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Abstract
Dynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past 
advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems. 
In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models. 
We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used 
for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that 
both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain 
conditions, RL algorithms can be forced into collusion by their competitors without direct communication.

Keywords  Dynamic pricing · Competition · Reinforcement learning · E-commerce · Price collusion

Introduction

In modern-day online trading on large platforms using the 
correct price is crucial. If your goods’ prices are way off 
the competition, customers might go for cheaper competi-
tors or ones that offer a better service or a similar product. 
Many traders nowadays can make use of dynamic pricing 
algorithms, that automatically update their price according 
to the competitors’ current offers. Those price updates might 
occur at a high frequency. While it is possible to use simple 
pricing strategies and tune their parameters manually, this 
raises the question of whether it is possible to provide an 
automated solution for such problems.

We analyze two examples of such markets focusing on 
durable and replenishable goods: (i) duopolies, that require 
the agent to compete with a single competitor and (ii) oligop-
olies with multiple active competitors. Duopoly markets offer 
the advantage, that optimal solutions can still be computed 
via dynamic programming (DP), cf., e.g., Schlosser and 
Richly (2019), which provides an opportunity to compare 
and verify the results of reinforcement learning (RL).

RL offers algorithms, that are focused around solving 
games by maximizing a reward stream offered by the game. 
They are problem independent and require only hyperpa-
rameter tuning to be set up. They have been used for various 
problems in the past, for example, video games and robot-
ics. A few examples of them being applied to other pricing 
problems are available as well, see Kephart and Tesauro 
(2000), Kim et al. (2016), and Rana and Oliveira (2014). 
Deep Q-Networks (DQN, Mnih et al. 2015) is a commonly 
used example of classical RL algorithms. It estimates the 
expected reward of pursuing a certain action and searches 
for the action with the highest expected reward. Other 
approaches, like Soft Actor Critic (SAC), see Haarnoja et al. 
(2018), rely on directly tuning a parametrized strategy and 
use value estimations only to guide updates of the policy.

In this paper, we analyze how far RL algorithms can be 
used to overcome the limitations of dynamic programming 
approaches to solve dynamic pricing problems in competi-
tive settings. Our contributions are:

•	 We compute self-adaptive pricing strategies using DQN 
and SAC algorithms.

•	 We compare their performance compared to opti-
mal strategies in tractable duopoly settings derived by 
dynamic programming techniques.

•	 We study RL strategies regarding their tendencies in a 
duopoly to form a cartel.
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•	 We show that RL strategies can be successfully applied 
in oligopoly scenarios.

 The “Related work” section discusses related work. 
The “RL algorithms” section gives an overview of RL algo-
rithms. In the “Performance in duopoly environments” sec-
tion, we study RL strategies in different duopoly settings 
against deterministic and randomized strategies. In the 
“Price collusion in a duopoly” section, we investigate the 
formation of price collusion. The “Competition between dif-
ferent self-adaptive learning strategies” section shows exper-
iments, where two RL systems directly compete against each 
other. The “Application in oligopoly competition” section 
considers oligopoly settings. The “Conclusion” section con-
cludes the paper.

Related work

The domain of dynamic pricing is large. While RL is well 
known in the community, publications around it are scat-
tered and broad, as observed by den Boer (2015). Many 
examples are available where RL has been applied to dif-
ferent market models.

Kutschinski et al. (2003) present a multi-agent market 
model, in which the seller has to determine both the offer 
price and the number of goods produced in a setting with 
another competitor that dynamically makes the same deci-
sion. They used Q-learning to implement a pricing bot in 
that scenario. They observe that Q-learning does find near-
optimal policies, though being slower than specialized 
alternatives. They use Q-learning only with discount factors 
being set to zero, making it unsuitable for problems where 
long-term effects do matter.

Kephart and Tesauro (2000) use Q-learning in multi-
agent scenarios with a demand model in which the reward is 
a function that mostly relies on the price rank. They analyze 
a scenario with two agents using tabular Q-learning to learn 
pricing policies in a duopoly setup. In such a setup, there are 
several equilibria, in which very similar pricing policies are 
used by both agents and stay unaltered. Q-learning does con-
verge toward such equilibria. At some points, pseudo-solu-
tions are found, in which no exact equilibrium is achieved. 
Instead, both agents deviate around the equilibrium slightly. 
Kephart et al. show that in setups with two agents and a very 
simplistic demand model, such equilibria are found reliably.

Könönen (2006) presents a similar evaluation of Q-learn-
ing that uses function approximation instead of the tabu-
lar approaches and introduces policy gradient methods to 
the same challenge. His methodology is loosely based on 
Kephart and Tesauro (2000). He concludes that the con-
vergence toward equilibria can be achieved consistently, 

with adjustments of the original approach. His method still 
requires an algorithm where a single parameter is stored 
for every game state and price choice combination, which 
becomes intractable for larger or continuous state-spaces, an 
issue that is overcome with the methods used in this work.

