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Abstract
Despite extensive research support, the role of diversification in current factor investing strategies remains neglected. This 
paper investigates whether well-designed multifactor portfolios should not only be based on firm characteristics, but should 
also include portfolio diversification effects. While the alpha concentration approach mainly considers factor-specific firm 
characteristics, the diversified approach utilizes covariance estimators in addition to firm characteristics to account for portfo-
lio diversification. The corresponding out-of-sample results show that including an efficient covariance estimator improves the 
performance of long-only multifactor portfolios compared to the pure alpha concentration approach. A particular advantage 
of diversified factor investing strategies can be identified in the significant increase in exposure to the low-volatility factor 
represented by firm characteristics with high informational content. No significant performance differences are observed 
for long-short portfolios where the factor exposures of the alpha concentration and diversification approaches are similar 
with respect to the low-volatility factor.

Keywords Factor investing · Alpha forecasting · Diversification · Optimal orthogonal portfolio · Information coefficient · 
Covariance

JEL Classification G11 · G12 · G15 · G17

Factor investing, also labeled smart beta, has recently 
become a well-known alternative to market capitalized 
index investing. Apart from market risk, factor investing tilts 
portfolio weights towards other specific risk factors, such as 
value or momentum; and aims to outperform the correspond-
ing capitalization-weighted benchmark.

In practice, factor exposures are realized with simple 
scoring approaches based on predefined firm characteris-
tics. The cost-effectiveness of these rule-based method-
ologies is one of the main advantages of factor investing 

strategies. Nevertheless, an overly simplistic adaptation of 
factor investing strategies may lead to many misunderstand-
ings. Amenc et al. (2016a) discuss ten misconceptions and 
separate these into groups, such as performance drivers, 
investability hurdles and strategy choices.1 One of the strat-
egy choice misconceptions is represented by the concentra-
tion fallacy, stating that a good factor index should provide 
a strong tilt to the desired factor. Although diversification 
is an essential cornerstone of modern portfolio theory, this 
misconception illustrates that implementing diversified fac-
tor investing strategies is still a challenging task.

The benefits of diversified factor investing strategies 
have been proposed by Amenc et al. (2016b) in a single 
factor environment and by Amenc et al. (2017) for multi-
factor strategies. The research results imply higher perfor-
mance outcomes for diversified factor portfolios than for 
concentrated factor portfolios. Within the security selection 
approaches of the multifactor strategies, the authors used a 
simplified factor construction method with equally weighted 
firm characteristics. Since equal treatment of firm character-
istics neglects potential differences in their informational 
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content, the proposed procedure can lead to biased results. In 
particular, Heinrich and Zurek (2019) have shown, that naive 
stock selection models can be significantly improved by con-
sidering differences in the informational content between 
firm characteristics. Since a poorly calibrated stock selec-
tion model can reduce the performance of pure firm charac-
teristic-based strategies, our study analyzes the benefits of 
diversified versus concentrated multifactor portfolios taking 
into account the full range of interaction effects between firm 
characteristics.

We present factor investing strategies from the perspec-
tive of the optimal orthogonal portfolio (OOP) formally 
introduced by MacKinlay and Pástor (2000). From the OOP 
perspective, it is possible to resemble the practical view of 
an investor who aims to beat a given benchmark portfolio 
in terms of mean-variance efficiency. Moreover, the OOP 
perspective provides a motivation for both strategies: A pure 
firm characteristic-based approach and a diversified strategy 
that additionally considers the covariance structure of the 
returns of the selected securities. More specifically, MacKin-
lay and Pástor (2000) use a strong assumption2 regarding the 
covariance structure of the residual returns to show that the 
OOP can be weighted proportional to the securities’ alphas 
without explicit consideration of the covariance matrix. 
As firm characteristics can be transformed into alphas, the 
OOP perspective motivates purely characteristic-based fac-
tor strategies.

In the diversified strategy, we weaken the strong assump-
tion regarding the covariance structure and account for 
diversification effects by considering a nonzero covariance 
structure of the residual returns. Moreover, we keep our 
analysis contemporary and use two efficient state-of-the-art 
covariance estimation methods. Both estimators are more 
stable than a sample estimator, especially in a high-dimen-
sional scenario. Due to its popularity among practitioners, 
the well-known linear shrinkage estimator of Ledoit and 
Wolf (2004) with a constant correlation structure of returns 
is adopted as the first estimator. The second estimator fol-
lows Amenc et al. (2012) as well as Amenc et al. (2011) and 
incorporates a factor-based approach to covariance estima-
tion using principal component analysis (PCA) to determine 
the underlying risk factors. This method is chosen to keep 
the results comparable to the literature on factor strategies 
considering diversification effects.

To study the benefits of diversified versus concentrated 
strategies, we apply a horse race between a pure alpha-based 
weighting method and a diversification-based strategy. 
Both strategies are compared considering a comprehensive 

multifactor model. A multifactor perspective is especially 
important for practice since in multifactor portfolios and 
even in single-factor portfolios, many investors try to diver-
sify their factor investing risk by examining several firm 
characteristics. With regard to the practical applicability of 
our study, the approaches are analyzed with factors defined 
according to an industry standard of the MSCI factor port-
folios. Overall, the entire multifactor portfolio contains 16 
firm characteristics. Moreover, to validate the robustness of 
the results, two different datasets consisting of stocks from 
the S&P 500 and from STOXX Europe 600 are included.

Our empirical findings show that applying the residual 
covariance matrix improves the out-of-sample performance 
in long-only multifactor strategies. Diversification strategies 
manage to both increase excess returns and reduce portfolio 
risk. By overweighting low-volatility stocks, the low-vola-
tility factor exposure is strongly increased compared to other 
factors with less relevance. Since the low-volatility factor 
comprises of firm characteristics with a significant positive 
informational content, the increase in low-volatility factor 
exposure provides an important explanatory perspective that 
has not been recognized in previous research.

In the long-short portfolios, the low-volatility factor expo-
sure in the alpha concentration approach is similar to that 
in the diversification approaches. As a result, no significant 
difference in performance is observed. Hence, the informa-
tional content structure of the applied firm characteristics 
and, in particular, the informational content of the low-vol-
atility firm characteristics, can be identified as an important 
performance driver. Since our alpha forecasting model con-
siders the differences in informational content between the 
firm characteristics, it allows for an appropriate comparison 
between the two strategies.

The remainder of the paper is organized as follows. Sec-
tion 1 introduces the OOP perspective and the factor invest-
ing strategies. Section 2 presents the data set and the applied 
firm characteristics, whereas Sect. 3 reports the findings of 
the empirical backtest. This includes the results of the long-
only and long-short portfolios. Finally, Sect. 4 contains some 
concluding remarks.

Factor investing strategies

In practice, factor investing addresses the case of an investor 
who aims to beat a given benchmark. Therefore, we fol-
low Treynor and Black (1973) by separating the investment 
universe into an active portfolio � with i = 1,… ,N securi-
ties and a passive benchmark portfolio �.

