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Abstract
The increasing importance of online distribution channels is paralleled by a rising 
interest in gaining insights into the customer journey and browsing behavior. We 
evaluate several machine learning methods (latent Dirichlet allocation, correlated 
topic model, structural topic model, replicated softmax model) with respect to their 
ability to reproduce the browsing behavior of households across websites. In addi-
tion, we compare these machine learning methods to a related classical technique, 
singular value decomposition. In our study, the replicated softmax model outper-
forms latent Dirichlet allocation, but the correlated topic model attains the overall 
best performance. Compared to singular value decomposition both the correlated 
topic model and the replicated softmax model lead to a more efficient compression 
of web browsing data. On the other hand, singular value decomposition surpasses 
latent Dirichlet allocation. We interpret results of the correlated topic model and the 
replicated softmax model by determining combinations of topics or hidden variables 
that are heterogeneous with respect to visited websites. We show that decision mak-
ers should not rely on bivariate measures of site visits, as these do not agree with 
measures of interdependences between sites that can be inferred from the correlated 
topic model or the replicated softmax model. We investigate how well topics or hid-
den variables measured by these methods predict yearly household expenditures. 
The correlated topic model leads to the best predictive performance, followed by the 
replicated softmax model. We also discuss how the replicated softmax model can be 
used to support online marketing decisions of websites.

Keywords Online marketing · Web browsing · Machine learning · Topic models · 
Restricted Boltzmann machine
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1 Introduction

According to a study by Adobe Analytics, global year over year online sales have 
grown in June 2020 by 78% and experts project that total online sales surpass the 
sales in 2019 by Oct 5 (Crets 2020). The current Corona pandemic reinforces this 
trend across countries and has expanded the scope of e-commerce. In light of the 
convenience of the new purchasing habits and the incentive for firms to capital-
ize on investments in new sales channels, some of these changes in the e-com-
merce landscape will likely be of a long-term nature (OECD 2020). The increas-
ing importance of online distribution channels is paralleled by a rising interest in 
gaining insights into the customer journey and browsing behavior.

We focus on measuring dependences between visits of different websites by 
means of machine learning methods. We derive measures of cross-site depend-
ences from topic models and the replicated softmax model (RSM). As topic mod-
els and the RSM are comprehensive probabilistic models, these measures do not 
depend on visits of the remaining considered sites. This property constitutes an 
advantage over conventional bivariate measures based on 2 × 2 cross-tabulations. 
From a managerial point of view, high cross-site dependences may suggest that 
one of the sites should join an affiliate program of the other or one site should 
invite the other site to its own affiliate program. High cross-site dependences are 
also arguments in favor of higher price bids for advertising slots or corresponding 
contracts. We can derive such implications only by looking at websites of several 
firms. Nonetheless, the machine learning methods we investigate could also be 
used to analyze browsing behavior dependences across subdomains within a web-
site (e.g., presenting jackets, coats, trousers etc. on an apparel retailer’s website 
or dependences between different genres on a book retailer website).

Schröder et  al. (2019) show that many publications analyze Internet brows-
ing behavior on the website of one firm or across types of websites (types may, 
e.g., consist of all book, travel or music sites), but very few investigate browsing 
behavior across websites of different individual firms. Applying this comprehen-
sive approach, researchers and decision makers can get a better understanding of 
the journey of each customer. To fill this research gap, Schröder et  al. (2019) 
determine topics underlying online users’ browsing behavior by means of a popu-
lar topic model, latent Dirichlet allocation (LDA). They conceive the websites 
that a user visits during a calendar week as browsing basket in analogy to shop-
ping baskets that are well known in retailing.

The study by Schröder et  al. (2019) is a typical application of topic models 
which have gained a lot of attention in recent years. Topic models have been 
frequently applied in the marketing literature (see, e.g., Büschken and Allenby 
2016; Jacobs et al. 2016; Tirullinai and Tellis 2014; Trusov et al. 2016). More-
over, Reisenbichler and Reutterer (2018) provide a comprehensive overview on 
this topic. Like most topic models, LDA is a mixed membership model, i.e., each 
basket is related to multiple topics in proportions that vary across baskets (Blei 
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2012). Mixture models determine convex combinations of distributions and do 
not renormalize. For high dimensional data mixture models may run into prob-
lems, as the final distribution cannot be sharper than the distributions of the indi-
vidual hidden variables each of which is adapted to all observed variables (Hin-
ton 2002).

We consider two further topic models which can be seen as extensions of LDA, 
the correlated topic model (CTM) and the structural topic model (STM). The CTM 
allows for correlation between topics. The STM in addition includes effects of 
covariates.

The four machine learning models (LDA, CTM, STM, and RSM) that we inves-
tigate constitute recent approaches to two-mode factor analysis. Two-mode factor 
analysis starts from a rectangular matrix with different entities on the rows and col-
umns (in our case websites and browsing baskets). Two-mode factor analysis com-
presses such a matrix to fewer latent variables (Deerwester et al. 1990).

Our paper fits well to the current high interest of marketing academics in machine 
learning methods to which both topic models and the RSM belong (Bradlow et al. 
2017; Chintagunta et  al. 2016; Dzyabura and Yoganarasimhan 2018; Hagen et  al. 
2020; Wedel and Kannan 2016). Our paper also complies the call to investigate 
alternative machine learning methods especially for the analysis of clickstream data 
which Ma and Sun (2020) raise in their recent overview on machine learning in 
marketing.

As an alternative to topic models, we introduce the RSM, a data analytic method, 
which is new to the academic marketing community. The RSM is an extension of 
the restricted Boltzmann machine (RBM) which deals with binary data to count data 
(e.g., the number of visits of a user to a website). Like the RBM, the RSM pro-
vides a distributed representation because probability functions, each specific to a 
hidden variable, are multiplied in the first step and renormalized in the second step. 
This way, sharp distributions may be detected. In their review of topic models with 
emphasis on marketing applications, Reisenbichler and Reutterer (2018) also men-
tion this property of the RSM referring to Salakhutdinov and Hinton (2009). In the 
empirical part of Salakhutdinov and Hinton (2009), RSMs with 50 hidden variables 
outperform LDAs with 50 topics for three different text datasets. We investigate 
whether such performance differences also apply to browsing baskets which besides 
being non textual are also much smaller than the documents analyzed by Salakhutdi-
nov and Hinton (2009).

