
Jacob, Daniel

Article — Published Version

CATE meets ML

Digital Finance

Provided in Cooperation with:
Springer Nature

Suggested Citation: Jacob, Daniel (2021) : CATE meets ML, Digital Finance, ISSN 2524-6186, Springer
International Publishing, Cham, Vol. 3, Iss. 2, pp. 99-148,
https://doi.org/10.1007/s42521-021-00033-7

This Version is available at:
https://hdl.handle.net/10419/287641

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s42521-021-00033-7%0A
https://hdl.handle.net/10419/287641
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

Digital Finance (2021) 3:99–148
https://doi.org/10.1007/s42521-021-00033-7

1 3

ORIGINAL ARTICLE

CATE meets ML

Conditional average treatment effect and machine learning

Daniel Jacob1

Received: 1 March 2021 / Accepted: 27 May 2021 / Published online: 28 June 2021
© The Author(s) 2021, corrected publication 2021

Abstract
For treatment effects—one of the core issues in modern econometric analysis—pre-
diction and estimation are two sides of the same coin. As it turns out, machine learn-
ing methods are the tool for generalized prediction models. Combined with econo-
metric theory, they allow us to estimate not only the average but a personalized
treatment effect—the conditional average treatment effect (CATE). In this tutorial,
we give an overview of novel methods, explain them in detail, and apply them via
Quantlets in real data applications. We study the effect that microcredit availability
has on the amount of money borrowed and if 401(k) pension plan eligibility has an
impact on net financial assets, as two empirical examples. The presented toolbox of
methods contains meta-learners, like the doubly-robust, R-, T- and X-learner, and
methods that are specially designed to estimate the CATE like the causal BART and
the generalized random forest. In both, the microcredit and 401(k) example, we find
a positive treatment effect for all observations but conflicting evidence of treatment
effect heterogeneity. An additional simulation study, where the true treatment effect
is known, allows us to compare the different methods and to observe patterns and
similarities.

Keywords Causal inference · CATE · Machine learning · Tutorial

JEL Classification C15 · C21 · D14 · G21

 * Daniel Jacob
 daniel.jacob@hu-berlin.de

1 School of Business and Economics, Blockchain Research Center, Humboldt-Universität zu
Berlin, Unter den Linden 6, 10099 Berlin, Germany

http://orcid.org/0000-0001-8108-6552
http://crossmark.crossref.org/dialog/?doi=10.1007/s42521-021-00033-7&domain=pdf

100 Digital Finance (2021) 3:99–148

1 3

1 Introduction

Estimation and prediction of treatment effects are important tasks for every econ-
omist and financial econometrician, since treatment effects are often the basis for
policy and business decisions. As an illustration, let us look at an idea of micro-
credits, dating back to Muhammad Yunus, a Nobel Price winner, who discovered in
1976 that very small loans could make a disproportional difference to a poor person.
Microcredits work, as shown in Fig. 1. They can increase investments, since such
credit is easy to get and pay back. Business activity is hence more flexible and could
be improved. Increasing gains from a business could increase the household income
and further allow for more savings which can be invested in, for example, education.

This specific example was recently applied by Crépon et al. (2015) who studied
the setting, where certain villages in Morocco get access to microcredit (the treat-
ment group), while others don’t (the control group). As economists, one is interested
in the effect that microcredit availability has on the amount of loans which could
be an indicator of how demanded such microcredits are. Since we observe certain
characteristics for each household, we can condition on such observed variables to
see if there is heterogeneity in the effect from microcredit. Figure 2 shows an exam-
ple of what we want to do. The goal is to find subgroups based on characteristics,
where we believe that the treatment effect is different. As an example, we can par-
tition the households by age and compare young vs. older household members in
terms of their effect on microcredit. In both subgroups, we need to make sure that
we observe people that are treated and others that did not receive treatment. We can
estimate the average treatment effect (ATE) for the young household members, for
example, by taking the difference of their mean outcome given treatment status. We
repeat this for the subgroup of older households. Recent methods to estimate the
ATE using nonparametric methods on the whole sample include target maximum
likelihood estimation (TMLE) (van der Laan, 2010) and double machine learning
(Chernozhukov et al., 2018a). If the data has many covariates (let us say it has high-
dimensionality) and if we don’t know which specific subgroup we should focus on,
as is the case here, we can use methods that are presented in this tutorial. These
methods estimate a treatment effect for each observation based on their covariates,
the conditional (on covariates) average treatment effect (CATE). In a further step,
we can then look at the heterogeneity and try to link characteristics that are drivers
for different treatment effects.

Microcredit Product Business
Investment

Business Activity
Increased
Household
Income

Increased
Household
Savings

Improved
Well-Being

Fig. 1 Theory of microcredits

101

1 3

Digital Finance (2021) 3:99–148

The high-dimensionality of a data set does not necessarily mean that one has
more covariates than observations by default. However, if we are unsure about the
structural form, we could include interaction and quadratic terms, and soon the
number of dimensions increases. For example, if we have 1000 observations and
30 covariates, then by only including quadratic interactions the amount of covari-
ates increases to 495. Including up to cubic terms leads to a dimension of 5455. If
we further assume that only a few covariates are dependent on the outcome and the
treatment (often called the approximate sparsity assumption), the task transfers into
a selection problem, where standard parametric models are limited and we might
want to use machine learning (ML) methods. The reason why this is the case is
either that we have more covariates than observations or that the functional forms
are complex and we don’t know which interaction terms to include in a linear model.

Machine learning is not easily defined. It contains many algorithms with the main
focus of prediction (regression), classification, and grouping tasks like clustering.
While clustering, as a form of dimensionality reduction, only uses covariates but not
outcomes with labels, we call this branch unsupervised ML. The counterpart is called
supervised ML. Supervised ML, in general, uses a set of covariates to predict an
observed outcome. When talking about prediction we mean the following: Construct
an estimator �̂�(x) of �[Y|Xi = x] using Y and a set of covariates from some training
set and predict the values of Y from an independent test set. The goal is to minimize
deviations between the true outcome and predicted outcomes from the test set. Note
that this is in contrast to the term forecasting. The only assumption so far is that the
observations are independent and that the joint distribution of X and Y in the training
set is the same as that of the test set. To achieve the goodness of fit (for example mini-
mize the average of the mean-squared error), in an independent test set many alterna-
tive models are estimated and the model that maximizes a criterion is selected. We
will talk about cross-validation—a concept for model selection—later. The key is that
the functional form is mostly determined as a function of the data. Regularization
together with systematic model selection may be the main advantages of ML meth-
ods. When we talk about ML in this tutorial, we mean supervised machine learning
models that are used to make predictions. For a detailed discussion about machine
learning in economics see Mullainathan and Spiess (2017) and Athey (2019).

Fig. 2 CATE example for microcredits

102 Digital Finance (2021) 3:99–148

1 3

How do we get from prediction to causal inference? A simple, pure prediction
approach to get the CATE is to estimate two conditional mean functions, one for
the treated observations and one for the non-treated (the control group). For each
observation, we can predict the outcome under treatment and control by plugging
each observation into both functions. Taking the difference between the two out-
comes results in the CATE. Mapping the support of X on Y is a classic regression
task for which machine learning methods are well suited to find generalizable pre-
dictive patterns. Since we are only interested in getting a good prediction of the
conditional mean, we do not need to know the underlying structural form of this
function which enables vanilla ML methods to be sufficient. We call such functions,
where the parameters are not of immediate interest, a nuisance function. While the
above example of estimating the CATE is quite simple and intuitive, we will see that
there are more efficient or automated methods to estimate heterogeneous treatment
effects. We will also see that while prediction models are easy to evaluate, causal
parameters are not. This is mainly, since the objective is different. In prediction, we
can optimize a goodness of fit criterion, since we observe the true outcome. The
causal parameter, however, is never observed in any data set. As in econometrics, we
need to carefully design methods that aim to estimate such parameters of interest,
apply statistical theory and expand the set of assumptions to interpret a parameter as
causal.

This tutorial is structured as follows. First, we provide an overview of the poten-
tial outcome framework and state the necessary assumptions to interpret our param-
eter of interest as a causal parameter. We then explain different methods that we con-
sider, methods that are very flexible in the choice of the ML algorithm, and methods
that are developed to estimate the CATE, mostly relying on tree-based algorithms.
As in classical ML, we make use of sample splitting to limit overfitting and allowing
for less restrictive assumptions on the nuisance functions. We cover explanations on
why and how to do sample splitting and cross-validation. Next, we investigate two
empirical data sets, the microcredit example, and the 401(k) pension plan survey.
Last, we include a simulation study, where we generate the true treatment effect.
This allows us to directly compare all different methods in terms of accuracy. When-
ever possible we provide and link to Quantlets that are ready-to-use code snippets

Fig. 3 Simple causal diagrams: from ATE to CATE

103

1 3

Digital Finance (2021) 3:99–148

to implement the discussed methods (the Quantlets are all written in R). The files
are not only a replication code for the empirical analysis and the simulation study
but contain functions to implement novel methods that aim to estimate the CATE
directly. During this tutorial, we will use the terms model, method, and algorithm
interchangeably.

Figure 3 gives an idea of how a causal structure may look. In the first graph, only
the treatment has an impact on the outcome, while the second graph also includes
covariates that might make the treatment effect dependent on some characteristics.
The same is true for the third graph but now the covariates also influence the treat-
ment probability. We say that such a setting is from an observational study, since the
researcher has no control of the treatment assignment. The first two settings can be
seen as a randomized controlled trial (RCT) but only in the second and third can we
hope to observe treatment heterogeneity and hence estimate the CATE.

In this tutorial paper we make the following contributions: first, we explain and
compare different novel methods to estimate the conditional average treatment
effect. Second, while we refer to certain existing packages we build functions for
each meta-learner that allow for a flexible choice of machine learning methods.
To the best of our knowledge there are no packages available that allow to include
multiple ML methods and stacking. We further apply a procedure to estimate the
CATE on the whole sample and implement a additional cross-fitting approach. In
the empirical examples and the simulations we estimate confidence intervals for
each meta-learner using bootstrapping. To link the mathematical formulae for each
method to the code, we include pseudo-code in the corresponding section.

2 Methods

Let us start with an introduction of the potential outcome framework for which we
use the following notations: each observation has two potential outcomes, Y1 and
Y0 of which we only observe one, namely, the former if someone was treated or the
latter if not. The binary treatment indicator is D ∈ {0;1} and we denote observed
covariates X ∈ ℝ . To interpret the estimated parameter as a causal relationship, the
following assumptions are needed; see, for example, Rubin (1980):

1. Conditional independence (or conditional ignorability/exogeneity or conditional
unconfoundedness):

2. Stable unit treatment value assumption (SUTVA) (or counterfactual consistency):

3. Overlap Assumption (or common support or positivity):

(
Y1
i
, Y0

i

)
⟂⟂ Di|Xi.

Yi = Y0
i
+ Di(Y

1
i
− Y0

i
).

104 Digital Finance (2021) 3:99–148

1 3

4. Exogeneity of covariates:

Assumption 1 together with Assumption 4 is very natural, since they state that the
treatment assignment is independent of the two potential outcomes and that the
covariates are not affected by the treatment. Assumption 2 ensures that there is no
interference, no spillover effects, and no hidden variation between treated and non-
treated observations. Assumption 3 states that no subpopulation defined by Xi = x
is entirely located in the treatment or control group, hence the treatment probability
needs to be bounded away from zero and one. Equation (1) is called the propensity
score.

Now, we define the conditional expectation of the outcome for the treatment or
control group as

If we don’t use any subscript, we refer to this function as the general conditional
expectation.

Our parameter of interest is the CATE (�(x)), which is formally defined as

Equation (3) shows how the two conditional mean functions can represent the two
potential outcomes and hence, by taking the difference, lead to the CATE:

This estimator is of special interest in many areas like medicine or policy actions,
since it tells us if there are differences in the treatment effect in the population and
how big these differences are. It could be, for example, that the average treatment
effect of a policy is +2 , containing half of the people with a treatment effect of +6
and the other half of −2 . Instead of treating everyone, we should only treat people
that have a positive effect from the policy (if positive means better). If this is not
possible, let us say due to legal or ethical reasons, the policy should not be imple-
mented at all. The CATE will tell us the exact distribution of the effects and, at
best, allows us to identify subgroups. To estimate the CATE, we are not primarily
interested in the coefficient from regressing X on Y, nor are we interested in the coef-
ficients from the propensity score model. What we want instead is to have a good

(1)
∀x ∈ supp(Xi), 0 < P(Di = 1|Xi = x) < 1,

P(Di = 1|Xi = x)
def
= e(x).

X1
i
= X0

i
.

�d(x) = �[Yi|Xi = x,Di = d] with D ∈ {0, 1}.

(2)�(x) = �
[
Y1
i
− Y0

i
∣ Xi = x

]
= �1(x) − �0(x).