The main goal of our analysis is to compare the perfor-
mance of a pure characteristic-based weighting approach 
with a scenario that considers diversification effects. Thus, 

2 The covariance of the residual returns from a factor model without 
any omitted risk factor is assumed to be diagonal and proportional to 
the identity matrix.
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we focus on the investment decision3 for � and assume the 
following linear relation between the securities’ returns in 
� and �:

where the ( N × 1)-vector R∗
�,t

 denotes the N security returns 
in � at time t, and R∗

�,t
 denotes the return on the benchmark 

portfolio. Throughout the article, the term “return” on a 
given security denotes the return in excess of the risk-less 
rate.4 The ( N × 1)-vector � represents the risk sensitivities of 
the securities returns towards the benchmark returns and the 
( N × 1)-vector �t represents the resulting residuals assumed 
to have zero-mean and a nonzero covariance, denoted as the 
( N × N)-matrix Σ.

Since MacKinlay and Pástor (2000) define the ( N × 1

)-vector � as the vector of mispricings, we refer to this model 
as an incomplete factor model. Investors implementing fac-
tor strategies believe that factor model (1) can be comple-
mented by an additional factor portfolio � , so that mispric-
ing disappears with � = � . Accordingly, the complemented 
model is then defined as:

Assuming that the returns of � and � are uncorrelated, � 
represents the OOP, which corresponds to the missing risk-
factor portfolio. The weights for the optimal orthogonal 
portfolio a

�
 can be determined by:

In accordance with Fama–French factors, the securities 
of � are separated into long and short portfolios. Stocks 
with alphas above (below) a specified quantile �+

qt
 ( �−

qt
 ) are 

assigned to the long (short) portfolio. Since �+
qt

 and �−
qt

 deter-
mine the number of selected securities, these are referred to 
as selection thresholds. Formally this division is expressed 
by

(1)

R∗
�
, t = � + � R∗

�,t
+ �t

E [�t] = 0

E [�t �
�
t
] = Σ

Cov [R∗
�,t
, �t] = 0,

(2)

R∗
�,t

= � R∗
�,t

+ �
�
R∗
�,t

+ �t

E [�t] = �

E [�t �
�
t
] = Ω

Cov [R∗
�,t
, �t] = �

Cov [R∗
�,t
, �t] = �.

(3)a
�
=

Σ−1�

�
�
N
Σ−1�

.

In a
�, long , the alpha vector �+ and the covariance matrix 

Σ+ hold the values for the respective securities in the long 
portfolio. Equivalently, �− and Σ− hold the values for the 
securities in the short portfolio a

�, short . In addition to long-
short (LS) portfolios, we construct long-only (LO) portfolios 
that consider only the long portfolio. Within the diversifi-
cation approach, we further need to include no-short-sale 
constraints to ensure the separation of securities into long 
and short portfolios. The weighting strategy for � can be 
applied to build bottom-up multifactor portfolios. The OOP 
perspective has been applied by Zurek and Heinrich (2021) 
to show the benefits of bottom-up versus top-down factor 
strategies. According to this approach, we can apply multi-
ple factor-specific firm characteristics and build multifactor 
portfolios within a one-step approach.

To obtain the alpha forecasts �̂� , we use the same linear 
model as described by Heinrich and Zurek (2019). In this 
model, the assumption is made that the security returns in � 
follow a multivariate conditional normal distribution. The M 
different types of firm characteristics, hereinafter referred to 
as signals, can be observed for each of the N companies and 
represent the necessary conditioning information for each 
security. For simplification purposes, it is assumed that these 
signals only have informational value for their specific com-
pany, which means that signals from different companies 
do not correlate with each other or with returns from other 
companies. Further, we assume that signals are uncorrelated 
with benchmark returns, so that benchmark timing can be 
disregarded. Under these conditions, it is possible to apply 
alpha forecasts with the following linear model

with

where R∗
i,t

 denotes the return of security i at time t. gi,t−1 is 
the ( M × 1)-vector of signals observations. The correlations 
between the lagged signals and returns in the ( 1 ×M)-vector 
k̂ are called information coefficients (ICs) and measure the 
signals’ informational content. The inverse of the signals’ 
correlation matrix Ĉ−1 ensures that highly correlated signals 
have a lower impact on the alpha forecast and vice versa. 

(4)a
�, long =

Σ−1
+
�+

1� Σ−1
+ �+

and a
�, short =

Σ−1
−
�−

1� Σ−1
−

�−
.

(5)�̂�i,t = k̂ �C−1 zi,t−1,

(6)

k̂ =
�
�Corr

�
R∗
t
, g1,t−1

�
⋯�Corr

�
R∗
t
, gM,t−1

��
,

zi,t−1 =

⎛⎜⎜⎜⎜⎜⎝

�
gi,1,t−1−

�E [g1,t−1]
�

�𝜎g1,t−1

⋮�
gi,M,t−1−

�E [gM,t−1]
�

�𝜎gM,t−1

⎞⎟⎟⎟⎟⎟⎠

,

3 The performance objective of portfolio � is to optimize the infor-
mation ratio. A possible next step would be to optimize the Sharpe 
ratio of the overall portfolio by combining both portfolios, � and �.
4 Excess returns are marked with an asterisk.
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Representing the companies’ standardized signal observa-
tions, the values in the ( M × 1)-vector zi,t−1 are referred to 
as z scores. Because factor investing strategies are based 
on cross-sectional anomalies, parameter estimation is con-
ducted with regard to cross-sectional observations. There-
fore, k̂ and Ĉ are the same for all securities. This is equiva-
lent to the assumption that a specific stock characteristic 
incorporates the same informational content and linear 
co-movement with other signal types for all securities. To 
obtain ex-ante estimates, we estimate the ICs and C from 
the time-series averages of their cross-sectional estimates. 
The applied linear form is strongly related to a Fama–Mac-
Beth regression. Nevertheless, we deviate from the well-
known Fama–MacBeth beta-notation by segregating betas 
into information coefficients, the characteristics’ interaction 
effects and z scores. By ignoring differences in the firm char-
acteristics’ information coefficients and interaction effects, 
alpha forecasts can be linked directly to the firms’ z scores. 
This naive method of alpha forecasting is frequently applied 
in practice. However, Heinrich and Zurek (2019) empha-
sized the important role of ICs in factor investing strategies. 
Moreover, ICs are one of the main determinants in the fun-
damental law of active management, which is a simplified 
framework to explain a portfolio’s information ratio.5 There-
fore, it is straightforward to refrain from using naive alpha 
forecasts of equally weighted z scores and instead consider 
the full range of linear interaction effects between the firm 
characteristics.

Besides alpha forecasts, implementing diversification-
based factor strategies requires the estimation of the residual 
returns’ covariance matrix Σ . Since the most popular esti-
mator—the sample covariance—leads to high estimation 
errors, especially in the presence of high-dimensional data, 
most risk-based investment strategies choose more biased, 
but less variable estimators for the covariance matrix. We 
utilize two different covariance estimation methods, which 
are more stable than the sample estimator Σ̂S.

The first method considers the statistical shrinkage pro-
cedure applied to a structured target matrix Σ̂T,

where the constant s ∈ [0, 1] controls the shrinkage intensity. 
As a compromise between the highly unstable sample esti-
mator and the highly biased target matrix, the convex com-
bination of both uses the bias-variance trade-off to enhance 
the out-of-sample performance. Implementing this linear 
shrinkage method in the context of financial time series 
requires the target matrix to be chosen with reference to an 

(7)Σ̂LS = sΣ̂T + (1 − s)Σ̂S,

assumed correlation structure of the underlying returns. The 
analysis focuses on the linear shrinkage method of Ledoit 
and Wolf (2004), which assumes identical pairwise correla-
tions among all N assets and is referred to hereinafter as the 
Ledoit Wolf constant correlation (LW-CC) estimator. While 
the variances are kept as their original sample values, the 
off-diagonal entries of the target matrix are estimated with 
a constant average sample correlation �̄� . This results in 
�ΣT ,ij =

√
�𝜎ii�𝜎jj�̄�. For the concrete implementation of this 

estimation method, we use the optimal shrinkage intensity 
s∗ , as derived by Ledoit and Wolf (2004).

