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Abstract
This paper evaluates the predictive performance of machine learning methods in forecasting European stock returns. Com-
pared to a linear benchmark model, interactions and nonlinear effects help improve the predictive performance. But machine 
learning models must be adequately trained and tuned to overcome the high dimensionality problem and to avoid overfit-
ting. Across all machine learning methods, the most important predictors are based on price trends and fundamental signals 
from valuation ratios. However, the models exhibit substantial variation in statistical predictive performance that translate 
into pronounced differences in economic profitability. The return and risk measures of long-only trading strategies indicate 
that machine learning models produce sizeable gains relative to our benchmark. Neural networks perform best, also after 
accounting for transaction costs. A classification-based portfolio formation, utilizing a support vector machine that avoids 
estimating stock-level expected returns, performs even better than the neural network architecture.

Keywords Stock return prediction · Machine learning · Active trading strategy

JEL Classification G11 · G12 · G14 · G17

Introduction

This paper studies two complementary topics in the empiri-
cal asset pricing literature: stock return prediction and 
machine learning. The traditional forecasting literature 
applies statistical models to estimate future stock returns 
along two strands: time series (TS) predictions and cross-
sectional (CS) predictions. TS models typically conduct 
time series regressions of broad aggregate portfolio returns 
on a number of macroeconomic variables, including valu-
ation ratios and interest rates, and on technical indicators 
(Cochrane 2011; Rapach and Zhou 2013). CS models, in 
contrast, usually explain differences in expected returns 
across stocks as a function of stock-level characteristics, 
such as size, value, and momentum (Fama and French 
1993; Jegadeesh and Titman 1993; Lewellen 2015). This 
approach typically runs Fama and MacBeth (1973) regres-
sions (FM regressions).

In most applications, in line with the traditional asset pricing 
literature, TS and CS models consider only linear relationships 
between financial variables and subsequent stock returns. For 
example, the Capital Asset Pricing Model (CAPM) introduced 
by Sharpe (1964), Lintner (1965), and Mossin (1966) posits 
that, in equilibrium, a stock’s expected return is solely driven 
by its sensitivity to a systematic risk factor, i.e., the market risk. 
An assumption is that the underlying pricing kernel is linear in 
only a single factor, i.e., the market portfolio.1 Various studies, 
however, report violations of this assumption (see, e.g., Hou 
et al. 2020, for a comprehensive list of asset pricing anomalies) 
and study alternative asset pricing models. Following Dittmar 
(2002), we classify them into two subcategories. The first sub-
category utilizes other pricing factors in addition to the market 
portfolio. Most prominently, Fama and French (1993) propose 
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1 In modern asset pricing representations, the pricing kernel refers to 
the intertemporal marginal rate of substitution or stochastic discount 
factor mt+1 in the Euler equation, i.e., E[

(
1 + Ri,t+1

)
× mt+1|Ωt] = 1 , 

which expresses the first-order condition of an investor’s intertem-
poral consumption-investment problem. (1 + Ri,t+1 ) denotes the total 
return on asset i , and Ωt is the information set available to investors at 
time t  . The stochastic discount factor mt+1 represents the pricing ker-
nel that prices all risky assets, assuming the law of one price holds. It 
is specified differently in different asset pricing models (see Cochrane 
2005, for a textbook treatment).

http://crossmark.crossref.org/dialog/?doi=10.1057/s41260-021-00237-x&domain=pdf
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a multifactor alternative to the CAPM and find that it is bet-
ter at explaining cross-sectional variation in expected returns 
than the CAPM. Other examples include Ross’ (1976) asset 
pricing theory (APT) or Merton’s (1973) intertemporal CAPM 
(ICAPM). The second subcategory abandons the restriction that 
the pricing kernel must be linear in pricing factors. Bansal et al. 
(1993), Bansal and Viswanathan (1993), Chapman (1997), Ditt-
mar (2002), and Asgharian and Karlsson (2008), among others, 
explore various nonlinear pricing kernels and show that such 
specifications outperform linear counterparts.

While the first subcategory of models motivates the use 
of multiple pricing factors, the second subcategory suggests 
that using interactions between these factors and incorporat-
ing nonlinear relationships between price-related variables and 
expected stock returns add incremental explanatory power. A 
problem arises particularly in a prediction context, because 
the convexity of the traditional least squares objective tends 
to emphasize heavy-tailed observations. Therefore, with an 
increasing number of predictors simple linear models begin 
to overfit noise rather than extract signals, thereby undermin-
ing the stability of the predictions. Since financial data are 
inherently noisy, predictors potentially multicollinear, and the 
relationships between predictor variables and expected returns 
likely interactive and nonlinear as well as time-varying and/
or contextual, it seems virtually impossible for simple linear 
models to generate reliable forecasts of future stock returns.

Machine learning can help overcome the high dimensionality 
problem by combining many weak sources of information into 
a strong composite forecast. According to Gu et al. (2020; p. 
2225), “[t]he definition of machine learning is inchoate and is 
often context specific. [It] […] describe[s] (i) a diverse collection 
of high-dimensional models for statistical prediction, combined 
with (ii) so-called ‘regularization’ methods for model selection 
and mitigation of overfit, and (iii) efficient algorithms for search-
ing among a vast number of potential model specifications.”

In our empirical analysis, we exploit a set of twenty-two 
predictors as per the linear FM regressions approach used in 
Drobetz et al. (2019). This is our benchmark model, and it is 
able to explain a substantial percentage of the cross-sectional 
variation in European stock returns. Against this established 
conservative benchmark, we compare the performance of 
different machine learning methods in forecasting stock 
returns, from both a statistical and an economic perspective. 
Our objective is to examine whether incorporating interac-
tions between predictor variables and nonlinear effects lead 
to incremental predictive power.

Our empirical analysis follows that of Gu et al. (2020), 
with several key differences: First, we use European data. 
Second, we use an established linear benchmark model with 
a parsimonious set of twenty-two predictors, rather than a 
comprehensive set of predictor variables from the volumi-
nous literature. Third, in addition to inspecting changes in a 
forecast model’s degree of complexity over time, our tests 

show the importance of each predictor in a given model over 
the full sample period, and we also scrutinize the time varia-
tion of each predictor variable’s importance. This approach 
can reveal whether (1) some predictors are uninformative 
during the entire sample period, (2) they lead to a perma-
nent deterioration in a forecast’s signal-to-noise ratio, and 
(3) they can be removed from the set of baseline variables. 
Fourth, we apply a conservative transaction cost model to 
investigate whether the value-added of active trading strate-
gies remains promising under realistic trading assumptions.

Finally, we challenge the traditional formation process of 
expected return-sorted portfolios, which uses some statisti-
cal prediction model to estimate expected returns first, and 
selects stocks with the highest expected return forecasts into 
decile portfolios second. The underlying assumption is that 
stocks with high expected returns ex ante will deliver high 
realized returns ex post. Rather than taking the “detour” to 
estimate stock-level expected returns, we take an alterna-
tive approach here. In particular, we use a support vector 
machine to directly classify stocks into decile portfolios 
based on linear combinations of predictor variables.

In our empirical analysis, we enhance the set of twenty-
two predictors from Drobetz et al. (2019) by two-way inter-
actions as well as second- and third-order polynomials to 
capture nonlinearity. Overall, we find that interactions and 
nonlinear effects help improve the predictive performance. 
However, machine learning models must be adequately 
trained and tuned to avoid overfitting.

Overfitting can manifest along two different strands: model 
overfitting and backtest overfitting. Model overfitting refers to 
machine learning models with overly high in-sample fit but 
poor out-of-sample predictive performance. To avoid model 
overfitting, we control for the degree of model complexity by 
tuning relevant hyperparameters. These parameters cannot be 
preset, but must be determined adaptively from the sample 
data. Backtest overfitting refers to a researcher’s arbitrariness 
in choosing firm coverage, sample period, predictors, and tun-
ing parameters. If information from the out-of-sample period 
is used to fit the models, consciously or not (Schorfheide and 
Wolpin 2012), this might lead to overstated out-of-sample 
predictive performance (Bailey et al. 2014, 2017; Harvey and 
Liu 2014, 2015; Harvey et al. 2016). To avoid backtest over-
fitting, we include all firms that were or are publicly listed in 
one of the nineteen Eurozone countries as of December 2020. 
According to Gu et al. (2020), using large datasets mitigates 
sample selection or data snooping biases (Lo and MacKinlay 
1990) and also can help avoid model overfitting by increasing 
the ratio of observation count to parameter count. In line with 
Drobetz et al. (2019), we use a set of twenty-two firm-level 
predictors that are commonly used in the asset pricing lit-
erature (Chordia et al. 2017; Harvey et al. 2016; Lewellen 
2015; McLean and Pontiff 2016). We refrain from focusing 
on only a small subset of covariates that have been shown to 
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perform best in similar prediction tasks. Finally, we opt for 
the time series cross-validation approach to fit the machine 
learning models. It maintains the temporal ordering of the 
data and splits the sample into three distinct subsamples: 
a training sample, a validation sample, and a test sample 
(which is used for neither model estimation nor parameter 
tuning, and thus is truly out-of-sample).2

We observe that each forecast model’s degree of com-
plexity varies substantially over time, but they all denote 
similar predictors as important. The most influential predic-
tors are based on recent price trends, e.g., short-term reversal 
and stock momentum, and fundamental signals from valua-
tion ratios, e.g., earnings-to-price and book-to-market ratios. 
Despite these commonalities, our forecast models exhibit 
differences in statistical predictive performance (as indi-
cated by predictive slopes, predictive R2 metrics, and Die-
bold and Mariano (1995) test statistics), which also translate 
into marked differences in economic profitability. The return 
and risk measures of long-only investment strategies, i.e., 
sorting stocks into decile portfolios based on expected return 
estimates and buying the top decile portfolio, indicate that 
machine learning methods can produce predictive gains. 
These gains are attributable to predictor interactions and to 
nonlinear effects that is overlooked by the linear benchmark 
model. We find that neural networks perform the best over-
all, also after accounting for transaction costs.

Finally, we compare the performance of traditional 
expected return-based portfolio formation with a classifica-
tion-based approach. In particular, we contrast neural net-
works (which outperform all other traditional approaches 
in our empirical analysis) with support vector machines 
(SVMs). The idea behind SVMs is to search for hyperplanes 
that territorially divide a multidimensional vector space (our 
sample of firm observations, consisting of stock-level pre-
dictors and decile portfolio labels) into groups of vectors 
that belong to the same class. This allows for the classi-
fication of stocks into decile portfolios without taking the 
“detour” to predict stock-level expected returns. We find 
that the classification-based approach is superior to even the 
best-performing expected return-based portfolio formation 
because it avoids some of the noise in stock-level returns. 
Most importantly, it is able to maintain the broad return sig-
nal, which is essential for our trading strategy, i.e., the cor-
rect classification into a decile portfolio.

The remainder of this paper is organized as follows: The 
second section briefly reviews the literature on stock return 
prediction and machine learning. The third section describes 

our dataset. The fourth section summarizes the different 
machine learning methods and tuning parameters, while 
the fifth section compares their predictive performance. 
We contrast the traditional formation process of expected 
return-sorted portfolios with an alternative approach using 
classification-based portfolios in the sixth section. The sev-
enth section concludes.

Literature review

Several prior studies are related to our paper. Haugen and 
Baker (1996), Lewellen (2015), and Drobetz et al. (2019) 
examine composite estimates of expected excess returns 
obtained from cross-sectional FM regressions. They present 
comprehensive evidence that the simultaneous incorpora-
tion of multiple firm characteristics as predictors provides 
strong out-of-sample predictive power for subsequent stock 
returns. They also challenge the efficient market hypothesis 
by concluding that stocks with higher expected (and real-
ized) returns are not riskier than their low-return counter-
parts. In turn, they show that stock return predictions can be 
used to implement a profitable investment strategy.

Research on machine learning methods in the asset pric-
ing literature is still scant, and different forecast approaches 
are usually examined separately. Most studies compare 
different specifications from the same model family, e.g., 
approaches that conduct variable selection/shrinkage or 
dimension reduction, tree-based models, and neural net-
works. For example, Kozak et  al. (2020) use the joint 
explanatory power of a large set of cross-sectional stock 
return predictors to form a robust stochastic discount factor, 
contrasting the lasso and ridge penalizations.

Freyberger et al. (2020) and Rapach et al. (2013) also use 
the lasso framework. The former applies a nonparametric 
adaptive group lasso version to explore which characteristics 
add incremental predictive power for the cross-section of 
expected returns. The latter considers country-level stock 
returns to examine lead–lag relationships. Giglio and Xiu 
(2021) focus on a dimension reduction path. They apply a 
principal component analysis (PCA) method to estimate 
the risk premiums of factors that are potentially omitted in 
asset pricing models due to missing or limited observability. 
Kelly et al. (2019) introduce an instrumentalized version of 
the PCA approach to re-estimate common equity factors. 
Incorporating tree-based architectures, Coqueret and Guida 
(2018) use single regression trees to estimate the association 
of firm characteristics and subsequent stock returns. Both 
Leung et al. (2021) and Moritz and Zimmermann (2016) 
apply ensemble versions that avoid overfitting to study how 
common equity factors and lagged stock returns predict 
future stock returns.

2 The hyperparameters are selected from a comprehensive set of 
parameter specifications (see Appendix 1, Table  9  for details), fol-
lowing common parameter choices in the literature. We cover a rep-
resentative range of possible parameter specifications, which can help 
mitigate the risk of backtest overfitting.
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Several studies apply neural networks in various speci-
fications, most commonly feedforward multilayer archi-
tectures. For example, Levin (1995) and Messmer (2017) 
examine the predictive power of firm characteristics on 
subsequent stock returns, while Heaton et al. (2016) assess 
the applicability of deep learning approaches for multiple 
regression and classification problems in finance. Chen et al. 
(2019) and Gu et al. (2021) consider other architectures, 
such as recurrent long short-term memory networks, gen-
erative adversarial networks, and autoencoder networks. 
Rasekhschaffe and Jones (2019), Wolff and Neugebauer 
(2019), and Gu et al. (2020) provide a comparison of differ-
ent forecast models.

Finally, Leung et al. (2000) focus on the sign rather than 
the level of stock returns. They apply classification-based 
methods (including linear discriminant analysis, logit, and 
probit) to predict the direction of stock market movements. 
Similarly, Huerta et al. (2013) train an SVM to classify 
stocks into future out- and underperformers.

Data

The market and fundamental data for European firms come 
from Thomson Reuters Datastream. Our sample is free of 
survivorship bias, and includes all firms that were or are 
publicly listed in one of the nineteen Eurozone countries 
as of December 2020.3 We collect all data on a monthly 
basis, and, if currency-related, denominated in Euro. We 
only include firm observations that provide full informa-
tion on excess returns and all twenty-two firm characteris-
tics used in the empirical analysis (no missing values). In 
every month, we require at least fifty firms with a minimum 
market capitalization of €25 mill. that meet this full infor-
mation criterion. This shrinks our sample period to January 
1990–December 2020. To calculate excess returns, we use 
the three-month EURIBOR rate, scaled to the one-month 
horizon, as the risk-free rate.