Hruschka (2021) applies several machine learning methods to analyze retail bas-
ket data. In his study, the RBM is clearly superior to topic models. Because of the 
results obtained by Salakhutdinov and Hinton (2009) as well as by Hruschka (2021), 
we think it is justified to investigate the performance of both the RSM and LDA on 
browsing data. Please also note that to the best of knowledge our paper constitutes 
the first application of the RSM to marketing.

In accordance with the suggestions of two anonymous reviewers, we also perform 
singular value decomposition (SVD). SVD is a classical two-mode factor analy-
sis technique, which Eckard and Young (1936) introduced in psychometrics. SVD 
serves as straightforward benchmark to evaluate the topic models and the RSM.
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In the next section, we present both the four investigated machine learning meth-
ods and SVD. We discuss estimation of these models and explain how we evalu-
ate their statistical performance. To improve readers’ comprehension of the investi-
gated methods, we illustrate how to apply the CTM, the RSM, and SVD for a small 
number of websites. Then we explain the preparation of the analyzed data, present 
descriptive statistics, and give estimation and evaluation results for varying numbers 
of topics or latent variables. The RSM attains a hugely better model fit than LDA, 
but the CTM attains the overall best performance. The STM does not improve per-
formance over the CTM though the former includes covariates. The CTM and the 
RSM lead to a more efficient compression of web browsing data than SVD, whereas 
LDA turns out to be inferior to SVD.

We continue by interpreting the CTM and RSM using combinations of topics or 
hidden variables that differ with respect to websites with high visiting probabili-
ties. In the final section, we show that conclusions inferred from both the CTM and 
the RSM are in clear contrast to bivariate conditional probabilities, which can be 
computed simply from pairwise joint frequencies. We show that the uncertainty in 
predicting household expenditures with topics or hidden variables as independent 
variables is lowest for the CTM, followed by the RSM. On the other hand, topics 
determined by LDA are as a rule not appropriate to predict household expenditures. 
In addition, we indicate how the RSM can be used to support online marketing deci-
sions of websites.

2  Investigated models

We now explain the main differences between the investigated topic models, the 
RSM, and SVD. Each of these models includes latent variables, i.e., topics, hidden 
variables, and components for the topic models, the RSM, and SVD, respectively. In 
the following sections we give more details on these models.

Topics are multinomial variables. Topic models relate the visiting probability of 
a website in a browsing basket to two types of proportions, the proportion of each 
topic for the website and the proportion of each topic for the browsing basket.

For LDA the two types of topic proportions are Dirichlet distributed. LDA leads 
to slight negative correlations between topics (Blei and Lafferty 2007). The CTM is 
more general by allowing correlations that are not restricted, e.g., correlations may 
be positive or negative. To achieve this flexibility the CTM replaces the Dirichlet 
distribution by the logistic normal distribution. The STM extends the CTM by add-
ing effects of covariates.

The RSM includes binary hidden variables that are sampled from binary logistic 
functions. Linear combinations of the number of visits to each website contained in 
a browsing basket serve as argument of these functions. The RSM computes visiting 
probabilities of websites by a multinomial logistic function that depends on site-spe-
cific linear combinations of the hidden variables for the respective browsing basket.

SVD considers the number of visits to each website, which it compresses to a 
lower number of metric latent variables, called components. SVD is known as a 
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data reduction technique in psychometrics for more than 80 years. Low-dimen-
sional plots of rows and columns of a data matrix based on SVD results are quite 
popular in marketing research, just as in other application areas (Gabriel 1971; 
Gower and Hand 1995; Kuhfeld 2010). More than 30 years ago, SVD was intro-
duced to the text mining literature and relabeled latent semantic analysis (Deer-
wester et al. 1990).

SVD shows several weaknesses compared to the investigated topic models and 
the RSM. Contrary to these machine learning methods, SVD is not based on a prob-
abilistic model. It approximates the number of visits, which is a count variable by a 
L2 norm (i.e., the square root of the sum of the squared vector values) which appears 
to be rather ad hoc (Hofmann 2001). Another problem of SVD is the fact that com-
ponents determined by SVD may be negative, which makes interpretation difficult.

Let us introduce the basic notation used for the investigated models. I and J 
denote the number of browsing baskets (i.e., the number of calendar weeks in 
which at least one website is visited) and the number of websites. K is the number 
of latent variables (topics, hidden variables, components). �

�
 is a (J, Si) binary 

indicator matrix with an element vijs equaling one if the s-th visit contained in 
basket i takes place at website j. Si denotes the size of the browsing basket, i.e., 
the number of visits to all websites.

2.1  Latent Dirichlet allocation

LDA is based on the assumption that a mixture of latent variables called topics gen-
erates websites visited by an online user. These topics explain why an online user 
visits certain websites. All visits share the same topics, but their proportions are spe-
cific to each visit and randomly drawn from a Dirichlet visit-topic distribution.

As an example, consider a situation where a person is browsing through online 
stores with two possible topics, groceries and party preparation. One week (= 
one browsing basket), he purchases his normal groceries but also some beverages 
for unexpected visitors. Therefore, he visits only a few sites (i.e., Si is small) and 
his latent topic combination would be 90% groceries and 10% party preparation. 
In the following week (= a different browsing basket), the person is host of a 
large gathering of people, so he visits many different sites and the topics are more 
inclined toward party preparation (98 %) than groceries (2 %).

LDA forms topics in such a way that websites with higher conditional prob-
abilities for a topic frequently co-occur with each other in weekly visits (Crain 
et al. 2012). For each topic assigned to a visit, a website is chosen randomly from 
its corresponding distribution.

Parameters in a (J, K) matrix � and a (K, I) matrix � indicate the importance 
of websites for topics and the importance of topics for browsing baskets, respec-
tively. Note that the k− th column of � represents the probability of websites 
conditional on topics t and therefore sums up to one. The number of parameters 
equals the number of topics plus the number of sites multiplied by the number of 
topics, i.e., K + JK (Blei et al. 2003).
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The probability P(vijs = 1) that browsing basket i contains website j is related 
to the importance of this website for topics and the importance of topics for this 
browsing basket in the following manner (Griffiths and Steyvers 2004):

Like Schröder et al. (2019), we estimate LDA models by blocked Gibbs sampling 
implemented in the R package topicmodels (Grün and Hornik 2011). For each 
browsing basket, the Gibbs sampling procedure considers each visited website and 
determines the probability of assigning the current website to each topic, conditional 
on the topic assignments of the other websites. From this conditional distribution, a 
topic is sampled and stored as new topic assignment for this website (see Griffiths 
and Steyvers 2004 for more details).