(3)

�(x) = �1(x) − �0(x)

= �
[
Yi ∣ Di = 1,Xi = x

]
− �

[
Yi ∣ Di = 0,Xi = x

]

= �
[
Y1
i
∣ Di = 1,Xi = x

]
− �

[
Y0
i
∣ Di = 0,Xi = x

]

= �
[
Y1
i
∣ Xi = x

]
− �

[
Y0
i
∣ Xi = x

]

= �
[
Y1
i
− Y0

i
∣ Xi = x

]

105

1 3

Digital Finance (2021) 3:99–148

approximation of the function and hence good estimates from, e.g., �1(x) and �0(x) .
This is why ML methods are well suited for the job.

When reviewing recently proposed methods for the estimation of the CATE, we
can categorize them into two groups. The first group contains methods that are built
on off-the-shelf machine learning methods (such as the lasso, random forest (RF),
Bayesian additive regression trees (BART), boosting methods, or neural networks).
Since the base learners are not designed to estimate the CATE directly, the literature
calls them meta-learners or generic ML algorithms. The second group of methods
alters existing machine learning methods in a way that they can be used to estimate
the CATE directly [examples are causal boosting by Powers et al. (2018), causal for-
est by Athey et al. (2019) or Bayesian regression tree models for causal inference by
Hahn et al. (2020)]. See Künzel et al. (2019) for a comparison between meta-learn-
ers like the S-, T-, and X-learner as well as the causal forest in a simulation study.
Knaus et al. (2020) compare meta-learners like inverse probability weighting (IPW)
estimator, doubly-robust (DR), modified covariate method (MCM), R-learner, and
different versions of the causal forest in an empirical Monte Carlo study, while Nie
and Wager (2020) compare their R-learner with the S-, T-, X- and U-learner as well
as causal boosting. Regarding the base learners (the ML methods), Künzel et al.
(2019) use a random forest and BART. Knaus et al. (2020) use RF and lasso, while
Nie and Wager (2020) use boosting and the lasso for the estimation of the nuisance
functions and the treatment effects. In high dimension, the use of machine learning
methods, such as boosting or random forests to estimate the propensity score, works
quite well as McCaffrey et al. (2004) and Wyss et al. (2014) show. The estimation of
probabilities given a large set of covariates is nothing less than a prediction problem
in where ML methods are superior. In Table 1, we list popular methods by category,
including links to the Quantlets. The references refer to recent papers that use these
methods and provide theoretical properties.

Table 1 Methods to estimate CATE

106 Digital Finance (2021) 3:99–148

1 3

2.1 Meta‑learners

In the following, we briefly describe the considered meta-learners. We follow the
definition of meta-learners by Künzel et al. (2019) and describe them as methods
to estimate the CATE using ML methods that are built for regression or classifica-
tion tasks only. The S- and T-learner, for example, can use any vanilla ML method
to predict the conditional outcome. The prediction models can then be used to
estimate the conditional average treatment effects. The second class of methods
uses additional information from the propensity score. They contain the DR- and
X-learner. Again, the conditional mean functions, as well as the propensity score,
can be estimated using a broad range of ML methods. The aforementioned meth-
ods are also called transformed outcome methods. The idea is to generate a pseudo-
outcome using the estimated nuisance functions in the first step. This can be seen as
an approximation of the conditional average treatment effect. The pseudo-outcome,
which we show in Table 2, is an unbiased estimate of the CATE given that the nui-
sance parameters are known (e.g., if we would know the true propensity score). In
a second step, the pseudo-outcome is mapped on the covariates to get the final esti-
mate and to make predictions on new observations. The reason for prediction is that
the observed data, after a treatment assignment, includes the outcome, covariates,
and the treatment assignment variable. If we want to classify new observations, we
only observe the covariates. Hence we need a model that maps the covariates on the
estimated treatment effect. The mapping also serves as a smoother, since it could
be the case that some pseudo-outcome values are quite extreme (e.g., if the pro-
pensity score estimate is very low or high). The last method that we examine in
this category is the R-learner. However, it does not generate a pseudo-outcome in
the classical sense as it needs algorithms that can modify the loss function. Still,

Table 2 Summary of meta-learners

Considered meta-learners that estimate the CATE. # of Models counts the number of nuisance functions
to estimate the pseudo-outcome. Numbers in brackets count the total number of models to train to get the
final CATE estimate or to make predictions

Method Estimator/pseudo-outcome Weights (w
i
) # of models

S-learner �̂�
S
= �̂�(x, d = 1) − �̂�(x, d = 0) 1 1 (2)

T-learner �̂�
T
= �̂�1(x) − �̂�0(x) 1 2 (3)

DR-learner
�̂�
DR

= �̂�
T
+

D
{
Y − �̂�1(x)

}

ê(x)

−
(1 − D)

{
Y − �̂�0(x)

}

(1 − ê(x))

1 3 (4)

R-learner
�̂�
R
=

{Y − �̂�(x)}

{D − ê(x)}
{D − ê(x)}2 2 (3)

IPW-learner
�̂�
IPW

=
DY

ê(x)
−

(1 − D)Y

(1 − ê(x))

1 1 (2)

X-learner �̂�1

X

def
= Y

1 − �̂�0

(
x
1
)

�̂�0

X

def
= �̂�1

(
x
0
)
− Y

0

1 3 (5)

107

1 3

Digital Finance (2021) 3:99–148

many ML methods can be used which is why we include the R-learner into the cat-
egory of meta-learners. Currently, R-packages are available for the R-, S-, T-, U-,
and X-learner (install_github(“xnie/rlearner”)) and the M-, S-, T-,
and X-learner (install_github(“soerenkuenzel/causalToolbox”)).
Causal analysis via the potential outcome framework and causal graph theory for
Python can be found in Sharma et al. (2019). For heterogeneous treatment effect
analysis via machine learning in Python see EconML (2019). The list of methods
above is not a complete list of methods in this subject. For example, we do not talk
about methods for instrumental variables, multiple-treatment, difference-and-differ-
ence methods, or regression discontinuity designs. We also note that there are other
methods to estimate treatment effects in cross-sectional settings. For example, one
of the first methods developed to control for confounding bias is the inverse prob-
ability weighting (IPW) estimator by Horvitz and Thompson (1952). In Algorithm 9
we show how to implement this algorithm. Some methods use neural networks to
estimate heterogeneous treatment effects. See, for example, the recent work by Far-
rell et al. (2021) who use a deep neural network for semiparametric inference and
develop nonasymptotic high probability bounds.

2.1.1 Single‑ (S‑learner) and two‑model learner (T‑learner)

Let us first start with a very simple and intuitive method, the T-learner. It is a two-
step approach, where the conditional mean functions �1(x) = �[Y1|Xi = x] and
�0(x) = �[Y0|Xi = x] are estimated separately with any generic machine learning
algorithm. The difference between the two functions results in the CATE, as shown
in Table 2 and as seen in Eq. (3). One problem with the T-learner is that it aims to
minimize the mean squared error for each separate function rather than the mean
squared error of the treatment effect. By splitting the sample into two groups there
is only information on one group. This might be problematic if the two functions
shrink different covariates which are important in both groups. This is especially the
case in an RCT. See, for example, Künzel et al. (2019) and Kennedy (2020) for set-
tings when the T-learner is not the optimal choice. An alternative is to model only
one function and include the treatment assignment into this function. This approach
is called the S-learner. See for example, Hill (2011) and Foster et al. (2011) for early
examples of proposing the S-learner. Algorithm 7 describes how to implement the
S-learner, while Algorithm 1 shows the implementation for the T-learner.

108 Digital Finance (2021) 3:99–148

1 3

2.1.2 Doubly‑robust learner (DR‑learner)

A more efficient method than the T-learner can be the DR-learner. It builds on the
T-learner and adds a version of the inverse probability weighting (IPW) scheme on
the residuals of both regression functions { Yd − �̂d(x) }. We can think of it as com-
bining two different models and hence avoid drawbacks like the minimization goal
from the T-learner and a potentially high variance from an IPW model when some
propensity scores are small. The doubly-robust learner takes its name from a dou-
ble robustness property which states that the estimator remains consistent if either
the propensity score model or the conditional outcome model is correctly specified
(Lunceford & Davidian, 2004). The DR-learner creates a pseudo-outcome which is
an unbiased estimator for the CATE:

Equation (17) in the Appendix shows the double-robustness property by rewriting
Eq. (4). Whenever the propensity score or the conditional mean function is correctly
specified the doubly-robust estimator converges to �[Y1] − �[Y0].

The first part in Eq. (4) can be seen as a regression adjustment parameter (this is
the difference between the two conditional mean functions). The second part, which
makes use of the propensity score, can be seen as an inverse probability weight-
ing estimator applied to the residual from the conditional mean functions. The DR-
learner is very flexible in the choice of the ML method. Estimating the nuisance
parameters we can use any ML method. Since the pseudo-outcome is already an
unbiased estimator for the CATE the loss-function in the final regression task is to
minimize the mean squared error. This allows using the same range of ML meth-
ods as in the first step. Recently, this estimator has gained popularity to estimate
the CATE, especially in high-dimensional settings. See, for example, the work by
Fan et al. (2019). Most recently, Kennedy (2020) find that for estimating the CATE,
the finite-sample error-bound from the DR-learner at most deviates from an oracle
error rate by the product of the mean squared error of the propensity score and the

(4)�̂DR = �̂1(x) − �̂0(x) +
D
{
Y − �̂1(x)

}

ê(x)
−

(1 − D)
{
Y − �̂0(x)

}
(
1 − ê(x)

) .

109

1 3

Digital Finance (2021) 3:99–148

conditional mean estimator. As can be seen from Eq. (4), extreme propensity score
estimates can lead to large pseudo-outcome estimates. Hence it is necessary to look
at the distribution of the propensity score and, if necessary, apply methods to make
the overlap assumption more realistic.

2.1.3 R‑learner

The R-learner makes use of the idea of orthogonalization to cancel out any selec-
tion bias that may arise in observational studies from observed covariates. Here,
the residuals from the regression of Y on X are regressed on the residuals from
the regression of D on X and weighted by the squared residuals, {D − ê(x)}2 .
This is similar to the double machine learning approach from Chernozhukov
et al. (2018a), where their estimator of interest is the ATE. Nie and Wager (2020)
develop a general class of two-step algorithms for the estimation of the CATE.
The R-learner, as from residualized and as an homage to Peter M. Robinson,
makes explicit use of machine learning methods. Achieving Neyman orthogonal-
ity using a residuals-on-residuals (or debiasing) approach has a long history in
econometrics (see the Frisch–Waugh–Lovell theorem from the 1930s for linear

110 Digital Finance (2021) 3:99–148

1 3

regression) and mainly builds on the work by Robinson (1988) who replaces the
linear parts by non-parametric kernel regression. The CATE from the R-learner is
obtained by the following minimization task:

The superscript (−i) indicates the sample splitting. The conditional mean functions
are trained without the ith observations and evaluated only for i. We will explain
certain sample splitting procedures later. The term �n{�(⋅)} can be interpreted as
a regularizer on the complexity of the �(⋅) function. In practice, this regularization
term could be explicitly given as in penalized regression or implicitly introduced,
e.g., as provided by a carefully designed deep neural network. The main difference
to the pseudo-outcome estimators (the DR- and X-learner) is that the R-learner
needs to alter the loss-function of the ML method. Even if �R with weights equal
to 1 as an estimator for �(x) it can suffer from high variance if the nuisance func-
tions are not known. The variance is mainly caused by the propensity score, since
{D − ê(x)} is in the denominator. This is where the weighting comes into play.
Observations that have a high variance are weighted by the squared of {D − ê(x)}
and hence are less important. The weights for each observation directly influence the
loss function (e.g., in boosting methods they manipulate the gradient). Therefore,
applying the R-learner needs ML methods that have the option of altering the loss-
function through weighting. The following methods have this option: lasso and ridge
regression (glmnet), boosting (included in the DMatrix format) (XGBoost), neu-
ral network (nnet) and the random forest (ranger). Note that the ranger package
seems to be the only implementation of weights for a random forest. The weights
are applied on the whole training sample and observations with larger weights will
be selected with higher probability in the bootstrap (or subsampled) samples for the
trees.

(5)
�̂(⋅) = argmin�

{
1

n

n∑

i=1

[{
Yi − �̂(−i)

(
Xi

)}

−
{
Wi − ê(−i)

(
Xi

)}
�
(
Xi

)]2
+ �n{�(⋅)}

}
.

