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Abstract
The present paper analyzes development patterns in research networks and technology
as well as their co-evolution by the example of the currently highly transformative
German automotive industry. We therefore introduce a consistent network-based
approach for measuring change in research networks and the technological composition
of patents. Our results show that the applied method is particularly useful for identify-
ing structural similarities and main structural changes in research and patent networks.
Further, the investigation of the co-evolutionary processes indicates that, regarding the
German automotive industry, changes in technology lead to structural changes in the
research network.

Keywords Technological change . Innovation networks . Network dynamics . Co-
evolution

JEL classification O3 . O30

1 Introduction

Change and dynamics in both research networks and technology are highly relevant
research fields in innovation economics. However, previous concepts and approaches
for surveying and measuring such dynamics differ considerably. There is a large
number of empirical studies on measuring technological change, using a broad spec-
trum of approaches ranging from patent counts (Archibugi and Planta 1996) over
citations (Verspagen 2007) to the analysis of keywords in documents (Joung and
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Kim 2017). Conversely, studies in the field of network research have been based on a
static point of view for a long time (Baum et al. 2003; Buchmann and Pyka 2015)
leading to insufficient knowledge regarding the general “empirical understanding of
innovation network evolution” (Buchmann and Pyka 2015, p.116). Furthermore,
currently existing network indicators tend to only depict specific aspects of the network
structure and barely the network as a whole, making it difficult to look at its general
structural development. This also has consequences on a possible comparing view between
technology development and network dynamics, as we need a deep insight into innovation
system dynamics to understand technological change (Hekkert et al. 2007).

Previous literature already suggested an existing co-evolution between research networks
and technology (Orsenigo et al. 2001; Murray 2002) and indicates interesting effects of
mutual influence. On the one hand, changes in research networks can be seen as drivers of
technological development (Deeds and Hill 1996) while on the other hand, technological
development may also influence the composition and structure of innovation networks
(Anderson and Tushman 1990). As co-evolution can be seen as an important aspect in
economics as well as sociology of technological change (Rosenberg 1982), it is not
surprising that co-evolutionary processes regarding technology and innovation networks
have already aroused the interest of the research community (Orsenigo et al. 2001; Murray
2002; Gilsing 2005). However, regarding especially highly transformative technological
areas, empirical evidence is still scarce. Further, there currently seems to be a lack of
consistent measurement to facilitate the comparability between the two processes.

Based on these shortcomings, the aim of this paper is twofold: First, it aims at
developing a new consistent method for analyzing change in research and technology
networks. The second aim is to provide deeper insight into transformation processes
within a currently highly transformative technological area: the automotive industry.
We therefore adapt a methodology of a recent publication by Parraguez et al. (2020)
and modify it for creating a network-based indicator for measuring both structural
change in research networks and technological change. Afterward, we use this indicator
to analyze transformation processes in the German automotive research network and
the structure of automotive-related German patents as well as their co-evolution.

The paper is structured as follows. In the second part, we give a short theoretical
review on both technological change and structural change in research networks as well
as their respective measurement in the literature. This is followed by a short review of
corresponding co-evolutionary research in literature and an excursus about the change
in the German automotive innovation system. The third part gives insight into the
applied method and used data, while the fourth part presents and discusses the results.
In the end, the fifth part provides a short conclusion.

2 Theoretical part

2.1 Technological change

2.1.1 Theoretical background

Most literature agrees that technological change results from the recombination of
existing and new technological capabilities, which in turn can be seen as the main
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source of technological novelty (Strumsky et al. 2012). As technological knowledge
can be seen as cumulative, technological change often proceeds gradually, ordered, and
over a longer period, leading to a stabilization of technological paradigms (Dosi et al.
1988). A technological paradigm entails “a ‘pattern’ of a solution of selected techno-
economic problems based on highly selected principles derived from the natural
sciences, jointly with specific rules aimed to acquire new knowledge and safeguard
it, whenever possible, against rapid diffusion to the competitors” (Dosi and Nelson
2010, p.14). Technological paradigms lead to technological trajectories since the
community of engineers follows a similar search path. Technological trajectories
are influenced by engineers, but also by other groups such as users, suppliers,
scientists, and banks (Geels 2002). “The avenue of knowledge production can
be directed by technological paradigms or by technological trajectories, which
reduce the degrees of freedom” (Buchmann 2015, p.84 refering to Dosi and
Nelson 2010) and tend to correspond to rather small steps in technological
change. The persistence of such trajectories is supported by diverse technolog-
ical as well as institutional barriers, which in most cases hinder more radical
changes. It is for this reason that in the past literature on technological (regime)
change has mainly focused on the “persistence of change along well-defined
pathways” (Berkhout 2002, p.4).

However, despite the inter-locked and inter-related nature of such regimes, some-
times also main technological transformations occur which induce changes in diverse
areas such as infrastructure, technology, and industrial networks. Such a trans-
formation, commonly called a technological transition (Geels 2002), does not
come about easily. It usually only occurs when a large number of actors
identify them as necessary, feasible, and favorable (Berkhout 2002). Hughes
(1987) showed further that it is mainly the limitation of certain technological or
non-technological system components, which, if no sufficient solution can be
found, triggers the emergence of a new technological regime.

2.1.2 Measurement of technological change

The measurement of technological change has engaged researchers for a long time.
This is also reflected in the fact that one of the first reviews on this topic was already
published in 1987 (see Basberg 1987). Over the years, numerous studies measuring
technological change respectively transition have been published, analyzing e.g.
the transition from horse-drawn carriages to modern automobiles (Geels 2005)
or the technological change in the whaling industry (Basberg 1982) and the
chemical industry (Lacasa et al. 2003). However, while giving us a deeper
understanding of patterns of technology development, those early analyses have
often been based on relatively simple measures and indicators.