Finally, to establish a benchmark for the results of com-
bining characteristics- and diversification-based methods, 
we follow Amenc et al. (2012) and additionally implement 
a robust factor-based covariance matrix estimator. Using fac-
tor models, the covariance matrix of investment returns can 
be estimated as

where B is the matrix of factor loadings, ΣF is the sample 
covariance matrix of the common factors, and Σ̂u is the resid-
ual covariance matrix.6

Instead of assuming a concrete underlying factor model, 
as described in Fan et al. (2008), Amenc et al. (2011) choose 
to use PCA to determine the factors directly from the data.7 
In data analysis, PCA is a dimension reduction method based 
on the spectral decomposition of the sample covariance 
matrix. First introduced by Hotelling (1933), the central idea 
of PCA is to reduce the dimensionality of a data set and at 
the same time to retain as much as possible of the present 
variation between the individual entries (Ledoit and Wolf 
2015). In particular, if the first K factors (or sample eigen-
vectors) govern most of the variability of asset returns, i.e., 
if 

∑K

k=0
�2
F,l∑N

k=0
�2
F,l

≈ 1 , then the last N − K factors can be dropped 

without losing too much information on the underlying 
covariances. The respective covariance estimator becomes

where VK is the N-asset by K-factor matrix of factor loadings 
(first K eigenvectors), ΛK is the K × K diagonal matrix of 
the first K eigenvalues, and Σ̂u is the N × N diagonal matrix 
with the sample variances of idiosyncratic components not 
explained by the first K factors. The application of PCA is 

(8)Σ̂FM = BΣ̂FB
� + Σ̂u

(9)Σ̂PCA = VKΛ̂KVK
� + Σ̂u,

5 Complementary work on the fundamental law of active manage-
ment can be found in Clarke et al. (2002), Buckle (2004), Ye (2008) 
and Ding et al. (2020).

6 Following this definition and assuming K common factors with 
K < N , factor-based methods only need to estimate K(K + 1)∕2 
covariance entries and thus do not suffer from the curse of dimen-
sionality.
7 This approach is widely spread in the recent financial literature, 
since it does not require a specific factor model, see, e.g., Fan et al. 
(2013), Fan et al. (2018), Fan et al. (2016).
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strongly motivated by the observation that most of the infor-
mation within a covariance matrix is loaded within the first 
K largest eigenvalues while the rest of the information is 
mostly noise. However, determining the number of factors 
K remains an important question in the literature.8

Following Amenc et  al. (2011), we refer to the con-
tributions from random matrix theory as in Laloux et al. 
(2000), Bouchaud and Potters (2009), Bun et al. (2017). 
In particular, when assuming i.i.d. returns, the eigenvalues 
of the true random covariance matrix are described by the 
Marčenko-Pastur (MP) distribution with the upper bound 
�max = �2(1 +

√
N∕T)2 and �2 corresponding to the average 

estimated variance across the N assets (Laloux et al. 2000). 
It is therefore possible to detect which eigenvalues actually 
carry valuable information and which eigenvalues are ran-
dom and consist of pure noise. As in Amenc et al. (2011), 
the number of principal components K for the method in 
Eq. (9) is set to be the number of eigenvalues with essential 
information, namely those larger than �max . The described 
fully data-driven covariance estimation method produces a 
stable estimator based only on the actually relevant informa-
tion from the returns and is expected to perform well in a 
high-dimensional data setting, such as within factor invest-
ing strategies.

Instead of explicitly applying covariance estimates with 
Σ̂LS or Σ̂PCA , it is possible to adopt a simplifying structure 
of the correlation of the residual returns that allows us to 
rely only on the alpha predictions of the securities. As an 
alternative to the strong model assumption of Σ̂I = I with I 
representing the identity matrix, we apply a weaker model 
assumption on the covariance structure of the residuals Ω 
from the complete factor model (2). Within the OOP per-
spective MacKinlay and Pástor (2000) provide the following 
relation for the residual covariance matrix Σ:

Here, the expression 
(

�
�

�
�

)2

 is the squared information ratio 
of the optimal orthogonal portfolio and determines its per-
formance contribution to the overall mean variance portfo-
lio. Interestingly, Eq. (10) reveals that with an assumption 
for Ω the vector of mispricings is linked to Σ . By utilizing 
the Sherman–Morrison formula for the inverse of Σ , this 
relation can be inserted in the optimal portfolio weight 
Eq. (3):

(10)
Σ = ��� 1(

�
�

�
�

)2
+ Ω.

It becomes apparent that the residual covariance matrix 
Ω from model (2) replaces the covariance matrix Σ from 
model (1). Moreover, under a restricted form for the residual 
covariance of Ω = �2I the OOP weights are proportional to 
the securities’ alpha parameters:

This result motivates building factor portfolios that exhibit 
weights, proportional to � and are therefore solely deter-
mined by their firm characteristics.9 Since securities with 
the highest alpha forecasts will reach the highest weights, 
the demonstrated weighting approach is referred to as alpha 
concentration (Alpha-Con).

The assumption—Ω = �2I—referred to as a “strong 
form” by MacKinlay and Pástor (2000) might appear very 
restrictive. However, it is shown empirically and in a simu-
lation that the assumed structure improves the out-of-sam-
ple portfolio performance. Since the simple approach of 
assuming zero-correlated residuals leads to a stable but also 
biased solution, the question regarding whether the concen-
trated approach can be advantageous compared to diversi-
fied approaches remains open. To study the results within 
a multifactor setting, we conduct a horse race between the 
Alpha-Con approach and the two diversification approaches 
utilizing the LW-CC and PCA estimators, respectively. As 
an additional alternative to the Alpha-Con approach, we also 
investigate an equally weighted multifactor portfolio. In the 
equally weighted multifactor portfolio, the forecasted alphas 
are applied only in the security selection step, while the 
number of P selected securities is equally weighted by 1/P.

Data

The S&P 500 (SPX) and STOXX Europe 600 (STX) indices 
are used as representative data sets for the US and European 
stock markets, respectively. Compared to the SPX, the STX 
comprises different currency areas. To ensure that currency 
effects do not influence the result, returns are measured in 
local currency. In particular, the assumption is made that the 
currencies are hedged, whereby hedging costs are not taken 
into account. As proxy for the risk free rate, we applied the 
one-month T-bill rate for the US market and the three-month 
Euro Government Bond rate for the European market.

(11)a
�
=

Ω−1�

�
�
N
Ω−1�

.

(12)a
�
=

�

1��

8 There is an extensive line of research on this topic, see, e.g.,  Bai 
and Ng (2002), Hallin and Liška (2007), Rothman et al. (2010), Fan 
et al. (2013).

9 The Fama–French portfolios are well-known examples of pure 
characteristics-based factor portfolios.
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The dataset10 includes firm characteristics and stock 
returns from the beginning of 2002 until the end of 2019. 
2002 was chosen as a starting point, because we observed 
a higher number of significant predictors of monthly U.S. 
returns prior to 2002. Due to limited space, we do not con-
sider time-varying predictability. However, we partially 
address the problem of misspecification of the factor model 
by also applying factors with a small number of significant 
predictors. In addition, we have noted a significantly lower 
data availability for the STX index prior to 2002.