While the previous publications used early Q-learn-
ing methods to solve multi-agent problems, as we do it, 
many other evaluations rely on applying similar methods 
to very specialized single-agent environments. Gosavi 
et  al. (2002) apply reinforcement learning to revenue 
management in airline pricing systems. Their simulation 
includes real-world problems, for example, overbooking 
and different classes of customers. They use temporal dif-
ference learning and neural networks in conjunction to 
provide a well-performing pricing model for airlines that 
outperforms industry-standard algorithms at that point in 
time. Gosavi developed a new RL algorithm aiming at the 
optimization of the average achieved reward per episode, 
which was successfully applied to yield management for 
the airline industry as well, cf. Gosavi (2004).

Vengerov (2008) formulates the problem of selling 
computation time in a cloud service as a partially observa-
ble Markov decision process, where the information about 
possible competitors is not fully accessible to the agent. 
He shows that a policy gradient algorithm can success-
fully handle partially observable decision processes. It is 
observed that algorithms like this tend to converge toward 
equilibria in multi-agent environments. His approach relies 
on non-deterministic policy gradient algorithms, a concept 
used by us for further analysis.

Rana and Oliveira (2014) suggest using Q-learning to 
solve pricing problems with multiple products with inter-
dependent demand. Q-learning seems to be a promising 
approach in those cases where the user has no explicit 
knowledge about the exact relationship between multiple 
products and must take such factors into account. It is sug-
gested to use more sophisticated approaches that rely on 
function approximation, such as deep Q-learning, to tackle 
such situations in the future.

While reinforcement learning provides a general util-
ity tool for decision problems, specialized pricing models 
are still developed to utilize knowledge about customer 
and market behavior. Ye et al. developed such a model for 
the pricing of vacation homes at AirBnB that relies on a 
complex regression model that predicts sales probabilities 
and resulting profits under different price choices, a con-
cept that is similar in structure to value estimation as it is 
performed in Q-learning; see Ye et al. (2018).

Kim et al. (2016) study Q-learning in energy markets. 
In such, the price choice is crucial for the service pro-
vider to control demand and maximize his profit. Their 
approach is to search for structurally similar states and use 
that information to update the Q-estimation at different 
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points. As their approach is market model specific, the 
generality of reinforcement learning is given up. Aside 
from pricing, reinforcement learning has proven itself in 
other challenges related to operations management, for 
example, supply chain management, as shown by Gian-
noccaro and Pontrandolfo (2002).

In contrast to our work, some studies analyze the reac-
tion to customer behavior by RL based agents, for example, 
the study provided by Ghasemkhani and Yang (2018). They 
analyzed reinforcement learning in an environment in which 
demand management is necessary, but demand management 
based on all customers’ data might violate the customer’s 
privacy. They conclude that adaptive pricing algorithms can 
achieve similar without the explicit exchange of customer 
information.

Maestre et al. (2019) display an experiment where fair-
ness is included in the measured reward. They consider a 
pricing model fair if it allocates the available goods equally 
between different groups of customers. It was shown, that it 
is possible to motivate an RL based agent to include fairness 
in his learning process.

The outcome of  the “Price collusion in a duopoly” sec-
tion displays that collusion between a self-learning agent and 
a manually configured one can be enforced by the competi-
tor. This is consistent with other experiments in that area, 
which proposed similar effects for multiple self-learning 
agents; cf. Calvano et al. (2019).

In a recent publication, Bondoux et al. provide an exten-
sive study on the possible use of reinforcement learning for 
airline revenue management; see Bondoux et al. (2020). 
They show that Deep Q-Networks provides a feasible algo-
rithm for such systems. They apply DQN for simulations 
with competition. They conclude, that exploration costs 
have to be considered when applying RL, as increased 
forced exploration shortens the learning curve at the cost 
of higher losses during that period. Their simulation hides 
the competitor behavior and the current market state from 
the revenue management system, which prevents the direct 
reaction to competing market participants.

Many of those examples rely on relatively simple algo-
rithms in the domain of RL, most notably Q-learning. 
Q-learning has seen many improvements in the past years, 
cf. artificial neural networks, experience replay, and several 
extensions focusing on overcoming known shortcomings of 
Q-learning, see Lillicrap et al. (2016), Schaul et al. (2016), 
Van Hasselt et al. (2016), Wang et al. (2016), Hessel et al. 
(2018). Many of those stay unmentioned and unused in the 
previous publications on dynamic pricing.

Policy gradient algorithms have seen further develop-
ment as well. While the soft reinforcement learning algo-
rithms do incorporate entropy as regularizing factor, other 
algorithms without that mechanism are available as well. 
For example, A3C might serve as an alternative to SAC, cf. 

Haarnoja et al. (2018); Mnih et al. (2016). Especially multi-
task oriented algorithms might serve as an addition to our 
approach, as aggregation over different markets and products 
would increase the availability of training data. As every one 
of those markets might show different market dynamics, a 
well-performing algorithm needs to take this into account. 
Examples of such systems are IMPALA (Espeholt et al. 
2018) and Distral (Teh et al. 2017), which will be evaluated 
in future work.