In recent times, especially network-based approaches have been established as
promising methods for assessing technological change, as they allow to portray
technology in their generic definition: the (re)combination of existing and new
technological capabilities. Regarding this, Parraguez et al. (2020) identified three
different kinds of approaches for network generation, namely the usage of (1) explicit
links and references between sources, (2) keywords in documents, and (3) predefined
categories.
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The first group considers explicit links between documents and patents, which are
provided by citations. Citations are commonly seen to provide rich information about
knowledge flows and technology evolution (Jaffe and De Rassenfosse 2019). While the
usability of citation data for this purpose has been discussed at length (Garfield 1955;
Griliches 1979), the empirical application of the method mainly started within the last
two decades (Jaffe and De Rassenfosse 2019). As one of the first, Murray (2002)
looked at the co-evolutionary aspects of technological change by tracing the citation
network of patent-paper pairs. In the following years, mainly two traces have been
pursued, the analysis regarding scientific documents and the analysis regarding patents.
While the first approach has only been used infrequently regarding the analysis of
technological change (Kajikawa and Takeda 2008; Uzzi et al. 2013), especially patent
citation networks established as an often-used method for analyzing technological
trajectories and display related changes in technology. In this regard, an emerging
amount of empirical studies involving the patent citation networks have been published
regarding e.g. fuel cell technology (Verspagen 2007), printed electronics technologies
(Kim et al. 2014), the electric vehicle industry (Yuan and Miyazaki 2014), wind power
(Huenteler et al. 2016), and core technologies in general (Cho and Shih 2011).
However, while the analysis of patent citations provides rich information especially
on the importance of patents, it also has major disadvantages. In this regard, Yoon and
Park (2004) mention a missing consideration of the technological-internal relationship
between the patents and difficulties in grasping an overall relationship among the
patents as some of the major drawbacks. This can be complemented by a missing
possibility to include recent technological developments caused by missing information
on their future citation.

Within the second group, technology-related keywords are used to analyze change
in textual documents. Some of the most often used methods therefore are the construc-
tion of co-occurrence networks or co-word networks (Parraguez et al. 2020; Joung and
Kim 2017). Within the last decade, a rising amount of related studies have been
conducted, using either patent texts and abstracts (Joung and Kim 2017; Yoon and
Kim 2011; Lee et al. 2008), research project descriptions (Mogoutov et al. 2008),
scientific publications (Madani 2015; Chappin and Ligtvoet 2014), or a combination of
these sources (most recently Parraguez et al. 2020). While the keyword approach has
some main advantages, especially regarding the possibility of using multiple kinds of
sources simultaneously, there are also shortcomings, which have to be considered.
These include high dependence on the keyword identification method, as missing
words or synonyms can lead to gaps in the used data. Further, the combination
possibility of multiple sources might be limited, as there are partially large differences
in e.g. structure and wording between documents (Myers 1995).

The third group relates to network creation based on predefined categories. This
might be categories in bibliographies and research project databases or patent classes.
Regarding bibliographies, Liu et al. (2014) used a network of disciplinary subject
categories provided by the Web of Science (see Leydesdorff et al. 2013) to differentiate
between research disciplines and map technological developments and changes in
bioenergy research. Further studies used such methods to capture the development of
new technologies such as nanotechnology (Arora et al. 2013), or also structural
methods such as the analytic hierarchy process (Emrouznejad and Marra 2017). In
contrast to bibliographies, patents are mostly assigned to multiple categories, which
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reflect the technological aspects of the related invention. Such international patent
classification (IPC) codes provide extensive information on the composition of tech-
nology and have shown to be a good measure for technological novelty (Verhoeven
et al. 2016; Fleming 2007). That is mainly because “much work on technological
change agrees that the recombination of new and existing technological capabilities is
one of the principal sources of technological novelty” (Strumsky et al. 2012, p.1) and
patent classes exactly provide such information.

According to Dosi and Nelson (2010, p.55), “a technology can be seen as a human
designed means for achieving a particular end.” These means were based on pieces of
procedures., knowledge, and artifacts. Thereof, we in the following conceptualize an
invention according to which the building blocks are technological components
reflected by IPC classes of patents. Based on Dosi (1982), “existing physical devices
embody—so to speak—the achievements in the development of technology, in a
defined problem-solving activity”. Accordingly, technology is regarded as a system
of interconnected technological components. Components are regarded as knowledge
elements that are combined and therefore related. By this, we employ a network
perspective, which includes nodes (knowledge/technology components) and ties
(relations) (Broekel 2019; Fleming and Sorenson 2001). Thus, the relational structure
of patents makes it possible to analyze the underlying knowledge as a network. We
therefore assume an existing link between IPCs once they are mentioned on the same
patent. Yet, as one of the few, Lee et al. (2015) used the patent classification for
network creation in order to predict technological convergence patterns. However, the
application of such networks for analyzing technological change has rarely been done.
To fill this gap, in this paper, we use this approach and demonstrate its ability to
examine patterns in technological change.

2.2 Network structure change

2.2.1 Theoretical background

Following a steady rise of network-research in the fields of economics, more recently
the examination and explanation of structural aspects moved more and more into focus.
Though, caused by multiple difficulties in analyzing networks, theoretical work on this
topic progresses only slowly (Ozman 2009).

