.

6US Customs duties (i.e., proceeds from tariffs) data are taken from the US Bureau of Economic Analysis and imports data from the U.S. Census
Bureau's U.S. International Trade and Goods and Services report (FT900). Both series are seasonally adjusted.

TABLE 5 Pairwise correlation between trade policy shocks, tariff rates, and uncertainty measures

Lags
Monthly US tariff change
on Chinese goods

Quarterly US aver.
tariff rate change

Economic policy
uncertainty (BBD)

�1 0.0225 (0.8978) 0.1042 (0.7605) 0.2185 (0.2074)

0 0.2088 (0.2217) 0.1185 (0.7138) 0.0701 (0.6846)

1 0.0591 (0.7359) �0.3958 (0.2282) �0.0729 (0.6775)

Notes: Pairwise correlations and p-values of the aggregated shocks series with monthly changes in US tariffs on Chinese goods, quarterly changes in average US
tariff rates on all goods, and various newspaper-based economic policy uncertainty and equity market volatility indices at various lags. BBD refers to Baker
et al. (2016), BBDK to Baker et al. (2019), and CIMPR to Caldara et al. (2020). Lag �1 shows the correlation of the trade policy shock series lagged 1 month
with the other series. Coefficients are labeled according to significance.

*p < 0.1. **p < 0.05. ***p < 0.01.
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6 | CONCLUSIONS

The US administration used restrictive trade policies, in particular, increased tariffs, as an instrument to support the
domestic economy. We propose an SVAR approach identified through heteroskedasticity on trade policy event days to
analyze the impact of trade policy shocks on the US economy and the world economy. Our approach uses high-
frequency data for a clean identification of the shocks (as event studies) and stretches the analysis over longer horizons
(as macro models). Moreover, it seems reasonable to allow for more than one type of structural trade policy shock.

We find that restrictive US trade policy shocks cause a significant increase in uncertainty, a decrease of US stock
price indices, a decline of interest rates, and an appreciation of the US dollar. Thus, all considered financial markets
react and contribute to a multifaceted picture of rising economic uncertainty and expected output losses, which is not
the intention of this policy. The characteristics of the dominating trade policy shock suggest that this is an uncertainty
shock; we also reveal that there is potentially a second type of shock, a level shock. However, its effects are dominated
by the trade policy uncertainty shock. Disaggregated analyses further show that the significantly negative impact of

FIGURE 7 Estimated impulse responses to Chinese trade policy shock. Notes: The figure shows impulse responses to a restrictive trade

policy shock. Identification of the trade policy shock is based on 14 Chinese announcement dates described in Table A3 in the Supporting

Information. The grey areas show 90% moving-block bootstrap confidence intervals with bootstrap sample size 1000.

TABLE 5 (Continued)

Lags
Equity market
volatility (BBDK)

Trade policy
uncertainty (BBD)

Trade policy uncertainty
(CIMPR)

Equity market volatility—trade
policy (BBDK)

�1 �0.2481 (0.1508) 0.2678 (0.1199) 0.2072 (0.2322) 0.0634 (0.7176)

0 0.0587 (0.7337) 0.3301 (0.0493)** 0.3701 (0.0263)** 0.406 (0.0140)**

1 �0.0896 (0.6089) 0.0084 (0.9617) 0.0728 (0.6778) �0.1152 (0.5100)

Notes: Pairwise correlations and p-values of the aggregated shocks series with monthly changes in US tariffs on Chinese goods, quarterly changes in average US
tariff rates on all goods, and various newspaper-based economic policy uncertainty and equity market volatility indices at various lags. BBD refers to Baker
et al. (2016), BBDK to Baker et al. (2019), and CIMPR to Caldara et al. (2020). Lag �1 shows the correlation of the trade policy shock series lagged 1 month
with the other series. Coefficients are labeled according to significance.

*p < 0.1. **p < 0.05. ***p < 0.01.
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restrictive shocks applies to more than 90% of S&P 500 firms and to most US industries, such that there is a broadly
negative impact on the US economy. Moreover, the shocks also negatively affect most countries of the world economy,
by lowering stock market indices and increasing their volatility. Negative effects are further amplified by retaliation
measures of China.

Overall, it seems surprising that the US administration is pursuing this policy as the US economy is hit broadly and
the economic environment becomes significantly more uncertain. Although these results are not easy to rationalize, it
may be possible that those parts of the US economy that remain unaffected or even profit are not covered by our analy-
sis (such as non-listed firms). Longer-term adjustments to these shocks, which are also not covered in our approach,
may provide a rationale for these measures. Finally, a rationalization could be that trade policy is a (temporary) tool to
realize advantages in other policy areas.
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