111

1 3

Digital Finance (2021) 3:99–148

2.1.4 X‑learner

Künzel et al. (2019) propose the X-learner which estimates a treatment effect sep-
arately for the control and the treatment group. This might be especially helpful
in situations, where the proportion of the two groups is highly imbalanced. The
X-learner has several steps. The first step is identical to the T-learner, namely,
estimating the two conditional mean functions. In the second step, we predict the
counterfactual outcome using the two functions. If a person is treated and hence
the observed outcome is Y1 we subtract the estimated counterfactual. If a person
is in the control group we use the estimated counterfactual outcome and subtract
the observed outcome (Y0). This results in two imputed treatment effects:

These imputed effects are now used in a third step to regress them individually on
the covariates to obtain �̂0(x) (the CATE for the control group) and �̂1(x) (the CATE
for the treatment group). The final estimator combines the two estimators plus some
weights, g(x):

(6)�̂1
X

def
= Y1 − �̂0

(
x1
)

for Di = 1,

(7)�̂0
X

def
= �̂1

(
x0
)
− Y0 for Di = 0.

112 Digital Finance (2021) 3:99–148

1 3

In a randomized controlled trial, the two estimates should not differ significantly. If
there are confounding variables and if the support of the treatment variable given
covariates differs among the treatment status we would expect the two estimates to
be different. Hence, a natural weighting function for g(x) could be the propensity
score. We would use 1 − ê(x) for the treatment group and ê(x) for the control group
estimate, respectively.

Algorithm 4 describes the procedure in detail and takes sample-splitting into
account.

2.1.5 Summary of meta‑learners

We summarise the considered meta-learners in Table 2, where �̂ states the pseudo-
outcome or estimator for each of the learners. The last column counts the number of
nuisance functions needed to estimate the pseudo-outcome or estimator. In brackets,
we state the total number of models needed to get the final CATE estimate. Note that
the X-learner is regressed only for the treated observations and again only for the
observations in the control group. This is why we need two more additional models
for the final estimate.

The estimators from Table 2 can be represented as a weighted minimization prob-
lem which solves the following:

�̂(x) = g(x)�̂0(x) + {1 − g(x)}�̂1(x).

113

1 3

Digital Finance (2021) 3:99–148

2.1.6 The choice of ML algorithms for meta‑learners

The accuracy of the CATE estimation depends on the accuracy of the nuisance func-
tions and hence on the choice of the ML method. To minimize the dependence of
the ML methods on our estimates, we do not assign specific machine learning meth-
ods for the estimation but consider a range of different popular methods. To choose
which ML method to use for each nuisance function as well as for any additional
functions, we use a stacking method. In such a setting, not only one ML method
may be chosen but an ensemble of methods that are stacked together with differ-
ent weights. We use the SuperLearner package as proposed by Polley et al. (2011).
It also enables us to choose different models for each nuisance function and set-
ting. The package offers a general class of prediction methods to be considered by
the ensemble. From the 42 different algorithms, we select gradient boosted trees
(xgboost), neural network (nnet) and random forest (ranger) for our analysis.
Note that the R-learner needs to include weights to minimize the R-loss in the algo-
rithm, so we need to make sure that the ML methods we use have this possibility
included. While many researchers include the lasso in their simulations or empirical
analysis, we do not use this approach. The reason is that the lasso algorithm would
ideally need to assume a parametric form. This means that if we believe that there
are interaction and or polynomial effects from X on Y, we would need to include
such transformations. There are extensions like the adaptive lasso that expand the
feature space by including such additional factors. The computation time does how-
ever increase the more features we include. These are the main reasons why we do
not include the lasso in our analysis.

We use tenfold cross-validation to estimate the performance of all machine learn-
ing models. Cross-validation is a resampling procedure used to evaluate ML models
on a finite data sample. Depending on the ML model, the data can be fit perfectly
and hence produce a high variance (overfitting). This is, however, on the training
sample and the model can behave poorly on unseen data. Hence, we have to vali-
date our models. We could use a part of the data for validation. Since there is never
enough data, removing a part of it poses a potential for underfitting (we might lose
trends in the data or important patterns). What we require instead is a method that
provides enough data for training the model and also leaves enough data for vali-
dation. K-fold cross-validation does exactly that. This approach involves randomly
splitting the set of observations into K groups, or folds, of approximately equal size.
The model is fit on folds 2 to K, while the first fold is used as a validation set. It is
also important that any preparation of the data before fitting the model occur on
the training sample that is used for cross-validation within the loop rather than on
the broader data sample. This also applies to any hyperparameter tuning, for exam-
ple, the number of trees, the minimum observations within a node, learning rates,
or shrinkage parameters. There is no formal rule for the choice of K but usually, it

min
𝜏

{
N−1

N∑

i=1

wi

{
�̂�i − 𝜏(x)

}2

}
.

114 Digital Finance (2021) 3:99–148

1 3

is set to 5 or 10. These values have been shown empirically to yield test error rate
estimates that suffer neither from excessively high bias nor from very high variance.
The reason is the following: The larger K, the smaller the difference in size between
the (original) training set and the resampling subset (K − 1 folds). As this difference
decreases, the bias of the technique becomes smaller. This means that the bias is
smaller for K = 10 than for K = 5 . A special case of cross-validation is the leave-
one-out cross-validation (LOOCV). In this case, K is set to the sample size and only
one observation is the validation sample. In all procedures, the K resampled esti-
mates of performance are summarized (e.g., by the mean and the standard error).

Since we apply multiple models to estimate the nuisance functions, we create a
weighted average among all models. Using stacking, we can find the optimal com-
bination of a collection of prediction algorithms or even different settings within
one model. In other words, we build a linear model that uses the outcome varia-
ble of the validation set as the dependent variable and all different base learners as
the input variables. For the random forest, we set the following tuning parameters:
n.trees=1000, min.node.size=10.

2.2 Modified ML methods

We now describe some methods that modify existing ML methods to estimate the
CATE directly. In contrast to meta-learners that are flexible in the choice of the ML
algorithm, these methods use a specific ML method (mostly tree-based algorithms).
Packages or code in R are available for the causal forest (grf), the causal Boosting
(https://github.com/saberpowers/causalLearning) and the causal
BART (install _github(”vdorie/bartCause”). Since causal boosting
is computationally expensive, we do not consider this method in our analysis.

2.2.1 Causal forest

The causal forest method, part of the generalized random forest (GRF) by Athey
et al. (2019) builds on a random forest algorithm to find neighborhoods in the
covariate space. These neighborhoods are built by recursive splitting the covariates
into subgroups, while the criterion to do so is based on heterogeneity in treatment
effects. The idea is to find leaves, where the treatment effect is constant but differ-
ent from other leaves. If we know that �(x) were constant over some neighbourhood
N(x), we could solve a partially linear model over N(x) using the residual-on-resid-
ual approach [see, e.g., Robinson (1988)]: first, we estimate e(x) = �[Di|Xi = x] and
second, �(x) = �[Yi|Xi = x] . We can use any non-parametric method like the lasso,
random forests, boosting methods, neural networks and others. The final step is to
estimate �(x) over the neighbourhood N(x):

(8)𝜏(x) =

∑
{i∶Xi∈N(x)}

�
Yi − �̂�

�
Xi

���
Di − ê

�
Xi

��

∑
{i∶Xi∈N(x)}

�
Di − ê

�
Xi

��2
.

115

1 3

Digital Finance (2021) 3:99–148

Note that this approach looks similar to the R-learner. Chernozhukov et al. (2018a)
showed that when using any of the aforementioned ML methods for the estimation
of the nuisance functions and then use the residual-on-residual approach to estimate
the average treatment effect the following regularity condition holds:

Given that,

we get a central limit theorem such that
√
n(𝜏 − 𝜏) ⇒ N(0,V) . The treatment effect

in the above setting, however, has to be constant. We can assume that with heteroge-
neous treatment effects, there are subgroups such that the constant effect assumption
holds. The question of how to find such accurate subgroups is exactly, where the
(causal) random forest comes into play. To create leaves that consist of observations
with the same (average) treatment effect, the splitting criterion has to rely on maxi-
mizing the heterogeneity in treatment effects between leaves (similar to maximizing
the variance between the leaves). Here we use again the method from Eq. (8). In
observational studies, where self-selection into treatment is present, the first splits
might not be a good representation of the treatment effect rather than differences
due to confounding variables. To overcome this problem, Athey et al. (2019) suggest
applying local-centering. This means that we use the residuals of the outcome and
treatment variable as data instead of the original values. Therefore, one has to train
two nuisance functions beforehand to predict the conditional mean which is used
to create the residuals. While machine learning methods rely on sample splitting to
avoid overfitting, the causal random forest integrates this via an honesty condition.
A tree is honest if, for each training sample i, it only uses the response Yi to estimate
the within-leaf treatment effect or to decide, where to place the split, but not both.

So far, we have looked at how a single tree is build and how the final treatment
effect can be estimated. To extend this procedure to multiple trees, let us view a for-
est as a weighting function:

Instead of seeing a forest as a double average over observations within a leaf and B
single trees, we can integrate the first sum to be a weighted average over all Xi that
fall into the leaf Lb(x) and divide by the total number of observations within the leaf
(|Lb(x)|). This weighted average tells us how often Yi falls into a certain leaf and
hence the weight that we have to apply to control for the different proportions. The
weights can be represented as �i(x) . We can now use these weights to weigh each
observation in a generalized method of moments estimator, where we apply a linear
model, regressing the residuals of Di on the residuals of Yi and weigh by �i . This is
how we get the CATE using a random forest. The algorithm is implemented in the
grf package. See Friedberg et al. (2018) for an extension of this approach to local
linear forests.

(9)�

[{
𝜇
(
Xi

)
− �𝜇

(
Xi

)}2
] 1

2

≪
1

n1∕4
, �

[{
e
(
Xi

)
−�e

(
Xi

)}2
] 1

2

≪
1

n1∕4
,

(10)
�̂�(x) = B−1

B∑

b=1

n∑

i=1

Yi
1
{
Xi ∈ Lb(x)

}

||Lb(x)||
=

n∑

i=1

Yi B
−1

B∑

b=1

1
{
Xi ∈ Lb(x)

}

||Lb(x)||
�����������������������������

𝛼i(x)

.

116 Digital Finance (2021) 3:99–148

1 3

Algorithm 5 describes the approach to estimating the CATE for each observa-
tion using the causal forest. The results from steps 4–7 are used for local-centering,
as described above. If not provided in the causal forest (step 8), the nuisance func-
tions are estimated internally. We use the ����������_������ function to estimate
the nuisance parameters. This function uses the honest estimation which means the
prediction is based on out-of-bag observations. We state the estimation explicitly,
since it might be the case that a different ML method is better suited in predicting
the conditional mean or the propensity score (e.g., a boosting method). When using
different methods, we just need to make sure that the predictions (steps 6 and 7) are
again based on either out-of-bag observations or a different subsample. Theoreti-
cally, if relying completely on the causal forest we do not need to split the sample at
all, since the honest condition applies to each step (the nuisance parameters and the
estimation of the CATE). Since we use K fold sample splitting for all other methods
we apply the same subsamples when using the causal forest.

2.2.2 Causal boosting

An alternative to random forest based causal inference is given by Powers et al.
(2018) who introduces boosted trees and causal multivariate adaptive regression
splines (MARS). By iteratively fitting weak learners to the residuals of a model,
an approximation of the function is build. The idea is to fit a causal tree in the style
of Wager and Athey (2018) while setting the basis function Ĝ(x,D) to zero. Now
we estimate the residuals by Yi − 𝜖 × ĝk(Xi,Di) and update Ĝk = Ĝk−1 + 𝜖 × ĝk . k
defines the terminal nodes from the tree and � is the learning rate parameter. After K
iterations we return ĜK(x,D) . Estimating the CATE is done by setting D to 1 for the
treated observations and 0 for the control-group observations, such that

Like in the causal forest the problem remains how to control for overfitting. Espe-
cially boosting methods are prone to overfit the data, since the trees are not built
independently. While a random forest would benefit from using more trees over

(11)𝜏(x) = ĜK(x, 1) − ĜK(x, 0).

117

1 3

Digital Finance (2021) 3:99–148

which to average, in gradient boosting the number of trees is an important tuning
parameter that needs to be controlled. In supervised ML we would ideally apply
cross-validation. In our case, the parameter of interest is the CATE and we do not
observe the true value for each observation. Hence, cross-validation does not apply
here. Instead, we can do something like the honest approach from the causal forest.

Powers et al. (2018) propose to split the data into two distinct sets. The training
set is used to build the causal boosting. Using the split-points and split-variables
from the training set we use the covariates from the validation set, lets call it Xv , for
validation and get new estimates based on Dv and Yv for each terminal node. This
procedure is done for any of the K trees, using again the residuals (this time from
the validation set tree) to reestimate the terminal nodes of the next causal tree. This
allows estimating a validation error for each of the original K models. The overall
validation error for a causal boosting model is given by the differences of the CATE
from the original vs. the validation trees.