Background

Our goal is to evaluate the performance of two examples of 
RL algorithms on dynamic pricing problems. Two example 
algorithms from two different categories have been selected. 
The first algorithm is Deep Q-Networks (DQN), an imple-
mentation of Q-learning that uses artificial neural networks 
to estimate the value of an action in a given state of the 
environment and then selects the next action based on the 
value estimations. The second algorithm is Soft Actor Critic 
(SAC), which is a recent iteration in the group of policy gra-
dient algorithms. It is based on two components, the actor 
and the critic. The actor represents a function that maps 
states to actions that will be pursued. The critic provides an 
estimator if the action chosen by the actor was chosen well, 
this estimation is used to adjust the actor. The next two sub-
sections contain a deeper introduction to both algorithms.

Both algorithms require an environment that consists 
of a state-space S, an action space A, and a state transition 
function. A state transition occurs after the action choice of 
the agent and provides the agent with information about his 
reward r ∈ R . For all following experiments, we set R = ℝ . 
Those parameters allow the agent to collect data in the form 
of (st, at, rt, st+1) . The state transition probability ps(st+1|a, s) 
has to fulfill the Markov property. A similar function pro-
vides a probability distribution for the rewards, given s and 
a, pr(r|st, at) . The transitions can be deterministic, which is 
the case for many of the experiments in the next sections. 
The agent performs an action in this environment based on a 
policy � . The policy can be either deterministic, �(s;�) , and 
return the action a given s or non-deterministic, ��(a|s) , and 
return the probability of performing a given s.

In both cases, the policy has a set of parameters, � , which 
can be adjusted to change the assignment of actions to states. 
The agent maximizes the long-term reward ( Gt ), i.e., the 
sum of rewards rt (discounted by the factor � ), starting from 
a given state at time t. Thus, the goal is to find a policy � , 
that maximizes the expectation of

Gt =
∑

k≥0
�k ⋅ rk+t.
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Deep Q‑networks (DQN)

In Q-learning, the goal is to provide an estimation of the 
long-term value of an action and follow the estimations by 
performing the action, that is maximizing this value. The 
expected long-term reward of an action a given the state s 
is the Q-value, cf. Watkins and Dayan (1992), i.e.,

Artificial neural networks do provide a capable method of 
training an estimator for the Q-value. In that case, the func-
tion Q(s, a) is represented by a neural network. The inter-
nal structure of Q can be chosen by the engineer. Usually, 
the neural network outputs the Q-values for all available 
actions at once, instead of using a as parameter, all defini-
tions change accordingly. In all later examples, Q(s, a;�) is a 
deep non-linear function, that relies on a chained application 
of linear operations like Wx + b and the following applica-
tion of a non-linear function like relu, see Mnih et al. (2015).

Given a set of tuples (st, at, rt, st+1) , the goal is to opti-
mize Q to improve the estimation of the Q-value for all 
given actions. The minimization goal is the squared differ-
ence between the estimated Q-value and the experienced 
Q-value. As the future rewards are not known, the maximum 
Q-value of the following state is estimated and used instead. 
Then � is adjusted by minimizing J using an optimizer like 
ADAM, see Kingma and Ba (2015) and Mnih et al. (2015),

To derive a policy from this estimation, while the agent is 
facing the simulation, the Q-values are computed for the 
current state s and all actions. The action with the high-
est estimated Q-value will be performed. Enforced random 
exploration is used to improve data collection Mnih et al. 
(2015) (U is a uniform distribution)

The implementation used for the experiments in Sects. “Per-
formance in duopoly environments” and “Application in oli-
gopoly competition” include two extensions for DQN, i.e., 
Double Deep Q-Networks and Dueling Deep Q-Networks. 
Double Deep Q-Networks introduces a second network to 
compute the target values, it reduces the positive bias that 
is introduced by the maximization operator in the computa-
tion of target values, see Van Hasselt et al. (2016). Dueling 
Deep Q-Networks introduces a change in the neural net-
work by computing two components of the Q-value. The 
last layer computes the value and the advantage instead of 

Qs,a = �[Gt|st = s, at = a].

J(st, at, rt, st+1;�)

=
1

|A|
(rt + � max

a∈A
Q(st+1, a;�) − Q(st, at;�))

2.

�(s) =

{
U(A), if U([0, 1]) ≤ �

argmax a∈AQ(s, a;�), otherwise.

a single Q-value. The value is the expected reward of being 
in a certain state. The advantage is the expected additional 
reward that can be achieved by performing a certain action, 
cf. Wang et al. (2016). We have

The resulting setup uses two neural networks that implement 
the dueling structure in their last layers. This setup is not 
domain-specific.