2.2  Correlated topic model and structural topic model

The correlated topic model (CTM) extends LDA by allowing for flexible depend-
ences between topics based on a (K − 1,K − 1) covariance matrix Σ of a multivari-
ate Gaussian distribution with zero mean vector (Blei and Lafferty 2007; Roberts 
et al. 2019). The structural topic model (STM) specifies this mean vector of the mul-
tivariate Gaussian as linear function X′

i
� with a (p,K − 1) coefficient matrix � and a 

vector Xi consisting of p covariates (Roberts et al. 2019). Therefore, in contrast to 
the CTM, site visits within a topic may vary by covariates’ values for the STM.

Both the CTM and the STM replace the Dirichlet of LDA by the more flexible 
logistic normal distribution in the following way. Vectors �ki with K − 1 elements are 
drawn from the appropriate multivariate Gaussian distribution to obtain importances 
of topics �ki for a browsing basket i:

The number of parameters of the CTM and the STM amount to 
K + JK + (K − 1)(K − 2)∕2 and K + JK + (K − 1)(K − 2)∕2 + p(K − 1) , 
respectively.

We estimate CTM and STM by the variational expectation-maximization algo-
rithm implemented in the R package stm (Roberts et  al. 2019). Each iteration of 
this algorithm consists of two steps. The expectation step updates the topic propor-
tions �ki of each basket and topic assignments to visited sites. The maximization step 
serves to estimate parameters � , Σ and in the case of the STM �.

(1)P(vijs = 1) =

K∑
k=1

�jk�ki.

(2)

�ki =
exp (�ki)

1 +
∑K−1

k
�
=1

exp (�k� i)
for k = 1,… ,K − 1

�Ki =
1

1 +
∑K−1

k
�
=1

exp (�k� i)
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2.3  Replicated Softmax model

The RSM associates observed browsing behavior with a combination of binary hid-
den variables. Consider the example of a person looking for both tablets and mobile 
phones which the RSM reflects by a hidden variable A. However, for several weeks 
she looks only for mobile phones (tablets). The RSM reproduces this focus by 
another hidden variable B, which is negatively related to visits of sites that offer 
tablets (mobile phones). Finally, for a few weeks this person visits only sites with 
products other than tablets and mobile phones. The RSM generates such a browsing 
behavior by combining hidden variable A with both hidden variables B and C.

Our following description is based on Salakhutdinov and Hinton (2009). For the 
RSM the probability of the i-th browsing basket P(�i) can be written using energy 
function F(�i, �i) and partition function Zi:

�i is a vector of K binary hidden variables. bj and ak are constants for website j and 
hidden variable k, respectively. yij is defined as count of visits to website j, i.e., 
yij =

∑Si
s=1

vijs.Wkj links hidden variable hik to the count of visits to website yij in 
brwosing basket i.

Please note that the weights Wkj that relate a hidden variable to website visits can 
be positive or negative. This property distinguishes the RSM from LDA for which 
the importances of websites for topics are restricted to be positive. The fact that it 
allows negative weights makes the RSM more flexible than LDA even for a similar 
number of parameters.

The conditional distributions of visits and hidden variables have the form of 
softmax (synonymous with multinomial logistic) and binary logistic functions, 
respectively:

The model is called replicated softmax because softmax units have the same weights 
for each of the Si visits. The number of parameters equals J + K + JK as parameters 
consist of constants for websites and hidden variables as well as weights Wkj.

As direct maximum likelihood estimation of the RSM turns out to be intracta-
ble, we use the contrastive divergence algorithm developed by Salakhutdinov and 

(3)

P(�i) =
1

Zi

∑
��

exp(−F(�i, �i)) with Zi =
∑
Vi

∑
��

exp(−F(�i, �i))

F(�i, �i) = − Si

K∑
k=1

akhik −

J∑
j=1

bjyij −

K∑
k=1

J∑
j=1

Wkjhikyij

(4)P(vijs = 1��i) =
exp

�
bj +

∑K

k=1
Wkjhik

�

∑J

j
�
=1

exp
�
bj� +

∑K

k=1
Wkj

�hik

�

(5)P(hik = 1��i) =
1

1 + exp
�
−
�
ak +

∑Si
s=1

∑J

j=1
Wkjvijs

��
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Hinton (2009) slightly modifying the implementation of Mochihashi (2013) (Inter-
ested readers may download the respective Python code together with an example 
dataset of browsing baskets from the GitHub repository https:// github. com/ HHrus 
chka/ RMS_ Estim ation/).

Contrastive divergence changes parameters in each iteration by adding:

𝛼 < 1 is a learning constant with 0 < 𝛼 < 1 . EPdata
 denotes the expectation with 

respect to the data distribution, EPL
 the expectation obtained by running L Gibbs 

sampling steps starting from the observed data. Gibbs sampling is efficient, because 
visits depend on hidden variables only (expression (4)) and hidden variables depend 
on visit counts only (expression (5)). In addition, we sample S times from a single 
softmax unit. In line with usual practice, we make just one sampling step by setting 
L = 1.

2.4  Singular value decomposition

SVD processes the number of visits contained in a (J,  I) matrix N . Element 
Nji ≡

∑Si
s=1

vijs indicates the number of visits to site j in browsing basket i. SVD 
compresses these data into a lower dimensional space K < J:

T is a reduced (J, K) matrix of sites, E a diagonal (K, K) matrix of singular values, 
B a reduced (I, K) matrix of browsing baskets. The number of parameters equals 
K + JK . We apply the truncated SVD routine of the Python library Scikit-learn 
(Pedregosa 2011).

Referring to the reduced matrix T we compute the probability P(Nji) that basket i 
contains Nji visits of a site j by means of the method of Coccaro and Jurafsky (1998):

Vector �j consists of the elements (tj1,… , tjK) of matrix T.
The centroid mi of the sites contained in basket i ( ni denotes the number of these 

sites) is:

The cosine similarity between a site j and the centroid mi is:

(6)

�Wkj = � (EPdata
[yijhik] − EPL

[yijhik])

�ak = � (EPdata
[hik] − EPL

[hik])

�bj = � (EPdata
[yij] − EPL

[yij])

(7)N = TEB
�

(8)P(Nji) =
cos(�j,�i) − mincos

∑J

j
�
=1

cos
�
�j

� ,�i

�
− J mincos

(9)�
�
= 1∕ni

∑
Nji>0

Tj.

(10)cos(�j,�i) = (�j�i)∕(||�j|| ||�i||)

https://github.com/HHruschka/RMS_Estimation/
https://github.com/HHruschka/RMS_Estimation/
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||�|| denotes the L2 norm of vector � defined as 
√

x2
1
+ x2

2
+⋯.