We use twenty-two firm-level predictors that are com-
monly used in the asset pricing literature (Chordia et al. 
2017; Harvey et al. 2016; Lewellen 2015; McLean and Pon-
tiff 2016). These variables have been shown to explain most 
of the cross-sectional variation in expected returns. We also 
consider two-way interactions between firm characteristics 
as predictors as well as second- and third-order polynomials 
of firm characteristics to cover nonlinearity. We assume that 
market data become public immediately, while fundamental 

data are known four months after the fiscal year-end. Table 1 
gives the definitions of the twenty-two predictors that serve 
as our starting point for the creation of an extended set of 
covariates.

We follow Drobetz et  al. (2019) in constructing our 
twenty-two variables, who note two important caveats: First, 
most characteristics represent level variables that change 
slowly (like size) or flow variables that are measured over 
at least one year (like book equity). This translates into high 
persistence over time, which in turn suggests that any pre-
dictability in monthly excess returns is likely to extend to 
longer horizons (Campbell and Cochrane 1999; Cochrane 
2008). Second, many of the characteristics are constructed 
similarly, i.e., issuance metrics, or incorporate similar firm 
information, i.e., profitability measures, which leads to high 
correlations. According to Lewellen (2015), the resulting 
multicollinearity is not of concern in our empirical analy-
sis. This is because we are mostly interested in the overall 
predictive power of the respective machine learning mod-
els, rather than the marginal effects of each single predictor. 
Machine learning models are suitable for solving the multi-
collinearity problem by selecting/shrinking variables, etc., 
and could thus add incremental predictive power.

We adjust our initial sample in two steps: First, we win-
sorize all monthly firm characteristics at the 1% and 99% 
levels to correct for outliers. In contrast to Gu et al. (2020), 
we also winsorize excess returns.4 Second, we rank all firm 
characteristics month-by-month cross-sectionally and then 
map the ranks into the (−1,+1) interval, following Kelly 
et al. (2019) and Freyberger et al. (2020).

Table 1 also reports the time series averages of monthly 
cross-sectional means and standard deviations for excess 
returns and the twenty-two characteristics as well as the 
overall sample size. The average universe of stocks cov-
ers 832 firms with non-missing observations, ranging from 
56 in January 1990 to 1,012 in December 2020. The aver-
age monthly excess return is 0.51%, with a standard devia-
tion of 4.55%. The first and second moments of all predic-
tor variables are similar to those found in earlier studies 
(Lewellen 2015; Drobetz et al. 2019).

3 The countries in the Eurozone are: Austria, Belgium, Cyprus, Esto-
nia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Lithu-
ania, Luxembourg, Malta, Netherlands, Portugal, Slovakia, Slovenia, 
and Spain.

4 Gu et al. (2020) apply a Huber loss function to least squares-based 
forecast models to ensure stable forecasts in the presence of extreme 
observations. However, if the Huber loss is not applicable (such as in 
the pcr or pls models), this approach undermines the different mod-
els’ comparability. Winsorizing excess returns avoids differences 
in predictive power that are driven by differences in the underly-
ing objective function. However, when we do not winsorize excess 
returns, the results remain qualitatively the same throughout our 
empirical analysis.
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Machine learning methods

For our empirical analysis, our benchmark is the modified 
linear FM regressions approach used in Drobetz et al. (2019). 
Our main objective is to examine whether incorporating inter-
actions and nonlinearity adds incremental predictive power. 
Therefore, we compare the predictive performance of different 
machine learning methods from both a statistical and an eco-
nomic perspective. As in Gu et al. (2020), we apply an addi-
tive prediction error model to describe a stock’s excess return, 
i.e., ri,t+1 = Et

(
ri,t+1

)
+ ei,t+1 , where ri,t+1 is the excess return 

of stock i = 1,… ,Nt in month t = 1,… , T  . The expected 
excess return is estimated as a function of predictor variables 

and described by the “true” model g∗
(
zi,t

)
 , where zi,t repre-

sents the P-dimensional set of predictors, i.e., 
Et

(
ri,t+1

)
= g∗

(
zi,t

)
 . Albeit our forecast models belong to dif-

ferent families, they are all designed to approximate the true 
forecast model by minimizing the out-of-sample mean squared 
forecast error (MSFE), i.e., MSFEt+1 =

1

Nt+1

∑Nt+1

i=1
(êi,t+1)

2 . 
ê
i,t+1

 is the individual error for stock i stemming from a par-
ticular forecast model, and Nt+1 is the number of stocks within 
the respective month t + 1 . Approximations of conditional 
expectations g∗

(
zi,t

)
 are flexible and family-specific. Approxi-

mation functions g(.) can be linear or nonlinear, as well as 

Table 1  Descriptive statistics

This table presents the definitions and reports the time series averages of monthly cross-sectional mean and standard deviation for the excess 
return and each of the twenty-two characteristics as well as the overall sample size. The sample includes all firms that were publicly listed in one 
of the nineteen Eurozone countries in any given month during the January 1990–December 2020 sample period. The data coming from Thom-
son Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become pub-
lic immediately, while fundamental data are assumed to be known four months after the fiscal year-end

# Avg Std Definition

Excess return [%] 0.51 4.55 Return in excess of the 3-month EURIBOR rate (scaled to the 1-month horizon)
1 size 13.22 0.48 Log market value of equity at the end of the prior month
2 bm − 0.55 0.18 Log book value of equity minus log market value of equity at the end of the prior month
3 operatingprofitability 0.06 0.01 Operating profit divided by average total assets in the prior fiscal year
4 totalassetgrowth 0.07 0.04 Log total asset growth in the prior fiscal year
5 ret_2_12 0.09 0.20 Excess return from month − 12 to month − 2
6 issues_1_36 0.09 0.02 Log growth in split-adjusted shares outstanding from month − 36 to month − 1
7 accrualschange − 0.04 0.01 Working capital accruals (based on Sloan 1996) in the prior fiscal year
8 roa 0.05 0.01 Income before extraordinary items divided by average total assets (return on assets) in the prior fiscal 

year
9 investment 1.02 0.08 Capital expenditures divided by net sales and revenues in the prior fiscal year
10 ret_1 0.01 0.05 Excess return of the prior month
11 ret_12_36 0.09 0.31 Excess return from month − 36 to month − 12
12 dy 0.03 0.01 Dividends per share over the prior 12 months divided by price at the end of the prior month
13 beta 0.83 0.10 Market beta, estimated from weekly returns from month − 36 to month − 1
14 vola 0.32 0.06 Standard deviation, estimated from weekly returns from month − 12 to month − 1
15 turnover 0.02 0.01 Average monthly turnover volume from month − 12 to month − 1
16 debttoprice 0.84 0.32 Short-term plus long-term debt in the prior fiscal year divided by market capitalization at the end of 

the prior month
17 salestoprice 2.16 0.60 Net sales and revenues in the prior fiscal year divided by market capitalization at the end of the prior 

month
18 cftoprice 0.14 0.04 Net income plus depreciation, depletion and amortization in the prior fiscal year divided by market 

capitalization at the end of the prior month
19 earningstoprice 0.04 0.02 Net income in the prior fiscal year divided by market capitalization at the end of the prior month
20 issues_1_12 0.02 0.01 Log growth in split-adjusted shares outstanding from month − 12 to month − 1
21 fcdispersion − 2.05 0.18 Log standard deviation of I/B/E/S EPS forecasts minus log average absolute value of I/B/E/S EPS 

forecasts from month − 12 to month − 1
22 grossprofitability 0.30 0.03 Net sales and revenues minus costs of goods sold divided by average total assets in the prior fiscal 

year
Sample size 832 Number of firms with non-missing observations for the excess return and each of the twenty- two 

characteristics
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parametric, g
(
zi,t, �

)
, where � is the set of true parameters, or 

nonparametric g
(
zi,t

)
.5

Before presenting the results of our empirical analysis, we 
now briefly introduce the sample-splitting scheme used to 
fit the forecast models. We then discuss each machine learn-
ing method and its key tuning parameters (see Appendix 1, 
Table 9 for details).6

Sample splitting

Machine learning methods can help overcome the high dimen-
sionality problem, which arises when the number of predictors 
becomes very large relative to the number of observations. 
They can also help solve the problem of multicollinearity, 
which can occur when predictor variables are highly cor-
related. However, they are prone to overfitting, so we must 
control for the degree of model complexity by tuning the rel-
evant hyperparameters. Examples for tuning parameters are 
the number and/or depth of trees in boosted regression trees 
or random forests. To avoid overfitting and maximize out-
of-sample predictive power, hyperparameters cannot be pre-
set, but must be determined adaptively from the sample data. 
In particular, they are selected from a comprehensive set of 
parameter specifications (see Appendix 1, Table 9 for details). 
The parameter tuning approach iteratively reduces in-sample 
fit by searching for the degree of model complexity that will 
produce reliable out-of-sample predictive performance. To 
this end, it uses the time series cross-validation approach, 
which maintains the temporal ordering of the data, and splits 
the sample into three distinct subsamples: a training sample, 
a validation sample, and a test sample.

The training sample is used to estimate the model for mul-
tiple parameter specifications, while the validation sample is 
used to tune the parameters. Based on the models estimated 
from the training sample, the MSFE within the validation 
sample is calculated for each parameter specification.7 The 
model with the parameter specification that minimizes the 
MSFE is used for out-of-sample testing. Note that, because 
the tuning parameters are chosen from the validation sample, 
it is not truly out-of-sample. The test sample, however, is 
used for neither model estimation nor parameter tuning. This 

is why it is truly out-of-sample and appropriate for evaluat-
ing a model’s out-of-sample predictive power.

In an asset management context, where new data emerge 
over time, a sample-splitting scheme that periodically 
includes more recent data must be applied (see, e.g., West 
2006, for an overview). This is why the “rolling window” 
and “recursive window” methods gradually shift the training 
and validation samples forward in time. The former method 
holds the length of training and validation samples constant; 
the latter increases them progressively. Moreover, because 
the recursive window approach always incorporates the 
entire history of data, it is computationally more intensive 
than the rolling window approach.

Because of this, and because machine learning algorithms 
are generally computationally intensive, Gu et al. (2020) use 
a hybrid of the rolling and recursive approaches. They avoid 
recursively refitting models each month. Instead, they refit 
once every year, as most of the fundamental firm characteris-
tics are updated annually. Each time, they increase the training 
sample by one year, while holding the length of the validation 
sample constant but rolling it forward one year. To maintain 
comparability with Drobetz et al. (2019), we choose the rolling 
window approach in our empirical analysis. Instead of annually 
increasing the training sample, we also hold the length of the 
training sample constant, and we roll it forward from year to 
year. We always select eight years for training, two years for 
validation, and one year for testing from the data.8

Forecast models

We use two nested sets of predictors. The parsimonious set 
covers the twenty-two baseline predictors used by Drobetz 
et al. (2019), enhanced by forty-four dummies that cor-
respond to the ISO country codes and the first two digits 
of Standard Industrial Classification (SIC) codes. This set 
includes 22 + 44 = 66 covariates. The full set adds two-way 
interactions between the twenty-two baseline predictors as 
well as second- and third-order polynomials. In total, it 
includes 22 + 22×21

2
+ 22 + 22 + 44 = 341 covariates.

While all forecast models aim to minimize the MSFE, 
they differ in their overall approach and complexity. There-
fore, we outline the major differences among the model fam-
ilies. We begin with simple linear regression models, con-
tinue with models that perform variable selection/shrinkage 

7 While simple linear regression models (see the “Forecast models” 
section) do not require parameter tuning (based on the validation 
sample), we also estimate the models only from the training sample. 
This enhances the comparability with the machine learning-based 

8 The first models are estimated for training and validation from ten 
years of data (1990:01–1997:12 and 1998:01–1999:12, respectively). 
Therefore, twenty-one years of data (2000:01–2020:12) remain for 
testing.

5 As in Gu et al. (2020), we make the following assumptions: g(.) and 
g∗(.) predict expected returns independently of any information prior 
to t  or information from other stocks at t  . g(.) and g∗(.) differ between 
the different forecast models, but they are identical across all stocks 
and over time within each model family. This leads to more stable 
estimates of expected excess returns.
6 We present the forecast models from an intuitive perspective. For 
more details on the specific implementation choices of each machine 
learning algorithm, see Gu et al. (2020).

forecast models. Note that the main findings of the empirical analysis 
are qualitatively similar if we use the training and validation samples 
together to estimate the models at each re-estimation date.

Footnote 7 (continued)
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or dimension reduction, and finish with other sophisticated 
machine learning methods. Furthermore, for each method, 
we visually examine how the expected return estimates 
change as we vary the values of a single predictor or a pair 
of predictors simultaneously within the ( −1,+1 ) interval. We 
hold all other predictors fixed at their uninformative median 
value of zero. The visualizations (unreported) confirm that 
the models that are designed to incorporate interactions and 
nonlinearity indeed capture these effects.

Ordinary least squares

Ordinary least squares (OLS) regression models are the 
least complex approach in our empirical analysis. Their 
aim is to minimize the standard “ l2 ” objective function, i.e., 
l(�) =

1

NT

∑N

i=1

∑T

t=1

�
ri,t+1 − g

�
zi,t;�

��2 . We further distin-
guish between two similar but different model specifications. 
The first is denoted as “ols_pars” and regresses monthly 
excess returns on the parsimonious set of sixty-six predic-
tors. Using a similar or identical set of covariates, Lewellen 
(2015) and Drobetz et al. (2019) document that this approach 
is promising, both from a statistical and an economic per-
spective. Although they use the FM regressions model that is 
re-estimated on a monthly basis, the ols_pars model provides 
nearly identical predictions in our sample-splitting and re-
estimation setting.

In particular, we replicate the linear FM regression 
approach implemented in Drobetz et al. (2019) and compare 
the expected excess return series. We find a Pearson corre-
lation coefficient close to 1, which can be explained by the 
rolling window sample splitting with annual re-estimation. 
In this case, running cross-sectional FM regressions on a 
monthly basis and averaging coefficients recursively (as in 
Lewellen 2015, or Drobetz et al. 2019) are very similar to 
running a pooled OLS regression based on a rolling training 
sample (as in our empirical analysis).

To ensure comparability with the machine learning mod-
els that cannot be re-estimated on a monthly basis (due to 
computational limitations), we use the ols_pars model as a 
proxy for the FM regressions approach and our main bench-
mark. It performs well and thus serves as a conservative 
threshold for indicating incremental predictive performance. 
However, the ols_pars model cannot capture interactions or 
nonlinearity that may add predictive power.

This is why the second model specification is denoted as 
“ols_full” and regresses monthly excess returns on the full 
set of 341 predictors. Because we now face a high-dimen-
sionality problem, we expect the ols_full model to perform 
worse than the ols_pars model. It incorporates predictors 
that may be highly correlated and possess a very low signal-
to-noise ratio. When the number of predictors approaches 
the number of observations, the unrestricted OLS approach 
begins overfitting noise rather than extracting signal. This 

problem becomes worse in a low-signal-to-noise environ-
ment. In this case, the ols_full model is expected to become 
inefficient or even inconsistent.