Regarding an actor-based network, structural network change is commonly de-
scribed to be based on both changes in the number of actors due to exit or entry and
changes regarding patterns in and numbers of link-formation (Koka et al. 2006).
However, in the past, studies often only focused on using subsets of this definition in
their examination. For example, Madhavan and Grover (1998), p.441) state that “true
structural change would be evidenced by significant variation over time in the under-
lying pattern of relationships that bind a given set of actors” and only less regarding an
increase or decrease in network activity between already existing relations. Phlippen
and Riccaboni (2007) also analyzed structural change by primarily looking at the
formation of new links with new partners. Such a focus on specific aspects of network
change goes along with Ozman (2009, p.54), who states that “building theories to
explain network structure is difficult since simplifications in their structure and focus-
ing on relevant aspects (as determined by the context) of the network is inevitable,
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rather than covering all aspects within a unified framework.” Following Strogatz
(2001), reasons for such difficulties include (1) general structural complexity of
networks, (2) a high diversity level regarding the nodes as well the type of ties
concerning their content and weight, (3) changing states of both ties and related nodes,
and (4) mutual influence between various complications.

Structural change can be seen as a basic characteristic of a network, as networks are
not stable but inherently dynamic (Pittaway et al. 2004; Ebers and Grandori 1997) with
“network dynamics connote[ing] the change of the network through time” (Ozman
2009, p.56). However, the network structure does not change consistently. Sometimes
exogenous shocks happen which cause larger structural transformations often seen as
the “real structural change” (Barley 1986; Glasmeier 1991; Phlippen and Riccaboni
2007). Such exogenous shocks are often seen in a radical technology change, as this
enables peripheral actors within the network to improve their network position
(Madhavan and Grover 1998). While previous studies mostly assumed a stable tech-
nology base (Phlippen and Riccaboni 2007), we can lately observe a steadily growing
interest in focusing on analyzing change and evolution in highly dynamic technological
areas, using diverse methods of measuring and analyzing the transformation within the
related research networks.

2.2.2 Measures of network change and network dynamics

While in the past there have been numerous studies on network change, its drivers and
other related aspects (see, e.g., Madhavan and Grover 1998; Gulati and Gargiulo 1999;
Moldoveanu et al. 2003; Powell et al. 2005), literature providing information on how to
precisely analyze a change in research network structure has been rather scarce. This
was mainly driven by the fact that insufficient longitudinal data hindered empirical
research on this topic (Ozman 2009). However, with increasing data availability in the
last two decades, there has been a growing number of empirical studies relating to
network structure and its transformation. The related methods and measures to analyze
structural change and dynamics can be divided roughly into three categories, namely
(1) the usage of network modelling or simulation tools, (2) graphical analysis, and (3)
analysis via classical network indicators.

Network modelling and simulation has been mainly used for measuring network
change as a function of network externalities or specific behavior of actors. The type of
models used varies broadly and include e.g. agent-based simulation models (Windrum
and Birchenhall 2005; Buchmann et al. 2014), evolutionary and game-theoretical
models (Jackson and Wolinsky 1996; Cowan et al. 2007), or more recently
exponential-family random graph models (Broekel and Bednarz 2018). The second
group includes graphical analysis or the use of graph-theoretical tools for depicturing
network dynamics. Regarding this, Orsenigo et al. (2001) used graph-theoretic tech-
niques in order to analyze the influence of technological conditions on changing
patterns in industry structure and evolution. However, most often authors used graph-
ical analysis mainly as a supporting method in combination with other approaches
(Roijakkers and Hagedoorn 2006; Lyu et al. 2019). The third group includes the
analysis of structural change in networks based on classical network indicators. Re-
garding this, e.g., Madhavan and Grover (1998) measure change in the industrial
network structure in the global steel industry by focusing on interblock relations and
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centrality. In their analysis of the pharmaceutical R&D network, Phlippen and
Riccaboni (2007) measure changes in the research network structure by looking at
local and distant link formation by calculating the average distance between actors and
the weighted clustering coefficient, respectively.

The short review illustrates a wide range of methods and approaches for getting
deeper insights into network change and network evolution. However, while this
previous work made important contributions to the understanding of underlying pat-
terns and influencing factors of network transformation, it did not provide an approach
for quantifying the structural change of innovation networks as a whole. Simulation and
modelling approaches are primarily focused on identifying relevant drivers or barriers
to network dynamics but do not directly determine to what extent a network alters.
Graphical representations have the advantage of providing a vivid depiction of network
configuration allowing us to identify similar or divergent patterns between networks.
However, they do not give us quantitative information on the structural change and
therefore make it difficult to compare the change between e.g. different network
configurations. While the use of classical network indicators provides such quantitative
information, they rather aim to outline specific patterns of network structure (Bodin
2006) and their development but fail in describing network change as a whole. To sum
up, there is currently no measure for investigating overall structural change regarding
research networks. To fill this gap, in the following, we are going to describe a possible
approach for measurement of network structure transformation and illustrate its
functionality.

2.3 Co-evolution of research networks and technology

In general, the literature assumes that technology and research networks do not evolve
by themselves, but rather co-evolve (Phlippen and Riccaboni 2007; Murray 2002).
However, there are two directions to view the relationship between the structural
change in a research network and technological change. The first is that
technological change induces a change in the research network. The second is that
conversely technological change is induced by a changed research network structure. In
a more general way, these directions have already been shown by Burkhardt and Brass
(1990, p.104) who pointed out that the relationship between structure and technology or
more specifically the questions “Does technology drive structure? Or does technology
adapt to existing structure, reinforcing established, stable patterns?” has been discussed
for a long time.