The minimum cosine similarity mincos of the centroid mi across all sites is:

2.5  Model evaluation

Like Salakhutdinov and Hinton (2009), we evaluate the investigated models by per-
plexity on validation data. Perplexity is defined as geometric mean of the inverse 
probabilities (Murphy 2012). For the investigated topic models and the RSM the 
perplexity can be computed as:

In case of SVD the perplexity can we written as:

The lower its perplexity, the better a model performs. The worst (i.e., highest) possi-
ble value of perplexity equals the number of websites J. This value results if, accord-
ing to a model, each website has the same visiting probability.

3  Illustrative application example

To illustrate the application of the RSM, the CTM and SVD described in Sect. 2, we 
construct a small scale example for which we only consider browsing baskets con-
taining the five most frequently visited sites, i.e., msn, aol, ebay, go, and apple (for 
a description of the complete data set please see Sect. 4). Based on these reduced 
data, we estimate a RSM with three hidden variables, a CTM with three topics, and 
a SVD model with three components. We explain the workings of the models using 

(11)mincos =
J

min
j=1

cos(�j,�i)

(12)exp

(
−
1

I

I∑
i=1

1

Si

Si∑
s=1

J∑
j=1

vijs logP(vijs = 1)

)
.

(13)exp

⎛⎜⎜⎝
−
1

I

I�
i=1

1

ni

�
Nji>0

logP(Nji)

⎞⎟⎟⎠
.

Table 1  Visit frequencies of 
selected browsing baskets

Basket # msn aol ebay go apple

1 1 9 0 1 0
2 16 2 1 1 0
3 1 1 0 10 0
Reading example for the first basket: msn and
and go are visited once; aol is visited nine times



838 A. Falke, H. Hruschka 

1 3

three selected browsing baskets. Table 1 gives the visiting frequencies for these bas-
kets. This table also shows how the data input for the models looks like.

Table  2 provides information on the latent variables of the browsing baskets, 
i.e., the transposed � matrix for the CTM, the hidden variables for the RSM and the 
matrix B of SVD. This table shows that for the selected baskets either one or two 
hidden variables are active, i.e., equal to 1. We also see that the hidden variables of 
the RSM are not normalized (their row sums may be greater than 1.0) in contrast 
to the values of the transposed � matrix of the CTM. For the SVD model entries 
of matrix B are real valued, some are even negative. Similarly, matrix T shown in 
Table 3 also contains negative values, which makes interpretation of SVD results 
difficult.

Using the relevant latent variables of Table  2 and the estimated parameters of 
Table 3 we can compute visiting probabilities of each basket i = 1,… , 3 and each 
site j = 1,… , 5 . To this end we refer to expressions (1), (4), and (8) for the CTM, 
the RSM and the SVD model, respectively. Based on these computations Table 4 
lists the three sites with the highest visiting probabilities in each selected basket.

For this illustrative example the RSM and the CTM outperform the SVD model 
in reproducing the most frequently visited site in each browsing basket. Comparing 
the input data of Tables 1, 2, 3 and 4 shows that the highest probability site equals 
the most frequently visited site three times for the RSM, two times for the CTM and 
never for the SVD model.

Table 2  Latent variables

Basket # CTM RSM SVD

Transposed matrix � Hidden variables 
hik

Matrix B

1 0.800 0.100 0.100 0 0 1 3.232 4.305 7.35
2 0.100 0.800 0.100 0 1 0 15.969 − 2.523 − 0.783
3 0.100 0.100 0.800 0 1 1 2.970 8.879 − 3.786

Table 3  Estimated parameters

CTM RSM SVD

Matrix � bj Transposed matrix W Transposed matrix T

msn 0.000 0.906 0.000 1.302 6.659 − 192.214 − 95.333 0.954 − 0.262 − 0.13
aol 1.000 0.000 0.000 1.027 5.440 − 196.388e − 91.382 0.233 0.410 0.880
ebay 0.000 0.000 0.377 − 2.523 3.473 − 192.416e − 91.202 0.058 − 0.024 − 0.011
go 0.000 0.037 0.329 − 3.025 1.697 − 191.817 − 91.214 0.178 0.873 − 0.454
Apple 0.000 0.000 0.293 3.220 2.789 − 197.884 − 97.126 0.001 0.001 0.001

a
k

− 14.171 195.121 94.098
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4  Data

Like Schröder et al. (2019), we aggregate clickstream data of the 2009 calendar year 
acquired from the ComScore Web Behavior Panel to weekly browsing baskets. This 
way, 222,800 browsing basket result that contain visits to 524 websites. In contrast 
to Schröder et al. (2019), we do not exclude websites with very high visit frequen-
cies, but restrict our investigation to the 60 most frequently visited websites. We 
delete browsing baskets that do not contain any of these 60 websites. From the 
remaining data, we take two random samples each with 20,000 baskets. We use one 
sample for estimation, the other one for validation. Browsing baskets of both sam-
ples consist on average of 8705 sites with a standard deviation of 11.698. In the esti-
mation (validation) sample, each website is visited on average 0.144 (0.146) times 
per panelist with a standard deviation of 0.430 (0.440). Both browsing basket size 
and website visit frequencies follow very skewed distributions.

To demonstrate the importance of counting the number of visits instead of only 
considering whether a website is contained in a browsing basket or not, we compute 
the average ratio of the relative frequency for one visit divided by the relative fre-
quency of two or more visits. The ratio of 0.504 together with a standard deviation 
of 0.414 shows that the number of visits is quite diverse and should not be treated 
as a mere binary value. For several websites (e.g., singlesnet, msn, aol, cox), the fre-
quency of two or more visits even turns out to be higher than the frequency for just 
one visit (see Table 5 for more details).

Table 6 lists the 60 highest of the total 1, 770 = 0.5 × 60 × 59 relative pairwise 
frequencies. We obtain 0.0830 as highest relative pairwise frequency for aol and 
msn which means that 8.30% of the browsing baskets contain both aol and msn.