2.2.3 Causal BART

While (causal) boosting relies on multiplying each sequential tree by the learning
rate (�), the idea developed by Chipman et al. (2010) is to estimate a posterior distri-
bution of the prediction by explicitly setting priors for the trees and ensemble struc-
ture (e.g., the depth of the tree, the probability of a new split). Using a Bayesian
approach allows for a broader set of information than the point estimate from regres-
sion and classification methods. The Bayesian Additive Regression Trees (BART)
approach is a combination of three methods: Using gradient boosting trees, a Bayes-
ian framing for each individual tree, and Markov chain Monte Carlo (MCMC) sam-
pling to do backfitting (using additive and generalized additive models for poste-
rior sampling). Hill (2011) proposes to use such nonparametric Bayesian models to
estimate treatment effects. Given strong ignorability, one way to estimate treatment
effect is to estimate the response function �(Xi,Di) . This function is estimated in
one step instead of estimating two functions. Hence, the prior is set directly for the
response surface. This approach is also called the S-learner—train one function and
set Di to 1 and 0 for each observation to get estimates for both potential outcomes.
Hahn et al. (2020) extends the idea of using a Bayesian approach to estimate treat-
ment effects but expresses the response surface as

where ê(x) is the estimated propensity score and the functions �(⋅) and �(⋅) are inde-
pendent BART priors. The inclusion of the estimated propensity score can be seen
as a covariate-dependent prior to control for confounding bias. The method is spe-
cially designed to estimate the CATE from observational studies with small effect
sizes and heterogeneous effects. The package we use is built on the model by Hill
(2011) (install_github(”vdorie/bartCause”)). A package that imple-
ments the method proposed by Hahn et al. (2020) is in development (install_
github(”socket778/XBCF”). This package is also available for Python.
Note that the causal BART produces credible intervals as a contrast to confidence

(12)�
[
Yi ∣ Xi,Di = di

]
= �

{
Xi, ê

(
Xi

)}
+ �

(
Xi

)
Di,

118 Digital Finance (2021) 3:99–148

1 3

intervals. They are estimated from the posterior probability function and hence rely
on the prior distribution, while confidence intervals are based on data only. We will
only use the term confidence interval on all methods, however, we do mean credible
intervals for the causal BART and (frequentists) confidence intervals for all other
methods.

2.3 Sample splitting and cross‑fitting

To aim for a consistent estimator, we need to assume certain complexity condi-
tions on the nuisance functions. Specifically, we want them to be smooth (i.e., dif-
ferentiable) and the entropy of the candidate nuisance functions to be small enough
to fulfill Donsker conditions (e.g., if we assume Lipschitz parametric functions or
VC classes). In high-dimensional settings (p > n) or when using ML methods that
are complex or adaptive, the Donsker conditions might not hold; see, for example,
Robins et al. (2013), Chernozhukov et al. (2016) and Rotnitzky et al. (2017). As
Chernozhukov et al. (2018a) noticed, verification of the entropy condition is so far
only available for certain classes of machine learning methods, such as lasso and
post-lasso. For classes that employ cross-validation or for hybrid methods (like
the SuperLearner), it is likely difficult to verify such conditions. Luckily, there is
an easy solution available: sample splitting. When splitting the sample, we can use
independent sets for estimating the nuisance functions and constructing the treat-
ment estimation equation. Using different sets, we can treat the nuisance functions
as fixed functions which allow avoiding conditions on the complexity. It also allows
us to use any ML method such as random forest or boosting or even an ensemble of
different methods. The split-sample approach to avoid smoothness conditions dates
back at least to Bickel (1982) and was extended to also use cross-fitting by Schick
(1986).

To overcome a potential loss in efficiency, since only a subset of the data is used
when estimating the CATE, cross-fitting is an increasingly popular approach to
combine ML methods with semi-parametric estimation problems; see, for exam-
ple, Chernozhukov et al. (2018a), Newey and Robins (2018) and Athey and Wager
(2017). We note that there are two definitions of cross-fitting. First, it is defined in
the context of estimating the CATE for all observations. For example, we split the
data into two folds, subset A and M. We use fold A to train the nuisance functions
and then estimate the parameter of interest using subset M. Now we switch the roles

119

1 3

Digital Finance (2021) 3:99–148

of the sets, using subset M for training and subset A for estimation. As a result, we
get estimates of the CATE for all observations.

The second definition is more in the spirit of averaging CATE estimates obtain
from different partitions that are used for the nuisance parameter estimation. For
example, let us say we have again the data as above but also an independent test
set. Now we can use the procedure as before. First, we train the nuisance function
on subset A and predict on subset B to get the pseudo-outcomes. We again train
a regression function based on B but predict the CATE using the test set. Now we
reverse the roles of A and B and get a second prediction of the CATE for the test
set. The two results are now averaged to get the final estimate. In this tutorial, we
will combine the two definitions of cross-fitting. First, we estimate the CATE on all
observations through reversing roles of samples. Second, we use cross-fitting as an
averaging tool over K folds. When referring to cross-fitting we mainly mean the lat-
ter definition.

We give an example of the benefit from cross-fitting in Fig. 4. We show the MSE
from the true treatment effect for a single estimator and the cross-fit estimator based
on a 50:50 sample split. We used the R-learner as the meta-learner and create 50
Monte Carlo replications of the data using the same data-generating process (DGP)
which simulates a RCT and has the following properties: N = 2000 , X = ℝ

10 , e(X)
= 0.5, and 𝜏(x) = X1 + �(X2 > 0) +W with W ∼ N(0, 0.5) . Using cross-fitting
decreases the MSE compared to the single estimator in about 90% of the cases. We
also find that the variance is smaller compared to the single estimator.

In empirical studies we do not have an independent test set and setting aside a
partition might not be efficient, since we lose observations for the estimation part. In

0.4

0.5

0.6

0 10 20 30 40 50
Replication

M
SE

Estimator single cross−fit

Fig. 4 Single vs. cross-fit estimation of CATE

120 Digital Finance (2021) 3:99–148

1 3

the following, we present an approach to use cross-fitting without an additional test
set.

We apply fivefold sample splitting and use 80% of the full data (denoted by
Z) for training the nuisance functions (denoted by Sa) and 20% to for estimation
(denoted by Sk). We propose to estimate the nuisance parameters for each of the
fivefold, using all folds but k for training and fold k to predict the conditional mean
and the propensity score. We then store the estimates. As a result, we have esti-
mates of all nuisance parameters to create the pseudo-outcomes for each observation
obtained from independent samples. Hence, the above-mentioned regularity condi-
tions should be fulfilled. Now we want to train a regression model on the pseudo-
outcomes (or minimize the R-loss). Instead of using the full sample for training and
prediction, we divide the sample into different parts. We assign half of the sample
as the test set (denoted by Soob , which is short for out-of-bag) and the other half that
is used to train the regression model. Let us say we want to rely on fivefold cross-
fitting (taking the average of Soob over fivefold). We, therefore, split the other half
of the sample into fivefold (denoted by Strain = {S1, S2,… , S5}). Using each fold to
train the regression model and predict on Soob leads to 5 estimates that we average by
taking the mean. Now we reverse the role of Strain and Soob and proceed as above. We
apply this procedure to the DR- and R-learner. The S- and T-learner only needs one
estimation step and hence it suffices to only use two different samples (the Sa and
Sk). In all other methods, we need an additional model (for example, the IPW-learner
would also benefit from cross-fitting). The X-learner is quite robust even without
cross-fitting. This might be because it only uses the propensity score in the last step.
The advantage of the two-step sample splitting approach is that we have more obser-
vations to train the nuisance functions (in this example we have Sa = 0.8Z observa-
tions instead of 0.8(Z − Soob)). Figure 5 shows the procedure in detail. As above,
we denote Sk as the fold which is used to estimate the nuisance parameters (e.g., the
propensity score, the pseudo-outcomes). The estimators 𝜏(x) refer to the CATE esti-
mates obtained using Soob given different folds for training. For example,𝜏1(x) first
uses S1 for training and Soob for estimation. To get estimates on the other half of the
data (also denoted as Soob) we use S6 for training. Hence, 𝜏1(x) are estimates of the

Fig. 5 Two-step sample splitting procedure

121

1 3

Digital Finance (2021) 3:99–148

CATE for the whole data set Z. A more detailed version of the cross-fitting part is
shown in Fig. 15 in the Appendix.

There might be alternative ways and averaging procedures to ensure robust esti-
mates and prediction results. For example, we could repeat the whole procedure M
times and generate different folds in the first place (the Sk folds). The result would
be M estimates for each observation of 𝜏(x) over which we could take the median.
This might lead to more robust estimates, since it takes the sample splitting uncer-
tainty into account. See Jacob (2020) for a Monte Carlo study about the implications
of different sample-spitting, cross-fitting, and averaging approaches for meta-learner
methods. The simulation study finds that the fivefold cross-fitting with median aver-
aging procedure works best. Our approach mimics this procedure but changes the
way to define a test set on which the cross-fitting is applied. For the meta-learners,
we have to do sample splitting and cross-fitting manually, while the causal forest as
well as the causal boosting relies on honest estimation and does sample splitting by
default. Cross-fitting, as we define it, is not implemented in any of the modified ML
methods.

3 Empirical examples

To illustrate the methods presented in the previous sections, we consider two empir-
ical examples. In the first example, we examine the effect that microcredits have on
the total amount of loans, resulting from a randomized experiment in Morocco. In
the second example, we study the effect of 401(k) eligibility on accumulated assets.
This example deviates from random treatment assignment and contains self-selec-
tion into a treatment. While all presented methods condition on observed pre-treat-
ment variables to estimate heterogeneity in treatment effects they should also be
able to control for confounding variables. However, methods that use the propensity
score should be more suited to eliminate the selection bias. For each method, we
estimate the CATE and provide confidence intervals. We also show how to link the
CATE to observed covariates for further analysis. In both examples, we apply the
two-step sample splitting with a cross-fitting approach for the DR- and R-learner.

3.1 Effect of microcredits on borrowing

We start with an empirical data set to analyze the effect of microcredit availability
on borrowing activities such as the amount of loans [see Crépon et al. (2015) for a
recent study using this data set]. Looking beyond the ATE and finding heterogene-
ous treatment effects is important to target specific groups and to make better poli-
cies. The allocation of treatment was randomized between 162 villages in Morocco.
The villages were divided into pairs with similar observable characteristics. Then
the treatment was randomly assigned to one of the pair, while the counterpart was
assigned to the control group. Treatment as microcredit availability in this context
means that between 2006 and 2007 a microfinance institution started operating only
in the treated villages. In 2009, 5551 households were surveyed in a follow-up study.

122 Digital Finance (2021) 3:99–148

1 3

We use the results from this survey to estimate conditional average treatment effects
using different methods and also show some strategies to get some insight into
which characteristics are responsible for heterogeneity in treatment effects. We
select the following pre-treatment covariates that are observed characteristics for
each household such as the age of household’s head, number of adults, number of
children, total number of members in a household, indicators for households doing
animal husbandry, other non-agricultural activity, household spouse responding to
the survey, the education of the head and having an outstanding loan over the last
year. Table 3 shows the mean value for some covariates. They are categorized by all
observations, the treated and the control group. Given these unconditional means,
we see that the amount of loans for the treatment group is much higher (2930) than
for the control group (1802). We also see that the mean of the characteristics is quite
balanced across the two groups. This reassures us that the treatment assignment was
randomly selected and that there are no confounding variables that lead to self-
selection into treatment. While there are small differences in some covariates, this is
not concerning, since all methods that we apply make use of the propensity score or
condition on the covariates to estimate the treatment effect only on similar sub-
groups. For example, more people in the treatment group already have a loan in the
last 12 months. We can estimate the probability of being in the treatment group
given this variable and reweigh the treatment and control group to adjust for these
differences. The data set and R-code for the microcredit analysis can be found here

.
We use three different ML algorithms to estimate the nuisance functions and to

map the covariates on the pseudo-outcome (for the DR- and X-learner) or to mini-
mize the R-loss function. Table 4 shows the coefficients for each ML algorithm
obtained through cross-validation in the SuperLearner. The loss-function is the non-
negative least squares based on the Lawson–Hanson algorithm which works for both
Gaussian and binomial outcomes. We find that the neural network gets the highest
weight for all functions except for the propensity score, where the random forest has
a slightly higher weight. Based on these weights, we only use the neural network and

Table 3 Descriptive statistics of households (mean)

All Treated Control

Outcome variable
Total amount of loans 2359 2930 1802
Baseline covariates
Number of household members 3.879 3.872 3.886
Number of children 1.266 1.261 1.272
Head age 35.976 35.937 36.014
Declared animal husbandry self-employment activity 0.415 0.426 0.404
Declared non-agricultural self-employment activity 0.146 0.129 0.164
Borrowed from any source 0.210 0.224 0.196
Spouse of head responded to self-employment section 0.067 0.074 0.061
Member responded to self-employment section 0.044 0.048 0.041

123

1 3

Digital Finance (2021) 3:99–148

the random forest for the construction of the bootstrapped confidence intervals. This
is mainly, since we believe that even with a bootstrapped sample, the weights of the
algorithms for each function will not change dramatically. Excluding the boosting
algorithms decreases the computation time by about 50%.