Soft actor critic (SAC)

SAC is a policy gradient algorithm, that is centered on the 
idea of having a parametrized policy, that can be optimized 
given information about its expected performance. It con-
sists of an actor, which is the policy itself, and a critic, which 
provides a feedback function for the actor. The critic pro-
vides an estimation of the value of an action, its gradient 
regarding the action can be followed to find a better per-
forming action. The actor is a neural network that outputs 
the action for a given state. The policy is then updated using 
the gradient on the action from the critic to adjust the param-
eters of the actor. Actor critic can be applied to continu-
ous action spaces, while DQN requires the discretization of 
the action space. In SAC, the optimization occurs not only 
intending to maximize the value but also the entropy of the 
non-deterministic policy. The non-determinism is achieved 
using the output of the actor to configure the parameters of 
a probability distribution, cf. Haarnoja et al. (2018),

This allows a policy to be optimal even without maximum 
Q-values as long as it keeps high entropy. This approach 
naturally motivates exploration and allows the algorithm to 
focus on multiple near-optimal solutions instead of finding 
one of the few optimal deterministic policies, cf. Haarnoja 
et al. (2018). To train an estimator for Q, the loss can be 
measured accordingly:

As Q implicitly requires an estimation of the state value, it 
is required to have a second estimator:

Both networks can be optimized using the same algo-
rithms that have been used in DQN. To further improve the 

Qs,a = Vs + As,a with Vs = �[Gt|st = s],

As,a = �[Gt|st = s, at = a] − �[Gt|st = s].

(1)V(s) =
∑

a∈A
��(a|s)(Q(s, a) − � log��(a|s))

(2)V(s) = �[Q(s, a) − � log��(a|s)].

JQL(rt, at, st, st+1;�q,�v) = (rt + �V(st+1;�v) − Q(st, at;�q))
2.

JVL(rt, st, st+1;�v) = (rt + �V�(st+1;�v) − V�(st;�v))
2.
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stability of the results, two different estimators are kept for 
the Q-value, the minimum output of both is used whenever 
a Q-value is required, cf. Haarnoja et al. (2018). To optimize 
the actor, the loss can be represented as the Kullback–Lei-
bler divergence (cf. DKL ) between the current policy and the 
optimal policy under the current Q-value estimations, cf. 
Haarnoja et al. (2018), where Z(st) is a normalizing constant 
within each state, i.e.,

To minimize J, the gradient can be computed as follows, 
using f which is a reparametrized version of the policy, cf. 
Haarnoja et al. (2018):

The importance of the entropy in the soft value function 
is reflected by the parameter � in (1) and has to be chosen 
carefully. High values increase stability but decrease overall 
performance. It is possible to determine � automatically, see 
Haarnoja et al. (2018) for more information.

Performance in duopoly environments

In a duopoly market, the agent competes with a single com-
petitor. The agent has to understand the customer behavior 
as well as the competitor’s reaction.

Experimental setup

All model inputs to reproduce the calculation of all alloca-
tions are available online, see Source Code (2020). In our 
model, time is split into periods of fixed length, which start 
with the agent’s price update. After the first half of the epi-
sode, the competitor reacts to the agent’s action and updates 
his price (cp. the setup used in Schlosser and Richly (2019)).

The behavior of the customer is modeled by a logistic 
model, which is based on real-world data, cf. Schlosser 
and Boissier (2018). It returns the probability of having a 
sale in a given period according to several features, includ-
ing price rank and difference to the competitor price. The 
overall customer behavior reflects that lower price levels 
increase sales and price rank is the most noticeable feature. 
To maximize revenue, the agent has to find both an ade-
quate price level and undercut his competitor to increase 
sales. An overview of all features available is given in 
Table 1. Note, for the price rank, we use the indicator 
function, cf. 1{⋅} . Sales are computed for each half of the 
episode for both participants. An example of the expected 

J(�) = �

�
DKL

�
��‖eQ(st ,at)∕Z(st)

��
.

∇J(�) =∇�� log(��(at|st)) + (∇a� log(��(at|st))
− ∇aQ(st, at))∇�f�(�t, st).

revenue in this model in different market situations is dis-
played in Fig. 1.

The state-space in this game consists of only a single fea-
ture, the current competitor price. The action space consists 
of all possible prices. The price range for both competitors 
is one to 50. For DQN, this price range is discretized in 
steps of size 1. SAC does not require any discretization of 
the action space.

To maximize his reward, the agent has to react accord-
ingly to the competitor’s strategy. In many setups, the com-
petitor uses a simple strategy that was manually tuned by 
humans. The agent has to correctly estimate the competitor’s 
reaction to maximize his reward. He has to set a price that 
is forcing the competitor toward an unprofitable reaction 
and allows a sustainable high price level in the market. This 
necessity distinguishes the following experiments from other 
evaluations of RL on dynamic pricing, cf., e.g., Bondoux 
et al. (2020).

Two groups of manually tuned competitor strategies are 
available, deterministic and non-deterministic. The sec-
ond group was introduced to provide an additional chal-
lenge for competitors in the market, as the behavior of a 
trader becomes less predictable. Both algorithms have been 

Table 1   Features (for logistic demand; Schlosser and Richly (2019)) 
to calibrate demand probabilities; p is the own price, o is the price of 
the competitor

 The amount of realized sales is computed vice versa for both partici-
pants

Name Computation �

Constant 1 −3.82

Price rank 1 + 0.5 ⋅ 1{p=o} + 1{p>o} −0.56

Price difference p − o −0.01

Average market price (o + p)∕2 −0.03

Fig. 1   Expected profit in one episode for different own prices at a 
fixed competitor price, cf. 10, 30, 50
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evaluated in the same simulation against different competi-
tors to analyze strengths and weaknesses.

