
Kastius, Alexander; Schlosser, Rainer

Article — Published Version

Dynamic pricing under competition using reinforcement
learning

Journal of Revenue and Pricing Management

Provided in Cooperation with:
Springer Nature

Suggested Citation: Kastius, Alexander; Schlosser, Rainer (2021) : Dynamic pricing under competition
using reinforcement learning, Journal of Revenue and Pricing Management, ISSN 1477-657X,
Palgrave Macmillan UK, London, Vol. 21, Iss. 1, pp. 50-63,
https://doi.org/10.1057/s41272-021-00285-3

This Version is available at:
https://hdl.handle.net/10419/287698

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1057/s41272-021-00285-3%0A
https://hdl.handle.net/10419/287698
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol:.(1234567890)

Journal of Revenue and Pricing Management (2022) 21:50–63
https://doi.org/10.1057/s41272-021-00285-3

RESEARCH ARTICLE

Dynamic pricing under competition using reinforcement learning

Alexander Kastius1 · Rainer Schlosser1

Received: 7 October 2020 / Accepted: 18 January 2021 / Published online: 27 February 2021
© The Author(s) 2021

Abstract
Dynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past
advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems.
In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models.
We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used
for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that
both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain
conditions, RL algorithms can be forced into collusion by their competitors without direct communication.

Keywords  Dynamic pricing · Competition · Reinforcement learning · E-commerce · Price collusion

Introduction

In modern-day online trading on large platforms using the
correct price is crucial. If your goods’ prices are way off
the competition, customers might go for cheaper competi-
tors or ones that offer a better service or a similar product.
Many traders nowadays can make use of dynamic pricing
algorithms, that automatically update their price according
to the competitors’ current offers. Those price updates might
occur at a high frequency. While it is possible to use simple
pricing strategies and tune their parameters manually, this
raises the question of whether it is possible to provide an
automated solution for such problems.

We analyze two examples of such markets focusing on
durable and replenishable goods: (i) duopolies, that require
the agent to compete with a single competitor and (ii) oligop-
olies with multiple active competitors. Duopoly markets offer
the advantage, that optimal solutions can still be computed
via dynamic programming (DP), cf., e.g., Schlosser and
Richly (2019), which provides an opportunity to compare
and verify the results of reinforcement learning (RL).

RL offers algorithms, that are focused around solving
games by maximizing a reward stream offered by the game.
They are problem independent and require only hyperpa-
rameter tuning to be set up. They have been used for various
problems in the past, for example, video games and robot-
ics. A few examples of them being applied to other pricing
problems are available as well, see Kephart and Tesauro
(2000), Kim et al. (2016), and Rana and Oliveira (2014).
Deep Q-Networks (DQN, Mnih et al. 2015) is a commonly
used example of classical RL algorithms. It estimates the
expected reward of pursuing a certain action and searches
for the action with the highest expected reward. Other
approaches, like Soft Actor Critic (SAC), see Haarnoja et al.
(2018), rely on directly tuning a parametrized strategy and
use value estimations only to guide updates of the policy.

In this paper, we analyze how far RL algorithms can be
used to overcome the limitations of dynamic programming
approaches to solve dynamic pricing problems in competi-
tive settings. Our contributions are:

•	 We compute self-adaptive pricing strategies using DQN
and SAC algorithms.

•	 We compare their performance compared to opti-
mal strategies in tractable duopoly settings derived by
dynamic programming techniques.

•	 We study RL strategies regarding their tendencies in a
duopoly to form a cartel.

 *	 Rainer Schlosser
	 rainer.schlosser@hpi.de

	 Alexander Kastius
	 alexander.kastius@hpi.de

1	 Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1057/s41272-021-00285-3&domain=pdf

51Dynamic pricing under competition using reinforcement learning﻿	

•	 We show that RL strategies can be successfully applied
in oligopoly scenarios.

 The “Related work” section discusses related work.
The “RL algorithms” section gives an overview of RL algo-
rithms. In the “Performance in duopoly environments” sec-
tion, we study RL strategies in different duopoly settings
against deterministic and randomized strategies. In the
“Price collusion in a duopoly” section, we investigate the
formation of price collusion. The “Competition between dif-
ferent self-adaptive learning strategies” section shows exper-
iments, where two RL systems directly compete against each
other. The “Application in oligopoly competition” section
considers oligopoly settings. The “Conclusion” section con-
cludes the paper.

Related work

The domain of dynamic pricing is large. While RL is well
known in the community, publications around it are scat-
tered and broad, as observed by den Boer (2015). Many
examples are available where RL has been applied to dif-
ferent market models.

Kutschinski et al. (2003) present a multi-agent market
model, in which the seller has to determine both the offer
price and the number of goods produced in a setting with
another competitor that dynamically makes the same deci-
sion. They used Q-learning to implement a pricing bot in
that scenario. They observe that Q-learning does find near-
optimal policies, though being slower than specialized
alternatives. They use Q-learning only with discount factors
being set to zero, making it unsuitable for problems where
long-term effects do matter.

Kephart and Tesauro (2000) use Q-learning in multi-
agent scenarios with a demand model in which the reward is
a function that mostly relies on the price rank. They analyze
a scenario with two agents using tabular Q-learning to learn
pricing policies in a duopoly setup. In such a setup, there are
several equilibria, in which very similar pricing policies are
used by both agents and stay unaltered. Q-learning does con-
verge toward such equilibria. At some points, pseudo-solu-
tions are found, in which no exact equilibrium is achieved.
Instead, both agents deviate around the equilibrium slightly.
Kephart et al. show that in setups with two agents and a very
simplistic demand model, such equilibria are found reliably.

Könönen (2006) presents a similar evaluation of Q-learn-
ing that uses function approximation instead of the tabu-
lar approaches and introduces policy gradient methods to
the same challenge. His methodology is loosely based on
Kephart and Tesauro (2000). He concludes that the con-
vergence toward equilibria can be achieved consistently,

with adjustments of the original approach. His method still
requires an algorithm where a single parameter is stored
for every game state and price choice combination, which
becomes intractable for larger or continuous state-spaces, an
issue that is overcome with the methods used in this work.