We use this model specification as our subordinate bench-
mark in order to emphasize how well sophisticated forecast 
models can identify and incorporate relevant predictors to 
improve the predictive performance and to determine which 
firm characteristics, interactions, and nonlinear effects mat-
ter. To overcome the overfitting problem of highly param-
eterized OLS models and reduce the number of predictors, 
machine learning algorithms impose variable selection/
shrinkage, dimension reduction, and other adjustments.

As already explained, we restrict our sample to firms with 
a minimum market capitalization of €25 mill. Nevertheless, 
our results still tend to be dominated by the large number of 
smaller firms. This is in line with Fama and French (2008), 
who find that the smallest 20% of stocks comprise only three 
percent of aggregate market capitalization. These smallest 
firms are often economically inconsequential to large insti-
tutional investors, i.e., such market participants cannot invest 
enough money as passive shareholders, or face high trans-
action costs for large trades. To find a balance between the 
large number of small firms and the small number of very 
large firms, Grinold and Kahn (2000) propose a general-
ized least squares (GLS) regression setting. In particular, 
they suggest to weight each observation by the inverse of 
its estimated error variance, which they proxy by the square 
root of its market capitalization. Gu et al. (2020) also suggest 
this adjustment to improve the prediction efficiency. There-
fore, in a robustness test (unreported), we apply a weighted 
least squares loss function for both the ols_pars and ols_full 
model specifications to achieve more robust predictions. We 
use weights that are proportional to the square root of stock 
i ’s market capitalization at time t  . However, because we 
do not observe improvements in the predictive performance 
relative to the two OLS-based models, we use the simpler 
ols_pars and ols_full models as our benchmarks, emphasiz-
ing that they are more conservative representatives for this 
forecast model family.

Penalized least squares

The most common machine learning tool to achieve vari-
able selection/shrinkage in a high-dimensional regression 
setting is the penalized least squares approach. In particu-
lar, it identifies which predictors are informative and omits 
those that are not. This approach modifies the least squares 
loss function by adding a penalty term, denoted as Φ(�) , 
to prefer more parsimonious model specifications, i.e., 
l(�) =

1

NT

∑N

i=1

∑T

t=1

�
ri,t+1 − g

�
zi,t;�

��2
+ Φ(�).

There are two common types of penalties: First, the lasso 
approach penalizes the sum of absolute coefficients, thereby 
setting regression coefficients of a subset of predictors to 
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exactly zero (variable selection). Second, the ridge approach 
penalizes the sum of squared regression coefficients, thereby 
only pushing coefficients close to zero (variable shrinkage). 
We follow the elastic net (elanet) approach, which combines 
the lasso and ridge methodologies.9 It computes the 
weighted sum of both penalties to increase flexibility, i.e., 
Φ(�) = �(1 − p)

∑P

j=1

����j
��� + �p

∑P

j=1

�
�j
�2 . Tuning parame-

ters in this forecast model are � ∈ (0, 1) and p ∈ (0, 1) . � 
indicates the general strength of the penalty (in particular, 
how strongly the regression coefficients are forced to zero); 
p denotes the relative weights on the lasso and the ridge 
approach. p = 0 corresponds to lasso; and p = 1 corresponds 
to ridge.

Principal component regressions and partial least squares

Although the elanet approach is capable of reducing a highly 
parameterized model’s complexity by forcing coefficients 
close to or exactly to zero, it might perform badly if pre-
dictors are highly correlated. In this case, where predictors 
face low signal-to-noise ratios, a superior approach is to cre-
ate new, de-correlated predictors as linear combinations of 
highly correlated variables (e.g., by averaging their values) 
instead of just omitting some. This reduces noise and thus 
increases the signal-to-noise ratio.

The basic concept of dimension reduction is variable 
averaging, as opposed to variable selection/shrinkage. Two 
common methods are principal component regression (pcr) 
and partial least squares (pls). Both follow a two-step pro-
cedure: First, the models conduct dimension reduction by 
creating new, de-correlated predictors (so-called compo-
nents). Second, they identify the optimal number of compo-
nents and then use them in a standard predictive regression 
model to estimate expected excess returns. The pcr approach 
forms principal components by incorporating the covariance 
matrix of the predictors. However, during the dimension 
reduction step, it does not take into account how the predic-
tors relate to subsequent excess returns.

To overcome this deficiency, the pls approach keeps the 
forecast objective in mind, even during the dimension reduc-
tion step. To form the first component, it runs a univariate 
OLS regression of realized excess returns on each predic-
tor separately. We can consider the resulting coefficients as 
reflecting “partial” sensitivity of the realized excess returns 
to each predictor. It then computes the weighted average of 
all predictors, using weights proportional to the absolute 
value of each coefficient. Higher weights are assigned to 

stronger univariate predictors (with higher absolute coef-
ficient value), and vice versa.

To form further components, during each repetition, the 
realized excess return and the predictors are orthogonal-
ized with respect to previously formed component(s). The 
tuning parameter in both forecast models is the number of 
components numbercomp included in the predictive regres-
sion. Using only a certain number of components can be 
considered equivalent to setting the coefficients for the other 
components (with low signal-to-noise ratios) to exactly zero.

Random forests and gradient boosted regression trees

Regression trees incorporate multi-way interactions and 
nonlinearity inherently, without having to add these effects 
as new predictors. The idea behind regression trees is that 
they adaptively split the dataset into groups of observations 
that behave in a similar manner. They follow an iteration 
process that is inspired by the growing behavior of real trees 
in nature: First, the process begins with one initial node, the 
root, in order to find the optimal split variable and the optimal 
split value by minimizing the MSFE within each partition. 
This results in two nodes with minimized impurity. Second, 
to further disentangle the dataset, it determines optimal split 
variables and values on the subsamples left over from the 
preceding step(s) to iteratively grow the regression tree. This 
results in multiple final nodes with minimized impurity, the 
leaves. The predicted excess return for each leaf reflects the 
simple average of the realized excess returns of the firms 
sorted into this leaf. Regression trees are invariant to mono-
tonic transformations of predictors, able to incorporate cat-
egorical and numerical data in the same forecast models, and 
designed to capture interactions and nonlinearity. However, 
they are prone to overfitting and must be strongly regularized. 
To accomplish this, the ensemble forecast approach aggre-
gates forecasts from many different regression trees into a 
single one. According to Gu et al. (2020), there are two com-
mon methods: bagging and boosting.

Random forests (rf) modify Breiman’s (2001) traditional 
bagging approach. The idea is to draw multiple bootstrap 
samples of the original dataset, fit deep trees independently, 
and then average their predictions into an ensemble forecast, 
creating a single strong learner. Because dominant predictors 
are always more likely to become split variables at low lev-
els, which can lead to large correlations between bootstrap-
replicated trees, random forests apply the so-called dropout 
method. At each potential branch, they randomly drop out 
predictors, leaving only a subsample of predictors to be 
selected as potential split variables. The tuning parameters 
in this forecast model are the depth of trees L , the num-
ber of predictors M randomly considered as potential split 
variables, and the number of trees B added to the ensemble 
prediction.

9 We also test the lasso and ridge approaches separately. Because we 
find no improvement in predictive performance relative to the elastic 
net approach, we do not present the results for these penalty functions 
here.



515Empirical asset pricing via machine learning: evidence from the European stock market  

In contrast, gradient boosted regression trees (gbrt) fol-
low the boosting approach, which is based on the idea that 
combining multiple shallow trees creates a single strong 
learner, stronger even than a single deep tree. The iterative 
procedure is as follows: The gbrt approach computes a first 
shallow tree to fit the realized excess returns. This oversim-
plified tree exhibits a high forecast error. Next, it computes 
a second shallow tree, fitting the forecast residuals from the 
first tree. The forecasts from these two trees are then added 
together to form an ensemble prediction. The forecast com-
ponent from the second tree is shrunk by a factor � ∈ (0, 1) 
to avoid overfitting the forecast residuals. Each additional 
shallow tree is fitted to the forecast residual from the preced-
ing ensemble prediction, and its shrunk forecast component 
is added according to the ensemble forecast. The tuning 
parameters in this forecast model are the depth of the trees 
L , the shrinkage weight � , and the number of trees B added 
to the ensemble prediction.

Neural networks

Neural networks (nn) are the most complex method in our 
empirical analysis. They are highly parameterized, which 
makes them suitable for solving very complicated machine 
learning problems. But they are opaque and can be difficult 
to interpret. In general, they map inputs (predictors) to out-
puts (realized excess returns). Inspired by the functioning of 
the human brain, they are composed of many interconnected 
computational units, called “neurons”. Each neuron on its 
own provides very little predictive power, but a network of 
multiple neurons functions cohesively and improves the pre-
dictive performance. We use feedforward neural networks, 
where each node is connected to all the nodes in the previous 
layer and the connections follow a one-way direction, from 
input to output layer. The input layer contains the predictor 
variables (e.g., lagged firm characteristics), while the output 
layer contains a prediction for the dependent variable (real-
ized excess returns). The simplest neural network (without 
any hidden layer) equals the OLS regression model. Add-
ing hidden layers leads from shallow to deep architectures 
and is able to capture interactions and nonlinear effects (see 
Appendix 2, Fig. 6, Panel A).

Neural networks predict the output y as the weighted aver-
age of inputs x . In the simplest model, the OLS regression 
coefficients are taken as weights. In more complex archi-
tectures, the weights must be computed iteratively by using 
the “backpropagation” algorithm. As an initialization, this 
algorithm assigns random weights to each connection. It also 
calculates the initial MSFE based on the predictions derived 
from the inputs of the (last) hidden layer. It then proceeds 
iteratively as follows: First, it recursively (from output to 
input layer) computes the gradient of the MSFE with regard 
to the weights. Second, it adjusts the weights slightly in 

the opposite direction of the computed gradients, because 
the objective is to minimize the MSFE. Third, based on the 
adjusted weights, it re-calculates the MSFE.

The iteration process, known as “gradient descent,” stops 
when the MSFE is ultimately minimized. Thus far, it is 
assumed that each node in the hidden layer creates a signal 
(e.g., it is incorporated into the computation of the weighted 
average). In the human brain, however, neural networks work 
somewhat differently. To avoid noise, a specific node trans-
forms each of the preceding signals it transmits (if at all). 
For example, it may amplify or condense the preceding sig-
nals, or only create a signal if the accumulated information 
is sufficient. At each node, the weighted average of the pre-
ceding signals (either from the input or the preceding layer) 
is used as input x in an activation function (see Appendix 2, 
Fig. 6, Panel B). Following Gu et al. (2020), we choose the 
rectified linear unit (ReLU) activation function and apply it 
to each node in the hidden layers. To encourage sparsity in 
the number of active neurons, it only provides a signal as an 
output if the information from the preceding layer accumu-

lates beyond a threshold: ReLU(x) =
{

0 if x < 0

x otherwise.

In our analysis, we consider neural networks with up to 
five hidden layers (HLs) and up to thirty-two neurons ( N ), 
which we choose according to the geometric pyramid rule 
(Masters 1993).10 In addition to a ReLU activation and a 
lasso-based penalization of the weights, we simultaneously 
apply other types of regularization to ensure computational 
feasibility and avoid overfitting (Gu et al. 2020).

First, we use the stochastic gradient descent (SGD) 
approach to train the neural networks. During the iteration 
process, the algorithm cuts the training sample into small 
random subsamples, so-called batches, and uses one at each 
iteration. This leads to strong improvements in computational 
speed. The algorithm still sees the entire training sample 
(consecutively, not contemporaneously, and at least once but 
usually multiple times), which helps incorporate all available 
information and avoids impairing the predictive performance. 
Consequently, the number of iterations depends on the size 
of the batches and the number of epochs (i.e., the number of 
times the algorithm sees the entire training sample).

Second, we adopt the batch normalization algorithm 
introduced by Ioffe and Szegedy (2015). It mitigates the 
internal covariate shift that occurs as the distribution of 
each hidden layer’s inputs changes during the training (as 
the parameters of the preceding layers change) and slows 
down the learning process. To this end, within each batch, it 
cross-sectionally normalizes the input to each hidden layer.

10 The neural network architectures are: nn_1 ( HL = 1;N = {32} ), 
nn_2 ( HL = 2;N = {32, 16} ), nn_3 ( HL = 3;N = {32, 16, 8} ), nn_4 
( HL = 4;N = {32, 16, 8, 4} ), and nn_5 ( HL = 5;N = {32, 16, 8, 4, 2}).
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Third, we apply learning rate shrinkage (see Appendix 
2, Fig. 6, Panel C). The learning rate determines the size 
of the incremental steps in the gradient, while iteratively 
minimizing the MSFE. It faces a trade-off between finding 
the global minimum instead of the local counterpart (smaller 
learning rate) and computational speed (larger learning rate). 
This regularization procedure begins with a larger learning 
rate to speed up computation. As the gradient approaches 
zero, it shrinks the learning rate towards zero to overcome a 
potential local minimum.

Fourth, we implement early stopping (see Appendix 2, 
Fig. 6, Panel D), as neural networks aim to minimize the 
MSFE in the training sample. This regularization terminates 
the SGD iteration process when the MSFE in the validation 
sample increases for a pre-specified number of iterations (so-
called patience), which also speeds up computation.

Fifth, we adopt the ensemble approach proposed by 
Hansen and Salamon (1990) and Dietterich (2000). We com-
pute ten neural networks from the same specification family 
at each re-estimation date, using independent seeds.11 We 
then average over the predictions to increase the signal-to-
noise ratio, since the stochastic nature of the SGD approach 
leads to different forecasts for different seeds.

Lastly, in addition to the regularization applied by Gu 
et al. (2020), we employ the dropout method (similar to that 
applied for regression trees). It randomly sets a fraction rate 
of input variables to exactly zero at each iteration, and thus 
is one of the most effective methods in the neural network 
framework to prevent overfitting.

Neural networks are computationally intensive and can 
be specified in an innumerable amount of different architec-
tures. This is why we retreat from tuning parameters (e.g., 
the size of batches or the number of epochs) and instead pre-
specify five different models. We assume that our nn_1 to 
nn_5 architectures serve a conservative lower bound for the 
predictive performance of neural network models in general.

Empirical results

In‑sample tests

Model complexity

Since we re-estimate each forecast model on an annual basis, 
it is interesting to gauge whether model complexity changes 
over time or rather remains stable. We only consider mod-
els that can actually exhibit time-varying model complexity 
in our setting (elanet, pcr, pls, rf, and gbrt). These models 

pertain to different families, so there is no uniform model 
complexity measure. For the elanet approach, which per-
forms variable selection/shrinkage, we use the number of 
nonzero regression coefficients. The pcr and pls approaches 
conduct dimension reduction, so we consider the optimal 
number of components included in the predictive regression. 
But, because the rf and gbrt approaches are nonparametric 
and tree-based, we take the optimal depth (for rf) and the 
number of unique split variables (for gbrt) of the trees to 
measure model complexity.12

Figure 1 presents the model complexity of each forecast 
model at each re-estimation date. In line with the results 
from Gu et al. (2020), we observe that each model’s com-
plexity varies substantially over time. The time-varying 
behavior of different approaches within the same forecast 
model family (namely pcr/pls and rf/gbrt) is similar with 
regard to low- and high-complexity periods.