Table 5 shows a summary for the heterogeneous treatment, namely, the effect for
the 20% least affected, the ATE, and the effect for the 20% most affected obser-
vations. Especially for the quantiles, we find differences in the estimates given the
methods that we consider. This holds for the lower 20%, where the effect ranges
from −15 to 869 as well as for the 20% most affected with the lowest treatment effect
from the X-learner with 1379 and the highest estimate from the DR-learner with
3057. The high value in the upper quantile from the DR-learner is because it pre-
dicts more extreme values at the tail of the distribution. The DR-learner also has the
highest variance in terms of treatment effect with a range in number of loans from
−15 to 3057 on average for the specific quantiles. The ATE is around 1100 for all
methods and there is no large difference between them. Figure 6 shows the treat-
ment effect for each observation, sorted by the size of the effect. We also show 95%
confidence intervals (CI). They are estimated via bootstrapping with B = 500 repli-
cations. Here we adopt the procedure for the construction of CI’s from Künzel et al.
(2019). We first split our entire data set into a training and validation set. We use
the training set for bootstrapping by creating a sample from the training data of the
same size with replacement. For each meta-learner and each bootstrap sample from
the training data, we use the test set to estimate the CATE. We repeat this procedure
K = 5 times looping through all k subsets and define them as the test set. In total, we
end up having B estimates for each observation on the whole data. Now we calculate
the standard deviation (̂𝜎) for each observation which we use to generate a lower and
upper bound around the CATE estimates [𝜏(x) − q𝛼∕2�̂�;𝜏(x) + q1−𝛼∕2�̂�] . Especially
for the meta-learners, we have a high variance between the bootstrapped samples

Table 4 Weights of ML
methods

ê(X) �̂�
0
(X) �̂�

1
(X) �̂�(X) DR R

Boosting 0.00 0.00 0.00 0.00 0.00 0.11
Neural network 0.46 0.73 0.70 0.80 0.90 0.89
Random forest 0.54 0.27 0.30 0.20 0.09 0.00

Table 5 CATE results for different methods

Category Method 20% least ATE 20% most

Meta-learner DR-learner − 15.4 1119.8 3057.6
R-learner 84.9 1081.1 2237.5
T-learner 198.4 1152.5 2470.3
X-learner 869.9 1137.2 1379.7

Modified ML methods Causal BART 593.8 1132.3 2304.7
Causal forest 296.6 1129.6 2329.6

124 Digital Finance (2021) 3:99–148

1 3

indicating that even if the CATE is different, there might not be a significant hetero-
geneity. This is also in line with the estimates from the causal BART and the causal
forest that show tighter bounds but also an almost flat CATE curve. To calculate the
CATE, denoted by 𝜏(x) , we use the whole training data, not a bootstrapped version,
and proceed as described in the pseudo-code for the specific meta-learner.

Figure 6 shows quite similar values for at least four of the methods. Only the
DR- and R-learner have heavier tails for higher CATE estimates. The T-learner has
the widest confidence intervals, while all other methods show a similar range. Treat-
ment effects based on the DR- and R-learner are heterogeneous, at least for the 20%
least and most affected. The most homogeneous prediction comes from the causal
BART and the X-learner. Their estimates of the CATE are quite similar. The causal
forest also shows an increasing slope of the point estimates but wide confidence
intervals for the most affected observations. Based on these results, there is no clear
evidence of treatment effect heterogeneity.

In Fig. 6, we sorted the treatment effect by its size for each method. This does not
necessarily mean that all methods have the same order. To look into the order of the
CATE based on each method, we show the correlation of the CATE among them
in Fig. 16. We show the Bravais–Pearson correlation coefficient (�), a histogram of
the CATE, and correlation ellipses. It is reassuring that all methods are positively
correlated. The highest correlation is between the doubly-robust and the R-learner
(� = 0.57) as well as between the T- and X-learner (� = 0.5). The smallest correla-
tion appears between the causal BART and the R-learner with a correlation coef-
ficient of 0.15.

If we believe that there is at least some difference in the effect between the least
and most affected observations, then we can look at the average characteristics of

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

0 2000 4000 0 2000 4000

0 2000 4000 0 2000 4000

0 2000 4000 0 2000 4000

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 6 Microcredit: observations sorted by level of treatment effect

125

1 3

Digital Finance (2021) 3:99–148

these groups to understand what are potential drivers for the heterogeneity. Here we
adopt a simple approach introduced by Chernozhukov et al. (2018b), namely, the
Classification Analysis. The idea is to regress the least and most affected groups
on some pre-chosen characteristics with Gq being the observations given a specific
group of the treatment effect:

Here, we focus on the head age, the probability of being self-employed in a non-
agricultural sector, and whether someone had an outstanding loan over the past 12
months (borrowed from any source). In Table 6, we estimate the average of the char-
acteristics for the two groups as well as if there is a significant difference between
the groups. We show results for two methods, the doubly-robust meta-learner (DR-
learner) and the causal forest. Detailed CLAN results that include all methods can
be seen in the Appendix (12). For both methods, we find a significant difference in
head age, probability of being self-employed in a non-agricultural sector, and prob-
ability of having a loan. The most affected people seem to be younger. Low values in
the head age can arise, since many people did not respond to that question and got a
value of zero. However, we believe that the non-respondents are missing at random.
This allows us to interpret the difference between the two. Looking at employment,
we find diverse effects. Interpreting results from the DR-, X-learner, and causal for-
est we find that people who benefit most from microcredits are those who do not
work in the non-agricultural sector. Results from the R-, T-learner and the causal
BART suggest the other way around. We note that the result from the T-learner is
not statistically significant. The absolute magnitude in the probability difference is
rather small which is why we do not interpret this variable as a driver for treatment
effect heterogeneity. We also find that people who already have a loan (with a higher
probability) are less affected by microcredit availability. There are other possibilities
to investigate which covariates might be drivers for effect heterogeneity. For exam-
ple, if a tree-based method should be the best method for mapping the covariates on
the treatment effects then we could use variable importance plots to see which vari-
ables (at a certain split in a tree) increase the variance between two leaves. If a vari-
able is (randomly) chosen for a split and the mean values in the two resulting nodes
are quite the same as before the split then this variable might not be very useful to
explain the heterogeneity. We can also apply partial dependence plots to see how the
treatment effect changes if we change one variable.

3.2 Effect of 401(k) eligibility on accumulated assets

While the microcredit data is based on a randomized controlled trial, the eligibility
of a 401(k) pension plan is not. Only some firms offer access to a 401(k) and hence
there is self-selection into treatment. It might be the case that more educated people
chose firms that provide a 401(k) pension plan and that they have higher financial
assets in the first place. Poterba and Venti (1994) argue that conditioning on
observed characteristics, like the income, can restore the random assignment mecha-
nism. The data set we use is the same as in Chernozhukov and Hansen (2004) which

�least = �[g(X)|Gleast] and �most = �[g(X)|Gmost].

126 Digital Finance (2021) 3:99–148

1 3

Ta
bl

e
6

 C
la

ss
ifi

ca
tio

n
re

su
lts

 fo
r D

R-
le

ar
ne

r a
nd

 c
au

sa
l f

or
es

t

90
%

 c
on

fid
en

ce
 in

te
rv

al
 in

 p
ar

en
th

es
is

 a
nd

 p
 v

al
ue

s i
n

br
ac

ke
ts

D
R-

le
ar

ne
r

C
au

sa
l f

or
es

t

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

D
iff

er
en

ce
M

os
t a

ffe
ct

ed
Le

as
t a

ffe
ct

ed
di

ffe
re

nc
e

H
ea

d
ag

e
19

.1
9

46
.9

2
−

 2
7.

73
10

.2
5

46
.8

0
−

 3
6.

55
(1

7.
81

, 2
0.

58
)

(4
5.

53
, 4

8.
30

)
(9

.2
71

, 1
1.

22
)

(4
5.

82
, 4

7.
77

)
(−

 3
7.

93
, −

 3
5.

17
)

(−
 5

5.
00

, −
 5

1.
49

)
–

–
[0

.0
00

]
–

–
[0

.0
00

]
N

on
-a

gr
ic

ul
tu

ra
l s

el
f-

em
pl

oy
ed

0.
11

8
0.

18
6

−
 0

.0
68

0.
07

3
0.

13
6

−
 0

.0
64

(0
.0

97
, 0

.1
39

)
(0

.1
65

, 0
.2

07
)

(0
.0

55
, 0

.0
91

)
(0

.1
18

, 0
.1

54
)

(−
 0

.0
89

, −
 0

.0
38

)
(0

.1
21

, 0
.2

32
)

–
–

[0
.0

00
]

–
–

[0
.0

00
]

B
or

ro
w

ed
 fr

om
 a

ny
 so

ur
ce

0.
13

8
0.

33
8

−
 0

.2
01

0.
05

0
0.

38
8

−
 0

.3
38

(0
.1

13
, 0

.1
62

)
(0

.3
14

, 0
.3

63
)

(0
.0

28
, 0

.0
72

)
(0

.3
66

, 0
.4

11
)

(−
 0

.3
70

, −
 0

.3
07

)
(−

 0
.3

51
, −

 0
.2

19
)

–
–

[0
.0

00
]

–
–

[0
.0

00
]

127

1 3

Digital Finance (2021) 3:99–148

is based on the 1991 Survey of Income and Program Participation. We are interested
in the question if 401(k) eligibility, our treatment variable, has an impact on accu-
mulated assets (here we use the net financial assets as the outcome variable). We
control for income and other variables related to the job choice that may have an
impact on treatment assignment and assets. In total, we have 9915 observations and
13 covariates consisting of age, family size, income, years of education, and indica-
tor variables for married, two-earner status, defined benefit pension status, home-
ownership, and IRA participation. We split the data set into 5 parts and proceed as
described in the sample splitting Sect. 2.3. The data set and R-code for the 401(k)
analysis can be found here .

Table 7 shows the mean values for the net financial assets and for some pre-treat-
ment covariates. The amount of assets is higher in the treatment group than in the
control group. Concerning the self-selection into treatment, we see that some char-
acteristics are different between the treatment and control group. For example, the
proportion of home-ownership, years of education, and income is higher for treated
people. There are further reasons to believe that such characteristics are positively
correlated with financial assets. In this case, we have to control for such variables to
account for the self-selection into treatment. Table 8 shows the weights assigned to
the different ML algorithms for each nuisance function.

Table 9 shows the estimated CATE for the 20% least affected and 80% most
affected as well as the ATE. The ATE is positive and ranges from 7120 to 9055,
depending on the method. Its variance between the methods is quite low, com-
pared to the estimates for the least and most affected groups. While the T- and
X-learner predict a negative effect from 401(k) eligibility on financial assets
for the lowest group, all other methods predict a positive effect. The highest

Table 7 Descriptive statistics of
observations (mean)

All Treated Control

Outcome variable
Net financial assets 18,052 30,347 10,788
Baseline covariates
Age 41.06 41.48 40.81
Income 37,201 46,862 31,494
Years of education 13.21 13.76 12.88
Proportion of being married 0.60 0.67 0.56
Proportion of two-earners 0.38 0.48 0.31
Proportion of home-ownership 0.63 0.74 0.57

Table 8 Weights of ML
methods

ê(X) �̂�
0
(X) �̂�

1
(X) �̂�(X) DR R

Boosting 0.36 0.08 0.05 0.08 0.00 0.00
Neural network 0.14 0.09 0.06 0.06 0.49 0.33
Random forest 0.50 0.82 0.89 0.85 0.51 0.67

128 Digital Finance (2021) 3:99–148

1 3

affected group has values from 9,806 (from the DR-learner) to 25,326 (from the
T-learner). The causal forest predicts values with the lowest heterogeneity. Except
for the causal forest, all other learners predict extreme values in the tails of the
CATE. If we would use a majority vote from all the methods to interpret the esti-
mated effects, then it is reassuring that everyone has a positive effect from the
401(k) eligibility as can be seen in Fig. 7. Given the wide confidence intervals,
the evidence of treatment effect heterogeneity is not so clear.

Figure 17 shows the correlation of the CATE between the different meth-
ods. We find that the methods are highly correlated with each other. The low-
est correlation is between the DR- and T-learner with a correlation coefficient of
� = 0.64 , while the highest correlation is between the causal BART and causal
forest (� = 0.85). The reason why the estimated CATE is more similar might be
the large sample size of N = 9915.