In duopoly cases, one can compute optimal reaction strat-
egies using full information based on dynamic programming, 
e.g., described in Schlosser and Richly (2019), Lemma 3.1, 
cf. DP solution. Note, this becomes impossible for larger 
state-spaces, but the duopoly provides a possibility to verify 
the performance of self-learned strategies. The strategies of 
the agent are evaluated by comparing their expected long-
term reward with the expected long-term reward of the 
respective optimal strategy.

All experiments on the duopoly have been performed 
10 times with a length of 500,000 episodes. The setup for 
DQN uses a neural network with three hidden layers with 
an output vector with 128 elements each. The last two lay-
ers compute advantage and value independently. It outputs 
the Q-values for all actions in one vector. SAC uses three 
chained layers with 128 nodes for the critic and the actor. 
Both algorithms do incorporate experience replay to reuse 
older data.

Deterministic competitors

We consider three common types of deterministic strategies: 
fixed price (Sect. 3.2.1), undercutting (Sect. 3.2.2), and two-
bound strategies (Sects. 3.2.3–3.2.4).

Fixed price

Such a situation occurs, if the competitor sticks to a fixed 
price. In that case, the most advantageous strategy is to 
slightly undercut the competitor at all times, as long as the 
competitor’s price is at a level that allows sustainable profit.

In this case, DQN can outperform SAC. No convergence 
can be observed in the strategies of SAC. SAC consistently 

converges toward the upper end of the action space at the 
competitor price, which diminishes the strategy value. We 
assume that this behavior is caused by the entropy term of 
the optimization. If the Q-values become very low, the moti-
vation to follow the Q-value might be superimposed by the 
motivation to increase entropy. If this effect is not stopped, 
no convergence toward a well-performing strategy occurs.

DQN on the other hand, finds well-performing strategies, 
see Fig. 2. While having a high peak performance, repeated 
deviation from the optimal strategy causes a huge span in 
the performance of DQN at any point in time, which renders 
it unreliable.

Unlimited two‑bound (undercutting)

A common deterministic strategy undercuts the agent by a 
fixed difference if possible, for example by one-price unit. If 
the agent would follow a similar strategy, this would lead to 
a tie, after one reaches his minimum price level. This setup 
is the specialization of a two-bound enemy, called unlimited 
two-bound. A two-bound strategy �o(p) has a lower limit pl , 
which is never undercut and an upper limit pu , which is used 
if the competitor undercuts pl:

The optimal strategy in the given environment against an 
unlimited two-bound uses two-bound on its own, with limits 
specific to the demand function. To stay within a price range 
that achieves decent profitability, the agent should avoid 
reducing the price level to values below 24, see Fig. 3. This 
happens because the competitor can diminish the maximum 
achievable revenue by choosing a low price, see Fig. 1.

DQN showed noticeable issues in terms of stabil-
ity while competing with this competitor. While finding 

(3)�o(p) =

{
p − 1, if p − 1 ≥ pl
pu, otherwise.

Fig. 2   Median performance 
with .2 and .8 quintile over 
500K learning episodes of DQN 
vs SAC with a competitor that 
uses a fixed price; “Fixed price” 
section
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well-performing strategies, they get replaced within a few 
episodes, explaining the noticeable spread in performance 
visible in Fig. 4.

One explanation for this effect can be found in the fact 
that DQN struggles with correctly estimating the long-term 
behavior of the competitor, an analysis that will be proven in 
later experiments. DQN tends to stick with state-independent 
one-price strategies. As reacting with a one-price strategy 
is not sufficient in this setting, this provides an upper bound 
on the reward that can be achieved. A complex strategy is 
considered one that uses a noticeable share of the available 
action space if necessary. SAC is more familiar with com-
plex strategies, as they are easily encoded within its actor. 
The problems of DQN might be caused by two structural 
challenges. The Q-values in this domain lie close together, 
especially because DQN was used with a high discount 
� ∶= 0.999 . This makes even small errors in the estimation 

crucial and slightly overestimating a single action leads to 
the problems described above. While it handles problems 
that require complex strategies more efficient than DQN 
does, SAC has noticeable issues in problem areas where 
fixed price strategies are the best.

Limited two‑bound

A limited two-bound, specified by (3), requires nearly the 
same response strategy as an unlimited one, assuming that 
the lower limit pl of the two-bound is set to a value below 
24. In this case, the resulting behavior will be equal to the 
behavior with open bounds. Accordingly, the measured 
performance is similar to the results from the previous 
experiments.

Exploitable two‑bound

A two-bound strategy becomes exploitable if it is possible 
to undercut pl and still achieve a decent amount of sales at 
a decent price. If this is done, the competitor has to stick to 
his upper limit, which highly increases the price difference 
between both competitors. This requires a fixed price strat-
egy, as it is necessary to react with pl at all times to avoid 
ending up in an undercutting cycle.

DQN outperforms SAC in such situations, as this is one 
of those use cases where the preference for one-price strate-
gies of DQN becomes an advantage (Fig. 5). SAC can find 
well-performing strategies, but requires more training data 
and is unable to outperform DQN at any time. DQN tends to 
follow strategies, that lead to a 24/45 market state relatively 
fast, an example is given in Fig. 6. SAC tries to undercut the 
competitor in many situations while exploiting his strategy 
in others, an example strategy found throughout the training 
that illustrates this is displayed in Fig. 7.

