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Abstract
The interest in promoting food and water security through development projects has led to 
the need to evaluate the impact of these projects. This study evaluates the impact from tran-
sitioning to a modern irrigation technology. Deciding to adopt or not an alternative irriga-
tion technology (sprinklers) is not necessarily a random determination. Therefore, selection 
bias can be present and this can lead to biased estimates. In this study, we apply methodo-
logical specifications to correct for self-selectivity biases. Then, we measure and compare 
the technical efficiency scores from adopters and non-adopters. The empirical application 
uses data covering 56 small-scale greenhouse farms in Crete (Greece) for the cropping 
years 2009-2013. The results reveal that the average technical efficiency for farmers who 
adopted sprinkler irrigation is lower than the group of non-adopters, when the presence of 
selectivity bias cannot be rejected. This implies that either the farmers need more time to 
incorporate the know-how of the newly acquired technology or they become less motivated 
after the adoption. Consequently, agricultural water saving technologies need to be pro-
moted in combination with support to the farmers, so they can cope with the lower perfor-
mance in the first years after adoption.

Keywords  Impact evaluation · Irrigation technology adoption · Sample selection · 
Stochastic frontier · Technical efficiency
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1  Introduction

Prevailing targets of the 17 Sustainable Development Goals of the 2030 Agenda for Sus-
tainable Development (United Nations 2015) are to eradicate all forms of poverty, boost 
shared prosperity, build resilient societies and promote sustainable use of natural resources. 
With world population projected to attain 8.6 billion by 2030 and 9.8 billion by 2050 
(IFPRI 2017), concerns about food security, economic growth and environmental sustaina-
bility have been to the fore of discussions and have elevated the attention to calls for global 
food and environmental security.

With fresh water touching nearly every aspect of development, and environmental chal-
lenges like water scarcity threatening the global community, a common objective of many 
development projects is to promote water security. With expanding population and increas-
ing incomes, the growing demand for food will intensify the use of water in agriculture. At 
the same time, the supply of water is becoming more unpredictable due to climate change, 
and competition among users in non-agricultural sectors is rising. Energy and sanitiza-
tion needs in expanding cities and rising food demand will exacerbate global water stress, 
which can hinder economic growth and shared prosperity.

With the agricultural sector being the largest user of freshwater, sustainable agricultural 
policies meeting the growing demand for food by avoiding depletion of water should be 
at the core of any discussions about how water is used in agriculture in terms of sustain-
ability, productivity and equity (Molden and Oweis 2007). Development projects related 
to sustainable agricultural water management practices have shown that shifting to more 
productive, water-saving technologies is the cornerstone to achieving effective use of agri-
cultural water (IFPRI 2017; World Bank 2017; United Nations 2015; FAO 2012).

Funding projects can help countries enhance agricultural water management through the 
improvement of water infrastructures, changes in the policy environment, and the provision 
of technological innovations and training such as improved irrigation technologies along 
with on-farm extension services. Irrigation projects can promote development in two ways: 
(i) to foster output growth through sustainable patterns of production such as improved irri-
gation technologies, and (ii) to directly support farmers through the provision of extension 
services that aim to enhance managerial ability and therefore technical efficiency.

The interest in promoting food and water security through development projects has led 
to the need for tools that can evaluate the impact of these projects, and to ensure that the 
projects reach the most vulnerable and enhance the quality of life for the members of the 
community (Gertler 2011). Most of the impact evaluation studies are based on randomized 
or experimental designs where a control group or counterfactual is compared with a group 
of beneficiaries. The ideal control group shares the same characteristics as the beneficiaries 
with the difference that the latter group participated in the intervention while the first one 
did not. After collecting and analyzing data, researchers can proceed with impact evalua-
tions of development projects and provide empirical documentation on the progress toward 
the performance of a program, and the attainment of sustainable production practices and 
efficient use of water. However, one of the challenges with this framework is the construc-
tion of a credible counterfactual (Duflo et al. 2007).

For the randomized control trial framework, baseline data before the implementa-
tion of the program and data for the same individuals toward the end of the program are 
needed. However, there are cases where only cross section endline data are available for 
both the control and the treatment groups. In this case, the analysis based on panel data sets 
of randomized designs cannot be followed. However by ensuring randomization, impact 
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evaluation analysis based on cross-sectional data can provide unbiased measures of impact 
on the performance of those who received the intervention.

There are a few applications where production frontier models have been used as the 
methodological framework to assess the impact of development projects that are designed 
to promote output growth in a sustainable way while improving farmers’ managerial abili-
ties. Given the link between performance and technical efficiency (Mundlak 1961), produc-
tion frontier frameworks have been used broadly in the last decades to measure productiv-
ity and technical efficiency in a wide range of economic activities, including agriculture, 
educational organizations, hospitals, banking, etc. However, the weakness for most of these 
studies is that selectivity bias, which can be an important issue in the development pro-
jects, is not taken into consideration. Recent literature has shown that stochastic production 
frontier models can be adapted to accommodate selectivity bias when impact evaluation of 
development projects is studied (Bravo-Ureta 2014).

The contribution of this study is to add to the growing impact evaluation literature by 
comparing farm-level technical efficiency scores across adopters and non-adopters using 
stochastic production frontier models, after addressing possible self-selectivity issues. 
When the decision to adopt a new agricultural technology or participate in a development 
program is based on farmers’ own perceptions about the effectiveness and profitability of 
this decision, then self-selectivity can affect the impact evaluation analysis. Our empirical 
application uses a set of 56 greenhouse vegetable produces in Crete (Greece) for the crop-
ping years from 2009-2010 to 2012-2013. Integrating the stochastic production frontier 
framework accommodating corrections for self-selectivity biases as it is applied to a data 
set that explores the impact of interventions related to new irrigation technologies on the 
allocation of scarce resources, offers an opportunity to accurately measure farm-level eco-
nomic performance. This study can help policymakers understand how different technolog-
ical adoption strategies can affect the performance of farmers who received the interven-
tion (like a new irrigation technology in this study) and how effective this adoption can be.

The remainder of this study is organized into five sections. The second section presents 
the literature review, while the third section introduces the conceptual framework followed 
by a description of the data employed in the empirical models. The estimation results of 
the empirical models are presented and discussed in section 5, while the last section offers 
a set of concluding remarks and policy implications.