With value, growth, momentum, quality and low-volatil-
ity, our study includes five well-known factors which cor-
responds to the factor setting of Zurek and Heinrich (2021). 
Each factor is based on several firm characteristics, with the 
multifactor portfolio comprising overall 16 firm character-
istics.11 The factor composition is based on MSCI12 factor 
portfolios, as these are widely accepted in the industry. In the 

case of the low-volatility factor, we have chosen to deviate 
from the MSCI specification. The MSCI Low-Volatility fac-
tor uses a minimum variance approach to reduce the overall 
risk of the portfolio and thus differs from the other factors, 
which are based purely on firm characteristics. Therefore, 
the low-volatility factor is applied by using the character-
istic-based method of Chow et al. (2014). This approach 
fits well with the construction methods of the other factors.

For our empirical out-of-sample analysis, we apply daily 
trailing data observations. This assures that the firm charac-
teristics always resort to the most actual data points and con-
sider the ongoing fluctuations in price-dependent data. Firm 
characteristics for which a higher z score does not reflect a 
higher expected return are multiplied by minus one. In our 
case, this applies to earnings variability and debt to equity. 
Statistical outliers are adjusted by the method of DeMiguel 
et al. (2020) by setting equal all observations greater (less) 
than the defined threshold to the third (first) quartile plus 
(minus) three times the interquartile range. Zurek and Hein-
rich (2021) have shown that the Alpha-Con approach tilts 
the factor exposure towards those factors that exhibit firm 
characteristics with the highest informational content. Since 
the diversification approaches can have a disrupting effect 
on the factor exposures, it is important to compare the ICs 
of each firm characteristic. Besides ICs, Zurek and Hein-
rich (2021) also discuss the effects of the cross-sectional 

Table 1  Mean ICs and bootstrap 
results of the SPX, and STX 
sample

This table shows (in%) the means and bootstrap standard errors of the 216 IC realizations over the whole 
time interval of the SPX and STX samples from 100.000 bootstrap resamples. Mean ICs where the confi-
dence interval does not cross zero from the 5 (2.5) and 95 (97.5) percentiles of the 90% (95%) confidence 
interval are market with one (two) asterisks

Factor Characteristic SPX STX

Mean SE Mean SE

Growth Earnings Growth 1 Year (EPSG1Y) −0.126 0.563 1.188** 0.429
Earnings Growth 3 Years Average (EPSG3Y) 0.499 0.483 0.796* 0.426
Internal Growth Rate (IGR) 1.625** 0.655 1.250** 0.496
Earnings Growth Trend (EPSGT) 1.853** 0.807 2.040** 0.692
Sales Growth Trend (SPSGT) 0.684 0.750 0.593 0.597

Value Dividend Yield (DivYld) 0.781 0.887 −1.868** 0.939
Earnings to Price (EtP) −0.546 0.984 −0.866 0.785
Book to Price (BtP) −1.250 1.089 −3.504** 1.195
Cash Flow to Enterprise Value (CFOtEV) 0.247 0.829 0.393 0.609

Quality Return on Equity (RoE) 1.762** 0.720 2.534** 0.706
Debt to Equity (DtE) 0.495 0.598 3.247** 0.844
Earnings Variability (EVar) 0.472 0.558 0.283 0.455

Momentum 6 Months Price Momentum (Pmom6M) 0.651 1.553 1.616 1.407
12 Months Price Momentum (Pmom12M) 1.529 1.435 3.251** 1.314

Low-Volatility Inverse Beta (InvB) 3.974** 1.196 3.082** 0.941
Inverse Volatility (InvVola) 3.301** 1.211 2.829** 1.015

10 The dataset, including reporting dates, is provided by the Bloomb-
erg database.
11 The examined factors and the corresponding firm characteristics 
are shown in Table 7 in the appendix.
12 The MSCI Global Investable Market Value and Growth Index 
Methodology (September 2017), the MSCI Quality Indexes Method-
ology (June 2017) and the MSCI Momentum Indexes Methodology 
(June 2017) are used as guidelines. Due to data availability, the factor 
specification differs in some respects from the MSCI standard, in par-
ticular by applying trailing instead of forward data.
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correlations between the firm characteristics.13 However, as 
the majority of correlation coefficients are small, the overall 
impact on the alpha forecast is limited. Table 1 shows the 
time series means of the 216 cross-sectional IC realizations 
within the selected test period. Bootstrap standard errors 
(SEs) and 90% (95%) confidence intervals are calculated 
for 100,000 bootstrap resamples to quantify the uncertain-
ties in the inferences. The sample standard deviation of the 
average ICs across bootstrap samples is used as an estimate 
of the standard error. Furthermore, the 5% (2.5%) and 95% 
(97.5%) percentiles of the bootstrap samples are calculated 
for the mean ICs to obtain the lower and upper bounds of the 
confidence intervals, respectively. The mean ICs where the 
confidence interval does not cross zero from the 5 (2.5) and 
95 (97.5) percentiles of the 90% (95%) confidence interval 
are marked as significant.

The majority of signals show positive mean ICs, which 
are close to zero. It is striking that the informational content 
of the individual characteristics varies considerably between 
the samples. In terms of the number of significant signals 
within the individual samples, two scenarios with different 
predictability can be identified. While the SPX exhibits only 
five signals with significant ICs, in the STX most ICs are 
significant with a total of 11 signals. Therefore, the SPX 
multifactor model represents a case in which an investor has 
identified a moderate number of ex ante predictors, and thus 
an accurate forecast is unlikely. In contrast, the multifactor 
model of the STX sample represents a well-defined factor 
model.

Furthermore, a strong difference in ICs within and 
between factors can be observed. The low-volatility factor 
appears to be the only factor with characteristics showing 
significant positive ICs in both samples. The large differ-
ences in IC structure across samples and factors underscore 
the importance of applying alpha predictions that account 
for these differences. In addition, it also demonstrates the 
need to compare strategies in different scenarios to achieve 
robust results.

Out‑of‑sample backtest

The backtest framework is chosen to closely resemble the 
realistic investment behavior of an institutional investor, 
with the main objective of outperforming an underlying 
cap-weighted benchmark portfolio. This objective requires 
considering weighting constraints, rebalancing costs, com-
monly used rebalancing frequencies and representative data 
sets. The results are analyzed for the SPX and STX samples 

using the multifactor settings described in Sect. 2. In order 
to create an appropriate comparison with the parent index, 
the investable securities consist of the securities that are part 
of the parent index at the time of rebalancing. Regarding the 
dataset, the backtest uses only point-in-time data,14 i.e., only 
firm characteristics that were available in the database at the 
current time. For the estimation period, a five-year rolling 
window, corresponding to 60 monthly observations, is used. 
The out-of-sample evaluation interval begins in 2007 and 
ends in 2019. The portfolio is rebalanced at monthly inter-
vals. Trading costs caused by rebalancing are considered 
by quantifying the cost-relevant volume with the portfolio 
turnover rate ( PTRt =

∑N

i=1
�ai,t−1 − ai,t� ). The PTR deter-

mines the percentage of the portfolio that causes trading 
costs. In this context, a PTR of 30% signifies that 15% of 
the old portfolio is sold. Subsequently, the incoming liquid-
ity has to be reinvested, and trading costs are incurred for 
30% of the portfolio. Following Frazzini et al. (2018), the 
costs are assumed to be ten basis points per traded volume. 
The calculated costs are demarcated on the day they arise. 
Consequently, these costs lead to a direct reduction in the 
return on the rebalancing day.