Table 9 CATE results for different methods

Category Method 20% least ATE 20% most

Meta-learner DR-learner 4998 7120 9806
R-learner 4250 7410 11,320
T-learner − 4171 7579 25,326
X-learner − 285 7631 18,648

Modified ML methods Causal BART 2466 9055 21,525
Causal forest 5210 8228 12,360

T−learner X−learner

DR−learner R−learner

Causal−BART Causal−Forest

0 2500 5000 7500 10000 0 2500 5000 7500 10000

0 2500 5000 7500 10000 0 2500 5000 7500 10000

0 2500 5000 7500 10000 0 2500 5000 7500 10000
−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

−10000

0

10000

20000

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 7 401k: observations sorted by level of treatment effect

129

1 3

Digital Finance (2021) 3:99–148

Since the data does not come from a randomized controlled trial, we expect the
distribution of the covariates to be different given treatment status. To see this, we
plot the distribution of age, years of education, marital status, income, homeowner
status, and two-earner status in Fig. 8. As we already saw from Table 7, treated peo-
ple have a higher income, slightly more years of education and, among others, are
more often homeowners. To see if the estimated propensity score can catch the dif-
ferences, we can look at a weighted histogram. What we do is weigh the counts in
each variable by the inverse of the propensity score. If someone is in the treatment
group, we weigh by 1∕ê(x) and the control group observations by 1∕(1 − ê(x)) . The
result is shown in Fig. 9. Indeed, we see that the distributions are quite similar after
reweighing with the propensity score.

4 Simulated data

Since the true treatment effect is never known beforehand, we provide a simulation
to evaluate different approaches in terms of performance for parameter estimation.
The data-generating process allows controlling the number of observations, dimen-
sionality, and the distributions of the variables. The possibility to specify data sets
for different simulations and scenarios helps to investigate the methods used in this
tutorial. Note that simulated data often lack realistic data structures. An alternative is
to rely on synthetic data, where only the treatment effect is artificially added. Since
a simulation study in the type of a Monte Carlo study is not the main focus of this
tutorial, we will only use two simulated data-generating processes. The purpose is
to give an idea of how to simulate data and test different methods. Instead of relying

Homeowner Two−earner

Married Income

Age Education

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0 50000 100000 150000 200000 250000

30 40 50 60 0 5 10 15
0

500
1000
1500
2000
2500

0

500

1000

0
1000
2000
3000
4000

0
100
200
300
400

0

1000

2000

3000

0

1000

2000

3000

value

co
un

t D
0
1

Fig. 8 Unweighted distribution of variables given treatment status

130 Digital Finance (2021) 3:99–148

1 3

on purely artificial data, Wendling et al. (2018) creates synthetic data based on real
covariates and a treatment assignment mechanism. Only the outcome is simulated
based on non-parametric models of the real outcome.

4.1 Data‑generating process

The basic model used in this tutorial is a partially linear regression model based on
Robinson (1988) with extensions:

Let Y be the outcome variable. �(Xi) is the true treatment effect or population uplift,
while D is the treatment status. The vector X = (X1,… ,Xp) consists of p different
features or covariates and U, V and W are unobserved covariates which follow a ran-
dom normal distribution = N(0, 1).

Equation (14) is the propensity score. In the case of completely random treatment
assignment, the propensity score is constant for all units, and, if equally distributed,
then e(Xi) = 0.5 . The covariates X are generated from a random multivariate normal
distribution (N(0, 1)). Note that all values are continuous. In business applications,
discrete values (categorical variables) are very common. For the data generation
process as well as for the evaluation of most models, it would make no difference

(13)Y = �(Xi)D + �0(Xi) + U, �[U|X,D] = 0,

(14)D = e(Xi) + V , �[V|X] = 0,

(15)�(Xi) = t(Xi) +W, �[W|X] = 0.

Homeowner Two−earner

Married Income

Age Education

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0 50000 100000 150000 200000 250000

30 40 50 60 0 5 10 15
0

1000

2000

3000

0

500

1000

1500

0

2000

4000

6000

0

200

400

600

0

2000

4000

6000

0

2000

4000

6000

value

co
un

t D
0
1

Fig. 9 IPW weighted distribution of variables given treatment status

131

1 3

Digital Finance (2021) 3:99–148

if such variables are present. This is because vanilla machine learning methods can
handle categorical variables quite well. An exception is the causal forest, where
one has to use one-hot encoding, to transform the variable into dummies. Next, we
describe the generation of the functions in detail.

The function �0(Xi) is calculated using a linear function with interaction terms
and contains the following covariates:

All covariates are normal distributed except X5 which only takes four values, namely,
{−0.2, 0, 0.2, 0.6} . Next, we describe how to build the function e(Xi) as well as how
to create heterogeneous treatment effects. A varying treatment effect implies that
its strength differs among the observations and is, therefore, conditioned on some
covariates X. Regarding the treatment assignment, two settings are considered. Set-
ting 1 assumes D to be completely randomly assigned among the observations. In
this case, D is just a vector of random numbers with values 0 or 1. In setting 2, the
treatment assignment is dependent on the covariates. The binary treatment assign-
ment is generated through a Bernoulli function. This implies per default a sort of
uncertainty or random error. Even if the probability from the propensity score is
90% for D = 1 , there is still a 10% chance that it is generated to be zero. The func-
tions are generated as follows:

(16)𝜇0(X) = X1 ⊗ X2 + X3 ⊗ X4 + X5.

132 Digital Finance (2021) 3:99–148

1 3

Regarding the treatment effect, we also consider two different settings. First,
�(Xi) depends linear on covariates X, and second, �(Xi) has a non-linear, more
complex form concerning the covariates. In both settings, we can examine het-
erogeneous treatment effects. The vector b =

1

l
 with l ∈ {1, 2,… , p} represents

weights for every covariate.

The simulated data that include the true treatment effect can be found here:
.

133

1 3

Digital Finance (2021) 3:99–148

4.2 Results

To evaluate the different methods, we consider two data-generating processes
(DGP). Setting 1 is a randomized controlled trial with a constant propensity score
of 0.5, while the treatment effects depend linear on covariates. In setting 2, we con-
sider confounding variables, namely, that the treatment probability now depends on
covariates (through interactions of covariates), while the treatment effect depends
non-linear on the covariates. In both settings, we set N = 2000 and p = 20 . We use
up to 5 variables to generate the different variables and the treatment effects, while
all other variables have no dependence on any function. They are spurious and the
hope is that the ML methods find the important variables, while excluding the oth-
ers. Table 10 shows the mean squared error (MSE) for all considered methods and
both settings. We list to different versions of the DR- and R-learner. The first is the
in-sample estimator, where the regression and estimation of the CATE based on the
pseudo-outcome or R-loss is done on the same sample. Only the nuisance functions
are regressed and estimated on different samples. This is in line with the sample
splitting theory. In the last step, we just want to have a good approximation of the
CATE which is why we can use the same sample for training and prediction. Note
that the DR-learner already estimates the CATE in the pseudo-outcome. Using the
whole sample should increase the prediction power.

In practice, however, we find that it might be better to split the sample again and
not use the same sample for training and prediction. The reason is the following:
If the predictions of the nuisance functions are not perfect, the pseudo-outcome
deviates from the true CATE. The deviation becomes clearer with a higher estima-
tion error and also if there are extreme values in the propensity score. Using differ-
ent samples in the last step aims to smooth the function and discard outliers. This
approach adds sample splitting (the two-step sample splitting without cross-fitting).
Here we apply this approach with cross-fitting. This means we not only want to have
different samples for training and prediction but also want to average the prediction
fold over different training samples. Therefore, we split the sample into sixfold (the
proportions are 10% for the first fivefold and 50% for the last one). We use fold 1–5

Table 10 MSE for different methods

Category Method MSE setting 1 MSE setting 2

Meta-learner DR-learner (in-sample) 2.68 3.42
DR-learner (cross-fit) 1.11 1.17
R-learner (in-sample) 2.36 2.58
R-learner (cross-fit) 0.80 1.34
T-learner 1.17 2.09
X-learner 0.58 1.10

Modified ML methods Causal BART 0.55 0.48
Causal forest 0.86 1.34

134 Digital Finance (2021) 3:99–148

1 3

individually to train regression functions and predict on all fold 6. Then we average
the 5 estimates for fold 6. Now we reverse the role, combining fold 1–5 and split
fold 6 in 5 parts. We proceed as above. We call the sample split estimator simply
cross-fit estimator. Table 10 shows the results for both versions. Using the cross-fit
version we can decrease the MSE by at least 50%. In simulations, we find that even a
50:50 split, where we use 50% for training and predict on the other half can decrease
the MSE. The cross-fit version turns out to further decrease the MSE in simulations
with different DGP’s. For completeness, we show the procedure of the 50:50 split
approach in Fig. 14 in the Appendix.

Table 11 shows that in setting 1 the tree-based methods (boosting and random
forest) perform best in predicting the propensity score, while the neural network
does better in the regression tasks. The lasso only gets significant weight in the treat-
ment effect regression. The lasso is excluded when applying the R-learner, since in
a linear setting the loss-function slightly differs from the more general non-para-
metric one. If the data generating process becomes more complex, the lasso method
becomes less important shifting weights towards the neural network. In setting 2,
the tree-based methods are most important in all tasks but for the treatment-effect
regression based on the R-learner. We also experimented with excluding the neural
network and found that in the linear setting, more weight is based on the lasso, while
in the non-linear setting, the tree-based methods are superior. Since all methods are
important in at least one task, we include all methods but the lasso when creating
bootstrapped confidence intervals.

We again show the sorted treatment effect heterogeneity with 95% confidence
intervals in Fig. 10 and an additional scatterplot for the estimated vs. the true CATE
in Fig. 11. The blue line in the scatterplot indicates a linear regression estimate.
Figures 12 and 13 plot the same two outputs now for setting 2. While the causal
BART method produces the lowest MSE, it has higher credible intervals than the
causal forest. Figure 20 in the Appendix shows boxplots of all methods and their
variation. The blue line indicates the true ATE, hence we can see how accurate all
methods are to predict the ATE. We find that all methods are unbiased if the DGP
is linear. The bias increases if the functions are more complex as shown in Fig. 21.

Table 11 Weights of ML
methods

ê(X) �̂�
0
(X) �̂�

1
(X) �̂�(X) DR R

Setting 1
Boosting 0.91 0.11 0.27 0.27 0.26 0.12
Lasso 0.00 0.00 0.01 0.00 0.34 –
Neural network 0.00 0.83 0.70 0.68 0.00 0.75
Random forest 0.09 0.06 0.02 0.04 0.39 0.12
Setting 2
Boosting 0.40 0.62 0.72 0.72 0.14 0.13
Lasso 0.00 0.00 0.00 0.00 0.09 –
Neural network 0.00 0.07 0.06 0.07 0.13 0.39
Random forest 0.60 0.31 0.22 0.21 0.65 0.47

135

1 3

Digital Finance (2021) 3:99–148

Figures 20 and 21 also show the decrease in outliers for the DR- and R-learner when
we apply additional sample splitting and cross-fitting. We do not observe these out-
liers for the X-learner. As we have seen from the MSE, the causal BART method
performs best over the whole interval and in both settings. One observation is that

T−learner X−learner

R−learner R−learner (cross-fit)

DR−learner DR−learner (cross-fit)

Causal−BART Causal−Forest

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 10 Setting 1: observations sorted by treatment effect

T−learner X−learner

R−learner R−learner (cross-fit)

DR−learner DR−learner (cross-fit)

Causal−BART Causal−Forest

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

Estimated CATE

Tr
ue

 C
AT

E

Fig. 11 Setting 1: scatterplot of estimated and true CATE

136 Digital Finance (2021) 3:99–148

1 3

the meta-learners estimate the CATE with higher variance (and potentially produc-
ing more outliers that need to be controlled for) than the two modified ML methods.
The T-learner has the highest variance in both settings while the DR- and R-learner
show the second-highest variance in setting 1 and 2. Looking at the correlation of

T−learner X−learner

R−learner R−learner (cross-fit)

DR−learner DR−learner (cross-fit)

Causal−BART Causal−Forest

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

Ordered Observation

Tr
ea

tm
en

t E
ffe

ct

Fig. 12 Setting 2: observations sorted by treatment effect

T−learner X−learner

R−learner R−learner (cross-fit)

DR−learner DR−learner (cross-fit)

Causal−BART Causal−Forest

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0
−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

Estimated CATE

Tr
ue

 C
AT

E

Fig. 13 Setting 2: scatterplot of estimated and true CATE

137

1 3

Digital Finance (2021) 3:99–148

the methods, we find that the highest correlation is between the causal BART and
causal forest (� = 0.85, 0.81 for the two settings). In general, the correlation is quite
high in both settings (ranging from � = 0.64 to � = 0.85). However, we do not see
any improvement in the correlation in functions that are easier to estimate.