2 � Literature Review

Modern microeconomic theory tends to treat firms as efficient operators minimizing the 
cost of inputs used to produce a given level of output. In reality, however, producers might 
not always behave optimally. The measure of discrepancy between what is optimal and 
what is observed is attributed to inefficiency. Many empirical studies find the presence 
of inefficiency across many sectors, despite the fact that economic theory is based on the 
rationale that competition drives inefficient firms out of business. The presence of inef-
ficiency and its intensity in a sector can be explained by a set of exogenous variables that 
is outside the firm’s control. In the stochastic frontier literature, efficiency is measured by 
scores that are assumed to follow a pre-truncated distribution with a specific mean and 
variance.

The impact evaluation literature of agricultural projects progressed to investigate 
the factors that can capture and explain differences in the performance, and therefore 
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technical efficiency, of new technologies’ adopters. Dinar et al. (2007) is an early contri-
bution that combines the stochastic production frontier framework with the impact eval-
uation literature. This paper attempted to evaluate the impact of extension services on 
the performance of farmers, but they did not address the selectivity bias issue which can 
lead to estimated efficiency scores that are biased and inconsistent. After Dinar et  al. 
(2007), Molina et  al. (2008) and Mariano et  al. (2012) compared the performance of 
farmers under different technological regimes using stochastic frontier models but with-
out considering corrections for selectivity bias.

In the literature (Table  1), the two-step Heckman (1979) sample selection model 
has been mainly applied to control for self-selection in stochastic production frontier 
studies. For example, Sipiläinen and Lansink (2005) analyzed the efficiency levels for 
organic and conventional farming using the Heckman sample selection model, while 
Bradford et  al. (2001) analyzed the impact of the cost of new technologies related to 
health care using data from a large hospital. Solís et  al. (2007), evaluates technical 
efficiency scores for hillside farmers in Central America using a switching regression 
model to correct for selectivity bias. While the studies of Kaparakis et al. (1994), in an 
analysis for commercial banks, and Collins and Harris (2005), in a study for UK chemi-
cal plants, refer to the potential sample selectivity bias, they did not correct for it.

In addition, Kumbhakar et al. (2009) applied a modified one-step Heckman sample 
selection process to correct for selectivity bias using simulated likelihood estimation 
of the stochastic production frontier. However, this model involves high-dimension 
integration for the evaluation of the likelihood function. Recently, Lai and Tsay (2016) 

Table 1   Related literature

a Standard Heckman two-stage sample selection process
b Propensity matching score process
c Switching regression model
d Only address sample selectivity bias without correcting for it
e Modified one-step Heckman sample selection specification

SFA Impact 
evaluation

Selectivity bias

Bradford et al. (2001) ✓ – ✓ a

Bravo−Ureta et al. (2012) ✓ ✓ ✓ b,e

Collins and Harris (2005) ✓ – ✓ d

Dinar et al. (2007) ✓ ✓ −
Greene (2010) ✓ – ✓ e

Gonzalez-Flores et al. (2014) ✓ ✓ ✓ e

Kaparakis et al. (1994) ✓ – ✓ d

Kumbhakar et al. (2009) ✓ ✓ ✓ e

Lai and Tsay (2016) ✓ ✓ ✓ e

Marianno et al. (2012) ✓ ✓ –
Mayen et al. (2010) ✓ – ✓ b

Molina et al. (2008) ✓ ✓ –
Sipilainen and Lansink (2005) ✓ – ✓ a

Solis et al. (2007) ✓ – ✓ c

Villano et al. (2015) ✓ ✓ ✓ e
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proposed an extention of Heckman (1979) sample selection model that accounts for 
fixed and random effects when a panel sample selection model needs to be estimated. 
Mayen et al. (2010) used propensity matching score techniques to address the self-selec-
tion while they compared organic and conventional farmers.

While Heckman’s model has been used to a great extent to correct selectivity bias 
in the stochastic frontier framework, Greene (2010) states that Heckman’s approach “is 
not appropriate for nonlinear models such as stochastic frontier model” (p. 15). Bravo-
Ureta et  al. (2012) attempted to evaluate the impact of agricultural extension on the 
performance of farmers in Honduras by taking into consideration the sample selectivity 
bias issue using propensity matching score techniques to capture biases stemming from 
observed variables (i.e. farm size, agroecological conditions), and selectivity correction 
model by Greene (2010) to correct for biases from unobserved variables, like farmers’ 
managerial abilities.

González-Flores et  al. (2014) also implemented the method introduced by Greene 
(2010) using data for small-scale potato producers from Ecuador to explore the impact of a 
project on farmers’ efficiency. Although they found that there is no evidence of selectivity 
bias in the model, beneficiaries exhibit higher yields and lower technical efficiency scores 
compared to control farmers. Finally, Villano et al. (2015) adopted the framework intro-
duced by Greene (2010) to measure the impact of modern rice technologies in the Philip-
pines controlling for self-selectivity biases. Using a cross-sectional data of 3,164 farmers, 
they found that the adoption of certified rice seeds has a significantly positive impact on 
farmers’ efficiency levels.

We assess the impact of adopting an alternative irrigation technology by addressing the 
sample selectivity issue in the framework of stochastic frontier production model using 
the one-stage Greene (2010) framework and the three-step endogenous switching regres-
sion model. Our empirical application uses data covering the agricultural sector in Crete 
(Greece) for the cropping period from 2009–2010 to 2012–2013. The sample consists of 
56 vegetable greenhouse producers and provides detailed information on production pat-
terns, input use (including water usage), gross revenue, farmers’ and environmental charac-
teristics, and structural factors such as subsidies and on-farm extension visits. This study is 
one of the first to use the corrected for selectivity bias stochastic production frontier frame-
work to assess the impact from the adoption of a new irrigation technology.

3 � Conceptual Framework

To evaluate the impact of adopting a new irrigation technology on the technical efficiency 
of farmers, we apply the stochastic frontier model of Aigner et  al. (1977) corrected for 
sample selection bias. Stochastic production frontier models have been used extensively 
to measure farm-level efficiency. However, most of the studies using stochastic production 
frontier models have failed to correct for self-selection biases when comparison of techni-
cal efficiency scores between adopters and non-adopters is conducted. Possible selection 
bias can be taken into account by applying the three-step endogenous switching regression 
model or the one-step Greene (2010) approach. Consistent with the stochastic frontier pro-
duction framework, there is a correlation between the unobserved variables (e.g. related to 
the abilities of manager) in the selection equation with the noise in the stochastic frontier 
model.
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We apply a three-stage switching regression model to capture heterogeneity in farm-
er’s decision to adopt or not the overhead sprinkler irrigation. Endogenous switching 
regressions have been used in the literature to capture heterogeneity related to technol-
ogy adoption (Solís et al. 2007; Falco et al. 2011; Wollni and Brümmer 2012). The three 
stage endogenous switching regression uses a Probit model in the first stage to deter-
mine factors affecting the decision to adopt the new irrigation technology, while in the 
second stage, separate regression equations are used to model the production behavior 
of adopters and non-adopters. Finally, in the third stage, separate stochastic production 
functions are estimated using variables from the second stage that takes into account the 
selection bias (W). The coefficient of the W variable in the third stage captures the exist-
ence or not of selectivity bias in the model.