Table 2  Weight concentrations of the LO portfolios in the SPX and 
STX samples

This table shows (in%) the results of the normalized Herfindahl index 
and the maximum portfolio weights of the strategies. Both measures 
are calculated over all weights in the long portfolios across all rebal-
ancing dates

qt+ (%) Method Max. weights Norm. Herfind-
ahl index

SPX STX SPX STX

90 Alpha-Con 4.94 6.50 0.16 0.22
1/N 2.00 1.66 0.00 0.00
LW-CC 3.69 3.76 1.72 1.30
PCA 3.69 3.76 1.06 0.95

80 Alpha-Con 3.36 4.56 0.18 0.19
1/N 1.00 0.83 0.00 0.00
LW-CC 2.44 2.49 1.45 1.15
PCA 2.44 2.49 0.86 0.74

70 Alpha-Con 2.89 3.87 0.22 0.20
1/N 0.67 0.56 0.00 0.00
LW-CC 2.05 2.08 1.07 1.10
PCA 2.05 2.08 0.73 0.66

13 Heatmaps of the firm characteristics’ cross-sectional correlations 
are shown in Figs. 2 and 3 in the appendix.

14 We have not applied any restated data in the estimates, and always 
used the first reported values.
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Backtest results

To ensure robust results and to investigate a wide range 
of portfolio sizes, we apply three different quantiles of 
qt+ = {90%, 80%, 70%} in the selection threshold for the 
long portfolio �+

qt
 and qt− = {10%, 20%, 30%} in the selec-

tion threshold for the short portfolio �−
qt

 . Table 2 depicts the 
corresponding maximum (max.) portfolio weights and the 

normalized (norm.) Herfindahl index (HI) results for the LO 
strategies.15

Since the unconstrained diversification approaches lead to 
high weight concentrations, weight constraints.16 have been 
applied within the diversification approaches, to allow for a 
meaningful comparison with the Alpha-Con approach. The 

Table 3  Backtest LO results of 
the SPX and STX samples

Significant alpha parameters are marked with asterisks. Significant inference in the differences between the 
information ratios of the Alpha-Con and the diversification methods are likewise marked with asterisks. 
One, two, or three asterisks represent the significance of the test, i.e., the rejection of the null hypothesis, 
with a level of probability of 10%, 5%, and 1%, respectively

qt+ (%) Method Alpha Tracking error Information ratio

SPX (%) STX (%) SPX (%) STX (%) SPX STX

90 Alpha-Con 4.63* 2.94 9.62 8.03 0.48 0.37
1/N 4.70* 3.32 9.38 7.50 0.50 0.44
LW-CC 5.82** 3.94** 7.98 6.90 0.73* 0.57
PCA 5.76*** 4.58** 7.78 6.73 0.74* 0.68*

80 Alpha-Con 2.97 3.32* 8.00 6.70 0.37 0.50
1/N 2.32 3.71** 7.21 6.04 0.32 0.61
LW-CC 4.34** 4.71*** 6.32 5.80 0.69* 0.81*
PCA 3.11** 5.59*** 5.47 5.29 0.57 1.06**

70 Alpha-Con 2.63 3.63** 7.42 6.18 0.35 0.59
1/N 1.88 4.16*** 6.39 5.44 0.29 0.76
LW-CC 3.55** 4.48*** 5.73 5.47 0.62* 0.82
PCA 2.44* 4.96*** 4.91 4.71 0.50 1.05**

Table 4  Backtest LS results of 
the SPX and STX samples

Significant alpha parameters are marked with asterisks. Significant inference in the differences between the 
information ratios of the Alpha-Con and the diversification methods are as likewise marked with asterisks. 
One, two, or three asterisks represent the significance of the test, i.e., the rejection of the null hypothesis, 
with a level of probability of 10%, 5%, and 1%, respectively

qt−∕qt+ (%) Method Alpha Tracking error Information ratio

SPX (%) STX (%) SPX(%) STX (%) SPX STX

10/90 Alpha-Con 10.40** 12.05** 16.78 17.78 0.62 0.68
1/N 9.07** 11.26** 16.20 16.44 0.56 0.68
LW-CC 12.08*** 9.51** 13.88 14.58 0.87 0.65
PCA 11.39*** 9.52 ** 13.05 13.91 0.87 0.68

20/80 Alpha-Con 7.47* 9.63 ** 13.89 13.66 0.54 0.70
1/N 5.59 8.17*** 12.51 11.09 0.45 0.74
LW-CC 7.16** 7.96*** 10.75 10.86 0.67 0.73
PCA 5.03* 7.67*** 9.21 9.83 0.55 0.78

30/70 Alpha-Con 6.56* 8.73** 12.44 12.06 0.53 0.72
1/N 4.42 6.93*** 10.44 8.76 0.42 0.79
LW-CC 5.69** 7.06*** 9.27 9.67 0.61 0.73
PCA 5.03* 6.43*** 9.21 8.20 0.55 0.78

15 The results for the LS strategies are shown in Table 9 in the appen-
dix.
16 The optimization problem is solved with quadratic programming.
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weight bounds are determined by the average max. weights 
of the Alpha-Con portfolios. Therefore, the max. weights of 
the diversification approaches are the same for the LW-CC 
and the PCA diversification approaches. Since the LW-CC 
and PCA approaches reach the max. weight in almost every 
rebalancing, the average max. weights of the diversified 
approaches are nearly identical to those of the Alpha-Con 
approach.

Almost all weights of the portfolios are below 5%. Con-
sequently, the strategy weights are in line with the usual 
weighting rules applied to institutional investment funds. 
The higher HI values in the diversification approaches indi-
cate that the Alpha-Con portfolios are in fact less concen-
trated. Moreover, the HI results of the Alpha-Con portfolios 
are very close to zero, which equals the HI value of the 
1/N strategy. This indicates that the predicted alphas of the 
selected securities in the Alpha-Con portfolios are very simi-
lar to each other.

To examine the portfolio performance compared to the 
associated cap-weighted benchmark portfolios, in Tables 3 
and 4, we report three important performance measures—
the annualized alpha parameters, tracking errors, and infor-
mation ratios for each strategy for the LO portfolios and 
LS portfolios, respectively. The time series of monthly 
portfolio returns is used to compute the out-of-sample port-
folio alphas, which are estimated from a regression of the 
portfolio returns against the associated benchmark returns. 
To determine the strategies’ information ratios, the portfo-
lios’ alpha parameters are divided by the tracking errors, 
calculated from the standard deviations of the regression 
residuals.

Regarding the SPX sample, the only significant alpha 
performance result within the Alpha-Con portfolios can be 
observed for the 90% quantile portfolio. This outcome is not 
surprising since the SPX alpha forecasting model contains 
a moderate number of firm characteristics with significant 
mean ICs. However, it is remarkable that the two diversifica-
tion approaches achieve significant positive alpha results in 
all three SPX samples. The alpha concentration approaches 
of the STX sample obtain significant alphas in the 80% and 
70% portfolios, which can be explained by the large num-
ber of significant predictors. In comparison, the diversifi-
cation approaches manage to significantly outperform the 
STX index in all three samples. The qualitative comparison 
demonstrates that the diversification approaches definitely 
achieve a higher alpha in all LO portfolios compared to 
Alpha-Con portfolios.