Table 4  Three highest 
probability sites for the selected 
baskets

Model Basket #

1 2 3

aol 0.800 msn 0.797 ebay 0.302
CTM msn 0.100 aol 0.100 go 0.264

ebay 0.038 ebay 0.038 apple 0.235
aol 0.902 msn 0.932 go 0.308

RSM ebay 0.031 apple 0.022 ebay 0.282
apple 0.026 go 0.018 msn 0.254
apple 0.556 apple 0.604 apple 0.556

SVD aol 0.149 msn 0.171 aol 0.149
go 0.149 go 0.113 go 0.149

Reading example: according to the RSM, aol has the highest
visiting probability equal to 0.902 in the first basket
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5  Estimation and evaluation results

Table  7 gives the perplexities for LDA, the RSM, the CTM, and SVD all with 
increasing number of topics, hidden variables, and components, respectively. This 
table also contains perplexities for several variants of the STM. Figure 1 plots per-
plexities versus the number of topics or hidden variables for LDA, the RSM, and the 
CTM.

We note that the perplexities for the same model turn out to be very similar in 
both the estimation and the validation sample. The perplexities of LDA improve 

Table 5  Relative visit frequencies

Website Number of visits Number of visits

1 ≥ 2 Ratio Website 1 ≥ 2 Ratio

Verizonwireless 0.030 0.010 0.349 Southwest 0.015 0.006 0.393
ebay 0.098 0.069 0.705 Gamespot 0.017 0.005 0.294
Target 0.060 0.014 0.239 Sears 0.023 0.005 0.233
gap 0.014 0.004 0.295 bestbuy 0.026 0.006 0.243
nascar 0.006 0.003 0.564 Classmates 0.031 0.008 0.246
Gamehouse 0.007 0.003 0.434 Ticketmaster 0.022 0.004 0.193
homedepot 0.016 0.003 0.214 ups 0.014 0.008 0.582
t.mobile 0.020 0.008 0.409 hp 0.015 0.004 0.267
kohls 0.015 0.004 0.236 att 0.047 0.015 0.318
singlesnet 0.011 0.011 1.039 eharmony 0.010 0.004 0.363
jcpenney 0.024 0.007 0.287 Autotrader 0.009 0.004 0.429
Travelocity 0.013 0.004 0.290 macys 0.019 0.005 0.284
Earthlink 0.003 0.003 0.956 intuit 0.009 0.005 0.533
True 0.007 0.003 0.420 Adobe 0.064 0.021 0.324
Shockwave 0.008 0.005 0.599 Real 0.023 0.009 0.419
Victoriassecret 0.011 0.004 0.324 Match 0.011 0.006 0.511
kmart 0.015 0.003 0.173 aol 0.084 0.213 2.542
Walmart 0.062 0.021 0.346 Netflix 0.024 0.013 0.522
Symantec 0.012 0.012 0.983 Amazon 0.103 0.037 0.359
mlb 0.012 0.009 0.695 Nextel 0.014 0.004 0.279
Fandango 0.015 0.003 0.228 Priceline 0.013 0.004 0.322
Dell 0.016 0.007 0.446 Microsoft 0.112 0.040 0.357
Overstock 0.017 0.006 0.374 usps 0.016 0.006 0.361
Apple 0.064 0.049 0.761 Fedex 0.010 0.006 0.593
Orbitz 0.013 0.004 0.275 cox 0.003 0.005 1.650
msn 0.130 0.255 1.960 qvc 0.006 0.005 0.747
Gamestop 0.010 0.004 0.432 toysrus 0.017 0.005 0.306
Comcast 0.011 0.006 0.533 Verizon 0.015 0.004 0.236
lowes 0.013 0.003 0.217 go 0.083 0.062 0.751
mate1 0.006 0.003 0.515 expedia 0.025 0.007 0.296
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with a higher number of topics. However, even the RSM with only five hidden vari-
able excels the LDA with 40 topics. From the different RSMs, we choose the model 
with 17 hidden variables, which has the lowest perplexities for the estimation and 
the validation data and is clearly superior to the LDA. Therefore, these results are in 
line with those obtained by Salakhutdinov and Hinton (2009) in their analysis of text 
data.

The CTM attains better (i.e., lower) perplexities than the RSM, especially if the 
former has ten or more topics. We choose the CTM with 37 topics because the per-
plexity increases for 38 or more topics.

We estimate several variants of STM with 37 topics that differ with regard to 
the included covariates. These covariates comprise of household attributes (most 
education, household size, oldest age, household income, children) and the 
weekly time index of a visit or its logarithm. Inclusion of covariates results in 
perplexities that are almost indistinguishable from the perplexities of the CTM 
with 37 topics. We obtain analogous results if we include more than one covari-
ate or if we investigate STMs with a different number of topics. We therefore 
conclude that site visits do not depend on these covariates and that it is sufficient 
to consider the CTM instead of the STM.

Table 6  Relative pairwise visit frequencies

Lists the highest 60 pairwise visit frequencies

aol msn 0.0830 ebay msn 0.0626 Microsoft msn 0.0581
msn go 0.0573 Amazon msn 0.0560 ebay aol 0.0478
ebay Amazon 0.0457 aol Amazon 0.0419 aol go 0.0401
Apple msn 0.0391 aol Microsoft 0.0388 aol Apple 0.0342
Walmart msn 0.0315 Adobe msn 0.0306 ebay go 0.0299
Target msn 0.0283 Amazon go 0.0276 ebay Microsoft 0.0257
Target Walmart 0.0243 ebay Apple 0.0238 Amazon Apple 0.0236
Amazon Microsoft 0.0235 Microsoft go 0.0228 ebay Walmart 0.0227
Adobe aol 0.0225 Walmart Amazon 0.0221 aol Walmart 0.0220
Target Amazon 0.0219 ebay Target 0.0213 att msn 0.0209
Target aol 0.0198 Apple go 0.0196 Microsoft Apple 0.0186
Adobe Microsoft 0.0174 att aol 0.0173 Walmart go 0.0163
Verizonwire-

less
msn 0.0157 ebay Adobe 0.0155 Target go 0.0151

Classmates msn 0.0151 Adobe go 0.0150 Walmart Microsoft 0.0148
Adobe Amazon 0.0144 netflix msn 0.0140 Verizonwire-

less
aol 0.0137

Classmates aol 0.0135 jcpenney msn 0.0133 msn Expedia 0.0132
ebay att 0.0128 Adobe Apple 0.0125 Bestbuy msn 0.0123
Target Microsoft 0.0122 Real msn 0.0115 att go 0.0115
Sears msn 0.0112 att Amazon 0.0111 aol Netflix 0.0107
Walmart Apple 0.0106 Bestbuy Walmart 0.0106 Target Apple 0.0105



842 A. Falke, H. Hruschka 

1 3

Ta
bl

e 
7 

 M
od

el
 p

er
pl

ex
iti

es

# 
of

 to
pi

cs
# 

of
 p

ar
am

et
er

s
Es

tim
at

io
n 

da
ta

Va
lid

at
io

n 
da

ta
# 

of
 to

pi
cs

# 
of

 p
ar

am
et

er
s

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

LD
A

 5
30

5
16

.9
69

16
.8

13
10

61
0

15
.7

13
15

.5
89

 1
5

91
5

15
.5

35
15

.3
98

20
12

20
14

.3
12

14
.1

85
 2

5
15

25
13

.7
22

13
.5

92
30

18
30

13
.3

62
13

.2
34

 3
5

21
35

13
.0

69
12

.9
49

40
24

40
12

.8
52

12
.7

37

# 
of

 h
id

de
n 

va
ria

bl
es

# 
of

 p
ar

am
et

er
s

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

# 
of

 h
id

de
n 

va
ria

bl
es

# 
of

 p
ar

am
et

er
s

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

R
SM  5

36
5

7.
88

4
7.