While the previous publications used early Q-learn-
ing methods to solve multi-agent problems, as we do it,
many other evaluations rely on applying similar methods
to very specialized single-agent environments. Gosavi
et al. (2002) apply reinforcement learning to revenue
management in airline pricing systems. Their simulation
includes real-world problems, for example, overbooking
and different classes of customers. They use temporal dif-
ference learning and neural networks in conjunction to
provide a well-performing pricing model for airlines that
outperforms industry-standard algorithms at that point in
time. Gosavi developed a new RL algorithm aiming at the
optimization of the average achieved reward per episode,
which was successfully applied to yield management for
the airline industry as well, cf. Gosavi (2004).

Vengerov (2008) formulates the problem of selling
computation time in a cloud service as a partially observa-
ble Markov decision process, where the information about
possible competitors is not fully accessible to the agent.
He shows that a policy gradient algorithm can success-
fully handle partially observable decision processes. It is
observed that algorithms like this tend to converge toward
equilibria in multi-agent environments. His approach relies
on non-deterministic policy gradient algorithms, a concept
used by us for further analysis.

Rana and Oliveira (2014) suggest using Q-learning to
solve pricing problems with multiple products with inter-
dependent demand. Q-learning seems to be a promising
approach in those cases where the user has no explicit
knowledge about the exact relationship between multiple
products and must take such factors into account. It is sug-
gested to use more sophisticated approaches that rely on
function approximation, such as deep Q-learning, to tackle
such situations in the future.

While reinforcement learning provides a general util-
ity tool for decision problems, specialized pricing models
are still developed to utilize knowledge about customer
and market behavior. Ye et al. developed such a model for
the pricing of vacation homes at AirBnB that relies on a
complex regression model that predicts sales probabilities
and resulting profits under different price choices, a con-
cept that is similar in structure to value estimation as it is
performed in Q-learning; see Ye et al. (2018).

Kim et al. (2016) study Q-learning in energy markets.
In such, the price choice is crucial for the service pro-
vider to control demand and maximize his profit. Their
approach is to search for structurally similar states and use
that information to update the Q-estimation at different

52	 A. Kastius, R. Schlosser

points. As their approach is market model specific, the
generality of reinforcement learning is given up. Aside
from pricing, reinforcement learning has proven itself in
other challenges related to operations management, for
example, supply chain management, as shown by Gian-
noccaro and Pontrandolfo (2002).

In contrast to our work, some studies analyze the reac-
tion to customer behavior by RL based agents, for example,
the study provided by Ghasemkhani and Yang (2018). They
analyzed reinforcement learning in an environment in which
demand management is necessary, but demand management
based on all customers’ data might violate the customer’s
privacy. They conclude that adaptive pricing algorithms can
achieve similar without the explicit exchange of customer
information.

Maestre et al. (2019) display an experiment where fair-
ness is included in the measured reward. They consider a
pricing model fair if it allocates the available goods equally
between different groups of customers. It was shown, that it
is possible to motivate an RL based agent to include fairness
in his learning process.

The outcome of the “Price collusion in a duopoly” sec-
tion displays that collusion between a self-learning agent and
a manually configured one can be enforced by the competi-
tor. This is consistent with other experiments in that area,
which proposed similar effects for multiple self-learning
agents; cf. Calvano et al. (2019).

In a recent publication, Bondoux et al. provide an exten-
sive study on the possible use of reinforcement learning for
airline revenue management; see Bondoux et al. (2020).
They show that Deep Q-Networks provides a feasible algo-
rithm for such systems. They apply DQN for simulations
with competition. They conclude, that exploration costs
have to be considered when applying RL, as increased
forced exploration shortens the learning curve at the cost
of higher losses during that period. Their simulation hides
the competitor behavior and the current market state from
the revenue management system, which prevents the direct
reaction to competing market participants.

Many of those examples rely on relatively simple algo-
rithms in the domain of RL, most notably Q-learning.
Q-learning has seen many improvements in the past years,
cf. artificial neural networks, experience replay, and several
extensions focusing on overcoming known shortcomings of
Q-learning, see Lillicrap et al. (2016), Schaul et al. (2016),
Van Hasselt et al. (2016), Wang et al. (2016), Hessel et al.
(2018). Many of those stay unmentioned and unused in the
previous publications on dynamic pricing.

Policy gradient algorithms have seen further develop-
ment as well. While the soft reinforcement learning algo-
rithms do incorporate entropy as regularizing factor, other
algorithms without that mechanism are available as well.
For example, A3C might serve as an alternative to SAC, cf.

Haarnoja et al. (2018); Mnih et al. (2016). Especially multi-
task oriented algorithms might serve as an addition to our
approach, as aggregation over different markets and products
would increase the availability of training data. As every one
of those markets might show different market dynamics, a
well-performing algorithm needs to take this into account.
Examples of such systems are IMPALA (Espeholt et al.
2018) and Distral (Teh et al. 2017), which will be evaluated
in future work.

Background

Our goal is to evaluate the performance of two examples of
RL algorithms on dynamic pricing problems. Two example
algorithms from two different categories have been selected.
The first algorithm is Deep Q-Networks (DQN), an imple-
mentation of Q-learning that uses artificial neural networks
to estimate the value of an action in a given state of the
environment and then selects the next action based on the
value estimations. The second algorithm is Soft Actor Critic
(SAC), which is a recent iteration in the group of policy gra-
dient algorithms. It is based on two components, the actor
and the critic. The actor represents a function that maps
states to actions that will be pursued. The critic provides an
estimator if the action chosen by the actor was chosen well,
this estimation is used to adjust the actor. The next two sub-
sections contain a deeper introduction to both algorithms.