Fig. 3   Structure of an optimal strategy (obtained via DP) against an 
unlimited two-bound; “Unlimited Two-bound (Undercutting)” section

Fig. 4   Median performance 
with .2 and .8 quintile over 
500K learning episodes of 
SAC and DQN (compared 
against optimal DP solution, 
with a competitor that follows a 
two-bound strategy as specified 
in (3) with pl = 1 , pu = 50 ); 
“Unlimited Two-bound (Under-
cutting)” section
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Non‑deterministic competitors

All competitors introduced in the last section are determin-
istic. In markets where one or more market participants 
can be expected to use algorithms that try to anticipate 
the competitor’s reactions, it might be advantageous to 
introduce non-deterministic strategies to increase the dif-
ficulty of that estimation.

Different concepts for non-deterministic strategies are 
available. One possibility is using a randomized strategy 
that does not depend on state of the market. Alternatively, 
the competitor might also use a mix of several determinis-
tic strategies or add noise to a single deterministic strategy, 
to hide it from the agent. In the second case, depending 

on the noise pattern applied, it is possible to estimate the 
underlying structure of the competitor, given a large num-
ber of observations available. Such a situation might occur 
as well if the competitor is using RL on his own, espe-
cially those approaches that produce non-deterministic 
parametrized strategies like SAC.

Random price choice

In case of a fully randomized competitor, which is only 
constrained to a lower and upper limit price limit, long-
term effects become irrelevant to the agent. The next state 
does not depend on the last one at any point. A correct 
reaction to the current state becomes the only required 
ability to perform well. Because of this effect, this setup 

Fig. 5   Median performance 
with .2 and .8 quintile over 
500K learning episodes of DQN 
vs SAC against the two-bound 
strategy with 25/45 limits; 
“Exploitable two-bound” sec-
tion

Fig. 6   A DQN example strategy that achieves 99% relative perfor-
mance against the exploitable  25/45 two-bound competitor. It leads 
to a pattern where the reaction of the agent is either 33 or 45, which is 
countered by the competitor with 32 or 44. In both cases, the reaction 
of the agent is 25, which then leads again to a reaction of 45 by the 
competitor; “Exploitable two-bound” section

Fig. 7   A SAC strategy with 92% relative performance against the 
exploitable competitor with bounds 25/45. While reacting with a 
price around 25, it follows the undercut pattern at a price of circa 40 
and above, which provides the competitor with a realistic chance of 
competition; “Exploitable two-bound” section
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can display the struggle of DQN to correctly estimate 
long-term behavior. Figure 8 displays the relative per-
formance of both agents. DQN achieves a high level of 
performance fast and does not have noticeable stability 
issues that could be observed against complex determin-
istic strategies. SAC requires more observations to achieve 
only slightly improved results.

Noised strategies

In the case of a noised strategy, a deterministic strategy is 
used and the chosen price is slightly adjusted by adding 
noise. An example configuration for this setup is a com-
bination of the two-bound from the last experiments with 
the addition of values drawn from a normal distribution. � 
describes such a noised policy, with N(0, �) representing a 
value drawn from a normal distribution and �orig being the 
deterministic strategy of the opponent:

This situation offers the same general challenges to the agent 
that have been present against a two-bound competitor. It is 
expected that the agent has to collect more data to correctly 
estimate the underlying deterministic strategy and then 
achieves the same results as before. Figure 9 shows that this 
expectation does fully hold. In general, SAC outperforms 
DQN, as was the case for a normal two-bound, but the per-
formance of DQN is more stable in general. The maximum 
performance achieved by DQN is slightly lower than in the 
deterministic use case, whereas the minimum performance 
is slightly increased.

In the last experiments, it was shown that there are some 
exceptional situations, in which Q-learning outperforms 
SAC. As those situations required special preconditions 
or competitors that do not fully follow business logic, e.g., 
by randomizing their price choices as a whole, it can be 
concluded that SAC and future iterations of policy gradient 
algorithms provide a well-performing basis to build pricing 

(4)�(s) = �orig(s) +N(0, �).

Fig. 8   Median performance 
with .2 and .8 quintile over 
500K learning episodes of DQN 
vs SAC with a competitor, that 
chooses a random price in the 
price range of 10 to 50; “Ran-
dom price choice” section

Fig. 9   Median performance 
with .2 and .8 quintile over 
500K learning episodes of DQN 
vs SAC with a competitor, that 
applies noise; “Noised strate-
gies” section



59Dynamic pricing under competition using reinforcement learning﻿	

systems. This result should be repeated in a more complex 
market.

Price collusion in a duopoly

As long as the competitor in the duopoly is directly compet-
ing with the agent, he has an incentive to join the competi-
tion by undercutting. In practice, there is the possibility to 
make an implicit offer of cooperation between both market 
participants. In such a case, the competitor is configured to 
answer a specified cartel price, e.g., 33. In this simulation, 
33 is the price that yields the highest possible expected profit 
if both market participants use the same price. The cooperat-
ing competitor that agrees to a cartel can increase the agents’ 
motivation by following a dumping price two-bound strategy 
until the agent agrees to the cartel.