The first stage probit model can be expressed as:

where
I(.): indicator function denoting the irrigation technology
zi : vector of factors that affect the farm’s choice of production technology
� : parameters to be estimated
di = 1 (if greenhouse producers adopt the new irrigation technology), 0 (otherwise) 

and wi ∼N[0,1]. Typically, the adoption decision is a binary variable taking the value of 
1 for adopters, and the value of zero for non-adopters. For the estimation of the sample 
selection model, the Probit model framework is used (Feder et  al. 1985; Foltz 2003; 
Kim et al. 2005). In the case that the adoption decision process occurs sequentially and 
multiple technologies are adopted, count regression models can be applied for the esti-
mation of the model (Ramírez and Shultz 2000).

The second stage production function models are specified as:

The first and second stage of the switching regression model are performed simulatane-
oulsy, while the estimated coefficients of the selection bias variable W from the second 
stage are added in the stochastic production function as follows:

(1)di = I[a
�

∗ zi + wi > 0]

(2)
y1i = �

�

1
∗ X1ki + �1i

if di = 1∶ adopt new irrigation technology

(3)
y2i = �

�

2
∗ X2ki + �2i

if di = 0∶ not adopt new irrigation technology

(4)
y1i = �

�

1
∗ X1ki + � ∗ W1i + v1i − u1i

if di = 1∶ adopt new irrigation technology

(5)
y2i = �

�

2
∗ X2ki + � ∗ W2i + v2i − u2i

if di = 0∶ not adopt new irrigation technology

(6)vji ∼ N[0, �2
jv
],∀j = 1, 2
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where
yi : the natural logarithm of the observed output produced by ith farm,
Xki : the natural logarithm of the kth input used by the ith farm; including land, labor, 

seeds, water and intermediate inputs for k = 1, ..., 5

W1i : variable that captures selectivity bias,
�, � : unknown parameters to be estimated, vi : a two-sided, symmetric and normally dis-

tributed error term with E(vi) = 0 and Var(vi) = �2
vi
 representing those factors that cannot 

be controlled by the farmers (such as weather conditions, conflicts in labor market etc) or 
omitted explanatory variables,

ui : a one-sided, non-negative error term with E(ui) = �i and Var(ui) = �2
ui
 associated 

with the short fall of the produced output from the production frontier, due to technical 
inefficiency, and can be explained by a set of managerial variables.The one-sided distur-
bance reflects the fact that each farm’s production should lie on or below the production 
frontier and represents factors under the farmer’s control. Finally, it is assumed that vi and 
ui are distributed independently of each other and of the variables in the specification of the 
production frontier.

Greene (2010) proposed an internally consistent one-step approach for selectivity cor-
rected stochastic production frontier model that is consistent with the non-linear nature of 
the stochastic frontier specification. The stochastic production frontier model in the sample 
selection framework can be expressed with the following five equations:

where wi ∼N[0,1], Ui ∼N[0,1], and Vi ∼N[0,1].
The parameter � in Eq. 12 captures the correlation between the error term w in the sam-

ple selection equation (Eq.  8) and the error term v in the stochastic production frontier 
model (Eq. 9). If we find that the unobservables in the selection equation are correlated 
with the noise in the stochastic frontier model, which implies that � is statistically different 
from zero, then the existence of sample selection bias can be verified for the model.

4 � Data Description

In this study, we use the dataset found in Chatzimichael et al. (2015), with some adjust-
ments for the sample selection. The data set consists of 56 randomly selected vegeta-
ble greenhouse producers in the Ierapetra Valley in Southern Crete, Greece, during four 

(7)uji ∼ N[�ji, �
2
jiu
],∀j = 1, 2

(8)di = 1[a
�

∗ zi + wi > 0]

(9)yi = �
�

∗ Xki + vi − ui

(10)ui = |�uUi|

(11)vi = �vVi

(12)(wi, vi) ∼ N2[(0, 1), (1, ��v, �v
2)]
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cropping years from 2009–2010 to 2012–2013. This results in a balanced panel data set of 
256 observations. The randomly selected sample of greenhouse producers chosen for this 
study is part of a survey that attempted to examine the impact of adopting a modern irriga-
tion technology on the effectiveness of irrigation water application from greenhouse farms 
in the Ierapetra Valley in Crete. The Agricultural Department of the Regional Directorate 
in Crete financed this survey to address water limitations that the semi-arid area of the 
Mediterranean basin faced the last decade.

The data were collected by extension agents from the Agricultural Department of the 
Regional Directorate interviewing the selected greenhouse producers using the same ques-
tionnaire. The interviews took place at the beginning of June of the last cropping year 
(2012–2013). The producers had to recall information about the exact time of adopting 
the new irrigation technology and other variables related to the production process of their 
greenhouses (i.e. output produced, labor and land used, water usage etc.) for the last four 
cropping years. The usual cropping year for greenhouses producing vegetables in Crete 
starts between the middle of August to the beginning of September and lasts till the end of 
May.

Nearly 80% of the farms in this valley are using water from the local public irriga-
tion system, which is connected to a small dam in central Crete island (Bramianos dam). 
Farms using their own wells for irrigation purposes were excluded from this survey. Most 
of the greenhouses before 2005 were using drip irrigation systems, where multiple tubes 
are attached to the central water supply line and each of these tubes supplies one row of 
vegetable plants. After 2005, greenhouse producers were able to adopt an alternative irri-
gation technology, the overhead sprinklers. In this case, the greenhouse has a set of over-
head water pipes that emit a mist though a number of sprinkler heads. In general, over-
head sprinklers systems in greenhouses are controlled automatically by moisture censors 
and timers, and considered to be more water effective and to minimize evapotranspiration 
(ET) comparing to the traditional drip irrigation systems. Based on this information, the 
adoption of the overhead sprinkler systems in the greenhouses of this semi-arid area of the 
Mediterranean basin can ease the water stress in the greenhouse production.