Due to the low concentrated portfolio weights of the 
Alpha-Con approach, its performance is similar to the per-
formance of the 1/N portfolios. In the SPX sample, the 1/N 
approach performs slightly worse, whereas in the STX sam-
ple, it performs slightly better. Compared to each other, both 
diversification approaches lead to similar alpha results.

As a measure of active risk, the tracking errors reveal 
the extent to which the diversified strategies are able to 
reduce the portfolio risk. In all samples, the LW-CC and 
PCA approaches obtain a lower tracking error compared 
to the Alpha-Con approach. The 1/N portfolios are also 
able to reduce portfolio risk, but to a lesser extent than the 
diversification approaches. One can therefore conclude that 
the diversification approaches indeed reduce portfolio risk. 
However, in both indices, the tracking error differences 
between the applied strategies are not significant.

The combination of higher alpha results with lower 
tracking errors within the diversification approaches leads 
to much better information ratios compared to the Alpha-
Con approach. To determine the inference in the differences 
between the information ratios of the Alpha-Con and the 
diversification portfolios, a Ledoit and Wolf (2008) test is 
applied. The examination includes tests for statistically sig-
nificant differences at the 1%, 5% and 10% levels. In all sam-
ples, at least one diversification approach yields significantly 
better information ratio results compared to the Alpha-Con 
portfolios.

Table 4 shows the performance results for the LS port-
folios. Due to the short portfolios, the corresponding mar-
ket risk exposures are reduced, resulting in alphas that are 
multiple times greater than those of the LO portfolios. With 
minor exceptions for the 1/N portfolios, in almost all sam-
ples the alpha performance results are significantly positive. 
Especially in comparison to the LO results, it is noticeable 
that nearly all alphas of the Alpha-Con approach achieve 
higher values than those in the diversification approaches. 
Consistent with the LO portfolio results, the tracking errors 
of the diversification approaches are all smaller compared 
to the Alpha-Con portfolios.

In contrast to the LO portfolios, the information ratio 
results of the LS portfolios show very limited differences 
in the performance between the approaches. Therefore, no 
significant improvements can be observed for the diversifi-
cation approaches. The results for the LS portfolios provide 
reasonable doubt regarding the proposition that diversified 
portfolio weights lead to overall performance advantages 
over alpha concentrated portfolio weights.

To analyze these findings in more detail, Tables 5 and 6 
present the corresponding average factor exposures of the 
individual factors for the LO and LS portfolios. The factor 
exposures are measured by the weighted z scores, consistent 
with Ghayur et al. (2018). Our results show that the exposure 
distribution among the individual factors is very heteroge-
neous. The large factor exposure variation can be mainly 
explained by the ICs of the characteristics within the factors. 
For instance, the value factor of the STX sample contains 
two significantly negative ICs, which causes a negative value 
factor exposure. In contrast, the value factor of the SPX 
sample also contains characteristics with negative ICs, but 
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these are closer to zero and not significant. In consequence, 
the value factor exposure of the SPX sample remains posi-
tive. This example shows that an exposure statement can be 
derived in particular from the significant ICs. Since low-
volatility is one of the factors with the highest mean ICs 
among the significant firm characteristics, the exposure of 
this factor is particularly high.

Considering that our alpha forecasting model takes into 
account the full range of interaction effects between the firm 
characteristics, in addition to the ICs, the cross-correlations 
between the characteristics have an impact on the expo-
sures. Momentum and low-volatility consist of two highly 
correlated characteristics, whereas the correlations of the 
characteristics within the quality factor are very low and in 
some cases even negative. While in the case of momentum 
and low-volatility the characteristics increase their factor 

exposure, the quality characteristics can cancel each other 
out and thus reduce the quality exposure. In particular, the 
low or even negative quality exposure of the SPX sample 
indicates that a factor with a low number of significant char-
acteristics in combination with uncorrelated firm character-
istics is affected by a loss of factor exposure. Although the 
quality factor exposure of the STX sample is also affected by 
the low correlation structure, the factor includes two highly 
significant characteristics. This leads to a higher quality 
exposure in the STX sample compared to the SPX.

The Alpha-Con approach tilts the factor exposure towards 
the factors with significant firm characteristics. In contrast, 
in the diversification approaches, considering the residual 
covariances leads to disrupting effects on the factor expo-
sures. The disrupting effects can especially be observed 
in the low-volatility factor. With regard to the results, it is 

Table 5  Average factor 
exposures of LO strategies

Factor exposures are determined by the weighted z scores where the portfolio weights are applied. Aver-
ages are calculated from the time series of the cross-sectional results

qt+

(%)
Factor Strategy Factor exposure

Growth (%) Value (%) Quality (%) Momentum (%) Low-volatility (%)

90 SPX Alpha-Con 13.87 30.01 −12.55 10.26 82.59
1/N 13.81 25.96 −11.84 10.47 78.18
LW-CC 11.57 31.70 −9.78 9.62 108.72
PCA 11.82 27.96 −10.13 10.90 102.09

STX Alpha-Con 20.96 −6.78 21.26 45.69 54.72
1/N 20.68 −7.21 21.02 42.89 46.12
LW-CC 15.57 −3.87 26.79 41.73 110.63
PCA 16.23 −5.25 25.85 40.11 100.48

80 SPX Alpha-Con 13.23 20.70 −9.89 10.44 67.35
1/N 13.18 14.02 −8.01 10.51 56.34
LW-CC 11.28 26.36 −6.42 9.50 99.64
PCA 13.58 19.65 −5.50 11.02 77.85

STX Alpha-Con 19.55 −7.83 19.50 39.14 41.23
1/N 18.84 −8.49 18.70 34.11 29.62
LW-CC 14.82 −3.36 24.82 37.50 101.54
PCA 14.17 −4.44 22.61 35.50 88.24

70 SPX Alpha-Con 12.98 16.64 −7.98 10.30 59.68
1/N 12.94 7.51 −4.47 10.23 42.29
LW-CC 10.97 24.69 −5.30 10.12 95.33
PCA 12.16 18.05 −3.25 9.90 71.17

STX Alpha-Con 18.11 −8.02 18.54 35.25 35.85
1/N 16.39 −8.63 17.24 27.66 22.14
LW-CC 14.63 −2.76 23.86 35.91 96.61
PCA 12.79 −3.78 21.18 33.43 82.98
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evident that the low-volatility factor exposure of the diversi-
fication approaches in the LO portfolios is on average almost 
twice as high as in the Alpha-Con portfolios. This outcome 
can be explained by the fact that the low-volatility stocks 
in the LO portfolios are weighted higher by taking covari-
ances into account. As a result, an increasing effect on the 
low-volatility factor exposure occurs. In the case of the STX 
and SPX indices, the low-volatility factor is represented by 
firm characteristics with high informational content. Since 
the informational content describes the relationship between 
firm characteristics and excess returns, it is a measure of the 
predictive power of a firm characteristic. Higher exposures 
in firm characteristics with high informational content lead 
to a higher ability to generate alpha. As a result, LO diversi-
fied portfolios benefit from both performance drivers, addi-
tional alpha and lower risk.