Variable importance

Next, because the different forecast models behave similarly 
in terms of model complexity (at least within each model 
family), it is further instructive to explore whether the differ-
ent approaches denote different predictors as most relevant 
for estimating subsequent excess returns. To this end, we 
calculate each model’s variable importance matrix based 
on a two-step approach, separately for each re-estimation 
date: First, we compute the absolute variable importance 
as the reduction in  R2 from setting all values of a given 
predictor to zero within the training sample.13 Second, we 
normalize the absolute variable importance measures to sum 
to 1, signaling the relative contribution of each variable to 
a model. Figure 2 depicts the time series average of relative 
variable importance measures for each forecast model sepa-
rately. We find that, on average, the various forecast models 
denote similar variables as the most informative (e.g., earn-
ingstoprice or ret_2_12). However, some models focus on 
a highly concentrated set of predictors. For example, tree-
based models (rf and gbrt) put most of their weights on only 
a few variables, whereas the dimension-reducing approaches 
(pcr and pls) consider a much larger range of predictors to 
be important.

12 Neural networks can exhibit time-varying model complexity. How-
ever, because we pre-specify the architectures and only present the 
results for five specifications (nn_1–nn_5), we do not allow for time 
variation in model complexity.
13 In contrast to Gu et al. (2020), we not only set the value of the spe-
cific predictor itself to zero, but we also set each interaction or non-
linearity term that contains information from the respective variable 
to zero. We assume that each respective predictor is completely, not 
only partly, uninformative, which allows for more realistic variable 
importance metrics.

11 Seeds are numbers used to initialize random processes. This 
approach ensures different but reproducible predictions.
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To enhance between-models comparability, we rank the 
average relative contribution of each variable within a spe-
cific model and sum the ranks across all models to obtain 
an overall rank (higher variable importance = higher rank). 
Figure 3 presents a heat map of relative variable importance 

ranks. The rows are sorted in descending order based on 
overall rank. Therefore, the higher a variable is placed, the 
more important it is overall. Darker cell colors denote greater 
importance for the respective variable to a model. Again, 
we find commonalities across relative variable importance 

Fig. 1  Between-models comparison of model complexity over time. 
This figure presents the model complexity of selected machine learn-
ing models (elanet, pcr, pls, rf, and gbrt) introduced in the “Forecast 
models” section, at each re-estimation date. As the models pertain to 
different families, the model complexity measure varies: the number 
of nonzero regression coefficients (for elanet), the optimal number of 
components included in the predictive regression (for pcr and pls), 
and the optimal depth (for rf) or the number of unique split variables 
(for gbrt) of the regression trees. The sample includes all firms that 

were publicly listed in one of the nineteen Eurozone countries in any 
given month during the January 1990–December 2020 sample period, 
while  the first estimates of expected excess returns are obtained in 
December 1999. The data coming from Thomson Reuters Datastream 
are collected on a monthly basis and, if currency-related, denomi-
nated in Euro. Market data are assumed to become public immedi-
ately, while fundamental data are assumed to be known four months 
after the fiscal year-end
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Fig. 2  Model-specific relative variable importance. This figure 
depicts the time series average of relative variable importance meas-
ures of each machine learning model introduced in  the “Forecast 
models” section, which are calculated based on a two-step approach: 
First, the absolute variable importance is computed as the reduction 
in  R2 from setting all values of a given predictor to zero within the 
training sample. Second, the  absolute variable importance measures 
are normalized to sum to 1, signaling the relative contribution of each 
variable to a model. The sample includes all firms that were publicly 

listed in one of the nineteen Eurozone countries in any given month 
during the January 1990–December 2020 sample period, while the 
first estimates of expected excess returns are obtained in December 
1999. The data coming from Thomson Reuters Datastream are col-
lected on a monthly basis and, if currency-related, denominated in 
Euro. Market data are assumed to become public immediately, while 
fundamental data are assumed to be known four months after the fis-
cal year-end
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metrics, which are even more pronounced within the same 
forecast model family. For example, both tree-based methods 
(rf and gbrt) find issues_1_12 strongly informative, while 
all other forecast models assume this particular predictor is 
relatively unimportant.

Finally, we determine whether the relative importance of 
different variables within a specific model changes over time 
or rather remains stable. Volatile metrics would indicate that 
all covariates in the predictor sets are essential; stable fig-
ures would suggest removing uninformative predictors per-
manently, as they can degrade a forecast’s signal-to-noise 
ratio. To identify the predictors’ time variability in relative 
importance measures, we rank the relative contribution of 
each variable within a specific model at each re-estimation 
date (higher variable importance = higher rank). The trends 
are similar for all forecast models. Therefore, for the sake 
of brevity, we only present and discuss the results for our 
benchmark model (ols_pars). Figure 4 shows the relative 
variable importance ranks of the ols_pars model at each re-
estimation date. Although a few variables tend to stay close 
to the upper or lower bound, the graph indicates that the rela-
tive variable importance metrics change substantially over 
time. It does not recommend removing specific predictors.14 

Out‑of‑sample tests

Statistical predictive performance

Since the forecast models behave similarly from a model 
complexity and relative variable importance perspective, we 
aim to determine whether they differ in statistical predic-
tive performance. We therefore conduct three tests: First, in 
Panel A of Table 2, we follow Lewellen (2015) and Drobetz 
et al. (2019) and calculate out-of-sample predictive slopes. 
These allow us to assess the precision and accuracy of the 
excess return predictions (regardless of any naïve bench-
mark). Second, in Panel B of Table 2, we follow Gu et al. 

Fig. 3  Between-models comparison of relative variable importance. 
This figure presents a heat map of average relative variable impor-
tance ranks of each machine learning model introduced in the “Fore-
cast models” section, which are obtained by ranking the relative 
contribution of each variable within a specific model, and summing 
the ranks across all models to obtain an overall rank (higher variable 
importance = higher rank). The rows are sorted in descending order 
based on overall rank. Darker cell colors denote greater importance 
for the respective variable to a model. The relative variable impor-
tance metrics are calculated based on a two-step approach: First, the 
absolute variable importance is computed as the reduction in  R2 from 

setting all values of a given predictor to zero within the training sam-
ple. Second, the absolute variable importance measures are normal-
ized to sum to 1, signaling the relative contribution of each variable 
to a model. The sample includes all firms that were publicly listed in 
one of the nineteen Eurozone countries in any given month during 
the January 1990–December 2020 sample period, while the first esti-
mates of expected excess returns are obtained in December 1999. The 
data coming from Thomson Reuters Datastream are collected on a 
monthly basis and, if currency-related, denominated in Euro. Market 
data are assumed to become public immediately, while fundamental 
data are assumed to be known four months after the fiscal year-end

14 To be conservative, we compare the statistical and economic pre-
dictive performance of the original ols_pars model with versions that 
only consider the top five or ten predictors in terms of relative variable 
importance. Out-of-sample tests (unreported) are identical to the tests 
shown in  the “Out-of-sample tests” section. We find that neither the 
ols_top5 nor the ols_top10 model exhibits substantial outperformance 
in any of the tests, so we retract the idea of removing uninformative 
variables from the predictor sets and instead consider each predictor 
as informative (to varying degrees). Additionally, we caution that the 
pre-estimation variable selection based on relative importance met-
rics derived from the entire sample period could lead to foresight bias, 
undermining the credibility of any out-of-sample tests.
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(2020) and calculate out-of-sample predictive  R2 metrics rel-
ative to a naïve excess return forecast of zero. We compute 
the metrics in Table 2 for each model and three subsamples: 
the full sample, and two subsamples that only contain large 
or small firms (based on the market capitalization). Third, 
in Table 3, we assess the relative predictive performance of 
each model in a pairwise comparison. We conduct a modi-
fied version of the Diebold and Mariano (1995) test (DM 
test) to gauge the differences in out-of-sample predictive 
power between two models. 

Panel A of Table 2 presents the time series averages of 
out-of-sample predictive slopes ( PS2

oos
 ) calculated from the 

test sample at each re-estimation date. These are derived 
from pooled regressions of realized excess returns on the 
corresponding estimates from a specific model, i.e., 
PSoos =

Cov(Rreal,Rpred)
Var(Rpred)

 . The predictive slopes are close to 1 for 

the machine learning models, indicating that forecast disper-
sion primarily reflects cross-sectional variation in true 
expected excess returns.15 They are much smaller for the 
OLS-based models and even more pronounced for the full 
predictor set, which is due to the overfitting that can arise 

because it contains too many predictors with a low signal-
to-noise ratio.

Importantly, the predictive slopes for the neural network 
models deteriorate quickly in the number of hidden layers, 
which is in line with Gu et al.’s (2020) findings and might 
be due to overfitting. Deeper neural networks seem to be too 
complex for the relatively small dataset and parsimonious 
set of predictors, and/or the monthly excess return setting. 
Since this pattern holds for other measures of statistical 
and economic predictive performance, we only present and 
discuss the results for the simplest nn_1 architecture going 
forward.

Considering the full sample, the predictive slopes are 
closest to 1 for the tree-based models (1.03 and 1.07 for 
rf and gbrt) and the neural network architecture (0.98 for 
nn_1), followed by the dimension-reducing models (0.74 
and 0.76 for pcr and pls). Note that selecting predictors 
manually (ols_pars with 0.65) is inferior to using a rule-
based selecting/shrinking technique (elanet with 0.92), 
while incorporating the full set of 341 predictors performs 
the worst (0.45 for ols_full). Although the patterns are simi-
lar for the two market capitalization-based subsamples, the 
magnitudes of the predictive slopes are substantially higher 
for the “small firms” subsample. There are two likely rea-
sons for this: First, the models are estimated from the full 
sample, so differences in cross-sectional variation in true 

Fig. 4  Relative variable importance over time. This figure shows the 
relative variable importance ranks of an exemplary selected machine 
learning model  (ols_pars) introduced in  the “Forecast models” sec-
tion, at each re-estimation date, which are obtained by ranking the 
relative contribution of each variable within a specific model (higher 
variable importance = higher rank). The relative variable importance 
metrics are calculated based on a two-step approach: First, the abso-
lute variable importance is computed as the reduction in  R2 from set-
ting all values of a given predictor to zero within the training sample. 
Second, the absolute variable importance measures are normalized to 

sum to 1, signaling the relative contribution of each variable to a 
model. The sample includes all firms that were publicly listed in one 
of the nineteen Eurozone countries in any given month during the 
January 1990–December 2020 sample period, while the first esti-
mates of expected excess returns are obtained in December 1999. The 
data coming from Thomson Reuters Datastream are collected on a 
monthly basis and, if currency-related, denominated in Euro. Market 
data are assumed to become public immediately, while fundamental 
data are assumed to be known four months after the fiscal year-end

15 PSoos larger than 1 indicate overly narrow forecasts, while PSoos 
smaller than 1 indicate overly wide predictions.
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expected excess returns between the subsamples could 
explain differences in predictive slopes. Second, machine 
learning algorithms could forecast the excess returns of 
small firms indeed better.

Panel B of Table 2 presents the time series averages of 
predictive R2 s ( R2

oos
 ) calculated from the test sample at each 

re-estimation date. These are derived by comparing a mod-
el’s R2

oos
 with the numbers of the naïve excess return forecast 

of zero, i.e., R2
oos

= 1 −
SSE(Rreal,Rpred)
SSE(Rreal,0)

.16 Considering the full 

Table 2  Predictive slopes and 
predictive R2s

This table presents predictive performance metrics of each machine learning model introduced in  the 
“Forecast models” section. Panel A reports the time  series averages of out-of-sample predictive slopes 
( PS2

oos
 ) calculated from the test sample at each re-estimation date. These are derived from pooled regres-

sions of realized excess returns on the corresponding estimates from a specific model, i.e., 
PSoos =

Cov(Rreal ,Rpred)
Var(Rpred)

 . Panel B reports the time series averages of predictive R2 s ( R2
oos

 ) calculated from the 
test sample at each re-estimation date. These are derived by comparing a model’s R2

oos
 with the numbers of 

the naïve excess return forecast of zero, i.e., R2
oos

= 1 −
SSE(Rreal ,Rpred)
SSE(Rreal ,0)

 . The numbers are presented for three 
subsamples: the full sample, and two subsamples that only contain large or small firms (based on the mar-
ket capitalization). The sample includes all firms that were publicly listed in one of the nineteen Eurozone 
countries in any given month during the January 1990–December 2020 sample period, while the first esti-
mates of expected excess returns are obtained in December 1999. The data coming from Thomson Reuters 
Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are 
assumed to become public immediately, while fundamental data are assumed to be known four months 
after the fiscal year-end

ols_full ols_pars elanet pcr pls rf gbrt nn_1

Panel A: Predictive slopes
Full sample 0.45 0.65 0.92 0.74 0.76 1.03 1.07 0.98
Large firms 0.30 0.46 0.67 0.56 0.58 0.77 0.82 0.71
Small firms 0.53 0.79 1.05 0.84 0.87 1.18 1.23 1.15
Panel B: Predictive R2s [%]
Full sample − 0.52 0.57 1.21 1.24 1.08 1.18 1.14 1.23
Large firms − 1.16 0.11 0.75 0.85 0.74 0.92 0.74 0.93
Small firms − 0.10 0.90 1.55 1.54 1.37 1.40 1.46 1.47

Table 3  Between-model 
comparison of predictive 
performance

This table reports Diebold and Mariano (1995) test (DM test) statistics for the pairwise comparison of the 
predictive performance of each machine learning model introduced in the “Forecast models” section. The 
modified version of the DM test compares the forecasts models’ monthly MSFEs, i.e., 
MSFEt+1 =

1

Nt+1

∑Nt+1

i=1
(êi,t+1)

2 . The DM test statistic for comparing column model j and row model k is 
DMkj =

dkj

�̂�
dkj

 , where dkj,t+1 = MSFE
(k)

t+1
−MSFE

(j)

t+1
 is the difference in MSFEs, dkj =

1

T
dkj,t+1 is the 

time series average of these differences, and �̂�
dkj

 is the Newey and West (1987) standard error of dkj,t+1 (with 
four lags to account for possible heteroscedasticity and autocorrelation). The sample includes all firms that 
were publicly listed in one of the nineteen Eurozone countries in any given month during the January 
1990–December 2020 sample period, while the first estimates of expected excess returns are obtained in 
December 1999. The data coming from Thomson Reuters Datastream are collected on a monthly basis and, 
if currency-related, denominated in Euro. Market data are assumed to become public immediately, while 
fundamental data are assumed to be known four months after the fiscal year-end

ols_full ols_pars elanet pcr pls rf gbrt nn_1

ols_full 2.29 4.12* 4.69* 4.46* 3.75* 3.70* 2.50*

ols_pars 3.35* 3.32* 2.86* 3.01* 2.90* 1.55
elanet 1.03 0.06 − 0.56 − 0.82 − 0.49
pcr − 1.23 − 1.47 − 1.41 − 0.99
pls − 0.44 − 0.55 − 0.57
rf − 0.33 − 0.27
gbrt − 0.19
nn_1

16 As a naïve benchmark, the historical average of excess returns 
is widely used, especially because of its performance at a portfolio 
level. However, many studies, including Gu et al. (2020), suggest that 
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sample, our results are in line with Gu et al. (2020) and 
emphasize our prior findings. In particular, the ols_full 
model exhibits the worst predictive power, a negative R2

oos
 

metric (− 0.52%), while the ols_pars model avoids overfit-
ting, resulting in a substantially larger number (0.57%). Each 
of the remaining machine learning models beats by far the 
ols_pars benchmark in the sense of higher R2

oos
 metrics. 