5 Conclusion

In this tutorial, we present novel methods to estimate the conditional average treat-
ment effect using machine learning methods. We categorize the methods into two
branches. First, so-called meta-learners, that make use of off-the-shelf machine
learning methods by creating a transformed outcome to estimate the CATE. They
are flexible in the choice of the machine learning method as long as they converge
with a specific rate. For example, we can use classification and regression trees, ran-
dom forest, boosting methods, and even neural networks. The second branch con-
tains machine learning methods that are specific designed to estimate the CATE.
These methods rely on trees or an ensemble of trees like the generalized random
forest, causal boosting, and a Bayesian approach using additive regression trees. The
use of meta-learners needs special care, because they are quite flexible in the choice
of the ML method and also concerning sample splitting. We, therefore, provide
pseudo-code along with R-code for many of such meta-learners and show how they
can be used to estimate the CATE on the whole data set. We also demonstrate how
to use the second branch of methods by integrating the packages in R-code that uses
the same data structure as the meta-learners. When possible we apply cross-fitting as
an averaging procedure of a subset of the data conditional on different training folds.

To demonstrate the strength and differences of all the methods that we con-
sider, we present four examples. Two empirical examples, the first from a rand-
omized control trial and the second from an observational study. The third and
fourth examples contain simulated data, where the true treatment effect can be
observed and hence compared with the estimates from all the methods. In the
empirical examples, we find strong evidence of positive treatment effects for
each observation, while significant heterogeneity in the effects is not that clear.
This is mainly if we base the conclusion on calculated confidence intervals via
the bootstrap or credible intervals. We do, however, find differences in the width
of the confidence intervals and also in the CATE prediction among the methods.
These differences also occur in the simulated data. We, therefore, recommend
that practitioners not rely on only one method but rather use multiple methods
and compare the results. One should also carefully think about the different tun-
ing parameters that can be set when using machine learning methods. Depend-
ing on the method there can be a variety of options to consider. We try to avoid
the problem of manually selecting such parameters through cross-validation and
the selection of different ML methods for each nuisance function. Sample split-
ting and cross-fitting is a further necessary step to get robust and accurate esti-
mates among the methods. One observation from this simulation is clearly that
the meta-learners can improve in terms of MSE with simpler functions. We note
that the results heavily depend on the chosen ML methods. Through applying

138 Digital Finance (2021) 3:99–148

1 3

different ML methods in the Super Learner we find that the selection of the best
ML method depends on the data generating process and varies across the func-
tions. For example, if the data structure is quite complicated and non-linear,
a model based on the lasso might not be the best choice. Including more ML
methods could improve the prediction accuracy depending on the data generat-
ing process. Using two-step sample splitting with cross-fitting further improves
the prediction.

Appendix 1: Additional proofs

Proof of the doubly-robustness property for the DR-learner. If either the propensity
score or the conditional mean is correctly specified, the doubly-robust estimator is an
unbiased estimator. Let us look at �̂1(x) . The same procedure holds analog for �̂0(x).

Appendix 2: Additional plots

Figure 14 describes the two-step sample splitting. The first splitting is necessary for
nuisance parameter estimation. The second split is done to get out-of-bag estimates of
the CATE. In this approach no cross-fitting is applied. Figure 15 now uses the samples
that include the pseudo-outcomes and split it into different folds. Each fold is used to
train a regression model. Prediction is done in the out-of-bag fold. Through the differ-
ent folds we get as many predictions as folds used for training. These estimates are then
averaged which applies the cross-fitting procedure (Figs. 16, 17, 18, 19, 20, 21).

(17)

=�

[
𝜇1(x) +

D
{
Y − 𝜇1(x)

}

e(x)

]

=�

[
e(x)

e(x)
𝜇1(x) +

D
{
Y − 𝜇1(x)

}

e(x)

]

=�

[
DY

e(x)
−

(D − e(x))𝜇1(x)

e(x)

]
, add

e(x)

e(x)
Y ,−

e(x)

e(x)
Y

=�

[
(D − e(x))Y

e(x)
−

(D − e(x))𝜇1(x)

e(x)
+

e(x)

e(x)
Y

]

�̂�1(x) =�

[
(D − e(x))(Y1 − 𝜇1(x))

e(x)
+ Y1

]

�̂�1(x) =�[Y
1] + �

[
(D − e(x))(Y1 − 𝜇1(x))

e(x)

]

139

1 3

Digital Finance (2021) 3:99–148

Fig. 14 Two-step sample splitting: 50:50

Fig. 15 Detailed cross-fitting procedure for 5 folds

140 Digital Finance (2021) 3:99–148

1 3

Causal−BART

0
15

00
−1

00
00

15
00

0

0 20000 40000

−2
00

0
40

00
0 1000 2500

0.19

Causal−Forest

0.20

0.44

DR

−10000 0 10000

−10000 0 10000

0.15

0.34

0.57

R

0.38

0.39

0.28

0.35

T

−5000 10000 25000

−2000 0 2000

0
30

00
0

0.30

0.39

−1
00

00
15

00
0

0.27

0.41

−5
00

0
20

00
0

0.50

X

Fig. 16 Correlation of CATE between different methods from the microcredit data

Causal−BART

−1
00

00
30

00
0

−1
e+

05
3e

+0
5

−4e+05 0e+00 4e+05

−1
e+

05
3e

+0
5

−10000 10000 30000

0.25

Causal−Forest

0.29

0.21

DR

−2e+05 2e+05

−1e+05 1e+05 3e+05

0.29

0.26

0.89

R

0.58

0.40

0.34

0.34

T

−3e+05 0e+00

−1e+05 2e+05

−4
e+

05
4e

+0
5

0.38

0.39
−2

e+
05

4e
+0

5

0.39

0.42

−3
e+

05
2e

+0
5

0.60

X

Fig. 17 Correlation of CATE between different methods from the 401k data

141

1 3

Digital Finance (2021) 3:99–148

Causal−BART

−1
.0

0.
5

−3
0

2

−3 −1 0 1 2

−3
0

2
−1.0 0.0 1.0

0.85

Causal−Forest

0.68

0.68

DR

−6 −2 0 2 4

−3 −1 1 2 3

0.75

0.75

0.74

R

0.73

0.72

0.64

0.68

T

−4 −2 0 2 4

−3 −1 1 2 3

−3
−1

1

0.80

0.77

−6
−2

2

0.70

0.74

−4
0

4

0.75

X

Fig. 18 Correlation of CATE between different methods for simulation setting 1

Causal−BART

1.
0

2.
0

3.
0

−1
1

3
5

0.0 1.0 2.0 3.0

−1
1

3
5

1.0 1.5 2.0 2.5 3.0

0.81

Causal−Forest

0.69

0.71

DR

−1 1 2 3 4 5

−1 1 2 3 4 5

0.65

0.68

0.82

R

0.72

0.75

0.71

0.70

T

0 2 4 6

−1 0 1 2 3 4 5

0.
0

1.
5

3.
0

0.71

0.68
−1

1
3

5

0.63

0.64

0
40.74

X

Fig. 19 Correlation of CATE between different methods for simulation setting 2

142 Digital Finance (2021) 3:99–148

1 3

Appendix 3: Tables

Classification results for the microcredit example

See Table 12.

−20

−10

0

10

C−BART C−Forest DR DR (cross-fit) R R (cross-fit) T−learner X−learner
Method

va
lu

e

Fig. 20 Setting 1: Boxplots of different methods. Blue line shows true ATE

−15

−10

−5

0

5

10

C−BART C−Forest DR DR (cross-fit) R R (cross-fit) T−learner X−learner
Method

va
lu

e

Fig. 21 Setting 2: boxplots of different methods. Blue line shows true ATE

143

1 3

Digital Finance (2021) 3:99–148

Ta
bl

e
12

C

LA
N

 re
su

lts
 fo

r d
iff

er
en

t m
et

ho
ds

D
R-

le
ar

ne
r

R-
le

ar
ne

r
T-

le
ar

ne
r

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

D
iff

er
en

ce
M

os
t a

ffe
ct

ed
Le

as
t a

ffe
ct

ed
D

iff
er

en
ce

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

D
iff

er
en

ce

H
ea

d
ag

e
19

.1
9

46
.9

2
−

 2
7.

73
29

.9
9

42
.5

2
−

 1
2.

53
23

.4
3

38
.1

7
−

 1
4.

74
(1

7.
81

, 2
0.

58
)

(4
5.

53
, 4

8.
30

)
(−

 2
9.

68
,

−
 2

5.
77

)
(2

8.
50

, 3
1.

49
)

(4
0.

98
, 4

4.
06

)
(−

 1
4.

67
,

−
 1

0.
38

)
(2

1.
93

, 2
4.

94
)

(3
6.

67
, 3

9.
68

)
(−

 1
6.

87
,

−
 1

2.
61

)
–

–
[0

.0
00

]
–

–
[0

.0
00

]
–

–
[0

.0
00

]
N

on
-a

gr
ic

ul
-

tu
ra

l s
el

f-
em

pl
oy

ed

0.
11

8
0.

18
6

−
 0

.0
68

0.
17

8
0.

09
7

0.
08

1
0.

14
9

0.
12

6
0.

02
3

(0
.0

97
, 0

.1
39

)
(0

.1
65

, 0
.2

07
)

(−
 0

.0
98

,
−

 0
.0

38
)

(0
.1

58
, 0

.1
98

)
(0

.0
76

, 0
.1

18
)

(0
.0

52
, 0

.1
10

)
(0

.1
28

, 0
.1

69
)

(0
.1

06
, 0

.1
46

)
(−

 0
.0

06
, 0

.0
51

)

–
–

[0
.0

00
]

–
–

[0
.0

00
]

–
–

[0
.2

44
]

B
or

ro
w

ed
 fr

om

an
y

so
ur

ce
0.

13
8

0.
33

8
−

 0
.2

01
0.

18
1

0.
32

0
−

 0
.1

39
0.

11
6

0.
27

3
−

 0
.1

57
(0

.1
13

, 0
.1

62
)

(0
.3

14
, 0

.3
63

)
(−

 0
.2

35
,

−
 0

.1
66

)
(0

.1
55

, 0
.2

06
)

(0
.2

94
, 0

.3
46

)
(−

 0
.1

75
,

−
 0

.1
03

)
(0

.0
93

, 0
.1

39
)

(0
.2

50
, 0

.2
96

)
(−

 0
.1

89
,

−
 0

.1
25

)
–

–
[0

.0
00

]
–

–
[0

.3
50

]
–

–
[0

.0
00

]

X
-le

ar
ne

r
C

au
sa

l B
A

RT

C
au

sa
l f

or
es

t

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

di
ffe

re
nc

e
M

os
t a

ffe
ct

ed
Le

as
t a

ffe
ct

ed
D

iff
er

en
ce

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

D
iff

er
en

ce

H
ea

d
ag

e
19

.6
6

38
.9

4
−

 1
9.

28
14

.8
5

50
.0

5
−

 3
5.

21
10

.2
5

46
.8

0
−

 3
6.

55
(1

8.
19

, 2
1.

14
)

(3
7.

47
, 4

0.
42

)
(−

 2
1.

37
,

−
 1

7.
19

)
(1

3.
68

, 1
6.

02
)

(4
8.

88
, 5

1.
22

)
(−

 3
6.

86
,

−
 3

3.
55

)
(9

.2
71

, 1
1.

22
)

(4
5.

82
, 4

7.
77

)
(−

 3
7.

93
,

−
 3

5.
17

)
–

–
[0

.0
00

]
–

–
[0

.0
00

]
–

–
[0

.0
00

]
N

on
-a

gr
ic

ul
-

tu
ra

l s
el

f-
em

pl
oy

ed

0.
13

8
0.

18
1

−
 0

.0
43

0.
15

0
0.

09
9

0.
05

1
0.

07
3

0.
13

6
−

 0
.0

64
(0

.1
16

, 0
.1

60
)

(0
.1

59
, 0

.2
02

)
(−

 0
.0

73
,

−
 0

.0
12

)
(−

 0
.0

73
,

−
 0

.0
12

)
(0

.0
80

, 0
.1

19
)

(0
.1

30
, 0

.1
69

)
(0

.1
18

, 0
.1

54
)

(0
.0

55
, 0

.0
91

)
(0

.0
38

, 0
.0

89
)

–
–

[0
.0

13
]

–
–

[0
.0

00
]

–
–

[0
.0

00
]

144 Digital Finance (2021) 3:99–148

1 3

Ta
bl

e
12

 (
co

nt
in

ue
d) X
-le

ar
ne

r
C

au
sa

l B
A

RT

C
au

sa
l f

or
es

t

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

di
ffe

re
nc

e
M

os
t a

ffe
ct

ed
Le

as
t a

ffe
ct

ed
D

iff
er

en
ce

M
os

t a
ffe

ct
ed

Le
as

t a
ffe

ct
ed

D
iff

er
en

ce

B
or

ro
w

ed
 fr

om

an
y

so
ur

ce
0.

09
1

0.
41

7
−

 0
.3

27
0.

09
1

0.
30

0
−

 0
.2

10
0.