In this regard, the first possible direction states that technological change leads to a
change in the research network. This seems especially to be the case for radical
technological changes, which have an important influence on the network structure
in fields of high technology (Anderson and Tushman 1990). Madhavan and Grover
(1998) show that specific events, like a radical change in technology, potentially
change the basis of competition and therefore provide the occasions for the
restructuring of an existing network. Phlippen and Riccaboni (2007) also confirmed
this when studying the establishment of a new technological paradigm in the biophar-
maceutical industry. They found that a technological transition, which was induced by
a radical innovation, led to a significant structural change in the network represented by
numerous firm entries and the formation of numerous new alliances. Furthermore, they
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discovered that established actors tended to leave existing connections and collabora-
tions and instead intensified networking with new partners. The second direction
considers that, conversely, technological change is induced by a changed research
network structure. This is through the formation of new alliances, which allows
facilitating new knowledge flows between the alliance members (Gomes-Casseres
2006) and thereby enhances their innovativeness (Deeds and Hill 1996). Such an
increase in innovative performance also holds true if the network connection is only
indirect (Owen-Smith and Powell 2004; Ahuja 2000).

Despite the concept of coevolution constitutes an important part of economics as
well as the sociology of technological change (Rosenberg 1982), there are only a few
empirical studies dealing with the co-evolution of technology and research networks.
Murray (2002) explored the co-evolution of scientific and technological
networks on the example of tissue engineering. The study of Blankenberg
and Buenstorf (2016) investigated the co-evolution between innovation and
public research for the German laser industry, and van der Pol and
Rameshkoumar (2018) investigated the co-evolution between knowledge and
collaboration networks along a technology life-cycle. Though, studies so far did
barely investigate the co-evolution regarding technological sectors undergoing a
change in its technological regime. Further, there has yet no consistent indicator
been used to make the two evolutionary processes comparable.

2.4 The regime change in the German automotive innovation system

We base our analysis on the German automotive sector, which is currently fundamen-
tally challenged by the technological shift towards battery electric vehicles (BEV). By
combining technologies of different fields, such as classical car manufacturing, battery
technology, and electric engine technology, electric vehicles not only break the
established production and coordination processes but also change the relevant knowl-
edge necessary in vehicle production. Especially when looking at the automobile
sector, a new technological trajectory of electrically propelled cars is steadily emerging.
While such new trajectories mostly are characterized by high uncertainty of success
(Dosi 1982), the success probability in the case of innovative electric vehicles seems to
be quite high. This is mainly because they benefit from various political, economic,
ecologic, and social factors, such as stricter carbon emission rules, rising oil
prices, and a change in the general mobility behavior with new tendencies to
intermodality and car-sharing, which are expected to have even more impor-
tance in the future (Dijk et al. 2013). Therefore, the current development in this
area might be seen as the start of a change regarding the technological
paradigm (Dosi 1982), which especially established car producers cannot ig-
nore. For them, this new paradigm poses a high risk as it, at least in the
medium-term, endangers their core competencies such as the manufacturing of
internal combustion engines (ICE). For the “new” actors in the field of battery
technology and electric engines, on the other hand, the new technology can
more be seen as an opportunity, as their production fields are not endangered
but rather expandable to the new application area. The current German auto-
motive sector is therefore excellently suitable for examining both the transfor-
mation of research networks and technological change in general.
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3 Data

3.1 Research network data

In order to map the German research network within the field of vehicle technology, we
took into account publicly funded research projects from national and international
project funding registers. These databases provide numerous information on all funded
research projects and involved actors respectively. The main information source for coop-
eration projects in Germany is the German national funding catalog1, listing all publicly
funded research projects by the federal republic including the participants, the project
duration, the research area, and a description of the project. The database was searched by
projects in the field of automotive engineering andmanagement regarding both conventional
and electric vehicles. This was done by identifying relevant research area IDs, shown in
Table 1. Besides projects in the field of automotive engineering and management, also
relevant projects in the area of vehicle-related battery technology were included in the
search. Within this area, the database of the German battery forum2 was used, containing
information on all electric vehicle–related battery research projects.

By use of the database of the Community Research and Development Information
Service (CORDIS), run by the European Commission, also EU-projects were taken into
account for network creation. However, as the focus of this study is on the German
research network, only the German participants have been considered for the final
network and only if there are two or more within a project. In order to retrieve the
relevant information, we used data and text mining methods due to a lack of sufficient
export possibilities. The extensive database was searched by multiple keywords re-
garding automotive engineering and battery technology, filtered by German partici-
pants, and afterward manually checked for relevance.

Once the data collection was accomplished, the information was joined and post-
processed. This includes the unification of the names from the actors found as well as
the removal of duplicates. In total, the final network consists of 720 actors connected
through 6238 edges in the period 1993 and 2016.

Based on the collected information, we can create a network between the identified
actors, which are connected to each other via the different research projects. We
therefore denote this network in the following as research network. Further, we assume
that the actors within this network pursue research goals, as research is the main aim of
governmental funded research projects. The process of data acquisition and network
creation is depicted in Annex 1.

3.2 Technology data

To analyze technological change, information from vehicle-related German patents was
retrieved using the OECD PATSTAT database. In order to isolate relevant applications,
we used the International Patent Classification (IPC) as well as the Cooperative Patent
Classification (CPC), whose codes provide information about the technology classes of

1 Also called “Förderkatalog,” access via https://foerderportal.bund.de/foekat/jsp/SucheAction.do?
actionMode=searchmask (in German language)
2 https://www.batterieforum-deutschland.de/ (in German language)
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the patents. A patent classification code consists of both a main technology class and
several hierarchical-related subclasses, allowing a fine assignment of the patent to
technological areas (Strumsky et al. 2012).