77
0

10
67

0
8.

00
8

7.
86

1
 1

5
97

5
7.

84
8

7.
74

9
16

10
36

7.
99

4
7.

87
5

 1
7

10
97

7.
63

1
7.

54
2

18
11

58
8.

21
0

8.
11

3
 1

9
12

19
8.

01
3

7.
86

3
20

12
80

8.
07

0
7.

92
9

# 
of

 to
pi

cs
# 

of
 p

ar
am

et
er

s
Es

tim
at

io
n 

da
ta

Va
lid

at
io

n 
da

ta
# 

of
 to

pi
cs

# 
of

 p
ar

am
et

er
s

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

C
TM  5

31
1

9.
38

5
9.

30
1

10
64

6
6.

08
0

6.
15

3
 1

5
10

06
5.

28
2

5.
33

7
20

1,
39

1
4.

92
5

4.
96

9
 2

5
18

01
4.

42
3

4.
46

4
30

2,
23

6
4.

23
1

4.
24

7
 3

5
26

96
4.

02
4

4.
04

2
37

28
87

3.
89

6
3.

91
8

 4
0

31
81

3.
86

7
3.

88
2

C
ov

ar
ia

te
Es

tim
at

io
n 

da
ta

Va
lid

at
io

n 
da

ta
C

ov
ar

ia
te

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

ST
M

 w
ith

 3
7 

to
pi

cs
 

an
d 

on
e 

co
va

ria
te

 M
os

t e
du

ca
tio

n
3.

89
6

3.
91

7
H

ou
se

ho
ld

 si
ze

3.
89

6
3.

91
7

 O
ld

es
t a

ge
3.

89
5

3.
91

5
H

ou
se

ho
ld

 in
co

m
e

3.
89

5
3.

91
5

 C
hi

ld
re

n
3.

89
6

3.
91

8
Ti

m
e 

in
de

x
3.

93
5

3.
95

1



843

1 3

Analyzing browsing across websites by machine learning methods  

Ta
bl

e 
7 

 (c
on

tin
ue

d)

C
ov

ar
ia

te
Es

tim
at

io
n 

da
ta

Va
lid

at
io

n 
da

ta
C

ov
ar

ia
te

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

 L
og

 ti
m

e 
in

de
x

3.
93

5
3.

95
2

 #
 o

f c
om

po
ne

nt
s

# 
of

 p
ar

am
et

er
s

es
tim

at
io

n 
da

ta
va

lid
at

io
n 

da
ta

# 
of

 c
om

po
ne

nt
s

# 
of

 p
ar

am
et

er
s

Es
tim

at
io

n 
da

ta
Va

lid
at

io
n 

da
ta

SV
D

 5
30

5
36

.5
15

36
.4

01
10

61
0

21
.9

39
21

.8
85

 1
5

91
5

16
.3

05
16

.2
73

17
10

37
14

.3
52

14
.3

41
 2

0
12

20
10

.0
01

10
.0

08
25

15
25

7.
90

5
7.

91
2

 3
0

18
30

6.
58

8
6.

59
8

35
2,

13
5

5.
60

6
5.

59
4

 3
7

22
57

5.
34

4
5.

32
8

40
2,

44
0

5.
00

9
5.

00
0



844 A. Falke, H. Hruschka 

1 3

Finally, we demonstrate how LDA, CTM, and RSM perform relative to the 
benchmark method SVD. LDA turns out to be clearly inferior to SVD. For exam-
ple, the perplexity of SVD with 30 components is about 50 % of the perplexity 
of LDA with 30 topics. On the other hand, both RSM and CTM compress the 
browsing data more efficiently as perplexities of models with the same number 
of latent variables show. The RSM with 17 hidden variables reduces perplexity 
by about 47 % compared to SVD with 17 components. In a similar manner, the 
CTM with 37 hidden variables reduces perplexity by about 26 % compared to 
SVD with 37 components.

Fig. 1  Perplexity Plots (solid line: estimation data, dashed line: validation data)



845

1 3

Analyzing browsing across websites by machine learning methods  

6  Model interpretation

In this section, we interpret the RSM with 17 hidden variables and the CTM with 
37 topics. We ignore LDA because it is clearly outperformed by the other models. 
We also do not interpret any of STMs, as they do not attain better perplexity val-
ues than the related, less complex CTMs.

In the following, we number hidden variables and topics consecutively accord-
ing to their importances with hidden variable or topic 1 symbolizing the most 
important one. We measure the importance of a hidden variable or a topic by its 
mean probability or its mean topic proportion across all baskets. For the RSM 
mean probabilities of the five most important hidden variables are 0.999, 0.997, 
0.960, 0.683, and 0.513, respectively. The mean probability of the next impor-
tant variable amounts to only 0.006. For the CTM mean proportions of the ten 
most important topics amount to 0.250, 0.204, 0.058, 0.051, 0.043, 0.043, 0.043, 
0.039, 0.023, and 0.022. The mean proportion of the eleventh topic is 0.018.

Next, we want to show how hidden variables of the RSM and topic proportions 
of the CTM translate into observable browsing behavior. Each combination of hid-
den variables or topic proportions is associated with certain sites that users visit 
frequently.