Restricting the complexity of the ols_full model by variable 
selection/shrinkage (1.21% for elanet) or dimension reduc-
tion (1.24% and 1.08% for pcr and pls, respectively), or by 
adding interactions and nonlinearity to the ols_pars model 
with a tree-based approach (1.18% and 1.14% for rf and gbrt, 
respectively) or neural network architecture (1.23% for 
nn_1) boosts the predictive performance. Again, the patterns 
remain qualitatively the same for the two market capitaliza-
tion-based subsamples, with substantially higher R2

oos
 met-

rics for the “small firms” subsample.
Table 3 presents DM test statistics to enable a pairwise 

comparison of predictive performance. We again follow Gu 
et al. (2020) and apply a modified version of the DM test to 
compare the forecasts models’ monthly MSFEs, i.e., 
MSFEt+1 =

1

Nt+1

∑Nt+1

i=1
(êi,t+1)

2.17 The DM test statistic for 

comparing column model j and row model k is DMkj =
dkj

�̂�
dkj

 , 

where dkj,t+1 = MSFE
(k)

t+1
−MSFE

(j)

t+1
 is the difference in 

MSFEs, dkj =
1

T
dkj,t+1 is the time series average of these dif-

ferences, and �̂�
dkj

 is the Newey and West (1987) standard 
error of dkj,t+1 (with four lags to account for possible hetero-
scedasticity and autocorrelation). We follow the convention 
that positive signs of DMkj indicate superior predictive per-
formance of column model j , i.e., that it yields, on average, 
lower forecast errors than row model i . As DM test statistics 
are  asymptotically N(0, 1)-distributed and test the null 
hypothesis that the divergence between two forecast models 
is zero, they map to p-values in the same way as regression 
t-statistics.

We interpret the DM test statistics derived from the pair-
wise comparison in two different ways: First, we consider 
them separately, without taking into account that other 
pairwise comparisons are conducted simultaneously. For a 

significance level of 5%, the threshold for the test statistics to 
indicate significance is 1.96. We denote single-comparison 
significance with boldface. Second, we address the multi-
ple comparison issue by using the Bonferroni correction, 
which divides the 5% significance level by the number of 
simultaneously conducted comparisons. Comparing eight 
models, this adjustment increases the significance threshold 
to 2.50. We denote multiple-comparison significance with 
an asterisk.

We observe that our results underline the tendencies 
found so far. Each machine learning model beats the OLS 
framework, which holds for both single- and multiple-com-
parison cases. One idiosyncrasy is the nn_1 model, which 
slightly misses significance relative to the ols_pars bench-
mark (1.55). Moreover, since the remaining statistics are 
insignificant, it is impossible to draw any further conclusions 
regarding the relative outperformance of the other forecast 
models.

Expected return‑sorted portfolios

The various models exhibit similar behavior with regard to 
model complexity and relative VI, but have substantially 
different out-of-sample predictive power. Note that the tests 
conducted in the “Statistical predictive performance” sec-
tion are statistical in nature, while Leitch and Tanner (1991) 
suggest that there may be only a weak association between 
statistical measures and economic profitability. Therefore, 
it is helpful to understand whether differences in statistical 
predictive performance translate into differences in predic-
tive power from the economic perspective of a realistic trad-
ing strategy. At the end of each month, we first sort stocks 
into decile portfolios based on the respective excess return 
estimates. For each model and decile portfolio, we then 
calculate the equal- and value-weighted mean of ex ante 
predicted and ex post realized excess returns. Based on the 
realized excess returns, we also compute the standard devia-
tion, annualized Sharpe ratio, and the t-statistic testing the 
null hypothesis that realized excess returns are zero. Table 4 
presents the time series averages of monthly figures.

In general, the patterns are similar for the equal- and 
value-weighted decile portfolios, although they are sub-
stantially more pronounced for the equal-weighting scheme 
(in terms of higher Sharpe ratios and t-statistics). The 
average realized excess returns line up almost monotoni-
cally with average predicted excess returns, resulting in 
positive H–L spreads that are statistically significant and 
economically large. The H–L returns are, on average, more 
than 75% higher for the equal-weighted decile portfolios, 
indicating that a substantial portion of the excess returns 
is driven by small firms. However, all H–L spreads, using 
both the equal-weighting and the value-weighting scheme, 
suggest economic profitability. The results highlight that 

17 The DM test usually compares forecast errors from two mod-
els at a stock level, requiring weak error dependence for asymptotic 
normality. While the TS return dependence is sufficiently weak in 
our setting, it is questionable whether the requirement of weak error 
dependence is fulfilled due to a potentially strong CS return depend-
ence.

Footnote 16 (continued)
the historical average is less applicable at a stock level. Due to large 
noise in single excess returns, historical averages typically underper-
form the naïve forecast of zero by a large margin. To set the highest 
possible bar for identifying incremental predictive performance, we 
opt to compare the R2 s against a naïve excess return forecast of zero.
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Table 4  Excess returns 
for expected return-sorted 
portfolios

Equal-weighted Value-weighted

Pred [%] Real [%] Std [%] Shp t-stat Pred [%] Real [%] Std [%] Shp t-stat

ols_full
Low (L) − 2.70 − 1.00 5.46 − 0.64 − 2.16 − 2.39 − 0.65 5.88 − 0.39 − 1.43
2 − 1.07 − 0.27 4.56 − 0.20 − 0.69 − 1.06 − 0.10 5.21 − 0.07 − 0.25
3 − 0.44 0.09 4.45 0.07 0.25 − 0.43 0.01 4.82 0.01 0.03
4 0.01 0.42 4.36 0.34 1.21 0.01 0.29 4.52 0.22 0.91
5 0.38 0.49 4.50 0.38 1.35 0.38 0.33 4.72 0.24 0.96
6 0.74 0.75 4.42 0.59 2.21 0.74 0.46 4.78 0.33 1.47
7 1.11 0.87 4.60 0.65 2.50 1.11 0.70 4.89 0.50 2.30
8 1.54 0.96 4.77 0.70 2.65 1.54 0.56 5.18 0.37 1.60
9 2.10 1.14 5.05 0.78 2.92 2.09 0.57 5.15 0.38 1.56
High (H) 3.36 1.72 5.73 1.04 4.01 3.21 0.69 6.05 0.40 1.64
H–L 6.06 2.72 2.61 3.62 13.34 5.60 1.35 4.03 1.16 4.67
ols_pars
Low (L) − 1.71 − 1.09 5.32 − 0.71 − 2.43 − 1.58 − 0.80 5.55 − 0.50 − 1.82
2 − 0.70 − 0.27 4.87 − 0.19 − 0.67 − 0.69 − 0.13 5.07 − 0.09 − 0.38
3 − 0.22 0.00 4.57 0.00 − 0.01 − 0.21 − 0.07 4.98 − 0.05 − 0.17
4 0.15 0.27 4.60 0.20 0.73 0.16 0.19 4.66 0.14 0.58
5 0.47 0.49 4.53 0.37 1.39 0.47 0.33 4.70 0.24 1.04
6 0.77 0.69 4.51 0.53 1.94 0.77 0.59 4.88 0.42 1.72
7 1.06 0.82 4.69 0.60 2.31 1.06 0.48 5.01 0.33 1.42
8 1.37 1.07 4.64 0.80 3.01 1.37 0.59 5.08 0.40 1.71
9 1.77 1.37 4.95 0.96 3.62 1.76 0.51 5.41 0.32 1.35
High (H) 2.56 1.84 5.26 1.21 4.52 2.53 0.84 5.02 0.58 2.68
H–L 4.27 2.93 2.60 3.91 15.05 4.11 1.64 3.71 1.53 6.19
elanet
Low (L) − 1.38 − 1.17 6.08 − 0.67 − 2.32 − 1.16 − 0.92 7.43 − 0.43 − 1.55
2 − 0.41 − 0.30 4.92 − 0.21 − 0.75 − 0.39 − 0.27 5.58 − 0.17 − 0.65
3 0.00 0.05 4.51 0.04 0.14 0.01 − 0.05 4.90 − 0.04 − 0.15
4 0.27 0.41 4.37 0.33 1.14 0.28 0.36 4.80 0.26 1.11
5 0.50 0.43 4.33 0.35 1.32 0.50 0.15 4.63 0.11 0.45
6 0.70 0.61 4.36 0.48 1.77 0.70 0.48 4.68 0.36 1.52
7 0.90 0.85 4.36 0.68 2.58 0.90 0.49 4.74 0.36 1.59
8 1.14 1.05 4.60 0.79 3.01 1.14 0.57 4.83 0.41 1.61
9 1.45 1.35 5.01 0.93 3.65 1.44 0.78 5.31 0.51 2.42
High (H) 2.10 1.90 5.48 1.20 4.44 2.03 0.92 5.60 0.57 2.31
H–L 3.48 3.07 2.47 4.31 16.20 3.19 1.84 4.66 1.37 5.41
pcr
Low (L) − 1.82 − 1.21 5.93 − 0.71 − 2.37 − 1.57 − 0.86 7.29 − 0.41 − 1.53
2 − 0.60 − 0.26 4.81 − 0.19 − 0.66 − 0.58 − 0.29 5.70 − 0.17 − 0.70
3 − 0.11 0.03 4.59 0.02 0.07 − 0.10 0.02 5.25 0.01 0.06
4 0.22 0.26 4.38 0.21 0.77 0.22 0.16 4.72 0.12 0.51
5 0.49 0.46 4.22 0.38 1.40 0.49 0.30 4.42 0.24 1.00
6 0.73 0.71 4.28 0.58 2.19 0.73 0.36 4.38 0.29 1.27
7 0.98 0.92 4.44 0.72 2.68 0.97 0.49 4.50 0.38 1.63
8 1.25 1.00 4.75 0.73 2.74 1.25 0.54 5.02 0.37 1.48
9 1.62 1.34 4.99 0.93 3.51 1.61 0.79 5.27 0.52 2.12
High (H) 2.44 1.94 5.51 1.22 4.45 2.33 1.12 5.65 0.69 2.94
H–L 4.26 3.15 2.58 4.23 13.86 3.90 1.98 5.09 1.35 5.32
Pls
Low (L) − 1.81 − 1.30 5.75 − 0.78 − 2.57 − 1.52 − 1.11 7.20 − 0.53 − 1.94
2 − 0.54 − 0.24 4.92 − 0.17 − 0.58 − 0.52 − 0.23 5.63 − 0.14 − 0.55
3 − 0.03 0.05 4.64 0.04 0.14 − 0.02 0.05 5.27 0.04 0.15
4 0.30 0.35 4.54 0.26 0.96 0.30 0.27 4.74 0.20 0.78
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Table 4  (continued) Equal-weighted Value-weighted

Pred [%] Real [%] Std [%] Shp t-stat Pred [%] Real [%] Std [%] Shp t-stat

5 0.56 0.46 4.31 0.37 1.36 0.56 0.15 4.65 0.11 0.47
6 0.80 0.68 4.43 0.54 2.02 0.80 0.57 4.51 0.43 1.93
7 1.04 0.89 4.53 0.68 2.65 1.04 0.54 4.65 0.40 1.77
8 1.31 1.07 4.54 0.81 3.07 1.31 0.62 4.94 0.43 1.85
9 1.67 1.29 4.97 0.90 3.44 1.66 0.60 5.13 0.40 1.63
High (H) 2.47 1.93 5.35 1.25 4.60 2.37 0.90 5.57 0.56 2.26
H–L 4.28 3.23 2.45 4.56 14.02 3.89 2.01 4.46 1.56 5.69
rf
Low (L) − 1.19 − 1.15 6.38 − 0.63 − 2.18 − 1.01 − 0.62 7.54 − 0.28 − 1.10
2 − 0.28 − 0.33 5.11 − 0.23 − 0.83 − 0.26 − 0.40 5.85 − 0.24 − 0.99
3 0.10 0.07 4.64 0.05 0.20 0.11 0.00 5.03 0.00 0.00
4 0.35 0.33 4.45 0.25 0.93 0.35 0.30 4.61 0.23 0.97
5 0.53 0.47 4.25 0.38 1.40 0.53 0.39 4.54 0.30 1.21
6 0.68 0.66 4.13 0.55 2.05 0.68 0.58 4.44 0.46 2.01
7 0.86 0.85 4.30 0.69 2.57 0.86 0.54 4.62 0.41 1.83
8 1.07 1.02 4.59 0.77 2.90 1.07 0.58 4.84 0.41 1.73
9 1.30 1.35 4.93 0.95 3.46 1.29 0.67 5.21 0.44 1.74
High (H) 1.75 1.91 5.39 1.23 4.42 1.69 0.89 6.41 0.48 1.86
H–L 2.94 3.06 2.75 3.86 14.17 2.70 1.51 4.79 1.09 4.50
gbrt
Low (L) − 1.28 − 1.14 6.21 − 0.63 − 2.23 − 1.05 − 0.77 6.92 − 0.39 − 1.59
2 − 0.31 − 0.35 4.91 − 0.25 − 0.89 − 0.30 − 0.42 5.41 − 0.27 − 1.08
3 0.06 0.11 4.43 0.09 0.32 0.06 0.17 5.00 0.12 0.48
4 0.30 0.27 4.37 0.22 0.79 0.30 0.23 4.32 0.19 0.73
5 0.51 0.42 4.35 0.33 1.24 0.51 0.32 4.65 0.24 0.99
6 0.69 0.62 4.35 0.50 1.81 0.69 0.34 4.53 0.26 1.10
7 0.87 0.84 4.30 0.68 2.52 0.87 0.39 4.76 0.29 1.14
8 1.08 1.10 4.61 0.83 3.02 1.08 0.56 5.02 0.39 1.72
9 1.35 1.36 5.09 0.93 3.41 1.34 0.94 5.30 0.61 2.69
High (H) 1.94 1.94 5.43 1.24 4.62 1.85 0.85 6.00 0.49 1.96
H–L 3.22 3.08 2.70 3.95 13.86 2.91 1.62 4.22 1.33 5.37
nn_1
Low (L) − 1.21 − 1.25 6.08 − 0.71 − 2.50 − 1.09 − 0.94 7.11 − 0.46 − 1.79
2 − 0.36 − 0.27 5.06 − 0.18 − 0.65 − 0.35 − 0.25 5.36 − 0.16 − 0.64
3 0.04 − 0.02 4.49 − 0.01 − 0.05 0.05 − 0.19 5.14 − 0.13 − 0.52
4 0.32 0.34 4.58 0.26 0.94 0.33 0.26 4.72 0.19 0.83
5 0.56 0.44 4.47 0.34 1.23 0.56 0.47 4.72 0.34 1.36
6 0.76 0.63 4.37 0.50 1.85 0.76 0.38 4.70 0.28 1.17
7 0.96 0.85 4.43 0.67 2.50 0.96 0.54 4.50 0.42 1.79
8 1.17 1.06 4.50 0.82 3.07 1.17 0.56 4.71 0.41 1.72
9 1.43 1.39 4.89 0.98 3.71 1.43 0.69 5.18 0.46 1.96
High (H) 1.92 2.01 5.14 1.35 4.89 1.87 0.99 5.34 0.64 2.77
H–L 3.13 3.26 2.91 3.89 13.96 2.96 1.94 4.76 1.41 5.89

This table presents the time  series averages of predicted and realized excess returns of decile portfolios 
based on the expected excess returns obtained from each machine learning model introduced in the “Fore-
cast models” section. In addition, based on the realized excess returns, the standard deviation and the annu-
alized Sharpe ratio are reported. The t-statistics, testing the null hypothesis that realized excess returns are 
zero, are calculated using the monthly point estimates, incorporating a Newey and West (1987) correction 
with four lags to account for possible heteroscedasticity and autocorrelation in the realized excess returns. 
The numbers are presented for both equal- and value-weighted decile portfolios. The sample includes 
all firms that were publicly listed in one of the nineteen Eurozone countries in any given month during 
the January 1990–December 2020 sample period, while the first estimates of expected excess returns 
are obtained in December 1999. The data coming from Thomson Reuters Datastream are collected on a 
monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become public 
immediately, while fundamental data are assumed to be known four months after the fiscal year-end
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all presented approaches capture cross-sectional variation 
in realized excess returns, but the potential for providing 
profitable trading signals differs substantially across them.