For patent identification, relevant codes were retrieved from literature (see, i.e., Borgstedt
et al. 2017; Pilkington and Dyerson 2006) as well as from a manual search within the Patent
Classification database. The results include classes within the categories of motor technology,
motor controlling technology, combustion engines, engine control systems, battery technolo-
gy, battery management, and electric vehicle controlling systems, shown in Table 2. Based on
the identified classes, we searched for associated patents withGerman origin in the PATSTAT
database. By referring to only one patent per patent family, we take into account that some
patents have been registered in different patent offices and therefore avoid a double counting of
the same invention.

In order to get information on the technological composition, all related classification
codes were extracted from the identified patents. Usually, a patent is assigned to more than
one classification code, allowing us to identify the different technological areas associated
with the invention. For analysis, we decided to use the codes on the 4th level (main group) as
illustrated in Fig. 1. This level provides a sufficient technological depth to easily divide
different technological areas and simultaneously allows us to aggregate lower subgroup
levels with high technological relatedness to each other. Further, it reduces the computa-
tional burden for the following analysis, as there are currently more than 70.000 different
IPC codes on the lowest level. As a result of the data collection, we received 1259
technology classes related to 13,585 relevant vehicle patents.

Based on the collected patent data, we can create a network between the different
IPC resp. CPC classes, which are connected to each other via the patents they are
assigned to. We therefore denote this network in the following as technology network,
which gives information on the used combinations between technological components.
The process of data acquisition and network creation is depicted in Annex 2.

4 Method

4.1 Measuring network change

Formeasuring the overall change inside a network, we use the RV coefficient introduced by
Escoufier (1970, 1973) and Robert and Escoufier (1976) as one of the multiple existing

Table 1 Relevant project areas

Research
area ID

Description

GC3020 Complete electric vehicle system (with focus on vehicle
electronics and energy management, vehicle conception, and manufacturing processes)

HA8050 Vehicle integration of electric powertrains, drive management, integration into security system

EB1850 Mobility in general

GC3050 Vehicle electronics
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algorithms for calculating matrix correlation (see Josse and Holmes 2016). The coefficient
aims at measuring the relationship between two variable sets and is widely used in ecology
(Klingenberg 2009; Gangopadhyay et al. 2001), sensory analysis (Tomic et al. 2013; Niu
and Varshney 2007), and neuroscience (Zhang et al. 2009). It is also often referred to as
being the most appropriate relating to measuring the similarity of squared and symmetric
matrices (Josse et al. 2008; Smilde et al. 2009).

The RV coefficient bases on the principle that there is a perfect correlation between
two variable sets if an orthogonal transformation exists that makes the two sets
corresponding to each other. With (1) X being a n × p matrix with p variables of X1

to Xp, (2) Y being a n × q matrix with q variables of Y1 to Yq, and (3) both sets being

Table 2 Relevant patent categories

Patent category IPC/CPC Patent-classes considered

Battery technology IPC H01M 4/13, H01M 6/14, H01M 6/16, H01M 10/52%, H01M 10/48

CPC Y02E 60/122, Y02E 60/124, Y02E 60/128, Y02T 10/7011

Battery management IPC B60L 3/%, B60R 16/04, B60S 5/06, G01R 31/36

CPC B60L 2240/545, B60L 3/%, H01M 10/486, H01M 10/5004, H01M
10/5008, H01M 10/5022, H01M 10/503, H01M 10/504, H01M
10/5059, H01M 10/5075, Y02T 10/7022, Y02T 10/7044, Y02T
10/7077, Y02T 90/14, Y02T 90/16, Y02T 90/163

Motor technology IPC B60L 11/%, B60L 15/%, B60L 9/%, B60L 11/18%,
H02K 017%, H02K 041

CPC B60L 11/02, B60L 11/04, B60L 11/06, B60L 11/08,
B60L 11/10, B60L 11/12%, B60L 11/18%, Y02T 10/621%, Y02T
10/622%, Y02T 10/623%, Y02T 10/624%, Y02T 10/625%, Y02T
10/626%, Y02T 10/627%, Y10S 903/00, Y10S 903/902, Y10S
903/903, Y10S 903/904, Y10S 903/905, Y10S 903/906,
Y10S 903/907, Y10S 903/91%

Motor controlling
technology

IPC H02P 1/%, H02P 3/%, H02P 5/%, H02P 6/%, H02P 7/%,
H02P 9/%, H02P 21/%, H02P 23/%, H02P 25/%, H02P 27/%, H02P
29/%, H02P 31/%

Electric vehicle
controlling systems

IPC B60K 6/2%, B60K 6/3%, B60K 6/4%, B60K 6/5%,
B60L 15/%, B60L 1/%, B60L 5/%, B60L 8/%, B60W 10/26%,
B60W 20/%, B60W 10/28, H01M 10/44, H02J 7/%

CPC B60K 2001%, B60K 1/00%, B60K 1/04%, B60K 2006/262%, B60K
2006/264%, B60K 2006/266%, B60K 2006/268%, B60K
2006/48%, B60K 6/2%, B60K 6/4%, B60L 5/%, B60L 8/%, B60W
20/%, Y02T 10/705, Y02T 10/7055, Y02T 10/706%, Y02T
10/7061, Y02T 10/72%

Combustion engines IPC F02B%, F02D%, F02F%, F02M%, F02N% (narrowed down by
vehicle-related keywords)