Both algorithms require an environment that consists
of a state-space S, an action space A, and a state transition
function. A state transition occurs after the action choice of
the agent and provides the agent with information about his
reward r ∈ R . For all following experiments, we set R = ℝ .
Those parameters allow the agent to collect data in the form
of (st, at, rt, st+1) . The state transition probability ps(st+1|a, s)
has to fulfill the Markov property. A similar function pro-
vides a probability distribution for the rewards, given s and
a, pr(r|st, at) . The transitions can be deterministic, which is
the case for many of the experiments in the next sections.
The agent performs an action in this environment based on a
policy � . The policy can be either deterministic, �(s;�) , and
return the action a given s or non-deterministic, ��(a|s) , and
return the probability of performing a given s.

In both cases, the policy has a set of parameters, � , which
can be adjusted to change the assignment of actions to states.
The agent maximizes the long-term reward ( Gt ), i.e., the
sum of rewards rt (discounted by the factor � ), starting from
a given state at time t. Thus, the goal is to find a policy � ,
that maximizes the expectation of

Gt =
∑

k≥0
�k ⋅ rk+t.

53Dynamic pricing under competition using reinforcement learning﻿	

Deep Q‑networks (DQN)

In Q-learning, the goal is to provide an estimation of the
long-term value of an action and follow the estimations by
performing the action, that is maximizing this value. The
expected long-term reward of an action a given the state s
is the Q-value, cf. Watkins and Dayan (1992), i.e.,

Artificial neural networks do provide a capable method of
training an estimator for the Q-value. In that case, the func-
tion Q(s, a) is represented by a neural network. The inter-
nal structure of Q can be chosen by the engineer. Usually,
the neural network outputs the Q-values for all available
actions at once, instead of using a as parameter, all defini-
tions change accordingly. In all later examples, Q(s, a;�) is a
deep non-linear function, that relies on a chained application
of linear operations like Wx + b and the following applica-
tion of a non-linear function like relu, see Mnih et al. (2015).

Given a set of tuples (st, at, rt, st+1) , the goal is to opti-
mize Q to improve the estimation of the Q-value for all
given actions. The minimization goal is the squared differ-
ence between the estimated Q-value and the experienced
Q-value. As the future rewards are not known, the maximum
Q-value of the following state is estimated and used instead.
Then � is adjusted by minimizing J using an optimizer like
ADAM, see Kingma and Ba (2015) and Mnih et al. (2015),

To derive a policy from this estimation, while the agent is
facing the simulation, the Q-values are computed for the
current state s and all actions. The action with the high-
est estimated Q-value will be performed. Enforced random
exploration is used to improve data collection Mnih et al.
(2015) (U is a uniform distribution)

The implementation used for the experiments in Sects. “Per-
formance in duopoly environments” and “Application in oli-
gopoly competition” include two extensions for DQN, i.e.,
Double Deep Q-Networks and Dueling Deep Q-Networks.
Double Deep Q-Networks introduces a second network to
compute the target values, it reduces the positive bias that
is introduced by the maximization operator in the computa-
tion of target values, see Van Hasselt et al. (2016). Dueling
Deep Q-Networks introduces a change in the neural net-
work by computing two components of the Q-value. The
last layer computes the value and the advantage instead of

Qs,a = �[Gt|st = s, at = a].

J(st, at, rt, st+1;�)

=
1

|A|
(rt + � max

a∈A
Q(st+1, a;�) − Q(st, at;�))

2.

�(s) =

{
U(A), if U([0, 1]) ≤ �

argmax a∈AQ(s, a;�), otherwise.

a single Q-value. The value is the expected reward of being
in a certain state. The advantage is the expected additional
reward that can be achieved by performing a certain action,
cf. Wang et al. (2016). We have

The resulting setup uses two neural networks that implement
the dueling structure in their last layers. This setup is not
domain-specific.

Soft actor critic (SAC)

SAC is a policy gradient algorithm, that is centered on the
idea of having a parametrized policy, that can be optimized
given information about its expected performance. It con-
sists of an actor, which is the policy itself, and a critic, which
provides a feedback function for the actor. The critic pro-
vides an estimation of the value of an action, its gradient
regarding the action can be followed to find a better per-
forming action. The actor is a neural network that outputs
the action for a given state. The policy is then updated using
the gradient on the action from the critic to adjust the param-
eters of the actor. Actor critic can be applied to continu-
ous action spaces, while DQN requires the discretization of
the action space. In SAC, the optimization occurs not only
intending to maximize the value but also the entropy of the
non-deterministic policy. The non-determinism is achieved
using the output of the actor to configure the parameters of
a probability distribution, cf. Haarnoja et al. (2018),

This allows a policy to be optimal even without maximum
Q-values as long as it keeps high entropy. This approach
naturally motivates exploration and allows the algorithm to
focus on multiple near-optimal solutions instead of finding
one of the few optimal deterministic policies, cf. Haarnoja
et al. (2018). To train an estimator for Q, the loss can be
measured accordingly:

As Q implicitly requires an estimation of the state value, it
is required to have a second estimator:

Both networks can be optimized using the same algo-
rithms that have been used in DQN. To further improve the

Qs,a = Vs + As,a with Vs = �[Gt|st = s],

As,a = �[Gt|st = s, at = a] − �[Gt|st = s].

(1)V(s) =
∑

a∈A
��(a|s)(Q(s, a) − � log��(a|s))

(2)V(s) = �[Q(s, a) − � log��(a|s)].

JQL(rt, at, st, st+1;�q,�v) = (rt + �V(st+1;�v) − Q(st, at;�q))
2.

JVL(rt, st, st+1;�v) = (rt + �V�(st+1;�v) − V�(st;�v))
2.

54	 A. Kastius, R. Schlosser

stability of the results, two different estimators are kept for
the Q-value, the minimum output of both is used whenever
a Q-value is required, cf. Haarnoja et al. (2018). To optimize
the actor, the loss can be represented as the Kullback–Lei-
bler divergence (cf. DKL ) between the current policy and the
optimal policy under the current Q-value estimations, cf.
Haarnoja et al. (2018), where Z(st) is a normalizing constant
within each state, i.e.,

To minimize J, the gradient can be computed as follows,
using f which is a reparametrized version of the policy, cf.
Haarnoja et al. (2018):

The importance of the entropy in the soft value function
is reflected by the parameter � in (1) and has to be chosen
carefully. High values increase stability but decrease overall
performance. It is possible to determine � automatically, see
Haarnoja et al. (2018) for more information.