Although the data set presents four years of observations for 56 farmers creating a bal-
anced panel data for adopters and non-adopters, this version of the model is applied as a 
cross-sectional data set. Farmers could adopt the new irrigation technology at any of the 
four cropping years of interest in this study. Possible differences stemming from the year 
of adoption can be captured via cropping year dummy variables in the production frontier 
model. Pooling the data across cropping years can be justified by that both irrigation tech-
nologies are available to the farmers in all the cropping years. Also, Greene (2010)’s appli-
cation uses panel data for OECD and non-OECD countries but the model is formulated to 
accommodate cross sectional data.

Descriptions of the variables used in this study are presented in Table 2. The output of 
each farm is the total revenue of farm output measured in euros and it is a weighted output 
index that aggregates the four different vegetables produced in the greenhouses (tomatoes, 
cucumbers, peppers and eggplants). The inputs include labor (family and hired) measured 
in hours, seeds measured in euros, land measured in stremmas (1 stremma equals 0.1 ha), 
water measured in m3 , and a weighted intermediate input index that aggregates other goods 
and materials used during the cropping year like pesticides, fertilizers and electricity, and 
it is measured in euros. All monetary variables were converted into 2010 constant prices.

As the goal of this model is to correct the stochastic production frontier model for self-
selectivity biases, the variables that are used in the sample selection (Probit) equation 
are: linear and quadratic terms of farmer’s age and education, number of extension visits, 
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subsidies received by the farmer (measured in euros), farm size (measured in stremmas), 
an aridity index (defined as the ratio of the average annual temperature to the total annual 
precipitation in the region) that captures climate changes, and soil water holding capacity 
measured in cm per second. In particular, soil water holding capacity is a measure of soil’s 
hydraulic conductivity and can vary across greenhouses based on the area that greenhouse 
farmers choose to cultivate. The Ierapetra Valley has sandy soils mainly which vary from 
pure sandy soil to sandy clay soil.

Table 3 lists the summary statistics for the variables used in this study. As shown in this 
table, we can observe that 23 out of 56 greenhouse farmers in the sample did not adopt the 
new irrigation technology while the rest of them (33 farmers) adopted the sprinkler irrigation 
at any of the 4 cropping years of interest. The data also indicate that there are statistically sig-
nificant differences between the means of the variables for adopters and non-adopters.

Finally, Table 4 presents the summary statistics of the greenhouse producers classified by 
geographical area, and more specifically by village. In this study, we have 8 different villages 
in the Ierapetra Valley in Crete, Greece. For each village, we have the information regarding 
the number of greenhouse farmers who was interviewed and also how many of them decided 
to adopt the sprinkler irrigation technology. With the exception of the producers in Village 
1, in all the other villages more than 50% of the farmers decided to adopt the new irrigation 
technology. The map that reveals the location of each village is presented in Figure 1. Spatial 

Table 3   Summary statistics for all cropping years

a A t − test was performed to determine if the sample means between adopters and non-adopters groups are 
statistically significant
∗p < 0.05 ∗∗ p < 0.01 , ∗∗∗p < 0.001

All farms ( = 56) Adopters(= 33) Non-adopters(23) Mean differencea

Mean SD Mean SD Mean SD

Output (€) 78528.04 56632.92 91149.03 63698.72 60419.67 38157.41 −34353.03∗∗∗

Land (stremmas) 5.44 3.52 6.37 3.96 4.10 2.17 −2.53∗∗∗

Labor (hours) 591.93 508.99 772.41 551.00 332.99 287.68 −447.28∗∗∗

Seeds (€) 1449.39 1011.23 1573.85 1046.94 1270.81 934.51 −311.78∗

Intermediate 
Inputs(€)

8886.26 4774.37 9578.78 4760.41 7892.64 4641.44 −1540.14∗

Water ( m3) 1358.10 967.97 1466.68 1037.80 1202.32 839.06 −422.06∗∗

Aridity Index 1.19 0.38 1.14 0.37 1.27 0.37 0.07
Slope (degrees) 0.10 0.03 0.11 0.02 0.08 0.03 −0.02∗∗∗

Water Holding 
Capacity (cm/s)

0.002 0.001 0.002 0.001 0.002 0.001 −0.000∗∗∗

Age (years) 41.80 13.66 33.32 5.58 53.98 12.59 14.11∗∗∗

Education (years) 11.77 3.35 13.17 2.17 9.77 3.72 −2.35∗∗∗

No of Extension 
Visits

4.06 3.61 5.85 3.57 1.49 1.52 −5.51∗∗∗

Subsidies (€) 703.07 454.60 796.11 426.52 569.59 462.57 −344.08∗∗∗

Observations 224 133 91
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dummy variables are used in the production frontier model to capture differences between 
adopters and non-adopters due to geographical location.

5 � Empirical Results and Analysis

5.1 � Factors of Sprinkler Irrigation Technology Adoption

To find whether or not sample selectivity can be an issue, we estimate stochastic pro-
duction frontier correcting for sample selection that may stem from the choice to 
adopt sprinklers. We assume that farmers adopt the new irrigation technology with the 

Fig. 1   Map-Ierapetra Valley, Crete, Greece
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expectation to maximize their profits, and that the decision to adopt or not is based on 
a set of socio-demographic structural and environmental factors. The sample selection 
model that is used can be expressed as:

First, we estimate the Probit model (Eq. 13) where the independent variable is a dichoto-
mous variable taking the value of 1 if the farmer adopts the new irrigation technology, or 
0 otherwise. The explanatory variables ( zi ) have been selected to capture all those factors 
that affect farmers’ decisions to adopt sprinkler irrigation (Table 2).

Many studies have examined the impact of different factors on the adoption of modern 
agricultural technologies (Feder et al. 1985; Bravo-Ureta et al. 2012; González-Flores et al. 
2014; Villano et al. 2015). Following equation (13), Table 5 displays the estimated coef-
ficients of the Probit sample selection model and its marginal effects. The chi-squared test 
statistic shows joint significance of the parameters in the sample selection model at the 
10% level. The majority of the estimated parameters are statistically different from zero. 
Among the variables describing farmer’s characteristics, age and education play a signifi-
cant role on farmers’ decision to adopt sprinkler irrigation technology. Farmers who are 
older and better educated are more able to search and adopt modern agricultural technolo-
gies comparing to younger and less educated farmers (Mariano et al. 2012).