In the short portfolios of the LS strategies, stocks with 
low-volatility are also weighted higher because of diversifi-
cation effects. However, since in the LS portfolio the short 
portfolio is subtracted from the long portfolio, the low-vola-
tility stocks obtain higher negative weights. Therefore, in the 
LS strategies, the increasing low-volatility exposure effect 
of the LO portfolios is canceled out between the long and 
the short portfolios. This canceling effect leads to a similar 
low-volatility exposure of the diversification approaches 
and the Alpha-Con portfolios. As a result, compared to 
the Alpha-Con approach, the diversified factor portfolios 
achieve smaller alpha performance values than in the LO 
results. Without the additional alpha performance, in the 
LS portfolios, the performance results of the diversification 
approaches are not significantly different compared to the 
Alpha-Con approach.

Table 6  Average factor 
exposures of LS strategies

Factor exposures are determined by the weighted z scores where the portfolio weights are applied. Aver-
ages are calculated from the time series of the cross-sectional results

qt−∕qt+

(%)
Factor Strategy Factor exposure

Growth (%) Value (%) Quality (%) Momentum (%) Low-volatility (%)

10/90 SPX Alpha-Con 48.26 13.59 14.86 40.52 139.87
1/N 44.28 11.05 11.75 37.53 132.32
LW-CC 39.96 25.84 1.87 30.21 128.54
PCA 39.37 24.77 1.06 29.63 122.63

STX Alpha-Con 53.12 −47.17 87.53 96.67 105.62
1/N 50.24 −44.11 82.04 90.72 92.18
LW-CC 46.65 −24.88 72.74 80.65 124.15
PCA 45.95 −24.06 68.04 78.00 112.30

20/80 SPX Alpha-Con 39.66 10.26 7.68 33.05 115.88
1/N 34.32 6.60 3.35 28.68 99.38
LW-CC 33.12 27.70 −6.36 19.58 102.02
PCA 34.02 24.58 −6.71 19.47 80.57

STX Alpha-Con 46.38 −37.99 68.78 80.75 78.43
1/N 41.64 −31.64 57.15 69.44 57.92
LW-CC 38.93 −14.80 53.37 63.13 94.69
PCA 35.40 −13.50 44.89 59.14 77.76

30/70 SPX Alpha-Con 35.71 9.46 4.83 29.47 102.77
1/N 29.34 4.80 0.54 23.85 77.49
LW-CC 30.34 29.10 −9.42 15.40 88.93
PCA 29.48 26.13 −9.32 13.46 63.45

STX Alpha-Con 41.98 −33.31 60.07 71.35 67.24
1/N 34.56 −24.21 44.03 54.51 41.99
LW-CC 36.45 −11.41 47.53 56.47 83.96
PCA 30.82 −10.23 38.19 51.86 65.10
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Fig. 1  Relative strength results of long-only ( qt+ = 80% ) and long-short ( qt− = 20% , qt+ = 80% ) STX multifactor portfolios. The relative 
strength results of all approaches in relation to their underlying indices are displayed
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Our empirical results reveal that the Alpha-Con approach 
is an efficient multifactor strategy. Therefore, we are able 
to confirm the findings of MacKinlay and Pástor (2000), 
which present the strong form assumption for the residual 
covariance matrix Ω = �2I to be an appropriate assump-
tion. Besides the consideration of ICs within the alpha 
forecast model, an additional value driver of the Alpha-Con 
approach can also be identified by its deconcentrated portfo-
lio weights, which are similar to the 1/N portfolio. Although 
deconcentration is not as efficient as diversification, we can 
verify the “naive” weighting approach to be a reasonable 
alternative to the more complex diversification methods.

According to the diversification approaches, at least for 
the LO portfolios, performance improvements in comparison 
to the Alpha-Con approach can be observed. However, the 
alpha performance benefits of the diversification approaches 
depend to a large extent on the informational content of the 
firm characteristics in the low-volatility factor. In the case 
of the STX and SPX indices, the low-volatility factor is 
represented by firm characteristics with high informational 
content. The LO portfolios benefit from the diversification 
approach because the additional low-volatility exposure con-
tributes significantly to higher alpha performance results. 
In contrast, the LS diversified portfolios are not able to 
increase the low-volatility exposure relative to the Alpha-
Con approach, and consequently, the performance results 
are not significantly different.

Figure 1 depicts the relative strength result charts for the 
STX 80% quantile LO portfolios and the 20%∕80% quantile 
LS portfolios.17 Relative strength is calculated as the ratio 
of price changes based on the log returns of the strategy 
portfolios compared to the benchmark portfolios,18 scaled 
to an initial value of 100. The LW-CC and PCA diversifi-
cation approaches are represented by blue and green lines, 
respectively, whereas the Alpha-Con approach and the 1/N 
approach are depicted by dashed and dotted lines, respec-
tively. The charts for the LO portfolios show that the LW-CC 
and PCA diversification approaches achieve higher relative 
strength compared to the Alpha-Con and 1/N approaches. 
For the 80% quantiles, we observe that the PCA approach 
performs better than the LW-CC approach. However, this 
observation is not confirmed in the results for the other quan-
tiles. Compared to the LO portfolios, there is no particular 
difference between the strategies in the LS portfolios. The 
visualized results further confirm our performance results 
from Tables 3 and 4.

Conclusion

This article contributes to the current literature on the advan-
tages of diversified versus concentrated multifactor portfo-
lios. We present factor investing from the optimal orthogonal 
portfolio perspective and apply a linear alpha forecasting 
model with the extension of two efficient and popular covari-
ance estimation methodologies. Our empirical findings indi-
cate that a pure characteristics-based approach is an efficient 
multifactor strategy. Moreover, the additional application of 
the residual covariance matrix improves the out-of-sample 
performance in long-only strategies. The high informational 
content of the firm characteristics in the low-volatility factor 
represents a relevant advantage for diversified approaches. 
Since informational content is a measure of the predictive 
power of a firm characteristic, higher exposures to firm char-
acteristics with high informational content lead to a higher 
ability to generate alpha. In long-only portfolios, diversi-
fication strategies are able to provide additional exposure 
to the low-volatility factor, leading to an increase in excess 
returns and a reduction in portfolio risk. Regarding the 
long-short portfolios, the additional low-volatility exposure 
from the long-only portfolios is canceled out due to a higher 
weight of low-volatility stocks within the short portfolio. 
Without the additional low-volatility factor exposure, the 
performance difference between the pure firm-characteris-
tic-based approach and the diversification approaches is not 
significant.

Our findings exhibit important practical implications. 
Since in diversification approaches, the informational con-
tent of the low-volatility factor represents an essential per-
formance determinant, it is important to assess the informa-
tional content of low-volatility firm characteristics in the 
respective stock markets. In markets where low-volatility is 
a factor with significant informational content, increasing 
exposure to the low-volatility factor provides the opportu-
nity of performance benefits. Furthermore, the performance 
comparison between long-only and long-short strategies 
underlines the relevance for the investigation of diversifica-
tion approaches in terms of factor exposure. In this context, 
the allocation of exposure to the relevant factors is a fun-
damental source of portfolio performance. Therefore, it is 
also essential to use an alpha forecasting approach that is 
able to consider differences in informational content. A well-
calibrated alpha forecasting model represents the founda-
tion for efficient stock selection and an appropriate portfolio 
weighting strategy.

Appendix

See Tables 7, 8 and 9 and Figs. 2, 3, 4, 5, 6, 7 and 8.