Performance in duopoly environments

In a duopoly market, the agent competes with a single com-
petitor. The agent has to understand the customer behavior
as well as the competitor’s reaction.

Experimental setup

All model inputs to reproduce the calculation of all alloca-
tions are available online, see Source Code (2020). In our
model, time is split into periods of fixed length, which start
with the agent’s price update. After the first half of the epi-
sode, the competitor reacts to the agent’s action and updates
his price (cp. the setup used in Schlosser and Richly (2019)).

The behavior of the customer is modeled by a logistic
model, which is based on real-world data, cf. Schlosser
and Boissier (2018). It returns the probability of having a
sale in a given period according to several features, includ-
ing price rank and difference to the competitor price. The
overall customer behavior reflects that lower price levels
increase sales and price rank is the most noticeable feature.
To maximize revenue, the agent has to find both an ade-
quate price level and undercut his competitor to increase
sales. An overview of all features available is given in
Table 1. Note, for the price rank, we use the indicator
function, cf. 1{⋅} . Sales are computed for each half of the
episode for both participants. An example of the expected

J(�) = �

�
DKL

�
��‖eQ(st ,at)∕Z(st)

��
.

∇J(�) =∇�� log(��(at|st)) + (∇a� log(��(at|st))
− ∇aQ(st, at))∇�f�(�t, st).

revenue in this model in different market situations is dis-
played in Fig. 1.

The state-space in this game consists of only a single fea-
ture, the current competitor price. The action space consists
of all possible prices. The price range for both competitors
is one to 50. For DQN, this price range is discretized in
steps of size 1. SAC does not require any discretization of
the action space.

To maximize his reward, the agent has to react accord-
ingly to the competitor’s strategy. In many setups, the com-
petitor uses a simple strategy that was manually tuned by
humans. The agent has to correctly estimate the competitor’s
reaction to maximize his reward. He has to set a price that
is forcing the competitor toward an unprofitable reaction
and allows a sustainable high price level in the market. This
necessity distinguishes the following experiments from other
evaluations of RL on dynamic pricing, cf., e.g., Bondoux
et al. (2020).

Two groups of manually tuned competitor strategies are
available, deterministic and non-deterministic. The sec-
ond group was introduced to provide an additional chal-
lenge for competitors in the market, as the behavior of a
trader becomes less predictable. Both algorithms have been

Table 1   Features (for logistic demand; Schlosser and Richly (2019))
to calibrate demand probabilities; p is the own price, o is the price of
the competitor

 The amount of realized sales is computed vice versa for both partici-
pants

Name Computation �

Constant 1 −3.82

Price rank 1 + 0.5 ⋅ 1{p=o} + 1{p>o} −0.56

Price difference p − o −0.01

Average market price (o + p)∕2 −0.03

Fig. 1   Expected profit in one episode for different own prices at a
fixed competitor price, cf. 10, 30, 50

55Dynamic pricing under competition using reinforcement learning﻿	

evaluated in the same simulation against different competi-
tors to analyze strengths and weaknesses.

In duopoly cases, one can compute optimal reaction strat-
egies using full information based on dynamic programming,
e.g., described in Schlosser and Richly (2019), Lemma 3.1,
cf. DP solution. Note, this becomes impossible for larger
state-spaces, but the duopoly provides a possibility to verify
the performance of self-learned strategies. The strategies of
the agent are evaluated by comparing their expected long-
term reward with the expected long-term reward of the
respective optimal strategy.

All experiments on the duopoly have been performed
10 times with a length of 500,000 episodes. The setup for
DQN uses a neural network with three hidden layers with
an output vector with 128 elements each. The last two lay-
ers compute advantage and value independently. It outputs
the Q-values for all actions in one vector. SAC uses three
chained layers with 128 nodes for the critic and the actor.
Both algorithms do incorporate experience replay to reuse
older data.

Deterministic competitors

We consider three common types of deterministic strategies:
fixed price (Sect. 3.2.1), undercutting (Sect. 3.2.2), and two-
bound strategies (Sects. 3.2.3–3.2.4).

Fixed price

Such a situation occurs, if the competitor sticks to a fixed
price. In that case, the most advantageous strategy is to
slightly undercut the competitor at all times, as long as the
competitor’s price is at a level that allows sustainable profit.

In this case, DQN can outperform SAC. No convergence
can be observed in the strategies of SAC. SAC consistently

converges toward the upper end of the action space at the
competitor price, which diminishes the strategy value. We
assume that this behavior is caused by the entropy term of
the optimization. If the Q-values become very low, the moti-
vation to follow the Q-value might be superimposed by the
motivation to increase entropy. If this effect is not stopped,
no convergence toward a well-performing strategy occurs.

DQN on the other hand, finds well-performing strategies,
see Fig. 2. While having a high peak performance, repeated
deviation from the optimal strategy causes a huge span in
the performance of DQN at any point in time, which renders
it unreliable.

Unlimited two‑bound (undercutting)

A common deterministic strategy undercuts the agent by a
fixed difference if possible, for example by one-price unit. If
the agent would follow a similar strategy, this would lead to
a tie, after one reaches his minimum price level. This setup
is the specialization of a two-bound enemy, called unlimited
two-bound. A two-bound strategy �o(p) has a lower limit pl ,
which is never undercut and an upper limit pu , which is used
if the competitor undercuts pl:

The optimal strategy in the given environment against an
unlimited two-bound uses two-bound on its own, with limits
specific to the demand function. To stay within a price range
that achieves decent profitability, the agent should avoid
reducing the price level to values below 24, see Fig. 3. This
happens because the competitor can diminish the maximum
achievable revenue by choosing a low price, see Fig. 1.

DQN showed noticeable issues in terms of stabil-
ity while competing with this competitor. While finding

(3)�o(p) =

{
p − 1, if p − 1 ≥ pl
pu, otherwise.