Fig. 1 Structure of patent classification codes (figure based on WIPO 2019)
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defined for the same n individuals and centered by columns, the RV coefficient can be
defined as:

RV X ; Yð Þ ¼ tr XX
0
YY

0� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr XX

0� �2� �
tr YY

0� �2� �r ¼ tr SXY SYXð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr S2XX
� �

*tr S2YY
� �q

At this, with tr being the trace-operator, SXX ¼ 1
n−1

� �
X 0X and SYY ¼ 1

n−1

� �
Y 0Y refer to

the respective empirical covariance matrix and SXY ¼ 1
n−1

� �
X 0Y respective SYX ¼ 1

n−1

� �

Y 0X refer to the empirical covariance matrix between X and Y. The coefficient itself lies
between zero and one with one indicating a perfect similarity between the matrices and
zero a complete dissimilarity.

The respective procedure applied for both networks is illustrated in Fig. 2. It is based on a
similar procedure used by Parraguez et al. (2020) who used the basic RV coefficient to
quantify technological change based on terms in documents. However, the underlying
network conception, used data sources, and the application field in the present paper vary
considerably.

For analyzing the change within the research network, we start by creating edgelists,
which represent the cooperation behavior of the different agents, consisting of compa-
nies, research institutions, and universities, for each year. Two agents are connected if
they share at least one research project in the respective year. However, multiple
connections of the same actors through different projects are also considered. Based
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Fig. 2 Schematic overview over the RV matrix generation procedure. Own representation based on Parraguez
et al. (2020)
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on the created lists, we calculate corresponding weighted adjacency matrices, which
illustrate the cooperation networks and the respective cooperation intensity between
actors. Afterward, we apply the RV coefficient to all possible pairs of matrices in order
to obtain a similarity matrix of the network between the years. This allows us on the
one hand to compare the similarity of the network structure between the different years
and on the other hand a matching of consecutive years to identify breaks within the
network development. The same procedure is used for analyzing the change in
technology. However, the edgelist in this case is based on the different patent classification
codes, which are connected to each other by the patents they are assigned to. Highly
weighted values within an adjacency matrix therefore indicate a set of technological
categories often combined in patents of the respective year. Conversely, a value of zero
indicates a combination of technology categories that have not been applied in any patent.
After calculating the RV values between the different adjacencymatrices, the calculated RV
matrix gives us information on how similar the combinations of technological areas were
between the years. This further allows us to identify times of major changes in technological
composition as well as periods of technological stability.

4.2 Identifying relations between research network change and technological
change

For identifying the relatedness of the change in the research network and the technological
change, we use a cross-correlation function methodology. This method is especially useful,
as it can be expected that major changes in the two networks, as far as they show similar
patterns at all, do not occur simultaneously but rather shifted in time.

The use of the cross-correlation function became very popular since the works of
Simkin (1974) and Tonry and Davis (1979) and has been commonly used in signal and
communication system analysis since. The function measures the similarity of two
different processes when one of them is shifted in time relative to the other. It can
therefore be seen as a generalized version of a linear correlation, which compares two
time series x(t) and y(t) to see if they match and with which shift in time the best match
occurs. The standard cross-correlation can be depicted as follows:

Rxy t1; t2ð Þ ¼ E X t1ð Þ*Y t2ð Þf g with x≠y

For analysis, we can easily create the needed time series out of the calculated RV
matrices. Relating to the change between two consecutive periods of time t − 1 and t,
the degree of change can be depicted as

RVtt−RVtt−1 ¼ 1−RVtt−1 ¼ 1−RVt−1t

with RVtt being the RV value from year t and year t, which is always one, and RVtt−1
being the RV value from year t and year t − 1.

5 Results and discussion

The calculated RV graph for the technology network based on patent class combina-
tions is depicted in Fig. 3. The matrix on the left shows us the correlation between the
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network structure in different years in ascending order. Values range from zero (white)
to one (dark blue), with the diagonal line showing a perfect correlation, as the
correlation of a network structure with itself is always 1. Originating from this diagonal
line, we can observe phases of network stability, apparent as larger blocks of darker
color. Further, also main network changes can be identified graphically as the years
where larger blocks of stability adjoin each other. To get a better overview over years
with a similar structure, we also performed a hierarchical clustering procedure on the
matrix based on the clustering process provided by Johnson (1967). The results are
shown in the right matrix of Fig. 3: the darker the red, the higher the correlation
between the years.

Regarding the technological change, we can observe two main clusters of years with
similar patterns in technology composition as well as two minor phases with fewer
similarities. For each, Table 3 gives us an overview of the top eight technology class
combinations during the covered phase. Looking at the first phase, ranging from 1993
to 1995, we can identify combinations of conventional vehicle–related patent classes as
main parts of the network structure, followed by combinations of conventional and
hybrid/electric vehicle classes. This indicates that the main technological development
was still mainly driven by enhancing classical combustion-engine-driven vehicles,
although alternative vehicle technology was already relevant. During the second phase
between 1996 and 2004, the relevance of electric vehicle technology knowledge
steadily increases. However, especially combinations of electric and classical vehicle
classes dominate patenting during this time, indicating a main focus on hybrid electric
vehicles. This is also confirmed by the German Patent and Trade Mark Office, which

Phase 1
1993 - 1995

Phase 4
2008 - 2016

Phase 2
1996 - 2004

Phase 3
2005 - 2007

Fig. 3 RV matrices for the patent class network with development in ascending order (left) and clustered by
similar years (right)
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identifies especially hybrid cars as the main technological focus of these years (GPTO
2007). The third phase ranges from 2005 to 2007 and shows similarities to the previous
as well as the following cluster. It can therefore be seen as a short transition period
before the establishment of the so far last large stable cluster between 2008 and 2016.
According to the main patent combinations of this time, a clear focus to base new
patents on the combination of electric vehicle–related technologies becomes visible. By
interpreting the results, we need to be aware that the technological change is related to
the individual decision of the different actors on patenting. However, as the indicator
refers to the composition of all existing automotive patents of German origin (in the
respective time), it can be seen as detached from individual firm strategies and rather
depicts the general change in technology.