Figure 10 displays the performance of SAC and DQN 
in the case that the competitor does offer a cartel at 33 but 
behaves like an unlimited two-bound in all other cases. In 

such a situation, competing can slightly outperform agreeing 
to a cartel. SACs ability to compete efficiently then outper-
forms the tendency of DQN to agree to the cartel.

If the competitor is performing price dumping until the 
agent agrees to the cartel, this advantage is not given any-
more. Following his tendency to use undercutting, SAC 
misses the opportunity given by the cartel. This can be 
observed in the results in Fig. 11, which yields better results 
for DQN than in most other experiments.

The cartel experiments show a noticeable effect in mar-
kets that are driven by self-learning algorithms. It proofs, 
that both market makers don’t need to exchange any infor-
mation but price reactions, to allow both of them to form 
a cartel and drop competition. Naturally, this leads to an 
increased price level for the customer. The experiments on 
two-bound show a similar effect, where the agent does avoid 
diminishing the price level in the market and offers his com-
petitor a return to a high price level at his own cost. This 
mechanism is still more desirable by the customer, as the 

Fig. 10   Median performance 
with .2 and .8 quintile over 
500K learning episodes of DQN 
vs SAC with a competitor, that 
offers a cartel price at 33 and 
undercuts by one in all other 
situations; “Price collusion in a 
duopoly” section

Fig. 11   Median performance 
with .2 and .8 quintile over 
500K learning episodes of DQN 
vs SAC with a competitor, that 
offers a cartel price at 33 and 
undercuts by one within a range 
of 10 to 20. The competitor 
does never exceed this price 
range; “Price collusion in a 
duopoly” section
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lower limit of the agent is lower than the cartel price that 
might have been used otherwise.

Competition between different self‑adaptive 
learning strategies

The duopoly scenario introduces the possibility of direct 
competition between both algorithms. As the strategy of 
both agents changes over time, the Markov property is vio-
lated. To reduce this effect, training of both algorithms does 
not occur at the same time. Instead, training occurs in turn. 
Each algorithm can optimize its policy for 50,000 episodes 
to find a strategy against the fixed policy of his competitor, 
before being fixed for 50,000 episodes. Agent a uses SAC, 
agent b uses DQN. The experiments lasted over 1,000,000 
episodes, with 10 training cycles. For evaluation, the aver-
age achieved rewards of both agents have been measured. 
Figure 12 displays the results.

No algorithm was able to continuously outperform his 
competitor, the length of the training episode allowed it 
for both algorithms to find a well-performing strategy rela-
tively fast. No other reliable pattern can be observed in the 
earnings.

Schlosser and Richly (2019) observed repeating patterns 
of strategies when dynamic programming was competing 
with itself. The results of several executions of this setup did 
not yield strategies that contained human visible patterns. 
Agent b showed a strong tendency toward one or two price 
strategies, usually in a reasonable price range between 20 
and 50. His competitor, the SAC agent, focuses on finding 
competing strategies against those immediately. This can 
be observed in Figs. 13 and 14. This figure shows that DQN 
can explore more. This effect is encouraged by the fact that 
the SAC agent does respond with more different prices then 
DQN does. This better response behavior provides DQN 
with the opportunity to collect information about more price 
combinations. This does not prevent DQN from sticking to 

fixed price strategies, which can be observed in the heatmap 
for the training phase of SAC. The competitor price range 
during the training of SAC is always limited to a single ver-
tical price band. The exploration of SAC occurs only on 
this price range, which limits the number of different price 
combinations that can be observed. SAC finds near-optimal 
response strategies fast. SAC tends to explore the upper end 
of the price range, independent of the opponent price. This 
effect increases at the lower end of the price range.

Both algorithms tend to develop strategies against their 
counterparts relatively fast and continue to outperform their 
competitor. With the given setup, no equilibrium of strate-
gies could be observed, with no cycles being available either.

Fig. 12   Average reward meas-
ured using a moving average 
over 500 episodes (10 train-
ing iterations) for both agents 
aggregated over 10 experiments; 
“Competition between different 
self-adaptive learning strate-
gies” section

Fig. 13   Price response probabilities of SAC during a training phase 
against prices of DQN, “Competition between different self-adaptive 
learning strategies” section
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Application in oligopoly competition

In practice, many markets do not exist in the form of duop-
olies. For most products, there exists more than a single 

competitor, and each competitor in the market is going to 
follow slightly different pricing strategies. Such situations 
cannot be analyzed by the solution approach that was used 
to evaluate the duopoly market because the curse of dimen-
sionality makes it intractable. The oligopoly market can only 
be analyzed in terms of achieved average reward per episode.

In the duopoly it was assumed that at the end of an epi-
sode all market participants had performed the same amount 
of price updates, this assumption is dropped for an oligop-
oly. As many more price updates occur, an intuitive strat-
egy for each market participant is to observe the market at 
some point, compute a reaction to that and then wait for 
some time. Technical limits, for example API update rates, 
might make it impossible to react to each competitor’s price 
updates, especially because the market participants might 
compute their price updates simultaneously. Because of this, 
it is assumed that every market participant updates his price 
after a fixed period in reaction to the current market situation 
at this point. The competitors’ update rates are displayed in 
Table 2.