Fig. 2   Median performance
with .2 and .8 quintile over
500K learning episodes of DQN
vs SAC with a competitor that
uses a fixed price; “Fixed price”
section

56	 A. Kastius, R. Schlosser

well-performing strategies, they get replaced within a few
episodes, explaining the noticeable spread in performance
visible in Fig. 4.

One explanation for this effect can be found in the fact
that DQN struggles with correctly estimating the long-term
behavior of the competitor, an analysis that will be proven in
later experiments. DQN tends to stick with state-independent
one-price strategies. As reacting with a one-price strategy
is not sufficient in this setting, this provides an upper bound
on the reward that can be achieved. A complex strategy is
considered one that uses a noticeable share of the available
action space if necessary. SAC is more familiar with com-
plex strategies, as they are easily encoded within its actor.
The problems of DQN might be caused by two structural
challenges. The Q-values in this domain lie close together,
especially because DQN was used with a high discount
� ∶= 0.999 . This makes even small errors in the estimation

crucial and slightly overestimating a single action leads to
the problems described above. While it handles problems
that require complex strategies more efficient than DQN
does, SAC has noticeable issues in problem areas where
fixed price strategies are the best.

Limited two‑bound

A limited two-bound, specified by (3), requires nearly the
same response strategy as an unlimited one, assuming that
the lower limit pl of the two-bound is set to a value below
24. In this case, the resulting behavior will be equal to the
behavior with open bounds. Accordingly, the measured
performance is similar to the results from the previous
experiments.

Exploitable two‑bound

A two-bound strategy becomes exploitable if it is possible
to undercut pl and still achieve a decent amount of sales at
a decent price. If this is done, the competitor has to stick to
his upper limit, which highly increases the price difference
between both competitors. This requires a fixed price strat-
egy, as it is necessary to react with pl at all times to avoid
ending up in an undercutting cycle.

DQN outperforms SAC in such situations, as this is one
of those use cases where the preference for one-price strate-
gies of DQN becomes an advantage (Fig. 5). SAC can find
well-performing strategies, but requires more training data
and is unable to outperform DQN at any time. DQN tends to
follow strategies, that lead to a 24/45 market state relatively
fast, an example is given in Fig. 6. SAC tries to undercut the
competitor in many situations while exploiting his strategy
in others, an example strategy found throughout the training
that illustrates this is displayed in Fig. 7.

Fig. 3   Structure of an optimal strategy (obtained via DP) against an
unlimited two-bound; “Unlimited Two-bound (Undercutting)” section

Fig. 4   Median performance
with .2 and .8 quintile over
500K learning episodes of
SAC and DQN (compared
against optimal DP solution,
with a competitor that follows a
two-bound strategy as specified
in (3) with pl = 1 , pu = 50 );
“Unlimited Two-bound (Under-
cutting)” section

57Dynamic pricing under competition using reinforcement learning﻿	

Non‑deterministic competitors

All competitors introduced in the last section are determin-
istic. In markets where one or more market participants
can be expected to use algorithms that try to anticipate
the competitor’s reactions, it might be advantageous to
introduce non-deterministic strategies to increase the dif-
ficulty of that estimation.

Different concepts for non-deterministic strategies are
available. One possibility is using a randomized strategy
that does not depend on state of the market. Alternatively,
the competitor might also use a mix of several determinis-
tic strategies or add noise to a single deterministic strategy,
to hide it from the agent. In the second case, depending

on the noise pattern applied, it is possible to estimate the
underlying structure of the competitor, given a large num-
ber of observations available. Such a situation might occur
as well if the competitor is using RL on his own, espe-
cially those approaches that produce non-deterministic
parametrized strategies like SAC.

Random price choice

In case of a fully randomized competitor, which is only
constrained to a lower and upper limit price limit, long-
term effects become irrelevant to the agent. The next state
does not depend on the last one at any point. A correct
reaction to the current state becomes the only required
ability to perform well. Because of this effect, this setup

Fig. 5   Median performance
with .2 and .8 quintile over
500K learning episodes of DQN
vs SAC against the two-bound
strategy with 25/45 limits;
“Exploitable two-bound” sec-
tion

Fig. 6   A DQN example strategy that achieves 99% relative perfor-
mance against the exploitable 25/45 two-bound competitor. It leads
to a pattern where the reaction of the agent is either 33 or 45, which is
countered by the competitor with 32 or 44. In both cases, the reaction
of the agent is 25, which then leads again to a reaction of 45 by the
competitor; “Exploitable two-bound” section

Fig. 7   A SAC strategy with 92% relative performance against the
exploitable competitor with bounds 25/45. While reacting with a
price around 25, it follows the undercut pattern at a price of circa 40
and above, which provides the competitor with a realistic chance of
competition; “Exploitable two-bound” section

58	 A. Kastius, R. Schlosser

can display the struggle of DQN to correctly estimate
long-term behavior. Figure 8 displays the relative per-
formance of both agents. DQN achieves a high level of
performance fast and does not have noticeable stability
issues that could be observed against complex determin-
istic strategies. SAC requires more observations to achieve
only slightly improved results.

Noised strategies

In the case of a noised strategy, a deterministic strategy is
used and the chosen price is slightly adjusted by adding
noise. An example configuration for this setup is a com-
bination of the two-bound from the last experiments with
the addition of values drawn from a normal distribution. �
describes such a noised policy, with N(0, �) representing a
value drawn from a normal distribution and �orig being the
deterministic strategy of the opponent:

This situation offers the same general challenges to the agent
that have been present against a two-bound competitor. It is
expected that the agent has to collect more data to correctly
estimate the underlying deterministic strategy and then
achieves the same results as before. Figure 9 shows that this
expectation does fully hold. In general, SAC outperforms
DQN, as was the case for a normal two-bound, but the per-
formance of DQN is more stable in general. The maximum
performance achieved by DQN is slightly lower than in the
deterministic use case, whereas the minimum performance
is slightly increased.