Subsidies are expected to encourage farmers to adopt new agricultural technologies, and 
our results confirm these expectations. Subsidies are positively correlated with the prob-
ability of adopting the new irrigation technology due to the fact that financial aid received 
can reduce the installation costs of overhead sprinklers. In addition, the estimated coef-
ficient for the variable extension visits is also positive and statistically significant implying 
that farmers who have access to extension services are more likely to adopt sprinklers. 
This finding is consistent with the literature highlighting the important role of extension 
in the adoption of modern agricultural technologies, including irrigation practices (Jara-
Rojas et al. 2012). Farm size has a positive impact on irrigation technology adoption but 
not statistically significant. This result is consistent with the literature suggesting that farm-
ers who own larger cultivated areas are more risk averse and thus will be more likely to 
adopt new agricultural technologies comparing to those who own smaller farms (Feder and 
Umali 1993).

Adoption of new irrigation practices is also affected by environmental factors apart from 
the demographic characteristics of the farmers. Water holding capacity, which is a proxy 
for the hydraulic conductivity of water in soil, is positively related to sprinkler adoption at 
the 10% level, implying that producers who own farms with soil exhibiting greater water 
holding capacity for crop use are more willing to adopt the sprinkler irrigation technology. 
In addition, the aridity index, which is a proxy of weather variability, has a positive but not 
statistically significant effect on the adoption of sprinklers. Given the definition of aridity 
index (ratio of the average temperature to the total precipitation), our results are consistent 
with the notion that higher values of aridity index lead to difficulties in irrigation and there-
fore farmers will be more likely to adopt a new irrigation technology that can help them to 
overcome issues related to changes in weather patterns.

Table 5 also presents the marginal impact of each variable along with their standard errors. 
The number of extension visits on-site have the highest effect on the adoption of sprinklers 
following by the age of the farmer. More specifically, 20% increase in the number of exten-
sion visits results in a 2.58% increase in the probability of sprinkler irrigation adoption. This 

(13)adopti = �0 +

8∑

j=1

zji + wi
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result indicates that one more on-site extension visit will increase the probability of overhead 
sprinkler adoption by 2.6%, which supports Solís et al. (2007) ’s remark that investments in 
human capital provide the greatest returns in terms of socioeconomic development through 
the highest probability of adopting a modern agricultural technology. Farmer’s age has also 
a statistically significant impact on the probability of sprinkler adoption which diminishes 
by the negative coefficient of the corresponding squared term. This decreasing effect implies 
that for older farmers, any additional year will lead only to small changes in the information 
and experience acquisition related to the adoption of new irrigation practices.

5.2 � Stochastic Production Frontier Estimates

Table  6 presents the estimates of the structural production model parameters and the 
parameters associated with the selectivity bias. The seven different models estimated in 
this study are presented below. In Model 1, all the available data are used to estimate a 
pooled stochastic production function with no correction for selectivity bias. Three sep-
arate models are estimated using data for those who adopted overhead sprinklers. More 
specifically, Model 2 ignores selectivity bias, while Models 3 and 4 are correcting for it 
using endogenous switching regression and one-stage Greene model specifications, respec-
tively. In the last three columns of Table 6, three stochastic production frontier models are 
estimated using the non-adopters group data. Model 5 is estimated without correction for 
selectivity bias, while Models 7 and 8 incorporate corrections for sample selection bias 
based on the switching regression and Greene’s framework, respectively.

The production frontier is specified as a Cobb-Douglas functional form1 normalized 
with respect to the intermediate inputs variable as follows:

Table 5   Parameter Estimates of 
the Probit Model

Standard errors in parentheses
Inverse Mills Ratio descriptive statistics: mean = 2.008 , sd = 1.991

∗p < 0.10 , ∗∗p < 0.05 , ∗∗∗p < 0.01

Probit model Marginal effects

Age 0.326* 0.198 0.079** 0.032
Age2 −0.004* 0.003 −0.001*** 0.000
Education 1.148* 0.633 0.279 0.172
Education2 −0.045* 0.024 −0.011 0.007
Extension 0.532*** 0.092 0.129* 0.067
Subsidies 0.001*** 0.000 0.000 0.000
Farm size 0.055 0.079 0.013 0.021
Aridity 0.048 0.572 0.012 0.140
Water holding capacity 802.342* 454.690 194.896 134.064
Constant −17.898*** 6.437
Log-Likelihood −39.84
�2

(8)
222.92

Number of obs. 224

1  Cobb-Douglas specification has been selected over the translog specification for the production, as the 
maximum likelihood ratio test led to the rejection of the translog functional form in favor of the Cobb-
Douglas
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•	 Stochastic production frontier function for switching regression’s and Greene’s specifi-
cation: 

where yi is the output; xi represents inputs; d1 and d2 are location and time dummies respec-
tively; �, �, � are the unknown parameters; u is the error term that captures the inefficiency; 
and v is a two-sided error term. The variables used in the estimation of the Probit model 
are different from the variables used in the stochastic production frontier models to meet 
the identification criterion. The models were estimated using NLOGIT Version 5.

As expected, all estimated input coefficients are statistically significant positive with 
their magnitudes changing across models, except for the seeds input for the Model 3 that 
is not statistically significant. In all the models, cultivated land contributes the most to the 
greenhouse production which is consistent with the notion that land availability is the main 
production constraint for small-scale farms. All the models, except for those corrected for 
selectivity bias using Greene’s specification, present (marginally) increasing returns to 
scale, which implies that the output produced increases by a (marginally) larger propor-
tion than the increase in inputs during the production process. The returns of scale are 
measured by the elasticity of scale, which is the sum of all the output elasticities of the 
estimated Cobb-Douglas function. For irrigation water applied, measured in m3 , the aver-
age point estimates range from 0.068 to 0.236 with a mean of 0.152, which is consistent 
with the production of vegetables. The parameter estimates for the location dummies, when 
statistically significant, indicate that specific location can have a positive contribution to 
greenhouse production. For details on the construction and description of location dum-
mies, see Table 2.

Log-Likelihood ratio (LR) tests reveal that separate estimation of technologies for adop-
ters and non-adopters is appropriate in this data set. The estimated LR test is given by:

where LRp is the log-likelihood function value for the pooled model, LRa and LRna repre-
sent the log-likelihood values for the adopters and non-adopters sub-sample groups cor-
recting or not for selectivity bias, respectively. The LR tests reject the null hypothesis in all 
the three cases (no selection, switching regression and Greene models), which implies that 
the production frontier estimated parameters differ across adopters and non-adopters. This 
is also an indication that differences in the efficiency between the group of farmers who 
adopted sprinkler irrigation and the group of non-adopters can be estimated as we are cor-
recting for selectivity bias.