We compare the equal-weighted H–L returns, which tend 
to be driven more by the long side (decile 10) than the short 
side (decile 1). The values indicate that differences in statis-
tical predictive performance translate at least partly into dif-
ferences in economic profitability. Again, the ols_full model 
performs the worst, the ols_pars model performs slightly 
better, and the remaining forecast models outperform sub-
stantially. The realized excess returns of decile portfolios 
based on the nn_1 architecture are most promising, ranging 
from − 1.25% to 2.01% per month, resulting in a monthly 
H–L spread of 3.26%. This implies a return ratio, i.e., ratio 
between realized and predicted average H–L spread, of 
1.04 (= 3.26% ÷ 3.13%), which is almost identical to the 
time series average of predictive slopes (see Table 2, Panel 
A). The annualized Sharpe ratio is 3.89, with a correspond-
ing t-statistic of 13.96.

Given that higher average returns could be caused by 
higher systematic risk, it is necessary to examine risk-
adjusted performance. We calculate alphas of the decile 
portfolios relative to the CAPM and the Fama and French 
(2015) five-factor model (FF5M), which we extend here by 
using Carhart’s (1997) momentum factor. As the results are 
similar but less conservative for the unconditional version, 
where betas are assumed to be time-constant, we only pre-
sent conditional alphas for the sake of brevity. The begin-
ning-of-month aggregate dividend yields are used to capture 
time variability in betas (Chordia and Avramov 2006; Fer-
son and Schadt 1996; Shanken 1990). Table 5 presents the 
time series averages of monthly figures.

Overall, the risk-adjusted values are very close to their 
raw counterparts, suggesting that the positive average H–L 
returns are not driven mainly by higher systematic risk. 
Additionally, all the patterns observable in Table 4 emerge 
in Table 5 as well. The performance is better for the equal-
weighting scheme, the alphas line up almost monotonically 
with the average predicted excess returns (regardless of the 
underlying systematic risk model), and the results hold for 
all forecast models.

Investment portfolio performance

Since the decile portfolio sorts suggest that some forecast 
models are more promising than others, we next explore 
whether these models provide superior value-added to inves-
tors under realistic trading assumptions. We visually sum-
marize the cumulative performance for long- and short-only 
investment strategies based on each forecast model, taking 
the cumulative market excess return as a benchmark. We 
derive cumulative performance by applying a rule-based 
approach. At the end of each month, it selects the top decile 

stocks with the highest expected excess returns, or the bot-
tom decile stocks with the lowest expected excess returns.18 
We present the results for both weighting schemes. Figure 5 
depicts the cumulative performance of investments of €1 in 
each strategy at the beginning of January 2000.

The results again reflect our previous findings and are 
qualitatively comparable for both weighting schemes. All 
investment strategies are capable of dissecting the market 
universe into high- and low-performing stocks. However, 
that ability varies substantially among the forecast models 
and leads to considerable performance discrepancies. Again, 
we observe that the ols_full model performs the worst, the 
nn_1 model performs the best, and the remaining models 
lie in between.

As the portfolio performance tends to be driven by the 
long side rather than the short side (see Tables 4 and 5), 
and due to widespread short-selling restrictions in the indus-
try, we now focus on a long-only version of our investment 
strategy.19 We compute return and risk figures for the mar-
ket portfolio and each forecast portfolio. We also take into 
account transaction costs when measuring performance. In 
line with Bollerslev et al. (2018) and Koijen et al. (2018), 
we compute the portfolio’s transaction costs (PTC) by incor-
porating the portfolio’s one-sided turnover (PTO) and half-
spread (PHS) at the end of each month t.20

Table 6 depicts the return and risk metrics for each port-
folio (both before and after transaction costs). The terminal 
value is presented at the end of December 2020, as well 
as annualized return and volatility, maximum drawdown, 
annualized Sharpe ratio, and annualized information ratio 
(relative to the market portfolio). It also shows actual and 
applied transaction costs.

Independent of the weighting scheme, all the forecast 
portfolios substantially outperform the market. However, 
our main objective is to examine whether interactions and 
nonlinear effects add incremental predictive power to a par-
simonious forecast model that has already been proven to 

18 The results remain qualitatively the same for different restructur-
ing periods and for different quantile definitions.
19 The results remain qualitatively the same for a long-short version 
of our investment strategies.
20 We calculate the PTO as the sum of absolute changes in  
the value weight of the i = 1, … , n stocks included in the portfolio, 
divided by two to avoid double-counting buys and sells, i.e., 
PTOt =

1

2
×
∑n

i=1

���wi,t−1 ×
�
1 + ri,t

�
− wi,t

��� , where wi,t is the value 
weight assigned to stock i at the end of month t  , and ri,t is the stock’s 
excess return over month t  . For equal-weighted portfolios, we com-
pute the PHS as the equal-weighted average of the stocks’ quoted 
half-spreads, i.e., PHSt =

1

n
×
∑n

i=1

1

2
×

(ASKi,t−BIDi,t)
1

2
∗(ASKi,t+BIDi,t)

 . For value-
weighted portfolios, we calculate the PHS as the value-weighted aver-
age. We derive the PTC as the product of the PTO and PHS figures, 
i.e., PTCt = PTOt × PHSt.
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Table 5  Conditional alphas for expected return-sorted portfolios

Equal-weighted Value-weighted

aCAPM [%] t(aCAPM) R2
CAPM aFF5M [%] t(aFF5M) R2

FF5M aCAPM [%] t(aCAPM) R2
CAPM aFF5M [%] t(aFF5M) R2

FF5M

ols_full
Low (L) − 1.35 − 7.21 0.80 − 1.43 − 11.90 0.92 − 1.02 − 4.98 0.80 − 0.65 − 3.01 0.82
2 − 0.56 − 3.85 0.84 − 0.73 − 8.10 0.95 − 0.41 − 2.07 0.82 − 0.29 − 1.80 0.85
3 − 0.21 − 1.89 0.87 − 0.41 − 7.17 0.96 − 0.28 − 2.77 0.89 − 0.31 − 3.09 0.90
4 0.14 1.21 0.86 − 0.07 − 1.15 0.96 0.02 0.23 0.87 0.09 0.85 0.89
5 0.19 1.61 0.88 − 0.08 − 1.53 0.97 0.04 0.37 0.88 0.02 0.13 0.91
6 0.45 4.20 0.87 0.18 3.15 0.97 0.14 1.43 0.90 0.04 0.39 0.91
7 0.56 4.62 0.86 0.28 5.01 0.97 0.39 3.43 0.86 0.24 2.24 0.88
8 0.63 5.68 0.88 0.37 7.02 0.97 0.23 2.48 0.90 0.16 1.82 0.92
9 0.78 5.94 0.85 0.48 6.33 0.96 0.24 1.88 0.86 0.10 0.76 0.86
High (H) 1.32 7.79 0.84 1.07 8.92 0.94 0.26 1.63 0.84 0.33 1.93 0.86
H–L 2.67 12.15 0.04 2.51 12.10 0.09 1.27 4.35 0.07 0.99 2.95 0.14
ols_pars
Low (L) − 1.45 − 7.60 0.78 − 1.46 − 10.52 0.91 − 1.13 − 5.47 0.75 − 0.67 − 3.56 0.82
2 − 0.60 − 4.05 0.84 − 0.75 − 9.62 0.95 − 0.44 − 3.60 0.83 − 0.30 − 2.16 0.84
3 − 0.30 − 2.38 0.84 − 0.47 − 6.01 0.95 − 0.37 − 2.33 0.84 − 0.27 − 1.78 0.85
4 − 0.04 − 0.37 0.88 − 0.25 − 4.03 0.97 − 0.10 − 1.02 0.86 − 0.08 − 0.72 0.89
5 0.18 1.96 0.88 − 0.06 − 0.84 0.96 0.04 0.37 0.86 0.04 0.32 0.88
6 0.38 3.51 0.89 0.10 1.59 0.97 0.25 2.67 0.89 0.14 1.12 0.90
7 0.50 4.38 0.87 0.20 4.25 0.96 0.15 1.63 0.90 0.00 0.01 0.90
8 0.76 6.27 0.87 0.48 8.10 0.97 0.26 2.48 0.89 0.17 1.67 0.89
9 1.02 7.65 0.87 0.72 10.07 0.96 0.17 1.31 0.87 0.08 0.55 0.87
High (H) 1.49 9.77 0.83 1.16 11.89 0.93 0.53 4.37 0.83 0.26 2.02 0.86
H–L 2.94 14.31 0.00 2.62 12.99 0.11 1.66 6.13 0.00 0.93 3.71 0.24
elanet
Low (L) − 1.59 − 8.37 0.79 − 1.64 − 12.70 0.93 − 1.40 − 5.76 0.79 − 0.86 − 3.55 0.84
2 − 0.64 − 4.73 0.84 − 0.72 − 7.30 0.94 − 0.65 − 4.31 0.84 − 0.49 − 3.42 0.86
3 − 0.26 − 2.04 0.87 − 0.46 − 6.28 0.96 − 0.38 − 3.21 0.87 − 0.32 − 2.47 0.88
4 0.12 1.01 0.86 − 0.11 − 1.72 0.96 0.07 0.67 0.86 0.13 1.10 0.87
5 0.14 1.34 0.87 − 0.12 − 2.07 0.96 − 0.14 − 1.29 0.89 − 0.09 − 0.89 0.90
6 0.32 2.60 0.86 0.01 0.13 0.96 0.20 1.67 0.86 0.18 1.82 0.88
7 0.57 5.31 0.87 0.29 5.29 0.97 0.22 2.20 0.89 0.13 1.44 0.89
8 0.75 6.09 0.85 0.40 5.52 0.96 0.27 2.42 0.88 0.11 0.90 0.89
9 1.01 7.74 0.86 0.75 9.68 0.95 0.46 3.27 0.84 0.24 1.71 0.85
High (H) 1.52 9.77 0.84 1.27 11.82 0.95 0.54 3.35 0.83 0.42 2.63 0.84
H–L 3.11 16.76 0.02 2.91 15.03 0.14 1.95 6.13 0.10 1.28 4.19 0.22
pcr
Low (L) − 1.60 − 7.51 0.79 − 1.62 − 10.91 0.92 − 1.30 − 4.65 0.73 − 0.83 − 3.40 0.80
2 − 0.59 − 4.28 0.85 − 0.67 − 8.75 0.95 − 0.62 − 3.73 0.81 − 0.18 − 1.03 0.84
3 − 0.29 − 2.55 0.87 − 0.46 − 6.35 0.96 − 0.30 − 2.38 0.88 − 0.07 − 0.60 0.91
4 − 0.04 − 0.35 0.87 − 0.29 − 4.90 0.96 − 0.14 − 1.27 0.87 − 0.19 − 1.90 0.89
5 0.18 1.88 0.88 − 0.05 − 1.00 0.97 0.05 0.46 0.86 0.13 1.32 0.87
6 0.42 4.39 0.88 0.18 4.03 0.96 0.10 1.04 0.87 − 0.04 − 0.38 0.90
7 0.62 4.95 0.85 0.30 5.05 0.97 0.21 1.76 0.86 − 0.07 − 0.62 0.88
8 0.68 5.66 0.88 0.36 5.70 0.97 0.20 2.00 0.90 0.01 0.06 0.91
9 0.99 7.36 0.86 0.63 8.82 0.96 0.43 3.75 0.90 0.29 2.66 0.91
High (H) 1.56 9.23 0.84 1.28 11.76 0.94 0.72 5.02 0.84 0.54 3.59 0.86
H–L 3.16 13.90 0.01 2.91 13.63 0.14 2.02 5.42 0.05 1.37 4.38 0.27
Pls
Low (L) − 1.68 − 7.86 0.79 − 1.71 − 12.06 0.92 − 1.59 − 6.40 0.78 − 1.21 − 5.87 0.83
2 − 0.57 − 3.93 0.85 − 0.70 − 8.21 0.96 − 0.60 − 3.80 0.84 − 0.42 − 2.58 0.86
3 − 0.26 − 2.37 0.87 − 0.44 − 7.99 0.96 − 0.27 − 2.50 0.84 − 0.01 − 0.06 0.86
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Table 5  (continued)