In the last experiments, it was shown that there are some
exceptional situations, in which Q-learning outperforms
SAC. As those situations required special preconditions
or competitors that do not fully follow business logic, e.g.,
by randomizing their price choices as a whole, it can be
concluded that SAC and future iterations of policy gradient
algorithms provide a well-performing basis to build pricing

(4)�(s) = �orig(s) +N(0, �).

Fig. 8   Median performance
with .2 and .8 quintile over
500K learning episodes of DQN
vs SAC with a competitor, that
chooses a random price in the
price range of 10 to 50; “Ran-
dom price choice” section

Fig. 9   Median performance
with .2 and .8 quintile over
500K learning episodes of DQN
vs SAC with a competitor, that
applies noise; “Noised strate-
gies” section

59Dynamic pricing under competition using reinforcement learning﻿	

systems. This result should be repeated in a more complex
market.

Price collusion in a duopoly

As long as the competitor in the duopoly is directly compet-
ing with the agent, he has an incentive to join the competi-
tion by undercutting. In practice, there is the possibility to
make an implicit offer of cooperation between both market
participants. In such a case, the competitor is configured to
answer a specified cartel price, e.g., 33. In this simulation,
33 is the price that yields the highest possible expected profit
if both market participants use the same price. The cooperat-
ing competitor that agrees to a cartel can increase the agents’
motivation by following a dumping price two-bound strategy
until the agent agrees to the cartel.

Figure 10 displays the performance of SAC and DQN
in the case that the competitor does offer a cartel at 33 but
behaves like an unlimited two-bound in all other cases. In

such a situation, competing can slightly outperform agreeing
to a cartel. SACs ability to compete efficiently then outper-
forms the tendency of DQN to agree to the cartel.

If the competitor is performing price dumping until the
agent agrees to the cartel, this advantage is not given any-
more. Following his tendency to use undercutting, SAC
misses the opportunity given by the cartel. This can be
observed in the results in Fig. 11, which yields better results
for DQN than in most other experiments.

The cartel experiments show a noticeable effect in mar-
kets that are driven by self-learning algorithms. It proofs,
that both market makers don’t need to exchange any infor-
mation but price reactions, to allow both of them to form
a cartel and drop competition. Naturally, this leads to an
increased price level for the customer. The experiments on
two-bound show a similar effect, where the agent does avoid
diminishing the price level in the market and offers his com-
petitor a return to a high price level at his own cost. This
mechanism is still more desirable by the customer, as the

Fig. 10   Median performance
with .2 and .8 quintile over
500K learning episodes of DQN
vs SAC with a competitor, that
offers a cartel price at 33 and
undercuts by one in all other
situations; “Price collusion in a
duopoly” section

Fig. 11   Median performance
with .2 and .8 quintile over
500K learning episodes of DQN
vs SAC with a competitor, that
offers a cartel price at 33 and
undercuts by one within a range
of 10 to 20. The competitor
does never exceed this price
range; “Price collusion in a
duopoly” section

60	 A. Kastius, R. Schlosser

lower limit of the agent is lower than the cartel price that
might have been used otherwise.

Competition between different self‑adaptive
learning strategies

The duopoly scenario introduces the possibility of direct
competition between both algorithms. As the strategy of
both agents changes over time, the Markov property is vio-
lated. To reduce this effect, training of both algorithms does
not occur at the same time. Instead, training occurs in turn.
Each algorithm can optimize its policy for 50,000 episodes
to find a strategy against the fixed policy of his competitor,
before being fixed for 50,000 episodes. Agent a uses SAC,
agent b uses DQN. The experiments lasted over 1,000,000
episodes, with 10 training cycles. For evaluation, the aver-
age achieved rewards of both agents have been measured.
Figure 12 displays the results.

No algorithm was able to continuously outperform his
competitor, the length of the training episode allowed it
for both algorithms to find a well-performing strategy rela-
tively fast. No other reliable pattern can be observed in the
earnings.

Schlosser and Richly (2019) observed repeating patterns
of strategies when dynamic programming was competing
with itself. The results of several executions of this setup did
not yield strategies that contained human visible patterns.
Agent b showed a strong tendency toward one or two price
strategies, usually in a reasonable price range between 20
and 50. His competitor, the SAC agent, focuses on finding
competing strategies against those immediately. This can
be observed in Figs. 13 and 14. This figure shows that DQN
can explore more. This effect is encouraged by the fact that
the SAC agent does respond with more different prices then
DQN does. This better response behavior provides DQN
with the opportunity to collect information about more price
combinations. This does not prevent DQN from sticking to

fixed price strategies, which can be observed in the heatmap
for the training phase of SAC. The competitor price range
during the training of SAC is always limited to a single ver-
tical price band. The exploration of SAC occurs only on
this price range, which limits the number of different price
combinations that can be observed. SAC finds near-optimal
response strategies fast. SAC tends to explore the upper end
of the price range, independent of the opponent price. This
effect increases at the lower end of the price range.

Both algorithms tend to develop strategies against their
counterparts relatively fast and continue to outperform their
competitor. With the given setup, no equilibrium of strate-
gies could be observed, with no cycles being available either.

Fig. 12   Average reward meas-
ured using a moving average
over 500 episodes (10 train-
ing iterations) for both agents
aggregated over 10 experiments;
“Competition between different
self-adaptive learning strate-
gies” section

Fig. 13   Price response probabilities of SAC during a training phase
against prices of DQN, “Competition between different self-adaptive
learning strategies” section

61Dynamic pricing under competition using reinforcement learning﻿	

Application in oligopoly competition

In practice, many markets do not exist in the form of duop-
olies. For most products, there exists more than a single

competitor, and each competitor in the market is going to
follow slightly different pricing strategies. Such situations
cannot be analyzed by the solution approach that was used
to evaluate the duopoly market because the curse of dimen-
sionality makes it intractable. The oligopoly market can only
be analyzed in terms of achieved average reward per episode.