The impact of correcting for selectivity bias using the different model specifications is 
presented below. The estimated coefficients of the second stage of the endogenous switch-
ing regression models of the adopters and non-adopters production functions are sup-
pressed and not shown here. The results of the third stage estimation of the stochastic pro-
duction frontiers adjusted for self-selection are reported in Table 6. The coefficient on the 
selectivity variable (W) from the switching regression model is not statistically significant 
different from zero in both production functions, establishing that no evidence of selection 
bias can be detected in this study when the switching regression model is applied.

(14)lnyi = �0 +

4∑

n=1

�nlnxni +

2∑

k=1

�1kd1ki +

3∑

l=1

�2ld2li + vi − ui

(15)LR = −2 ∗ (LRp − (LRa + LRna) ∼ �2
k
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However, Greene’s (2010) sample-selection correction method finds the coefficient � 
of the selectivity variable is statistically significant from zero for the group of adopters, 
suggesting the presence of selection bias. Thus, a selectivity corrected stochastic frontier 
model is needed to obtain unbiased frontier estimates which can be used for estimating 
the technical efficiency scores. The insight from this result can be that Greene’s method is 
more appropriate for non-linear models, like stochastic frontier models, when correction 
for selectivity bias is required.

5.3 � Technical Efficiency Estimates

Table 7 presents the descriptive statistics for the technical efficiency scores across alterna-
tive model specifications. These results are within the range reported by Bravo-Ureta et al. 
(2007) in their meta-regression analysis for farm-level technical efficiency studies. The 
authors present that the average technical efficiency score for stochastic production frontier 
studies in Europe is 82.4%. For the models where there is no correction for selectivity bias, 
average technical efficiency is higher for those who adopted the new irrigation technology 
comparing to those who did not. However, when the Greene’s correction method is used, 
the non-adopters present higher technical efficiency scores than the adopters.

In Table 7, adopters present an average technical efficiency ranging from 76.8% (TE-A-
G) to 84.7% (TE-A), while the average technical efficiency score for non-adopters changes 
slightly across the no correction and Greene (2010) models with an average of 82%, except 
for the switching regression model where a mean TE of 85.5% has been found for the non-
adopters. Moreover, adopters exhibit a higher mean technical efficiency only for the case 
of no selection bias correction, while the models that are corrected for selectivity bias 
using switching regression model and Greene’s specification show higher mean techni-
cal efficiency for the group of the non-adoptees. The coefficient of variation in technical 
efficiency scores increases from 0.098 to 0.164 for adopters and from 0.121 to 0.129 for 
non-adopters.

We also find that correcting for selectivity bias affects the distribution of technical effi-
ciency estimates. In the presence of selection bias, the correlation coefficient ( � ) between vi 
and wi is statistically significant affecting the variances of the two error terms ( �2

w
 and �2

v
 ) 

and consequently the estimated efficiency scores and their variance ( �2
u
 ), as the estimated 

TE scores depend strongly on the ratio of the variance of the inefficiency term ( �2
u
 ) and the 

variance of the noise term ( �2
v
 ). The variance of the TE scores directly affects the distribu-

tion of the TE scores as the variance is related to the dispersion of the estimated TE scores. 
This may explain the difference in the distributions of the technical efficiency scores for the 
adopters between the models in Figure 2. In the case of statistically significant evidence of 
selection bias for the adopters (Greene model), the distribution of the technical efficiency 
scores is less skewed to the left compared to the distribution of technical efficiency scores 
from the switching regression model (that did not detect any selection bias) or from the 
model with no selection bias correction. The dispersion of the technical efficiency scores 
is higher when Greene’s sample-corrected specification is used for both adopters (Figure 2) 
and non-adopters (Figure 3).

In Table 8, the technical efficiency mean differences between adopters and non-adopters 
for all the model specifications are presented. We find that there is a statistically signifi-
cant technical efficiency mean difference between the group of adopters and non-adopters 
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for the conventional model with no correction for selectivity bias and for the model using 
Greene’s specification to correct for sample selection biases. Table 9 and Figure 4 show 
the technical efficiency scores for all the models across the 4-year time frame of this study. 
The adopters experience higher TE than the non-adopters only when selectivity bias is not 
corrected. When the one-step approach of Greene is used to correct for selectivity bias, 
the adopters exhibit lower TE than the non-adopters. However, the TE of the adopters is 
increasing over time, while the TE of the non-adopters remain the same over time. This can 
be explained by the fact, as with every new technology at the beginning of the adoption, 
the farmers experience lower TE scores and over time their performance increases (learn-
ing by doing). Overhead irrigation technology is an investment that can show its effect in 
the long run, as it requires for farmers to acquire the appropriate knowledge and experience 
on how to use properly a new, advanced, based on sensors irrigation technology.

The analysis of technical efficiency scores for the different model specifications in this 
study reveals three main findings. First, it shows the need to correct for selectivity bias 
in the stochastic frontier models because without the correction there is a magnification 
in measuring adopters’ efficiency in this case study. Second, the gap in farmer’s perfor-
mance between adopters and non-adopters is underestimated when stochastic frontier mod-
els without correction for selectivity bias are applied. These two findings may be closely 
related as the underestimation in the technical efficiency difference between adopters and 
non-adopters may be driven by the magnification in the TE estimates of adopters with-
out correction for selectivity bias. These findings are also consistent with those from other 
studies measuring farmer’s performance after the adoption of new agricultural technolo-
gies (Villano et al. 2015). Finally, in the case of the targeted technology intervention, it is 
likely that farmers who are less productive are those adopting the technologies, and failure 
to account for this may understate the true impact of the technology.