For the RSM, we generate 200 combinations of 17 hidden variables in the follow-
ing way using estimated coefficients. We determine activations ak +

∑Si
s=1

∑J

j=1
Wkjvijs 

of each hidden variable and each browsing basket. Then we compute K mean values 
and the (K, K) covariance matrix of these activations. Subsequently, we draw 200 
samples from the multivariate normal distribution with these K mean values and the 
(K, K) covariance matrix. We put each of these samples for each hidden variable 
into the binary logistic function in accordance with expression (5) to obtain the 

Table 8  Heterogeneous latent variable combinations

RSM

Combination Hidden variables with prob-
abilities > 0.5

Specific high probability site(s)

1 3, 5, 8, 10, 11, 16 Adobe, mlb
2 1, 2, 4 Classmates
3 2, 3, 5, 7, 9, 13, 14 Apple, ebay, cox
4 1, 2, 4, 5 intuit, ups
5 1, 3, 4, 6, 10, 11, 12, 13 Shockwave

CTM

Combination Topics with proportions > 0.1 Specific high probability site(s)

1 13 eharmony, Earthlink, qvc, Priceline, Microsoft
2 cox, Netflix, Adobe, Travelocity, Gamehouse
3 1 aol, Fedex, go, Symantec, Shockwave
4 10, 11, 13 Orbitz, expedia, nascar, match, dell
5 15 jcpenney, macys, toysrus, gap, victoriassecret
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respective hidden variable probability. Visit probabilities for sites result by inserting 
these hidden variable probabilities into expression (4).

For the CTM we determine 200 combinations of 37 topic proportions in similar 
manner. We draw 200 samples from the multivariate normal distribution with K zero 
mean values and the estimated (K − 1,K − 1) covariance matrix Σ . Using expres-
sions (2) we obtain sampled importances of topics for each visit. Visit probabilities 
for sites result by inserting these importances into expression 1 using the estimated 
� coefficients.

Finally, we search for the five most heterogeneous combinations among these 200 
combinations. We measure heterogeneity by the average distance between combina-
tion pairs. The distance between two combinations is one (zero) if they have com-
pletely different (equal) 10 highest probability sites. For these five heterogeneous 
combinations Table 8 shows the indices of hidden variable (topics) with probabili-
ties (proportions) greater than 0.5 (0.1). By looking at these indices, one can imme-
diately see that the five combinations are diverse.

In addition, Table 8 lists one or several specific high probability sites, i.e., sites 
with high surfing probabilities for the respective combination and low browsing 
probabilities for the other four combinations. Each combination of hidden variables 
or topics can be characterized by frequent visits of focal sites. For instance, adobe 
and mlb are the focal sites of the first combination for the RSM, while eharmony, 
earthlink, qvc, priceline, and microsoft are the focal sites for the CTM. We see that 
the RSM and the CTM provide completely different focal sites. Moreover, we note 
that, in contrast to the RSM, for the CTM all five high probability sites are specific 
for all combinations.

7  Discussion and managerial implications

Despite the better statistical performance of the RSM and the CTM, one may ask 
whether managers could not get the same information by looking at bivariate meas-
ures of site visits, which can be easily computed from frequency counts across 
browsing baskets. To answer this question, we consider conditional probabilities. 
The probability p(j|l) of a visit to site j conditional a visit of site l is defined as:

n(l,  j) denotes the number of joint visits to site l and site j, n(l,−j) the number of 
joint visits to site l and all sites different from j.

Expression (14) makes it clear that a conditional probability does not eliminate 
the effect of visits to other sites −j on visits to site j. That is why we compare con-
ditional probabilities to both marginal cross effects inferred from the RSM with 17 
hidden variables and similarities between to sites inferred from the CTM with 27 
topics.

Hruschka (2021) uses marginal cross effects (simply called cross effects from 
now on) to interpret a RBM estimated on retail basket data of category purchases. In 

(14)p(j|l) = n(l, j)∕(n(l, j) + n(l,−j))
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our study, cross effects refer to visits of site pairs. They are computed from the esti-
mated RSM. The cross effect cr(j|l) of visits of site j conditional on visits of a site 
l is defined by the first derivative of the visit share of site j with respect to the visit 
share of site l. It can be written as:

⟨hk⟩ denotes the average of hidden variable k across all baskets, ⟨vj⟩ the correspond-
ing visit share for site j.

We consider all variations consisting of two sites selected from the investigated 
60 sites without repetition (i.e., selecting the same site two times is not allowed). 
Because both conditional probabilities and cross effects are asymmetric, order does 
matter. The number of variations equals 3540 ( = 60!∕(60 − 2)!).

We see high differences of the ranks of these two measures for a remarkable num-
ber of variations. Table 9 lists the variations with the 20 highest conditional probabili-
ties and their rank. For each of these variations, we juxtapose the cross effect and its 

(15)cr(j�l) = ⟨vj⟩ (1 − ⟨vj⟩)
K�
k=1

WklWkj ⟨hk⟩ (1 − ⟨hk⟩)

Table 9  Conditional probabilities, cross effects and similarities of selected sites

Lists site variations with the highest 20 conditional probabilities

Site l Site j Bivariate RSM CTM

p(j|l) cr(j|l) s(j, l)

Value Rank Value Rank Value Rank

Walmart kmart 0.5472 1 0.0025 621 0.7547 116
Sears kmart 0.4663 2 0.0005 882 0.9596 9
msn Priceline 0.4556 3 0.0127 455 0.0000 1680
msn Orbitz 0.4543 4 0.0130 451 0.1860 1362
Wxpedia Orbitz 0.4513 5 0.0001 1449 0.3828 626
Verizonwireless verizon 0.4453 6 0.0005 865 0.7184 164
msn Shockwave 0.4389 7 0.0122 464 0.0000 1623
msn usps 0.4382 8 0.0150 414 0.2179 1292
msn Gap 0.4331 9 0.0133 444 0.2840 803
msn Match 0.4302 10 0.0138 430 0.0000 1694
msn eharmony 0.4296 11 0.0120 466 0.0000 1653
msn Verizon 0.4249 12 0.0137 434 0.2616 1047
msn Overstock 0.4217 13 0.0135 441 0.2544 1090
msn Expedia 0.4211 14 0.0147 417 0.1525 1428
msn mate1 0.4208 15 0.0134 442 0.2533 1111
msn jcpenney 0.4196 16 0.0162 393 0.2646 1024
ebay Overstock 0.4152 17 0.1426 212 0.2544 1075
msn Fedex 0.4133 18 0.0125 459 0.0000 1634
homedepot Lowes 0.4125 19 0.0002 1157 0.9886 3
msn Victoriassecret 0.4063 20 0.0128 454 0.2865 760
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rank as well. For 18 of these 20 variations cross effects have a rank greater than 400, 
which means that contrary to conditional probabilities corresponding cross effects are 
not high.