In the duopoly it was assumed that at the end of an epi-
sode all market participants had performed the same amount
of price updates, this assumption is dropped for an oligop-
oly. As many more price updates occur, an intuitive strat-
egy for each market participant is to observe the market at
some point, compute a reaction to that and then wait for
some time. Technical limits, for example API update rates,
might make it impossible to react to each competitor’s price
updates, especially because the market participants might
compute their price updates simultaneously. Because of this,
it is assumed that every market participant updates his price
after a fixed period in reaction to the current market situation
at this point. The competitors’ update rates are displayed in
Table 2.

Customers arrive at a certain rate and then decide for a
market participator. The customer usually decides for the
cheapest competitor. Random noise is applied to the prices
before the selection to compute the rating of the customer;
see Source Code (2020). This allows it for two competitors
at a similarly low price level to have a realistic chance of
achieving a sale. An interested customer arrives on average
every 0.1 units of time (cf. episodes).

In the example shown in Fig. 15, several competitors do
compete in the market. The strategies used by the competi-
tor include fixed price strategies, for example by competitor
3, as well as exploitable and unlimited two-bounds. Also,
there is one competitor that randomly chooses between two
strategies at each decision point. Table 2 provides a detailed
overview.

We allow the agent to update on average every � = 1.0
units of time, while the competitors have higher/lower
(slightly randomized) update frequencies (all normal

Fig. 14   Price response probabilities of DQN during a training phase
against prices of SAC, “Competition between different self-adaptive
learning strategies” section

Table 2   Competitor setup in the oligopoly case, for more implemen-
tation details see Source Code (2020)

Type Parameters Delay �

1 Two-bound pl = 1 , pu = 50 0.7
2 Two-bound pl = 15 , pu = 45 1.2
3 Fixed p = 19 1.1
4 Random pl = 1 , pu = 50 0.6
5a 50% two-bound pl = 20 , pu = 40 1.6
5b & 50% random pl = 10 , pu = 50 -

Fig. 15   Price trajectories
recorded during the training
phase of a SAC agent in an
oligopoly; “Application in oli-
gopoly competition” section

62	 A. Kastius, R. Schlosser

distributed with standard deviation of 0.05). He can make
use of the exploitation strategy to diminish the performance
of competitor 2 while he has to directly compete with the
unlimited two-bound. The randomized competitor adds
noise to the state information and might diminish the overall
price level on the market by randomly choosing low prices.

Given those preconditions, both agents have been chal-
lenged with competing in that market. In general, both out-
performed their fixed strategy competitors at some point,
cf. Fig. 16, where the results are normalized by the rewards
achieved by a benchmark strategy playing random prices
via uniform U([1, 50]) . Other market setups might yield dif-
ferent results. In general, DQN requires more episodes but
overall achieves a similar level of average performance at
some point. SAC is the algorithm of choice, as it converges
to a high level of reward fast and can keep this level over
long periods.

Conclusions

We studied pricing competition motivated by online markets
in order to provide insights for practitioners to assess in how
far reinforcement learning can be used to automate frequent
repricing in a self-adaptive way. The first set of experiments
showed several strengths and weaknesses of DQN and SAC
when applied to pricing simulations. While non-determinis-
tic competitor behavior does not offer a noticeable challenge
for both algorithms, several special cases could be found that
easily diminish an algorithm’s performance. SAC struggles
in those cases, where a simple, fixed price strategy would
be optimal, while the major challenge for DQN lies in those
cases where complex strategies are required to react to a lot
of different situations accordingly. Both algorithms handle
more complex scenarios with many competitors well.

We find that RL is a suitable alternative to specialized
pricing algorithms. Both algorithms do not require any

domain knowledge to be set up. Further, hyperparameter tun-
ing was required to a smaller extent for SAC than for DQN.
With the configuration used in the experiments, both mod-
els work well on different market setups. The most notable
disadvantage of both algorithms is that they require a large
number of observations to perform well. While both algo-
rithms found well-performing strategies fast, in some use
cases it took 400K episodes to achieve decent performance.

In comparison to classical approaches like dynamic pro-
gramming (DP), RL requires less domain knowledge and
input data. DP requires several estimations as input, for
example, an estimation about the competitor behavior and
the demand model. The optimal solution will only be opti-
mal within those estimations. Recall, RL does not require
any such specialized models to work. DP becomes impracti-
cal for any complex market setups, e.g., in large oligopolies.

For future research, a deeper evaluation of more recent
algorithms should be performed. It should be investigated,
if an increase in data efficiency is possible for DQN or SAC,
as the state-space is smaller than the number of observations
required to achieve peak performance. Further, the analyzed
RL strategies can also be applied in finite horizon problems
when selling a finite inventory of perishable products. Then,
for collecting data and adapting strategies pooled or repeated
simulation runs will have to be considered. In this context, in
future work, we will investigate whether information gained
in similar markets for different products can be used for
multi-task reinforcement learning. If possible, this magnifies
the amount of data available for training. Several alternative
approaches to implement such a system are available at this
point in time, as they have been mentioned in the “Related
work” section.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Fig. 16   Reward averaged over
500 episodes and 10 runs
throughout a learning time of
50K episodes of SAC and DQN
in an oligopoly. Rewards are
normalized by the reward of
7.63 per episode achieved by
a uniform U([1, 50]) random
price choice; “Application in
oligopoly competition” section

63Dynamic pricing under competition using reinforcement learning﻿	

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Bondoux, N., A.Q. Nguyen, T. Fiig, and R. Acuna-Agost. 2020. Rein-
forcement learning applied to airline revenue management. Jour-
nal of Revenue and Pricing Management 19: 332–348.

Calvano, E., G. Calzolari, V. Denicolò, and S. Pastorello. 2019. Arti-
ficial intelligence, algorithmic pricing and collusion. American
Economic Review 110: 3267–3297.

den Boer, A.V. 2015. Dynamic pricing and learning: Historical ori-
gins, current research, and new directions. Surveys in Operations
Research and Management Science 20: 1–18.

Espeholt, L., H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y.
Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukc-
uoglu. 2018. IMPALA: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. Proceedings of the
35th International Conference on Machine Learning, in PMLR
80: 1407–1416.