The different phases of technological transformation also become visible in Fig. 4,
which shows the correlation for the different years with the prior and following years.
Periods of high similarity are highlighted by the same color. With a look at the courses
shown, it becomes apparent that especially the two larger periods 2 and 4 do not only
show high similarity between the respective years but the years of each cluster also
show similar correlation patterns to the times before and afterward. This is not the case
for the third phase, which can be identified as highly unstable with highly diverse
correlation patterns of its years. Especially the year 2007 represents a significant
structural break regarding the composition of technology.

Within the research network depicted in Fig. 5, we can see a high fluctuation in
correlation. In contrast to the technology network, the research network looks far less
stable across the years. This can notably be explained by the research networks being
based on research projects which are characterized by a high amount of varying actors
in the diverse federal research projects. However, also in the research network, phases
of stability and stronger network change are visible.

As the research network is based on governmental funded cooperation projects, the
patterns in network development, as well as the thematic focus, are highly driven by
decisions of state representatives respectively representatives of the European
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Fig. 4 Correlation between different years regarding technological composition of patents
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Commission. The results should therefore be interpreted under consideration of the
specific patterns related to such publicly funded programs, like a pre-planning of the
funding direction in periodic research programs (mostly every 2 to 4 years) and the
influence of the political agenda of the governing parties. We can identify four main
phases of network stability between the years 1993 and 2016. The first small cluster
covers the years 1993 and 1994 and falls together with intensive governmental funding
programs of research related to vehicle efficiency and safety. Cluster two as the first
larger period of network stability correlates very well with the periods of two extensive
research programs of the federal government, which show thematic similarities. Both
programs, ranging from 1996 to 1999 and 2000 to 2003, focus on funding research
regarding vehicle noise reduction, vehicle-related safety, and security as well as the
reduction of vehicle-related climate gases (BMBF 1996, 2000). Especially the latter, at
least partly, anticipated the main funding topics of the following years, which set
thematic emphasis in alternative vehicle drive trains and hybrid vehicles (BMBF
2004, 2008, 2010). Within the years 2009 to 2010, also the second German economic
stimulus package was approved, reinforcing the funding of new technology develop-
ments regarding hybrid vehicles and storage technology. This thematic shift to alter-
native drive trains coincides quite well with the third large network stability cluster
from 2004 to 2010. In the following years, an even deeper focus on fully electric
vehicle technology was envisaged, expressed in the government program electric
mobility in spring 2011 (BMWi 2011). This focus was maintained until the end of
the investigated period and contained i.e. the investment of 1.5 billion euros until 2014

Phase 1
1993 - 1994

Phase 4
2004 - 2010

Phase 3
2000 - 2003

Phase 5
2012 - 2016

Phase 2
1995 - 1999

Fig. 5 RV matrices for the German vehicle research network with development in ascending order (left) and
clustered by similar years (right)
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with an emphasis on R&D funding for establishing Germany as a lead market in
electric mobility (BMBF 2014, 2016). The funding focus was largely in line with the
funding focus of the European Commission, which launched their “European Green
Cars Initiative” in 2009 and continued it in 2013 as the “European Green Cars
Initiative” with the main target on the development of components for electric vehicles.

Figure 6 provides an alternative view of the correlation between the different years.
In comparison with the respective graph of the technological change, both a higher
instability inside the phases and a much sharper decline in correlation between the
phases become visible. This coincides with a substantial alteration of the network
structure during the regime change. This is for instance illustrated by the network
structure of the first observed years 1993/1994 having an RV value of only between 0.2
and 0.25 during the end of the observation period.

Figure 7 shows the transformation of the vehicle technology in German patenting
with the transformation of the German research network. The graph cumulates the RV
values for each year and its predecessors and normalizes it by the cumulated RV values
across the whole time period. For both courses, the main stable phases and their
respective focuses are marked, allowing us to identify co-evolutionary processes.
Within the first observed years, the thematic focus of both processes seems equal, with
patents mainly consisting of a recombination of classical vehicle technologies and
research focus on general vehicle safety. However, between 1994 and 1996 the vehicle-
related patents experienced a sharp shift in technological composition. This marks the
start of the transition between classical combustion engine-based vehicle patents and
hybrid electric vehicle-based patents whose number steadily expands during the fol-
lowing nine years until 2005. During this time, the research network at first still
concentrates on research regarding cleaner combustion engines followed by an exten-
sion by hybrid electric vehicle (HEV) and battery electric vehicle (BEV) concepts in
2000. This phase passes to a longer time of more concretized research regarding hybrid
electric vehicles from 2004 to 2010. However, one year later, the patent trend of hybrid
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Fig. 6 Correlation between different years regarding the structure of the research network
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electric vehicle technology composition already starts shifting in a growing trend to
combine only electric vehicle–related technologies, leading to a lasting stable phase
with a focus on electric vehicle technology from 2008 to the end of the observation in
2016. The shifting phase from HEV to BEV in the German research network is
observable at first in 2010, lagging about 4 to 5 years behind the technological
networks period of shift. The same becomes observable regarding the establishment
of a stable battery electric vehicle research pattern in 2012, which was already realized
years earlier in the technology network.