For the CTM, we compute the similarity of site pairs. This measure increases the 
more two sites agree on the importances of topics. We compute similarities s(j,  l) 
between two sites j and l which are based on their Euclidean distance in the following 
way:

We obtain high differences of ranks for the majority of the site pairs with the 20 
highest conditional probabilities (see Table 9). Only for two site pairs rankings of 
similarities are comparable to rankings of conditional probabilities. For 13 of these 
20 site pairs we obtain very high rankings of similarities that are greater than 1,000. 
This result shows that the similarities of these site pairs inferred from the CTM are 
very low which contradicts their high conditional probabilities.

Following suggestions of an anonymous reviewer, we also investigate whether 
the better statistical performance of both the RSM and the CTM is related to a man-
agerial relevant outcome variable, namely the yearly expenditure of each household 
on each of the considered 60 websites. We regress this outcome variable on sums 
of probabilities of topics for LDA and the CTM, respectively. For the RSM, we 
use sums of probabilities of hidden variables as independent variables. We com-
pute probability sums of topics and hidden variables across all browsing baskets of 
the respective household. As we have 60 websites and three methods (LDA, RSM, 
CTM), we estimate a total of 180 regression models.

Decision makers should prefer the model whose predictions are less uncertain. 
We measure the uncertainly for LDA, RSM, and CTM by the interquartile range of 
the prediction intervals of yearly expenditures across households for each website. A 

(16)

s(j, l) = 1 −
d(j, jl)

maxj1,j2>j1 d(j1, j2)
with

d(j, l) =

√√√√ K∑
k=1

(𝜙jk − 𝜙lk)
2.

Table 10  Prediction interval statistics of household expenditures for selected websites

Website Model Lower quartile Median Upper quartile Interquartile range

Amazon LDA 5.4 22.0 46.1 40.7
RSM 17.2 25.3 35.8 18.6
CTM 12.7 22.8 38.0 25.3

Expedia LDA 0.0 113.5 385.5 385.5
RSM 131.9 325.1 504.0 372.1
CTM 138.3 277.0 420.4 282.1

jcpenny LDA − 8.3 17.8 45.0 53.3
RSM 9.4 25.0 43.7 34.3
CTM 11.7 27.5 41.5 29.8
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lower interquartile range reflects a lower prediction uncertainty. CTM attains to the 
lowest interquartile range for 35 sites, RSM for 14 sites, and LDA only for two sites. 
In other words, the ranking of models with respect to the prediction of yearly house-
hold expenditure turns out to be the same as the ranking with respect to statistical 
performance.

Table 10 shows the quartiles and the interquartile range of the predictive intervals 
of each model for three selected websites. For amazon, the RSM attains the lowest 
interquartile range. For the other two sites, the CTM leads to the lowest predictive 
uncertainty. For each of these three sites the worst predictive performance results if 
the topics determined by LDA serve as independent variables.

In comparison to both the LDA and the CTM, the RSM allows for asymmetric 
cross effects. This property of the RSM leads to more managerially useful implica-
tions. Table 11 shows the highest seven cross effects for selected conditioned sites 
inferred from the estimated RSM with 17 hidden variables. We demonstrate how 
managers can benefit from applying the RSM by explaining two possible application 
examples based on these seven cross effects:

– Managers may use RSM to design appropriate affiliate programs to further 
increase revenues of the website. Viable partners may be websites with a high 
cross effect if the compensation in affiliate programs depends on the number of 
leads or sales sent to the merchant’s website (Gatautis and Vitkauskaite 2020). 
For example, travelocity may join an affiliate marketing program of aol, dell, 
apple, classmates, mlb or ticketmaster. On the other hand, affiliate program man-
agers may proactively invite website operators to join their program based on the 
RSM results. E.g., cross effects suggest that the affiliate program management of 
dell should invite kohls, priceline, or travelocity.

– The literature on online advertisement is full of studies that show the importance 
of behavioral targeting like retargeting (Lambrecht and Tucker 2013). Managers 
could use the cross effects to find websites which could be a reasonable part of 
the targeting strategy. If, for instance, comcast plans to run a banner ad cam-
paign, they could integrate the suggested website in the campaign placing higher 
price bids for the advertising slot on websites that show high cross effects with 

Table 11  Highest seven cross effects of selected conditioned sites inferred from the RSM with 17 hidden 
variables

Conditioned Conditioning sites l
Site j

Dell aol Classmates Earthlink intuit usps Fandango Apple
Earthlink Dell aol Classmates intuit usps ups Fandango
kohls aol Dell Apple Classmates Comcast mlb usps
mate1 aol Apple Comcast Dell Classmates mlb Match
nascar aol mlb Apple Classmates Match Comcast Dell
Priceline aol Dell Apple Classmates Comcast mlb Match
Travelocity aol Dell Apple Classmates Comcast mlb Ticketmaster
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comcast (kohls, mate1, nascar, priceline, travelocity). Alternatively, managers 
could directly negotiate contracts with these sites to buy advertising space exclu-
sively for the banner ads from comcast.

To summarize, we find that both the RSM and the CTM are clearly superior to 
simple bivariate cross-tabulation and LDA in all important aspects. The CTM is bet-
ter at reproducing browsing behavior though it needs more parameters to do so. We 
obtain the same ranking of methods when the focus lies on predicting household 
expenditure.

The browsing baskets, which we analyze in our study, refer to individual house-
holds. Please note that the investigated methods can also be applied to aggregate 
browsing baskets containing the number of visits to websites summed across all 
members of a cluster. That is why the methods can deal with more restrictive pri-
vacy laws as long as data are available at the cluster level. In the same manner, these 
methods are capable to analyze the number of visits of all members of a cohort 
determined by Federated Learning of Cohorts (FLoC) according to Google’s FLoC 
proposal (Bindra 2021).

Given their excellent performances, researchers could investigate other applica-
tions of both the CTM and the RSM. One task related to the one studied here is to 
analyze browsing across subpages of one or several websites. In addition, the RSM 
could be applied to other types of marketing data for which conventional topic mod-
els haven been used, such as unstructured text like websites and online advertise-
ments, social media postings, online product reviews, mobile apps usage records 
(see the review of Reisenbichler and Reutterer (2018) for more details).

An alternative avenue of research consists in extending the models themselves. 
One extension of the RSM consists in adding independent variables in a manner 
analogous to the conditional RBM (Mnih et al. 2011). Another possibility is a deep 
RSM encompassing two or more layers of hidden variable in place of just one hid-
den layer (Salakhutdinov et  al. 2013). This extension will entail an increase of 
computing times needed for estimation and inference, but might lead to a further 
improvement of model performance.
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