Customers arrive at a certain rate and then decide for a 
market participator. The customer usually decides for the 
cheapest competitor. Random noise is applied to the prices 
before the selection to compute the rating of the customer; 
see Source Code (2020). This allows it for two competitors 
at a similarly low price level to have a realistic chance of 
achieving a sale. An interested customer arrives on average 
every 0.1 units of time (cf. episodes).

In the example shown in Fig. 15, several competitors do 
compete in the market. The strategies used by the competi-
tor include fixed price strategies, for example by competitor 
3, as well as exploitable and unlimited two-bounds. Also, 
there is one competitor that randomly chooses between two 
strategies at each decision point. Table 2 provides a detailed 
overview.

We allow the agent to update on average every � = 1.0 
units of time, while the competitors have higher/lower 
(slightly randomized) update frequencies (all normal 

Fig. 14   Price response probabilities of DQN during a training phase 
against prices of SAC, “Competition between different self-adaptive 
learning strategies” section

Table 2   Competitor setup in the oligopoly case, for more implemen-
tation details see Source Code (2020)

# Type Parameters Delay �

1 Two-bound pl = 1 , pu = 50 0.7
2 Two-bound pl = 15 , pu = 45 1.2
3 Fixed p = 19 1.1
4 Random pl = 1 , pu = 50 0.6
5a 50% two-bound pl = 20 , pu = 40 1.6
5b & 50% random pl = 10 , pu = 50 -

Fig. 15   Price trajectories 
recorded during the training 
phase of a SAC agent in an 
oligopoly; “Application in oli-
gopoly competition” section
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distributed with standard deviation of 0.05). He can make 
use of the exploitation strategy to diminish the performance 
of competitor 2 while he has to directly compete with the 
unlimited two-bound. The randomized competitor adds 
noise to the state information and might diminish the overall 
price level on the market by randomly choosing low prices.

Given those preconditions, both agents have been chal-
lenged with competing in that market. In general, both out-
performed their fixed strategy competitors at some point, 
cf. Fig. 16, where the results are normalized by the rewards 
achieved by a benchmark strategy playing random prices 
via uniform U([1, 50]) . Other market setups might yield dif-
ferent results. In general, DQN requires more episodes but 
overall achieves a similar level of average performance at 
some point. SAC is the algorithm of choice, as it converges 
to a high level of reward fast and can keep this level over 
long periods.

Conclusions

We studied pricing competition motivated by online markets 
in order to provide insights for practitioners to assess in how 
far reinforcement learning can be used to automate frequent 
repricing in a self-adaptive way. The first set of experiments 
showed several strengths and weaknesses of DQN and SAC 
when applied to pricing simulations. While non-determinis-
tic competitor behavior does not offer a noticeable challenge 
for both algorithms, several special cases could be found that 
easily diminish an algorithm’s performance. SAC struggles 
in those cases, where a simple, fixed price strategy would 
be optimal, while the major challenge for DQN lies in those 
cases where complex strategies are required to react to a lot 
of different situations accordingly. Both algorithms handle 
more complex scenarios with many competitors well.

We find that RL is a suitable alternative to specialized 
pricing algorithms. Both algorithms do not require any 

domain knowledge to be set up. Further, hyperparameter tun-
ing was required to a smaller extent for SAC than for DQN. 
With the configuration used in the experiments, both mod-
els work well on different market setups. The most notable 
disadvantage of both algorithms is that they require a large 
number of observations to perform well. While both algo-
rithms found well-performing strategies fast, in some use 
cases it took 400K episodes to achieve decent performance.

In comparison to classical approaches like dynamic pro-
gramming (DP), RL requires less domain knowledge and 
input data. DP requires several estimations as input, for 
example, an estimation about the competitor behavior and 
the demand model. The optimal solution will only be opti-
mal within those estimations. Recall, RL does not require 
any such specialized models to work. DP becomes impracti-
cal for any complex market setups, e.g., in large oligopolies.

For future research, a deeper evaluation of more recent 
algorithms should be performed. It should be investigated, 
if an increase in data efficiency is possible for DQN or SAC, 
as the state-space is smaller than the number of observations 
required to achieve peak performance. Further, the analyzed 
RL strategies can also be applied in finite horizon problems 
when selling a finite inventory of perishable products. Then, 
for collecting data and adapting strategies pooled or repeated 
simulation runs will have to be considered. In this context, in 
future work, we will investigate whether information gained 
in similar markets for different products can be used for 
multi-task reinforcement learning. If possible, this magnifies 
the amount of data available for training. Several alternative 
approaches to implement such a system are available at this 
point in time, as they have been mentioned in the “Related 
work” section.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. 

Fig. 16   Reward averaged over 
500 episodes and 10 runs 
throughout a learning time of 
50K episodes of SAC and DQN 
in an oligopoly. Rewards are 
normalized by the reward of 
7.63 per episode achieved by 
a uniform U([1, 50]) random 
price choice; “Application in 
oligopoly competition” section
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included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
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