Table 7   Descriptive statistics of Technical Efficiency (TE) scores

∗Coefficient of Variation

Variable N Mean Sd Min Max CV∗

TE-pooled TE-P 224 0.841 0.078 0.568 0.954 0.093
Adopters
TE-No correction TE-A 91 0.847 0.083 0.619 0.956 0.098
TE-Correction-Switching TE-A-S 91 0.825 0.135 0.523 0.998 0.164
TE-Correction-Greene (2010) TE-A-G 91 0.768 0.123 0.500 0.986 0.160
Non-adopters
TE-No correction TE-NA 133 0.819 0.099 0.554 0.959 0.121
TE-Correction-Switching TE-NA-S 133 0.855 0.096 0.476 0.971 0.112
TE-Correction-Greene (2010) TE-NA-G 133 0.821 0.106 0.455 0.973 0.129
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Fig. 2   Technical Efficiency 
scores for adopters

Fig. 3   Technical Efficiency 
scores for non-adopters

Table 8   Technical Efficiency 
mean differences across models

∗p < 0.05 , ∗∗p < 0.01 , ∗∗∗p < 0.001

No correction Correction 
Switching

Correction 
Greene(2010)

Mean sd Mean Sd Mean sd

Adopters 0.847 0.083 0.825 0.135 0.768 0.123
Non-adopters 0.819 0.099 0.855 0.096 0.821 0.106
Mean difference 2.172∗∗ 1.013 −3.449∗∗∗
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Fig. 4   Technical efficiency 
scores over time

Table 9   Technical efficiency 
mean differences across models, 
2009-2012

∗p < 0.10 , ∗∗p < 0.05 , ∗∗∗p < 0.01

Year Mean Technical Efficiency

Variable Adopters Non-adopters t-test

2009 Number of farmers 13 43
TE_no correction 0.858 0.801 2.457∗∗

TE_SwitchRegress 0.876 0.834 1.203
TE_Greene 0.722 0.802 −2.273∗∗

2010 Number of farmers 19 37
TE_no correction 0.843 0.826 0.712
TE_SwitchRegress 0.778 0.866 −2.713∗∗∗

TE_Greene 0.754 0.829 −2.155∗∗

2011 Number of farmers 26 30
TE_no correction 0.850 0.833 0.619
TE_SwitchRegress 0.850 0.865 −0.466
TE_Greene 0.788 0.832 −1.463

2012 Number of farmers 33 23
TE_no correction 0.843 0.827 0.615
TE_SwitchRegress 0.813 0.862 −1.580
TE_Greene 0.779 0.831 −1.676∗
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6 � Concluding Remarks

The impact evaluation literature of agricultural projects mostly relies on randomized con-
trol trial frameworks, where baseline information before the project implementation and 
randomization in the selection process of the project participants are needed. However, in 
many cases, agricultural projects are implemented without following the design of a ran-
domized control trial (as it can be a time and money consuming process), while at the end 
the evaluation of the project’s impact may be still required for policymaking purposes. This 
is where the sample selection bias can arise and the impact evaluation of a project may 
lead to biased results. While Heckman’s model has been widely used among other meth-
odologies to correct for selectivity bias in the stochastic frontier framework, Greene (2010) 
stated that Heckman (1979)’s approach may not be appropriate for nonlinear models such 
as stochastic frontier model and he proposed an internally consistent one-step approach for 
selectivity corrected stochastic production frontier model.

This study integrates the stochastic production framework with the impact evaluation 
theory in the agricultural sector using technical efficiency as indicator of farmer’s manage-
rial performance in different technological regimes. Greene’s (2010) specification along 
with the endogenous switching regression model are used to deal with possible selectivity 
biases stemming from farmers’ unobservable characteristics in the stochastic production 
frontier model. The analysis is carried out using a data set of 56 greenhouse farms produc-
ing vegetables in Greece during four cropping years, from 2009-2010 to 2012-2013, con-
verting from drip to overhead sprinklers irrigation.

The analysis presented in this study shows that selection bias is present in the group of 
adopters when Greene’s (2010) model is used providing justification for the corrected for 
selectivity bias stochastic frontier model. Also, adopters’ technical efficiency scores are lower 
than those of the non-adopters when the corrected for self-selection stochastic frontier model 
is applied. This implies that in the short-term the adoption of the new irrigation technology 
has a cost in terms of technical efficiency. However, this outcome is consistent with the fact 
that when farmers are facing a production change, such the adoption of a new agricultural 
technology, initially this can lead to a decrease in their technical efficiency and productivity 
(Sipiläinen and Lansink 2005). When farmers are introduced to a new technology, learning-
by-doing and the experience accumulated over time can affect farmer’s efficiency on a later 
stage. In addition, the adoption of new technologies can lead to less motivated farmers and 
this can be represented by lower technical efficiency scores. Thus, a methodological frame-
work that accommodates the panel feature of the data set can reveal whether technical effi-
ciency starts to increase the longer farmers are using the new agricultural technology.

Also, statistically significant differences between the technical efficiency scores of 
adopters and non-adopters have been found in this study. The magnitude of this difference 
is increasing when the stochastic production frontier model is corrected for selectivity bias 
using Greene’s (2010) approach. Finally, our results suggest the important role of on-farm 
extension visits on the adoption of new agricultural technologies. This implies that policies 
targeting the adoption of new technologies in the agricultural sector should focus more on 
providing farmers with on-farm visits by extension personnel compared to policies that 
mainly revolve around the provision of economic incentives, such as subsidies. However, 
under the current weather variability that is observed in arid regions as Greece, new tech-
nologies that promote water sustainability might be promoted in combination with support 
to the farmers to assist them with the lower performance in the first years after technology 
adoption.



573Impact Evaluation of Alternative Irrigation Technology in…

1 3

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aigner D, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production 
function models. J Econ 6:21–37

Bradford WD, Kleit AN, Krousel-wood MA, Re RN (2001) Stochastic frontier estimation of cost models 
within the hospital. Rev Econ Stat 83:302–309

Bravo-Ureta BE (2014) Stochastic frontiers, productivity effects and development projects. Econ Bus Lett 
3:51–58

Bravo-Ureta BE, Greene W, Solis D (2012) Technical efficiency analysis correcting for biases from 
observed and unobserved variables: An application to a natural resource management project. Empir 
Econ 43:55–72

Bravo-Ureta BE, Solís D, Moreira López VH, Maripani JF, Thiam A, Rivas T (2007) Technical efficiency in 
farming: A meta-regression analysis. J Product Anal 27:57–72

Chatzimichael K, Christopoulos D, Stefanou S,  Tzouvelekas V (2020) Irrigation practices, water effective-
ness and productivity measurement. European Rev Agri Econ 47(2): 467–498

Collins A, Harris RID (2005) The impact of foreign ownership and efficiency on pollution abatement 
expenditure by chemical plants: Some UK evidence. Scottish J Polit Econ 52:747–768

Dinar A, Karagiannis G, Tzouvelekas V (2007) Evaluating the impact of public and private agricultural 
extension on farms performance: A non-neutral stochastic frontier approach. Agric Econ 36:135–146

Duflo E, Glennerster R, Kremer M (2007) Chapter  61 using randomization in development economics 
research: a toolkit. In: Paul Schultz T, Strauss JA (eds) Handbook of development economics, vol 4. pp 
3895–3962

Falco SD, Veronesi M, Yesuf MM (2011) Does adaptation to climate change provide food security? a 
micro-perspective from Ethiopia. Am J Agric 93:1–18