Ghasemkhani, A., and L. Yang. 2018. Reinforcement learning based
pricing for demand response. In: 2018 IEEE international confer-
ence on communications workshops, ICC workshops 2018-pro-
ceedings. 2018 (pp. 1–6). Kansas City, MO, USA: IEEE.

Giannoccaro, I., and P. Pontrandolfo. 2002. Inventory management in
supply chains: A reinforcement learning approach. International
Journal of Production Economics 78: 153–161.

Gosavi, A., N. Bandla, and T.K. Das. 2002. A reinforcement learning
approach to a single leg airline revenue management problem with
multiple fare classes and overbooking. IIE Transactions (Institute
of Industrial Engineers) 34: 729–742.

Gosavi, A. 2004. A reinforcement learning algorithm based on policy
iteration for average reward: Empirical results with yield man-
agement and convergence analysis. Machine Learning 55: 5–29.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine. 2018. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learn-
ing with a stochastic actor. In Proceedings of the 35th inter-
national conference on machine learning, ICML 2018 (pp.
1861-1870). Stockholm.

Hessel, F.N., et al. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), New Orleans, LA: AAAI.

Kephart, J.O., and G. Tesauro. 2000. Pseudo-convergent q-learning by
competitive pricebots. In Proceedings of the seventeenth interna-
tional conference on machine learning, ICML ’00 (pp. 463–470).
San Francisco, CA.

Kim, B.G., Y. Zhang, M. Van Der Schaar, and J.W. Lee. 2016. Dynamic
pricing and energy consumption scheduling with reinforcement
learning. IEEE Transactions on Smart Grid 7: 2187–2198.

Kingma, D.P. and J. Ba. 2015. Adam: A method for stochastic opti-
mization. In Bengio, Y. and Y. LeCun, eds., 3rd international
conference on learning representations, ICLR 2015, San Diego,
CA, USA.

Könönen, V. 2006. Dynamic pricing based on asymmetric multiagent
reinforcement learning. International Journal of Intelligent Sys-
tems 21: 73–98.

Kutschinski, E., T. Uthmann, and D. Polani. 2003. Learning com-
petitive pricing strategies by multi-agent reinforcement learning.
Journal of Economic Dynamics and Control 27: 2207–2218.

Lillicrap, T.P., J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra. 2016. Continuous control with deep rein-
forcement learning. In 4th international conference on learning
representations, ICLR 2016, San Juan, PR, USA.

Maestre, R., J. Duque, A. Rubio, and J. Arevalo. 2019. Reinforcement
learning for fair dynamic pricing. In Arai, K., S. Kapoor, and R.
Bhatia, eds., Intelligent systems and applications.

Mnih, V., K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bel-
lemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. 2015. Human-level control
through deep reinforcement learning. Nature 518: 529–533.

Mnih, V., A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu. 2016. Asynchronous methods for
deep reinforcement learning. In Balcan, M.F. and K.Q. Wein-
berger, eds., Proceedings of machine learning research (vol. 48,
pp. 1928–1937). New York: PMLR.

Rana, R., and F.S. Oliveira. 2014. Real-time dynamic pricing in a non-
stationary environment using model-free reinforcement learning.
Omega (United Kingdom) 47: 116–126.

Schaul, T., J. Quan, I. Antonoglou, and D. Silver. 2016. Prioritized
experience replay. In 4th international conference on learning
representations, ICLR, 2016. San Juan, USA: PR.

Schlosser, R., and K. Richly. 2019. Dynamic pricing under competition
with data-driven price anticipations and endogenous reference price
effects. Journal of Revenue and Pricing Management 18: 451–464.

Schlosser, R., and M. Boissier. 2018. Dynamic pricing under compe-
tition on online marketplaces: A data-driven approach. In Pro-
ceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining (pp. 705–714).

Source Code. 2020. Input data and scripts to reproduce the experi-
ments. https​://www.dropb​ox.com/s/fpo9k​is0r3​c95nd​/rlpri​cing-
maste​r.zip.

Teh, Y.W., V. Bapst, W.M. Czarnecki, J. Quan, J. Kirkpatrick, R. Had-
sell, N. Heess, and R. Pascanu. 2017. Distral: Robust multitask
reinforcement learning. Proceedings of the 31st international con-
ference on neural information processing systems. NIPS’17 (pp.
4499–4509). Red Hook, NY: Curran Associates Inc.

Van Hasselt, H., A. Guez, and D. Silver. 2016. Deep reinforcement
learning with double Q-Learning. AAAI, Phoenix, AZ, USA (pp.
2094–2100).

Vengerov, D. 2008. A gradient-based reinforcement learning approach
to dynamic pricing in partially-observable environments. Future
Generation Computer Systems 24: 687–693.

Wang, Z., et al. 2016. Dueling network architectures for deep reinforce-
ment learning. In Proceedings of the 33rd international confer-
ence on machine learning, ICML 2016 (pp. 1995–2003). New
York, NY, USA.

Watkins, C.J., and P. Dayan. 1992. Q-learning. Machine Learning 8:
279–292.

Ye, P., J. Qian, J. Chen, C.-H. Wu, Y. Zhou, S. De Mars, F. Yang, and L.
Zhang. 2018. Customized regression model for airbnb dynamic pric-
ing. In Proceedings of the 24th ACM SIGKDD international confer-
ence on knowledge discovery & data mining (pp. 932–940). KDD
’18. New York, NY, USA: Association for Computing Machinery.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://www.dropbox.com/s/fpo9kis0r3c95nd/rlpricing-master.zip
https://www.dropbox.com/s/fpo9kis0r3c95nd/rlpricing-master.zip

	Dynamic pricing under competition using reinforcement learning
	Abstract
	Introduction
	Related work
	Background
	Deep Q-networks (DQN)
	Soft actor critic (SAC)

	Performance in duopoly environments
	Experimental setup
	Deterministic competitors
	Fixed price
	Unlimited two-bound (undercutting)
	Limited two-bound
	Exploitable two-bound

	Non-deterministic competitors
	Random price choice
	Noised strategies

	Price collusion in a duopoly
	Competition between different self-adaptive learning strategies
	Application in oligopoly competition
	Conclusions
	References