17 The charts for the other quantiles are shown in Figs. 4, 5, 6, 7 and 
8 in the appendix.
18 Corresponding to the alpha performance measure, we use risk-
adjusted returns. Therefore, the benchmark returns are multiplied 
with the strategies’ beta factors.
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Table 7  Overview: factor strategies and firm characteristics

With: Share Price (P), Enterprise Value (EV), Total Debt (TD), Book Value (BV), Book Value per Share  (BVPS), Earnings per Share (EPS), 
Sales per Share (SPS), Dividend per Share (DPS), Cash Flow from Operations (CFO), Year over Year (YoY), Trailing 12 Months (TTM). �

mom,t
 

is the annualized volatility of weekly returns over last 3 years. The volatility �
LV ,t

 and the CAPM beta �
LV ,t

 in the low-volatility factor are calcu-
lated using five-year daily data. For the calculation of EPSGT and SPSGT the last 5 yearly restated EPS and SPS are used. �

EPS
 and �

SPS
 repre-

sent slope coefficients from regressions of yearly EPS and SPS observations against the number of months in the 5 year observation interval. For 
a calculation example of EPSGT and SPSGT see the MSCI Global Investable Market Value and Growth Index Methodology (p. 32, 2017)

Factor Characteristic Definition

Growth Earnings Growth 1 Year (EPSG1Y) EPSG1Y
t
= YoY EPS Growth

t

Earnings Growth 3 Years Average (EPSG3Y) EPSG3Y
t
=

1

3

∑3

t=1
YoY EPS Growth

t

Internal Growth Rate (IGR) IGR
t
=

TTM EPS
t

BVPS
t

−
TTM DPS

t

BVPS
t

Earnings Growth Trend (EPSGT) EPSGT
t
=

�
EPS

1∕5
∑5

t=1
� EPS

t
�

Sales Growth Trend (SPSGT) SPSGT
t
=

�
SPS

1∕5
∑5

t=1
� SPS

t
�

Value Dividend Yield (DivYld) DivYld
t
=

TTM DPS
t

P
t

Earnings to Price (EtP) EtP
t
=

TTM EPS
t

P
t

Book to Price (BtP) BtP
t
=

BVPS
t

P
t

Cash Flow to Enterprise Value (CFOtEV) CFOtEV
t
=

TTM CFO
t

EV
t

Quality Return on Equity (RoE) RoE
t
=

TTM EPS
t

BVPS
t

Debt to Equity (DtE) DtE
t
=

TD
t

BV
t

Earnings Variability (EVar)
EVar

t
=

�
1∕5

∑5

t=1

�
YoY EPS-Growth

t
− YoY EPS-Growth

t

�2

Momentum 6 Months Price Momentum (Pmom6M)
n-Months Price Momentum

t
=

(
Pt−1

Pt−n−1
−1

)
−R

f ,t

�
mom,t

12 Months Price Momentum (Pmom12M)
Low-Volatility Inverse Beta (InvB) InvB

t
=

1

�
LV,t

Inverse Volatility (InvVola) InvVola
t
=

1

�
LV,t
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Table 8  Confidence interval results of the bootstrap IC means

This table shows (in%) the 5 (2.5) and 95 (97.5) percentiles of the 90% (95%) confidence interval of the bootstrap IC means

Factor Characteristic SPX STX

0.05-Qt. 0.95-Qt. 0.025-Qt. 0.975-Qt. 0.05-Qt. 0.95-Qt. 0.025-Qt. 0.975-Qt.

Growth EPSG1Y − 1.045 0.807 − 1.217 0.988 0.481 1.891 0.343 2.023
EPSG3Y − 0.296 1.293 − 0.447 1.445 0.093 1.495 − 0.041 1.620
IGR 0.541 2.698 0.334 2.908 0.430 2.066 0.280 2.217
EPSGT 0.519 3.184 0.257 3.429 0.897 3.176 0.674 3.392
SPSGT − 0.555 1.915 − 0.788 2.153 − 0.393 1.572 − 0.585 1.759

Value DivYld − 0.685 2.230 − 0.969 2.514 − 3.398 − 0.325 − 3.707 − 0.029
EtP − 2.174 1.068 − 2.485 1.378 − 2.155 0.431 − 2.401 0.669
BtP − 3.043 0.538 − 3.389 0.880 − 5.451 − 1.529 − 5.821 − 1.147
CFOtEV − 1.119 1.613 − 1.376 1.865 − 0.606 1.392 − 0.803 1.583

Quality RoE 0.575 2.938 0.334 3.158 1.367 3.697 1.147 3.919
DtE − 0.479 1.482 − 0.664 1.679 1.856 4.632 1.595 4.891
EVar − 0.447 1.388 − 0.628 1.560 − 0.465 1.032 − 0.610 1.178

Momentum Pmom6M − 1.890 3.217 − 2.386 3.703 − 0.707 3.916 − 1.143 4.370
Pmom12M − 0.824 3.889 − 1.277 4.347 1.089 5.397 0.667 5.820

Low-Volatility InvB 2.005 5.935 1.629 6.303 1.522 4.614 1.220 4.910
InvVola 1.301 5.284 0.923 5.655 1.146 4.487 0.823 4.805

Table 9  Weight concentrations of the LS portfolios in the SPX and 
STX samples

This table shows (in%) the maximum weights for the portfolio 
weights of the strategies and the according results of the normalized 
Herfindahl index. Both measures are calculated over all weights in the 
long and short portfolios across all rebalancing dates

qt−∕qt+ (%) Method Norm. Herfindahl 
index

 Max. weights

SPX STX SPX STX

10/90 Alpha-Con 0.16 0.17 5.73 6.50
1/N 0.00 0.00 2.00 1.66
LW-CC 1.58 1.21 3.78 3.40
PCA 1.21 1.02 3.78 3.40

20/80 Alpha-Con 0.16 0.16 3.59 4.56
1/N 0.00 0.00 1.00 0.84
LW-CC 1.30 1.02 2.45 2.24
PCA 1.17 0.73 2.45 2.24

30/70 Alpha-Con 0.19 0.18 2.94 3.87
1/N 0.00 0.00 0.67 0.56
LW-CC 1.05 0.95 2.01 1.85
PCA 0.76 0.61 2.01 1.85
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Fig. 2  Average correlations 
between firm characteristics in 
the SPX sample
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Fig. 3  Average correlations 
between firm characteristics in 
the STX sample
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Fig. 4  Relative strength results of long-only ( qt+ = 90% ) and long-short ( qt− = 10% , qt+ = 90% ) SPX multifactor portfolios. The relative 
strength results of all approaches in relation to their underlying indices are displayed
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Fig. 5  Relative strength results of long-only ( qt+ = 90% ) and long-short ( qt− = 10% , qt+ = 90% ) STX multifactor portfolios. The relative 
strength results of all approaches in relation to their underlying indices are displayed
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Fig. 6  Relative strength results of long-only ( qt+ = 80% ) and long-short ( qt− = 20% , qt+ = 80% ) SPX multifactor portfolios). The relative 
strength results of all approaches in relation to their underlying indices are displayed
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Fig. 7  Relative strength results of long-only ( qt+ = 70% ) and long-short ( qt− = 30% , qt+ = 70% ) SPX multifactor portfolios. The relative 
strength results of all approaches in relation to their underlying indices are displayed
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Fig. 8  Relative strength results of long-only ( qt+ = 70% ) and long-short ( qt− = 30% , qt+ = 70% ) STX multifactor portfolios. The relative 
strength results of all approaches in relation to their underlying indices are displayed
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