Steduto P, Faurès J-M, Hoogeveen J, Winpenny J, Burke J (2012) Coping with water scarcity: an action 
framework for agriculture and food security. Food and Agriculture Organization of the United Nations 
Rome

Feder G, Just RE, Zilberman D (1985) Adoption of agricultural innovations in developing countries?: A 
survey. Econ Dev Cult Change 33:255–298

Feder G, Umali DL (1993) The adoption of agricultural innovations. A review. Technol Forecast Soc 
Change 43:215–239

Foltz JD (2003) The economics of water-conserving technology adoption in Tunisia: An empirical estima-
tion of farmer technology choice. Econ Dev Cult Change 51:359–373

Gertler PJ, Martinez S, Premand P, Rawlings LB, Vermeersch CMJ (2016) Impact evaluation in practice, 
second ed. Inter-American Development Bank and World Bank, Washington, DC

González-Flores M, Bravo-Ureta BE, Solís D, Winters P (2014) The impact of high value markets on small-
holder productivity in the Ecuadorean Sierra: A Stochastic Production Frontier approach correcting for 
selectivity bias. Food Policy 44:237–247. https://​doi.​org/​10.​1016/j.​foodp​ol.​2013.​09.​014

Greene W (2010) A stochastic frontier model with correction for sample selection. J Product Anal 34:15–24
Heckman JJ (1979) Sample selection bias as a specification error. Econometrica 47:153–161
International Food Policy Research Institute (2017) 2017 Global food policy report. International Food Pol-

icy Research Institute, Washington, DC
Jara-Rojas R, Bravo-Ureta BE, Díaz J (2012) Adoption of water conservation practices: A socioeconomic 

analysis of small-scale farmers in Central Chile. Agric Syst 110:54–62

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.foodpol.2013.09.014


574	 M. Vrachioli et al.

1 3

Kaparakis EI, Miller SM, Noulas AG (1994) Short-run cost inefficiency of commercial banks: A flexible 
stochastic frontier approach. J Money, Credit Bank 26:875–893

Kim S-A, Gillespie JM, Paudel KP (2005) The effect of socioeconomic factors on the adoption of best man-
agement practices in beef cattle production. J Soil Water Conserv 60:111–120

Kumbhakar SC, Tsionas EG, Sipiläinen T (2009) Joint estimation of technology choice and technical effi-
ciency: An application to organic and conventional dairy farming. J Product Anal 31:151–161

Lai H-P, Tsay W-J (2016) Maximum simulated likelihood estimation of the panel sample selection model. 
Econ Rev 4938:1–16

Mariano MJ, Villano R, Fleming E (2012) Factors influencing farmers adoption of modern rice technologies 
and good management practices in the Philippines. Agric Syst 110:41–53

Mayen CD, Balagtas JV, Alexander CE (2010) Technology adoption and technical efficiency: Organic and 
conventional dairy farms in the United States. Am J Agric Econ 92:181–195

Molden D, Oweis TY, Pasquale S, Kijne JW, Hanjra MA, Bindraban PS, Bouman BAM, Cook S, Erenstein 
O, Farahani H, Hachum A, Hoogeveen J, Mahoo H, Nangia V, Peden D, Sikka A, Silva P, Turral H, 
Upadhyaya A, Zwart S (2007) Pathways for increasing agricultural water productivity. In: Molden D 
(ed), Water for food, water for life: a comprehensive assessment of water management in agriculture. 
Earthscan/IWMI, London, UK/Colombo, Sri Lanka, pp 279–310

Molina IM, Bastiaans L, van Keulen H, Mew TW, Zhu YY, Villano RA (2009) Improvement of techni-
cal efficiency in rice farming through inter planting: a stochastic frontier analysis in Yunnan, China. 
Accessed 17 May 2017

Mundlak Y (1961) Empirical production function free of management bias. J Farm Econ 43:44–56
Ramírez OA, Shultz SD (2000) Poisson count models to explain the adoption of agricultural and natural 

resource management technologies by small farmers in central american countries. J Agric Appl Econ 
32:21–33

Sipiläinen T, Oude Lansink A (2005) Learning in switching to organic farming, Nordic Association of Agri-
cultural Scientists, NJF Report, vol 1, no 1, 2005. http://​orgpr​ints.​org/​5767/​01/​N369.​pdf

Solís D, Bravo-Ureta BE, Quiroga RE (2007) Soil conservation and technical efficiency among hillside 
farmers in Central America: A switching regression model. Aust J Agric Resour Econ 51:491–510

Connor R (2015) The United Nations World Water Development Report 2015: Water for a Sustainable 
World. UNESCO Publishing, Paris, France

Villano R, Bravo-Ureta B, Solis D, Fleming E (2015) Modern rice technologies and productivity in the phil-
ippines: Disentangling technology from managerial gaps. J Agric Econ 66:129–154

Wollni M, Brümmer B (2012) Productive efficiency of specialty and conventional coffee farmers in Costa 
Rica?: Accounting for technological heterogeneity and self-selection. Food Policy 37:67–76. https://​
doi.​org/​10.​1016/j.​foodp​ol.​2011.​11.​004

World Bank (2018) Beyond scarcity: water security in the Middle East and North Africa. The World Bank, 
Washington, DC

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Maria Vrachioli1   · Spiro E. Stefanou2 · Vangelis Tzouvelekas3

	 Spiro E. Stefanou 
	 sstefanou@ufl.edu

	 Vangelis Tzouvelekas 
	 v.tzouvelekas@uoc.gr

1	 Group of Production and Resource Economics, Technical University of Munich, Alte Akademie 
14, Freising, Germany

2	 Economic Research Service, United States Department of Agriculture, Washington, DC, USA
3	 Department of Economics, University of Crete, University Campus, Rethymno, Greece

http://orgprints.org/5767/01/N369.pdf
https://doi.org/10.1016/j.foodpol.2011.11.004
https://doi.org/10.1016/j.foodpol.2011.11.004
http://orcid.org/0000-0001-5573-3568

	Impact Evaluation of Alternative Irrigation Technology in Crete: Correcting for Selectivity Bias
	Abstract
	1 Introduction
	2 Literature Review
	3 Conceptual Framework
	4 Data Description
	5 Empirical Results and Analysis
	5.1 Factors of Sprinkler Irrigation Technology Adoption
	5.2 Stochastic Production Frontier Estimates
	5.3 Technical Efficiency Estimates

	6 Concluding Remarks
	References