Equal-weighted Value-weighted

aCAPM [%] t(aCAPM) R2
CAPM aFF5M [%] t(aFF5M) R2

FF5M aCAPM [%] t(aCAPM) R2
CAPM aFF5M [%] t(aFF5M) R2

FF5M

4 0.04 0.41 0.87 − 0.19 − 2.78 0.96 − 0.04 − 0.39 0.90 0.00 0.05 0.91
5 0.17 1.65 0.87 − 0.13 − 1.96 0.96 − 0.13 − 1.47 0.89 − 0.24 − 2.71 0.91
6 0.39 3.36 0.85 0.08 1.59 0.97 0.28 2.70 0.86 0.15 1.32 0.89
7 0.60 5.42 0.87 0.32 5.54 0.96 0.26 3.05 0.89 0.18 2.10 0.89
8 0.75 6.58 0.88 0.46 6.93 0.97 0.31 2.67 0.87 0.07 0.65 0.88
9 0.95 7.47 0.87 0.66 7.71 0.96 0.26 1.84 0.86 0.14 1.08 0.87
High (H) 1.55 9.13 0.83 1.30 9.61 0.93 0.50 3.34 0.82 0.35 2.20 0.85
H–L 3.24 14.10 0.00 3.01 13.03 0.10 2.08 6.48 0.10 1.56 5.76 0.31
Rf
Low (L) − 1.58 − 7.88 0.80 − 1.59 − 11.67 0.94 − 1.11 − 4.69 0.76 − 0.91 − 4.11 0.83
2 − 0.67 − 5.48 0.85 − 0.74 − 8.21 0.95 − 0.77 − 4.56 0.80 − 0.52 − 3.08 0.86
3 − 0.23 − 2.00 0.86 − 0.48 − 5.36 0.95 − 0.30 − 2.51 0.87 − 0.22 − 1.79 0.88
4 0.03 0.30 0.87 − 0.14 − 1.97 0.95 0.00 0.03 0.88 − 0.03 − 0.34 0.88
5 0.20 1.60 0.86 − 0.04 − 0.76 0.96 0.13 1.37 0.86 0.09 0.87 0.87
6 0.40 3.65 0.86 0.13 2.21 0.96 0.34 2.96 0.84 0.39 3.11 0.85
7 0.57 4.44 0.84 0.25 3.37 0.95 0.25 2.08 0.85 0.04 0.34 0.87
8 0.70 5.27 0.86 0.41 5.70 0.95 0.27 2.13 0.85 0.17 1.65 0.86
9 0.99 7.66 0.86 0.67 9.76 0.96 0.30 2.22 0.85 0.06 0.44 0.86
High (H) 1.53 8.75 0.82 1.19 9.78 0.93 0.42 1.90 0.81 0.24 1.16 0.84
H–L 3.11 14.87 0.10 2.79 13.35 0.29 1.54 4.89 0.04 1.15 3.88 0.26
gbrt
Low (L) − 1.56 − 7.70 0.79 − 1.58 − 11.63 0.93 − 1.24 − 6.24 0.80 − 0.95 − 5.10 0.87
2 − 0.69 − 5.50 0.86 − 0.75 − 9.55 0.95 − 0.76 − 5.29 0.79 − 0.43 − 2.30 0.81
3 − 0.18 − 1.64 0.86 − 0.38 − 5.59 0.96 − 0.11 − 0.90 0.86 − 0.04 − 0.29 0.86
4 − 0.02 − 0.13 0.86 − 0.28 − 4.08 0.96 − 0.03 − 0.26 0.84 − 0.18 − 1.38 0.86
5 0.12 1.25 0.89 − 0.11 − 2.26 0.97 0.01 0.14 0.87 − 0.04 − 0.32 0.88
6 0.34 2.88 0.85 0.08 1.34 0.96 0.07 0.68 0.86 0.01 0.10 0.86
7 0.56 4.91 0.86 0.29 4.82 0.96 0.10 1.08 0.89 0.12 1.25 0.90
8 0.79 6.54 0.86 0.51 8.49 0.96 0.25 2.44 0.89 0.09 0.85 0.90
9 1.01 7.51 0.86 0.62 8.97 0.96 0.58 4.57 0.88 0.37 3.37 0.90
High (H) 1.56 9.24 0.84 1.27 10.16 0.93 0.44 2.35 0.83 0.19 1.02 0.85
H–L 3.12 14.35 0.03 2.85 12.83 0.18 1.68 5.66 0.02 1.13 4.06 0.30
nn_1
Low (L) − 1.66 − 8.67 0.79 − 1.59 − 12.28 0.93 − 1.42 − 6.92 0.78 − 0.79 − 4.11 0.88
2 − 0.61 − 4.50 0.85 − 0.65 − 6.52 0.95 − 0.60 − 4.23 0.82 − 0.34 − 2.39 0.86
3 − 0.32 − 2.99 0.87 − 0.50 − 7.14 0.96 − 0.51 − 4.26 0.88 − 0.33 − 2.60 0.88
4 0.03 0.27 0.88 − 0.25 − 3.33 0.96 − 0.01 − 0.05 0.85 − 0.02 − 0.12 0.86
5 0.14 1.24 0.86 − 0.12 − 1.90 0.96 0.18 1.39 0.85 0.23 1.52 0.85
6 0.33 3.12 0.87 0.08 1.32 0.96 0.07 0.62 0.86 0.01 0.08 0.87
7 0.56 5.21 0.87 0.27 4.46 0.96 0.25 2.41 0.88 0.12 1.21 0.89
8 0.75 5.56 0.86 0.45 6.23 0.96 0.24 1.98 0.85 0.16 1.46 0.86
9 1.05 7.15 0.85 0.73 8.57 0.96 0.37 2.89 0.85 0.09 0.67 0.87
High (H) 1.67 9.68 0.82 1.26 11.58 0.94 0.67 4.50 0.82 0.24 1.80 0.86
H–L 3.33 15.05 0.07 2.85 14.02 0.38 2.09 7.27 0.11 1.03 4.60 0.52

This table presents conditional alphas [relative to the CAPM and the Fama and French (2015) five-factor model, extended by Carhart’s (1997) 
momentum factor (FF5M)] of decile portfolios based on the expected excess returns that are obtained from each machine learning model intro-
duced in the “Forecast models” section. Conditional alphas incorporate the beginning-of-month aggregate dividend yields to capture time vari-
ability in betas. The t-statistics (testing the null hypothesis that conditional alphas are zero) are calculated using the monthly point estimates, 
incorporating a Newey and West (1987) correction with four lags to account for possible heteroscedasticity and autocorrelation in the alphas. 
In addition, the regression  R2 metrics are reported. The numbers are presented for both equal- and value-weighted decile portfolios. The sample 
includes all firms that were publicly listed in one of the nineteen Eurozone countries in any given month during the January 1990–December 
2020 sample period, while the first estimates of expected excess returns are obtained in December 1999. The data coming from Thomson Reu-
ters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become public 
immediately, while fundamental data are assumed to be known four months after the fiscal year-end
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perform well. This is why we use the ols_pars model as 
our conservative benchmark. In addition, as we are primary 
interested in the forecast models’ ability to select stocks ex 

ante that tend to perform well ex post, we opt for the naïve 
equal-weighting scheme in presenting and discussing invest-
ment portfolio performance.

Fig. 5  Cumulative performance of expected return-sorted portfo-
lios with monthly restructuring. This figure depicts the performance 
(logarithmic scale) of the market portfolio and each machine learn-
ing portfolio introduced in  the “Forecast models” section. Port-
folio values are scaled to €1 at the beginning of January 2000 and 
presented for long- and short-only portfolios, for both the equal- and 
value-weighting scheme, and gross of transaction costs. The calcula-
tion of transaction costs and the choice of applied transaction costs 
are explained in  the “Investment portfolio performance” section. 

The sample includes all firms that were publicly listed in one of the 
nineteen Eurozone countries in any given month during the Janu-
ary 1990–December 2020 sample period, while the first estimates 
of expected excess returns are obtained in December 1999. The 
data coming from Thomson Reuters Datastream are collected on a 
monthly basis and, if currency-related, denominated in Euro. Market 
data are assumed to become public immediately, while fundamental 
data are assumed to be known four months after the fiscal year-end.
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Table 6  Cumulative performance of long-only forecast portfolios with monthly restructuring

This table presents return and risk characteristics of the market portfolio and each machine learning portfolio introduced in the “Forecast mod-
els” section. Portfolio values are scaled to €1 at the beginning of January 2000. The numbers are presented for long-only portfolios, for both the 
equal- and value-weighting scheme, and both gross and net of transaction costs. The calculation of transaction costs and the choice of applied 
transaction costs are explained in the “Investment portfolio performance” section. The sample includes all firms that were publicly listed in one 
of the nineteen Eurozone countries in any given month during the January 1990–December 2020 sample period, while the first estimates of 
expected excess returns are obtained in December 1999. The data coming from Thomson Reuters Datastream are collected on a monthly basis 
and, if currency-related, denominated in Euro. Market data are assumed to become public immediately, while fundamental data are assumed to 
be known four months after the fiscal year-end.

mkt ols_full ols_pars elanet pcr pls rf gbrt nn_1

Panel A: Equal-weighted
Before transaction costs
Terminal value [€] 2.77 48.65 70.29 78.33 86.29 86.22 81.96 88.05 107.18
Excess return annualized [%] 4.96 20.32 22.45 23.08 23.65 23.64 23.35 23.77 24.93
Std annualized [%] 16.21 19.86 18.20 18.97 19.07 18.54 18.66 18.81 17.82
Maximum drawdown [%] 60.32 55.34 51.24 48.63 56.27 52.12 49.33 48.48 50.12
Sharpe ratio 0.31 1.03 1.24 1.22 1.25 1.28 1.26 1.27 1.41
Information ratio 2.48 3.57 3.60 3.58 3.42 3.32 3.40 4.27
Actual transaction costs [%]
Avg PTO 39.54 27.17 36.24 34.80 33.33 32.82 33.95 31.18
Avg PHS 0.63 0.57 0.64 0.63 0.65 0.61 0.60 0.59
Avg PTC 0.24 0.16 0.23 0.23 0.22 0.20 0.21 0.18
Applied transaction costs [%]
Avg PTC 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
After transaction costs
Terminal value [€] 2.77 11.75 17.02 18.97 20.91 20.90 19.86 21.34 26.01
Excess return annualized [%] 4.96 12.45 14.45 15.04 15.58 15.57 15.29 15.69 16.79
Std annualized [%] 16.21 19.86 18.20 18.97 19.07 18.54 18.66 18.81 17.82
Maximum drawdown [%] 60.32 60.59 56.94 54.63 61.41 57.73 55.25 54.49 55.73
Sharpe ratio 0.31 0.63 0.80 0.80 0.82 0.84 0.82 0.84 0.95
Information ratio 1.21 1.94 2.01 2.04 1.95 1.87 1.94 2.53
Panel B: Value-weighted
Before transaction costs
Terminal value [€] 1.67 3.58 6.00 6.80 11.08 6.47 5.47 5.32 8.40
Excess return annualized [%] 2.47 6.26 8.90 9.56 12.13 9.30 8.43 8.29 10.67
Std annualized [%] 16.12 20.94 17.39 19.40 19.56 19.29 22.22 20.79 18.50
Maximum drawdown [%] 54.62 67.26 44.25 52.77 55.77 60.60 61.15 56.99 48.87
Sharpe ratio 0.15 0.30 0.51 0.49 0.62 0.48 0.38 0.40 0.58
Information ratio 0.39 0.91 0.86 1.13 0.75 0.53 0.62 1.06
Actual transaction costs [%]
Avg PTO 45.98 29.59 44.58 41.48 39.41 41.29 36.66 37.29
Avg PHS 0.17 0.14 0.16 0.18 0.18 0.22 0.18 0.15
Avg PTC 0.09 0.05 0.08 0.08 0.07 0.09 0.07 0.06
Applied transaction costs [%]
Avg PTC 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
After transaction costs
Terminal value [€] 1.67 0.85 1.43 1.62 2.65 1.55 1.30 1.27 2.01
Excess return annualized [%] 2.47 − 0.76 1.72 2.34 4.76 2.10 1.27 1.14 3.38
Std annualized [%] 16.12 20.94 17.39 19.40 19.56 19.29 22.22 20.79 18.50
Maximum drawdown [%] 54.62 71.23 52.00 61.29 59.84 66.50 64.76 65.17 53.53
Sharpe ratio 0.15 − 0.04 0.10 0.12 0.24 0.11 0.06 0.06 0.18
Information ratio − 0.33 − 0.10 − 0.02 0.27 − 0.04 − 0.11 − 0.14 0.12
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Ignoring transaction costs, the ols_pars portfolio yields 
a terminal value of €70.29. The excess return is substan-
tially higher than that for the market portfolio (22.45% vs. 
4.96%), while volatility is only slightly elevated (18.20% 
vs. 16.21%). This increases the Sharpe ratio (1.24 vs. 0.31). 
Moreover, the OLS-based forecast portfolio exhibits a lower 
maximum drawdown (51.24% vs. 60.32%) as well as a high 
information ratio (3.57). Because the ols_pars model out-
performs, it is suitable to serve as our conservative bench-
mark. However, adding interactions and nonlinear effects to 
the ols_pars model without any restriction, leading to the 
ols_full model, weakens the return and risk figures.

Implementing regularization (i.e., variable selection/
shrinkage or dimension reduction) to restrict the complexity 
of the ols_full model, or adding interactions and nonlinearity 
with a tree-based approach, adds substantial predictive power. 
The volatilities are slightly higher than those of the ols_pars 
model (ranging from 18.54% for pls and 19.07% for pcr), 
and the excess returns range from 23.08% (elanet) to 23.77% 
(gbrt). The machine learning portfolios sharply increase the 
terminal value relative to the ols_pars portfolio, with similar 
figures for maximum drawdown, Sharpe ratio, and informa-
tion ratio. The nn_1 model performs the best: It raises the 
terminal value relative to the ols_pars portfolio by €36.89 
(or 52.48%) to €107.18 and increases the excess return to 
24.93%, with similar figures for standard deviation (17.82%) 
and maximum drawdown (50.12%). This translates into the 
highest Sharpe ratio (1.41) and information ratio (4.27).

Next, we account for transaction costs. The average PTO 
ranges from 27.17% (ols_pars) to 39.54% (ols_full) and is 
slightly higher for the value-weighting scheme. In contrast, 
the average PHS is much higher for the equal-weighted 
scheme (60 bps vs. 20 bps). By definition, it puts larger 
weights on smaller stocks that are less liquid and therefore 
more expensive (in terms of higher bid-ask spreads). As a 
result, the average PTCs are nearly three times larger for the 
equal-weighted portfolios.

Although the transaction cost models of Bollerslev et al. 
(2018) and Koijen et al. (2018) are quite conservative, we 
follow an even more cautious approach and deduct 57 bps 
from each portfolio’s monthly excess returns.21 The actual 
transaction costs are many times lower than this deduction, 
and therefore the applied transaction costs offer a conserva-
tive lower bound for the performance of a realistic trading 
strategy. Overall, each equal-weighted portfolio continues to 
outperform the market. The performance of value-weighted 
portfolios (except for pcr and nn) falls slightly under the 
benchmark. We attribute this to the overly conservative 
transaction cost discount.

Classification‑based portfolio formation

Our results indicate that interactions and nonlinear effects 
are important and could be exploited by adequately trained 
and tuned machine learning models. The forecast models 
handle the high dimensionality issue with varying degrees 
of success, resulting in different levels of predictive per-
formance. To evaluate the economic predictive power, we 
compare the cumulative performance of investment portfo-
lios. They are formed through a two-step procedure that uses 
forecast models to derive expected return estimates first, and 
selects stocks with the highest expected return forecasts into 
long-only portfolios second.