05
0

0.
38

8
−

 0
.3

38

(0
.0

67
, 0

.1
15

)
(0

.3
94

, 0
.4

41
)

(−
 0

.3
60

,
−

 0
.2

93
)

(0
.0

68
, 0

.1
13

)
(0

.2
78

, 0
.3

23
)

(−
 0

.2
42

,
−

 0
.1

78
)

(0
.0

28
, 0

.0
72

)
(0

.3
66

, 0
.4

11
)

(−
 0

.3
70

,
−

 0
.3

07
)

–
–

[0
.0

00
]

–
–

[0
.0

00
]

–
–

[0
.0

00
]

A
ve

ra
ge

s a
re

 ta
ke

n
fro

m
 th

e
m

ea
n

of
 th

e
CA

TE
 o

ve
r 5

00
 b

oo
tst

ra
p

ite
ra

tio
ns

145

1 3

Digital Finance (2021) 3:99–148

Additional pseudocode

Algorithm 9 refers to the inverse probability weighting (IPW) estimator based on
Horvitz and Thompson (1952). While Künzel et al. (2019) refer to this estimator
as the F-learner, it is also known as the (simplest) transformed outcome estimator.
This is because �̂�IPW is an unbiased estimate of the ATE. The only nuisance func-
tion that is needed to create this outcome is the propensity score. We then map
the covariates onto the transformed outcome (or pseudo-outcome). The reason for
this mapping is again to smooth the function, since the IPW estimator can suffer
from high variance if the propensity score estimates are near zero or one. Below
we show that the IPW estimator is an unbiased estimator for the ATE.

146 Digital Finance (2021) 3:99–148

1 3

Acknowledgements Financial support of the European Union’s Horizon 2020 research and innovation
program “FIN-TECH: A Financial supervision and Technology compliance training programme” under
the grant agreement No 825215 (Topic: ICT-35-2018, Type of action: CSA), the European Cooperation
in Science & Technology COST Action grant CA19130—Fintech and Artificial Intelligence in Finance—
Towards a transparent financial industry and the Deutsche Forschungsgemeinschaft’s IRTG 1792 grant is
gratefully acknowledged.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declaration

�[�IPW|Xi = x] = �

[
Y

{
D

e(x)
−

1 − D

1 − e
(
Xi

)
}
|Xi = x

]

= �

[{
D

Y

e(x)
− (1 − D)

Y

1 − e(x)

}
|Xi = x

]

= �(D = 1|Xi = x)
1

e(x)
�[Y|D = 1,Xi = x]

− �(D = 0|Xi = x)
1

1 − e(x)
�[Y|D = 0,Xi = x]

= �[Y|D = 1,Xi = x] − �[Y|D = 0,Xi = x]

= �1(x) − �0(x) = �(x)

147

1 3

Digital Finance (2021) 3:99–148

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Athey, S. (2019). The impact of machine learning on economics. In The economics of artificial intelli-
gence (pp. 507–552). University of Chicago Press.

Athey, S., & Wager, S. (2017). Efficient policy learning. ArXiv preprint, arXiv: 1702. 02896
Athey, S., Wager, S., & Tibshirani, J. (2019). Generalized random forests. Annals of Statistics, 47(2),

1148–1178. https:// doi. org/ 10. 1214/ 18- AOS17 09
Bickel, P. J. (1982). On adaptive estimation. Annals of Statistics, 10(3), 647–671. https:// doi. org/ 10. 1214/

aos/ 11763 45863
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., et al. (2018a). Dou-

ble/debiased machine learning for treatment and structural parameters. The Econometrics Journal,
21(1), C1–C68. https:// doi. org/ 10. 1111/ ectj. 12097

Chernozhukov, V., Demirer, M., Duflo, E., & Fernandez-Val, I. (2018b). Generic machine learning infer-
ence on heterogenous treatment effects in randomized experiments. ArXiv preprint, arXiv: 1712. 04802

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., & Robins, J. M. (2016). Locally robust
semiparametric estimation. ArXiv preprint, arXiv: 1608. 00033

Chernozhukov, V., & Hansen, C. (2004). The effects of 401 (k) participation on the wealth distribution:
an instrumental quantile regression analysis. Review of Economics and statistics, 86(3), 735–751.
https:// doi. org/ 10. 1162/ 00346 53041 811734

Chipman, H. A., George, E. I., McCulloch, R. E., et al. (2010). Bart: Bayesian additive regression trees.
The Annals of Applied Statistics, 4(1), 266–298. https:// doi. org/ 10. 1214/ 09- AOAS2 85

Crépon, B., Devoto, F., Duflo, E., & Parienté, W. (2015). Estimating the impact of microcredit on those
who take it up: Evidence from a randomized experiment in morocco. American Economic Journal:
Applied Economics, 7(1), 123–50. https:// doi. org/ 10. 1257/ app. 20130 535

EconML, M. R. (2019). EconML: A Python Package for ML-Based Heterogeneous Treatment Effects
Estimation. https:// github. com/ micro soft/ EconML, version 0.x

Fan, Q., Hsu, Y. C., Lieli, R. P., & Zhang, Y. (2019). Estimation of conditional average treatment effects
with high-dimensional data. ArXiv preprint, arXiv: 1908. 02399

Farrell, M. H., Liang, T., & Misra, S. (2021). Deep neural networks for estimation and inference. Econo-
metrica, 89(1), 181–213

Foster, J. C., Taylor, J. M., & Ruberg, S. J. (2011). Subgroup identification from randomized clinical trial
data. Statistics in Medicine, 30(24), 2867–2880

Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2018). Local linear forests. ArXiv preprint, arXiv:
1807. 11408

Hahn, P. R., Murray, J. S., & Carvalho, C. M. (2020). Bayesian regression tree models for causal infer-
ence: Regularization, confounding, and heterogeneous effects. Bayesian Analysis,. https:// doi. org/
10. 1214/ 19- BA1195

Hansotia, B., & Rukstales, B. (2002). Incremental value modeling. Journal of Interactive Marketing,
16(3), 35. https:// doi. org/ 10. 1002/ dir. 10035

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computational and
Graphical Statistics, 20(1), 217–240

Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a
finite universe. Journal of the American statistical Association, 47(260), 663–685

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1702.02896
https://doi.org/10.1214/18-AOS1709
https://doi.org/10.1214/aos/1176345863
https://doi.org/10.1214/aos/1176345863
https://doi.org/10.1111/ectj.12097
http://arxiv.org/abs/1712.04802
http://arxiv.org/abs/1608.00033
https://doi.org/10.1162/0034653041811734
https://doi.org/10.1214/09-AOAS285
https://doi.org/10.1257/app.20130535
https://github.com/microsoft/EconML
http://arxiv.org/abs/1908.02399
http://arxiv.org/abs/1807.11408
http://arxiv.org/abs/1807.11408
https://doi.org/10.1214/19-BA1195
https://doi.org/10.1214/19-BA1195
https://doi.org/10.1002/dir.10035

148 Digital Finance (2021) 3:99–148

1 3

Jacob, D. (2020). Cross-fitting and averaging for machine learning estimation of heterogeneous treatment
effects. ArXiv preprint, arXiv: 2007. 02852

Kennedy, E. H. (2020). Optimal doubly robust estimation of heterogeneous causal effects. ArXiv pre-
print, arXiv: 2004. 14497

Knaus, M. C., Lechner, M., & Strittmatter, A. (2020). Machine learning estimation of heterogeneous
causal effects: Empirical Monte Carlo evidence. The Econometrics Journal,. https:// doi. org/ 10.
1093/ ectj/ utaa0 14

Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogene-
ous treatment effects using machine learning. Proceedings of the National Academy of Sciences,
116(10), 4156–4165. https:// doi. org/ 10. 1073/ pnas. 18045 97116

Lunceford, J. K., & Davidian, M. (2004). Stratification and weighting via the propensity score in estima-
tion of causal treatment effects: A comparative study. Statistics in Medicine, 23(19), 2937–2960.
https:// doi. org/ 10. 1002/ sim. 1903

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity score estimation with boosted
regression for evaluating causal effects in observational studies. Psychological Methods, 9(4), 403

Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of
Economic Perspectives, 31(2), 87–106

Newey, W. K., & Robins, J. R. (2018). Cross-fitting and fast remainder rates for semiparametric estima-
tion. ArXiv preprint, arXiv: 1801. 09138

Nie, X., & Wager, S. (2010). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika,.
https:// doi. org/ 10. 1093/ biomet/ asaa0 76

Polley, E. C., Rose, S., & Van der Laan, M. J. (2011). Super learning. In: van der Laan, M. J., Rose, S.
(Eds) Targeted learning (pp. 43–66). Springer Series in Statistics. Springer, New York, NY. https://
doi. org/ 10. 1007/ 978-1- 4419- 9782-1_3

Poterba, J. M., & Venti, S. F. (1994). 401 (k) plans and tax-deferred saving. In Studies in the Economics
of Aging (pp. 105–142). University of Chicago Press

Powers, S., Qian, J., Jung, K., Schuler, A., Shah, N. H., Hastie, T., et al. (2018). Some methods for hetero-
geneous treatment effect estimation in high dimensions. Statistics in Medicine, 37(11), 1767–1787.
https:// doi. org/ 10. 1002/ sim. 7623

Robins, J. M., Zhang, P., Ayyagari, R., Logan, R., Tchetgen, E. T., Li, L., et al. (2013). New statistical
approaches to semiparametric regression with application to air pollution research. Research Report
(Health Effects Institute), 175, 3

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica: Journal of the
Econometric Society. https:// doi. org/ 10. 2307/ 19127 05

Rotnitzky, A., Robins, J., & Babino, L. (2017). On the multiply robust estimation of the mean of the
g-functional. ArXiv preprint, arXiv: 1705. 08582

Rubin, D. B. (1980). Randomization analysis of experimental data: The fisher randomization test comment.
Journal of the American Statistical Association, 75(371), 591–593. https:// doi. org/ 10. 2307/ 22876 53

Schick, A. (1986). On asymptotically efficient estimation in semiparametric models. Annals of Statistics,
14(3), 1139–1151. https:// doi. org/ 10. 1214/ aos/ 11763 50055

Sharma, A., Kiciman, E., et al. (2019). DoWhy: A Python package for causal inference. https:// github.
com/ micro soft/ dowhy. Accessed 17 Jun 2021

van der Laan, M. J. (2010). Targeted maximum likelihood based causal inference: Part i. The Interna-
tional Journal of Biostatistics, 6(2)

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random
forests. Journal of the American Statistical Association, 113(523), 1228–1242. https:// doi. org/ 10.
1080/ 01621 459. 2017. 13198 39

Wendling, T., Jung, K., Callahan, A., Schuler, A., Shah, N., & Gallego, B. (2018). Comparing methods
for estimation of heterogeneous treatment effects using observational data from health care data-
bases. Statistics in Medicine, 37(23), 3309–3324. https:// doi. org/ 10. 1002/ sim. 7820

Wyss, R., Ellis, A. R., Brookhart, M. A., Girman, C. J., Jonsson Funk, M., LoCasale, R., et al. (2014).
The role of prediction modeling in propensity score estimation: An evaluation of logistic regression,
bcart, and the covariate-balancing propensity score. American Journal of Epidemiology, 180(6),
645–655. https:// doi. org/ 10. 1093/ aje/ kwu181

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/2007.02852
http://arxiv.org/abs/2004.14497
https://doi.org/10.1093/ectj/utaa014
https://doi.org/10.1093/ectj/utaa014
https://doi.org/10.1073/pnas.1804597116
https://doi.org/10.1002/sim.1903
http://arxiv.org/abs/1801.09138
https://doi.org/10.1093/biomet/asaa076
https://doi.org/10.1007/978-1-4419-9782-1_3
https://doi.org/10.1007/978-1-4419-9782-1_3
https://doi.org/10.1002/sim.7623
https://doi.org/10.2307/1912705
http://arxiv.org/abs/1705.08582
https://doi.org/10.2307/2287653
https://doi.org/10.1214/aos/1176350055
https://github.com/microsoft/dowhy
https://github.com/microsoft/dowhy
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.1002/sim.7820
https://doi.org/10.1093/aje/kwu181

	CATE meets ML
	Abstract
	1 Introduction
	2 Methods
	2.1 Meta-learners
	2.1.1 Single- (S-learner) and two-model learner (T-learner)
	2.1.2 Doubly-robust learner (DR-learner)
	2.1.3 R-learner
	2.1.4 X-learner
	2.1.5 Summary of meta-learners
	2.1.6 The choice of ML algorithms for meta-learners

	2.2 Modified ML methods
	2.2.1 Causal forest
	2.2.2 Causal boosting
	2.2.3 Causal BART

	2.3 Sample splitting and cross-fitting

	3 Empirical examples
	3.1 Effect of microcredits on borrowing
	3.2 Effect of 401(k) eligibility on accumulated assets

	4 Simulated data
	4.1 Data-generating process
	4.2 Results

	5 Conclusion
	Acknowledgements
	References