The co-evolutionary process shown in Fig. 7 confirms the results of Madhavan and
Grover (1998) and Phlippen and Riccaboni (2007), who state that especially in the case
of radical change and the emergence of a new technological regime technology leads to
the restructuring of existing networks. This might be explained by governmental
funding focusing on the further development of currently promising technologies,
which have at least a certain degree of maturity. Also, many governmental R&D
projects aim at improving the commercialization of new technologies and therefore
base on previous basic technological research. This reduces the risk and allows
concentrating on the development of relevant aspects for a later diffusion. However,
we also have to keep in mind that funding mostly bases on prefixed funding programs
and therefore is only partially dynamic. Hereby such programs might only be adjusted
in a 2- to 4-year period and therefore almost compulsorily have to follow main
technological developments.

The lag of the research network can also be confirmed by the results of the cross-
correlation function. Here the autocorrelation between the two courses of time, depicted
in Fig. 8, shows an at least slightly significant general lag of 5 years, which is consistent
with some of the findings in Fig. 7. The positive expression of the autocorrelation factor
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means that a higher change in the technology network leads to a higher change in the
research network. Therefore, we can anticipate that this is the approximate reaction
time of the research network transformation to the start of main changes in technology
composition, at least in the field of vehicle technology.3

However, the results do not necessarily conflict with the positive relationship
between (governmental) subsidy and R&D effort, which has been previously
found (Hall et al. 2009). Rather, the German automotive sector might represent
a highly special case, as it has a high focus on R&D investments. In this regard,
the German automotive industry alone spent almost 39 billion euros on R&D in
2016, which is about 40% of all German expenditures in research and develop-
ment this year (Bormann et al. 2018). As by this the German automotive industry
is commonly seen as one of the most innovative industries (Hofbauer and Sangl
2019), governmental funding of the generation of automotive innovations seems
less necessary than funding projects related to tests and diffusion of already
existing promising technologies.

Additionally, Mikler and Harrison (2012) find that in sectors with a high political
coordination between both private sector and government, states tend to pursue long-
term visions regarding technology, which are in line with the interests of the incumbent
actors. This is the case for the internal combustion technology respectively diesel
technology in Germany, where the stability of policy ensures a long-term policy
support for the development of technologies (Meckling and Nahm 2018). Such a
long-term policy might result in a delayed funding of research in hybrid and electric
vehicle technology as it cannibalizes the existing regime.

6 Conclusion

In the present paper, we analyzed development patterns in technology and re-
search network formation as well as their co-evolution by a network-based

3 There are also some higher but insignificant autocorrelation factors for both a simultaneous development
without any lag and a lag of one year regarding the technological change. These are also observable in Fig. 7
but are inconsistent regarding the match of the respective focuses at these times.

Fig. 8 Cross correlation between technology change and structural change in the research network
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approach. Our results show that the applied procedure is particularly useful for
identifying development patterns and in both research networks and technology
networks. It further offers the possibility to compare the transformation of differ-
ent networks with each other.

Regarding the analysis of the technological development in the vehicle sector,
we can identify different phases of high stability in patent composition, which can
be assigned to certain invention foci. Based on this, a clear trajectory in techno-
logical development from classic combustion-engine-based vehicles over hybrid
electric vehicles to battery electric vehicles can be identified. The German auto-
motive research network shows similar phases. However, the research network is
quite unstable in its composition, caused by steadily changing actors and research
projects. Further, while the general development process is mainly similar to the
technology network, phases do not occur simultaneously but rather shifted in time.
The co-evolution between the two processes indicates that, regarding the German
automotive sector, changes in technology lead to structural changes in the
government-funded research network. Following the results, a shift of approxi-
mate 5 years between the main changes in technological composition and research
network structure can be identified.

The present paper complements the evolving literature regarding the measure-
ment of technological change and research network dynamics as well as co-
evolutionary processes in research and technology. Especially the used approach
might also be relevant for policy decision-making in several respects: It, on the
one hand, provides an instrument to analyze the government-funded research
network regarding its development, stability, and structural changes as a whole.
On the other hand, it allows retracing processes of technological change in order
to identify possible technological trends at an early stage and to better align
innovation management decisions thereto.

There are some limitations in our analysis we need to mention. These are on the
one hand data limitations. In our analysis, we use research project data from the
German national funding database and the CORDIS database of the European
Commission. However, while the extracted information gives us a comprehensive
overview of collaboration in publicly subsidized research, we need to be aware
that it covers only a part of research cooperation. For further research, it might be
interesting to also take a look at sources besides governmental funded cooperation
projects, such as papers and other publications. Another limitation relates to the
used methodology. There are further matrix correlation measures as e.g. the dCov
measure (Josse and Holmes 2016) which might also be useful to quantify network
change. However, a comparison between different correlation measures is beyond
the scope of this paper and might be an interesting topic for future research.
Moreover, as a further research issue, we intend to have a closer look at the
institutional factors and the role of government that might to some extent drive the
formation of certain network structures in the case of funded collaborative re-
search. On the one hand, there can be stipulations that require partnering with a
certain type of organization (e.g., SME) or with regard to the number of actors
involved. On the other hand, actors are free to choose R&D partners that are most
valuable for them (e.g., with respect to their absorptive capacity).
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Annex 1. Research network

Annex 2. Technology network
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