Considering this “detour” through the estimation of stock-
level expected returns, we next study whether a single-step 
portfolio formation process can further improve the predic-
tive performance. We follow the popular learning-to-rank 
(LTR) classification approach. Instead of incorporating real-
ized excess returns as labels to train a regression model, the 
stocks from the training and validation sample are cross-
sectionally sorted into decile portfolios based on realized 
excess returns. These sortings are then used as aggregate 
labels in fitting a rank-based classification model. Top-decile 
stocks are preferable to bottom-decile stocks, so decile port-
folio labels serve as preference ranks.

Such pre-estimation sortings, rather than classifying 
stocks based on expected return estimates, can help avoid 
the noise in stock-level excess returns, while maintaining the 
signal that is most important from a trading perspective, i.e., 
the correct classification into a decile portfolio. The LTR 
approach computes probability estimates for the affiliation 
of a stock to each decile portfolio separately and then sums 
these probabilities into an aggregate probability score, which 
it uses to classify the stock into a specific decile portfolio.

Machine learning method: Support vector machines

As discussed earlier, support vector machines (SVMs) are a 
popular classification method. The idea behind SVMs is to 
search for hyperplanes that territorially divide a multidimen-
sional vector space (our sample of firm observations, con-
sisting of stock-level predictors and decile portfolio labels) 
into groups of vectors that belong to the same class. Each 
potential hyperplane is located in an area where vectors of 
two different classes are close together. To increase com-
putational speed, SVMs do not always use all vectors from 
the vector space. Rather, it focuses on those in the immedi-
ate neighborhood of the potential hyperplane, or so-called 

21 Novy-Marx and Velikov (2016) suggest a lump-sum discount on the 
portfolio’s return, which ranges from 20bps to 57bps for mid-turnover 
strategies, with an average PTO between 14 and 35%. Since all forecast 

portfolios exhibit PTOs within this interval or only slightly above, they 
are likely to be mid- rather than low-turnover strategies (average PTO < 
10%), or high-turnover strategies (average PTO > 90%).

Footnote 21 (continued)
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support vectors. The algorithm then specifies the optimal 
hyperplane by aiming to (1) maximize the distance of cor-
rectly classified support vectors from the hyperplane, and 
(2) minimize the number of misclassified support vectors.

In a multi-class scenario, SVMs fit optimal hyperplanes by 
means of a pairwise class comparison. In theory, by allow-
ing for an unrestricted nonlinear transformation of the vector 
space and with indefinite computational power and time, the 
algorithm can avoid any misclassifications. But since this 
likely leads to overfitting, regardless of obvious computa-
tional limitations, SVMs must be strongly regularized.

To this end, we use a radial basis function (RBF) kernel 
for a proper nonlinear transformation of the vector space. We 
simultaneously apply three types of regularization. First, we 
constrain the influence of any single vector, i.e., we restrict 
the space within which it can serve as a support vector. A 
smaller vector influence � avoids enabling vectors to serve 
as supports for overly distant hyperplanes. Second, we set 
the permitted number of misclassified vectors to a positive 
value, i.e., we allow for a certain number of misclassifica-
tions. Smaller misclassification costs c allow us to ignore 
more of the misclassified support vectors, while continu-
ing to fit optimal hyperplanes. To tune both parameters, we 
select a loss function that meets our objective to classify 
stocks into ranked decile portfolios, based on the confu-
sion matrix that contrasts predicted and realized classes. 
For binary (two-class) classifications, potential outcomes 
are true positives (TPs) if the predicted and realized class 
equal 1, true negatives (TNs) if predicted and realized class 
equal 0, false positives (FPs) if predicted class equals 1 but 
realized class equals 0, and false negatives (FNs) if predicted 
class equals 0 but realized class equals 1.

In a two-class scenario, classification performance is usu-
ally evaluated using confusion matrices, together with a 
broad set of classification measures, in particular accuracy, 
i.e., #(TP+TN)

#(TP+FP+FN+TN)
 , sensitivity, i.e., #TP

#(TP+FN)
 , and specificity, 

i.e., #TN

#(TN+FP)
 . Multi-class classification metrics are derived as 

follows: Separately for each class, the binary one-against-all 
approach is used to compute hypothetic two-class numbers. 
It considers the class under investigation as 1, and all remain-
ing classes as 0. Aggregate metrics are then calculated as the 
weighted average of each class’ individual metric, taking the 
number of realized cases within each class as weights. Note 
that the aggregate accuracy can equivalently be computed as 
the number of true classifications (cases in the cells on the 
confusion matrix’s left diagonal) divided by the number of 
total classifications (cases in any cell of the confusion 
matrix). To give an example, Table 10 of Appendix 2 pro-
vides a visualization of a three-level classification with inher-
ent rank order ( 3 ≻ 2 ≻ 1) . The multi-class accuracy measure 
in this illustration is 10+10+10

100
= 30% for both scenarios.

Traditional classifications would aim to maximize this 
multi-class accuracy. However, this loss function is not 
applicable for an LTR classification because it does not con-
sider the inherent rank order, i.e., the severity of the misclas-
sifications. Although exhibiting the same 30% accuracy, the 
predictions in scenario A differ from their realizations more 
strongly than in scenario B. To put this in a trading context, 
selecting a stock that is expected to be in the best decile port-
folio, but is actually in the second-best decile portfolio, is 
much less problematic than accidently selecting a stock from 
the worst decile portfolio. This is why the goal of our SVM 
approach is to minimize an objective function that penalizes 
the difference between predicted and realized class ranks, 
i.e., Φ(�) =

∑N

i=1
��predi − reali

�� , where predi ∈ {1,… , 10} 
and reali ∈ {1,… , 10} are the predicted and realized decile 
portfolio ranks of stock i ∈ {1,… ,N} , respectively.

Multi-class SVMs are computational intensive There-
fore, adapt the ensemble approach from the neural network 
architecture (see the “Neural networks” section). At each re-
estimation date, we randomly split the training sample into 
ten distinct subsamples and train ten independent SVMs 
from these. This increases the computational speed, but still 
enables the algorithm to see the entire training sample. We 
average the different predictions into a single ensemble pre-
diction, which additionally increases the signal-to-noise ratio.

Our SVM approach uses a scoring model to classify 
stocks into decile portfolios. Based on the disaggregated 
vector space, it estimates the likelihood that a specific stock 
will be part of a specific decile portfolio in the following 
month t + 1 . It aggregates those decile-specific probabili-
ties into a probability score Si . It is higher for stocks that 
are ex ante expected to be in the decile portfolio with high 
ex post realized returns, i.e., Si,t =

∑10

j=1
wj × pij,t , where 

wj ∈ {1,… , 10} is the rank of the decile portfolio, and pij,t 
∈ (0, 1) is the probability that stock i will be part of decile 
portfolio j , while incorporating all the information available 
at the end of month t.

Out‑of‑sample tests

Statistical predictive performance

Our primary interest is potential performance differences 
between traditional expected return-based portfolio forma-
tion and a classification-based approach. Therefore, we next 
compare measures of predictive performance. To set the 
highest possible bar for identifying incremental predictive 
performance, we use the best-performing machine learning 
method, i.e., the nn_1 model, as our relevant benchmark. 
Table 7 shows the confusion matrices, together with a broad 
set of classification measures.

The entries in the diagonal of the confusion matrix 
indicate that, at an aggregate level, both models correctly 
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classify stocks into decile portfolios. However, our SVM 
approach is slightly more accurate than the nn_1 architecture 
(12.63% vs. 12.10%), as well as marginally more sensitive 
(12.62% vs. 12.10%) and specific (90.29% and 90.23%). 
Compared with a 10.04% accuracy of a random classifier, 
the accuracy of both models is significantly higher. They 
work best for the top and bottom decile portfolios, and the 
patterns are slightly more pronounced for the short than the 
long side. Moreover, the SVM-based predictions differ less 
strongly from their realizations than those obtained from 
neural networks. This points towards a superior misclassi-
fication distribution, which might translate into an outper-
formance from an economic perspective. This is because 
SVMs are able to incorporate the inherent rank order of 
decile portfolios explicitly.

Investment portfolio performance

In a final step, recognizing Leitch and Tanner’s (1991) argu-
ment that the association between statistical predictive per-
formance (classification measures) and economic profitabil-
ity may be weak, we compare the cumulative performance 
of long-only investment portfolios. Table 8 shows the return 
and risk figures from Table 6 for the ols_pars, nn_1, and 
svm models. The cumulative performance metrics extend 
our earlier findings. Both models substantially outperform 
the benchmark model (ols_pars), while exhibiting similar 
return-risk behavior. Most importantly, the numbers of the 
SVM-based model are slightly superior to that of the neu-
ral network for both weighting schemes. We interpret these 
results to mean that a classification-based approach can be 
even better than the best-performing expected return-based 
portfolio formation.

Conclusion

Using market and fundamental data for European firms, 
we study the predictive performance of machine learning 
methods in forecasting stock returns, including approaches 
for variable selection/shrinkage or dimension reduction, 
tree-based models, and neural networks. We conduct a com-
parative analysis in terms of statistical and economic per-
formance metrics. Following Gu et al. (2020), we enhance 
the set of twenty-two predictors in Drobetz et al. (2019) by 
two-way interactions as well as second- and third-order poly-
nomials to capture nonlinearity. We confirm that interactions 
and nonlinear effects are important and add incremental pre-
dictive power.

Machine learning methods must be adequately trained 
and tuned to avoid overfitting. Each model’s degree of com-
plexity varies substantially over time, and different mod-
els find similar predictors to be important. Despite these Th
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commonalities, the forecast models we study exhibit dif-
ferent statistical predictive performance (predictive slopes 
closer to 1, higher predictive R2 metrics, and positive DM 
test statistics). This further translates into markedly different 
economic profitability.

The return and risk figures of long-only investment 
strategies suggest that all forecast portfolios beat our linear 
benchmark model. The neural network architecture per-
forms the best, also after accounting for transaction costs. 
Because it follows the “traditional” expected return-based 

portfolio formation, i.e., estimating stock-level expected 
returns first and aggregating stocks again into decile port-
folios second, we compare its performance with a simpler, 
classification-based approach. We find that a support vector 
machine can classify stocks into decile portfolios that are even 
better than that obtained from neural networks. This leads to a 
more straightforward portfolio formation process that avoids 
some of the noise in stock-level excess returns, while main-
taining the signal that is most important for a trading strategy, 
i.e., the correct classification into a decile portfolio.

Table 8  Cumulative 
performance of long-only 
forecast portfolios with monthly 
restructuring

This table presents return and risk characteristics of selected machine learning portfolios  (ols_pars, 
nn_1, and svm) introduced in the “Forecast models”  and the “Machine learning method: Support vector 
machines” sections, respectively. Portfolio values are scaled to €1 at the beginning of January 2000. The 
numbers are presented for long-only portfolios, for both the equal- and value-weighting scheme, and both 
gross and net of transaction costs. The calculation of transaction costs and the choice of applied transac-
tion costs are explained in the “Investment portfolio performance” section. The sample includes all firms 
that were publicly listed in one of the nineteen Eurozone countries in any given month during the January 
1990–December 2020 sample period, while the first estimates of expected excess returns are obtained in 
December 1999. The data coming from Thomson Reuters Datastream are collected on a monthly basis and, 
if currency-related, denominated in Euro. Market data are assumed to become public immediately, while 
fundamental data are assumed to be known four months after the fiscal year-end

Equal-weighted Value-weighted

ols_pars nn_1 svm ols_pars nn_1 svm

Before transaction costs
Terminal value [€] 70.29 107.18 113.57 6.00 8.40 9.07
Excess return annualized [%] 22.45 24.93 25.28 8.90 10.67 11.07
Std annualized [%] 18.20 17.82 18.36 17.39 18.50 18.85
Maximum drawdown [%] 51.24 50.12 51.80 44.25 48.87 45.87
Sharpe ratio 1.24 1.41 1.38 0.51 0.58 0.59
Information ratio 3.57 4.27 4.33 0.91 1.06 1.11
Actual transaction costs [%]
Avg PTO 27.17 31.18 34.23 29.59 37.29 38.61
Avg PHS 0.57 0.59 0.54 0.14 0.15 0.14
Avg PTC 0.16 0.18 0.19 0.05 0.06 0.06
Applied transaction costs [%]
Avg PTC 0.57 0.57 0.57 0.57 0.57 0.57
After transaction costs
Terminal value [€] 17.02 26.01 27.57 1.43 2.01 2.17
Excess return annualized [%] 14.45 16.79 17.11 1.72 3.38 3.76
Std annualized [%] 18.20 17.82 18.36 17.39 18.50 18.85
Maximum drawdown [%] 56.94 55.73 57.44 52.00 53.53 50.82
Sharpe ratio 0.80 0.95 0.94 0.10 0.18 0.20
Information ratio 1.94 2.53 2.59 − 0.10 0.12 0.17
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Appendix 1

See Table 9.

Table 9  Details on forecast models

This table presents the definitions and specifications of hyperparameters of each machine learning model introduced in the “Forecast models” 
section

Hyperparameter Specification Definition

ols_full None
ols_pars None
elanet λ (0, 1) General strength of the penalization

p {0, 0.5, 1} Weight on the lasso and ridge penalization
pcr numbercomp {1, …, P} Number of components included in the predictive regression
pls numbercomp {1, …, P} Number of components included in the predictive regression
rf L {1, 2, 3, 4, 5, 6} Depth of the single regression trees

M {22, 33, 44} Number of predictors randomly considered as potential split variables
B (10, 1,000) Number of trees added to the ensemble prediction

gbrt L {1, 2, 3} Depth of the single regression trees
v {0.01, 0.05, 0.1} Weight for the learning rate shrinkage
B (10, 1,000) Number of trees added to the ensemble prediction

nn_1–nn_5 sizebatch 1,000 Batch size
numberepochs 100 Number of epochs
patience 25 Number of iterations during which the MSFE is allowed to increase in the validation 

sample
dropout rate 0.25 Fractional rate of input variables that are randomly set to zero at each iteration
ensemble 10 Number of independent seeds used for each specification family

svm c {0.01, 0.05, 0.1, 0.5, 1} Vector influence
γ {0.01, 0.05, 0.1, 0.5, 1} Misclassification costs
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Appendix 2

See Fig 6 and Table 10.

Fig. 6  Stylized visualizations | neural networks. This figure depicts four stylized visualizations that help explain the structure, functioning, and 
regularization of neural networks

Table 10  Stylized visualizations | classification results

Scenario A Scenario B

Realized Realized

1 2 3 1 2 3

P
re

d
ic

te
d 1 10 0 30

P
re

d
ic

te
d 1 10 30 0

2 5 10 5 2 5 10 5

3 30 0 10 3 0 30 10

This table depicts a stylized visualization that helps explain the procedure to measure the performance of multi-class classifications. Both sce-
narios exhibit the same 30% accuracy, but the predictions in scenario A differ from their realizations more strongly than in scenario B (see the 
“Machine learning method: Support vector machines” section)
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