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Abstract

The recent global financial crisis has shown portfolio correlations between agents as
one of the major channels of risk contagion and amplification. In this work, we
analyse the structure and dynamics of the cross-correlation matrix of banks’ loan
portfolios in the yearly bank-firm credit network of Japan during the period from
1980 to 2012. Using the methods of Random Matrix Theory (RMT), Principal
Component Analysis and complex networks, we aim to detect non-random patterns
in the empirical cross-correlations as well as to identify different states of such
correlations over time. Our findings suggest that although a majority of portfolio
correlations between banks in lending relations to firms are contributed by noise, the
top largest eigenvalues always deviate from the random bulk explained by RMT,
indicating the presence of non-random patterns governing the correlation dynamics.
In particular, we show that this dynamics is mainly driven by a global common
factor and a couple of “groups” factors. Furthermore, different states in the credit
market can be identified based on the evolution of eigenvalues and associated
eigenvectors. For example, during the asset price bubble period in Japan from 1986
to 1991, we find that banks’ loan portfolios tend to be more correlated, showing a
significant increase in the level of systemic risk in the credit market. In addition,
building Planar Maximally Filtered Graphs from the correlations of different
eigenmodes, notably, we observe that the local interaction structure between banks
changes in different periods. Typically, when the dominance of a group of banks in
one period gradually vanishes, the credit market starts to build-up a different
structure in the next period in which another group of banks will become the main
actors in the backbone of the cross-correlations.

Keywords Bank lending - Portfolio correlations - Systemic risk - Random
matrix theory - Principal component analysis - Correlation-based filtered
methods
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1 Introduction

Over the last few years, catastrophic cascade of failures in interdependent systems
has received a remarkable attention in network science. Findings in this line of
research show that the robustness of a system crucially depends on both its internal
structure as well as its pattern of relations to other interdependent ones (e.g. Smart
et al. 2008; Buldyrev et al. 2010; Huang et al. 2011; Brummitt et al. 2012; Reis
et al. 2014; Liu et al. 2016; Bianconi 2018).

In the banking system, the recent global financial turmoil has demonstrated that
besides direct credit linkagesl, indirect relations between banks are also the relevant
channels of risk contagion and amplification. For instance, overlapping portfolios
due to common asset holdings have been widely considered as one of the major
sources of risk contagion (e.g. May and Arinaminpathy 2010; Beale et al. 2011;
Huang et al. 2013; Caccioli et al. 2014, 2015; Greenwood et al. 2015; Lillo and
Pirino 2015; Levy-Carciente et al. 2015; Corsi et al. 2016). Analogously, credit
relationships between banks and firms have been suggested as another important
channel of the propagation of distress between the financial system and the real
sector of the economy (e.g. Aoyama et al. 2013; Aoyama 2014; de Castro Miranda
and Tabak 2013; Lux 2016). Accordingly, since banks can be indirectly linked
through a set of joint exposures to firms (i.e. due to loan portfolio overlaps), the
distress originating from a group of banks or firms can be propagated through the
whole system. For these reasons, a number of empirical studies have been devoted
to uncovering the complexity of the topological structure of bank-firm credit
markets world-wide (e.g. Fujiwara et al. 2009; De Masi et al. 2011; De Masi and
Gallegati 2012; Fricke 2016; Marotta et al. 2015, 2016; Fricke and Roukny 2020;
Luu and Lux 2018, 2019; Lux 2020).

It is worthwhile to emphasize that besides portfolio overlaps, portfolio
correlations also play a crucial role in risk management and have been seen as
one of the major sources of financial instability. From a perspective of bankers, the
understanding of the structure of correlations (or co-movements) between banks in
providing loans to non-financial firms as well as the identification of factors
governing such correlations are essential for managing credit risk (e.g. Biilbiil and
Lambert 2012; Fenech et al. 2015). The systematic factors driving the correlations
represent market risks that cannot be diversified a way. In contrast, idiosyncratic
risks associated with non-systematic components can be diversifiable as the
dimension of the system grows (e.g. Chamberlain and Rothschild 1983). Further-
more, from a macroeconomic perspective, in a banking system where bank
portfolios are highly unified or coupled, a common shock might trigger the entire
system to follow the similar adjustment strategies. Even if the original shock is
relatively small, it would result in a significant change in the credit supply to the
other sectors of the economy, which in turn might lead to a large impact on
macroeconomic fluctuations (e.g. Kiyotaki and Moore 1997; Khwaja and Mian
2008; Gertler and Kiyotaki 2010; Jorda et al. 2013; Bassett et al. 2014,

! See, for example, Allen and Gale (2000), Nier et al. (2007), Haldane and May (2011), Acemoglu et al.
(2015), among others.
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Brunnermeier and Schnabel 2016; Cingano et al. 2016; Gambetti and Musso 2017;
Bentolila et al. 2018; Azariadis 2018; Alfaro et al. 2018; Amiti and Weinstein
2018). However, so far, the structure and the key drivers of correlations between
banks in lending to firms still remain a puzzling mystery.

This study, therefore, aims to contribute to a deeper understanding of the
structure and the dynamics of the cross-correlation matrix of banks’ loan portfolios.
In particular, our main objectives are to answer the following research questions that
have not been intensively studied in related literature: (i) how to detect non-random
patterns and latent factors (if they exist) in the empirical cross-correlation matrix of
banks’ loan portfolios?; and (ii) how to identify different states in the correlation
dynamics over time?; and (iii) how to quantify systemic risk from loan portfolio
correlations in the credit markets?.

To guide our analysis, we employ the methods of Random Matrix Theory (RMT)
and Principal Component Analysis (PCA). The methods of RMT have been widely
used to filter noise as well as to extract latent information embedded in empirical
correlations for time series data on stock prices/returns (e.g. Laloux et al.
1999, 2000; Plerou et al. 2000, 2002; Kim and Jeong 2005; Bouchaud and Potters
2009; Wang et al. 2011; Meng et al. 2014; Jiang et al. 2014; Uechi et al. 2015;
MacMahon and Garlaschelli 2015), on financial transactions (e.g. Kyriakopoulos
et al. 2009; Fricke 2012), etc. Empirical evidence also shows that RMT is a useful
tool to enhance the Markowitz mean-variance optimization procedure (e.g. Plerou
et al. 2000; Laloux et al. 2000; Sharifi et al. 2004; Daly et al. 2008; Bai et al. 2009;
Quintana et al. 2015). Recently, RMT has been used to study synchronizations
between different macroeconomic indicators (e.g. Ormerod and Mounfield 2000;
Ormerod 2008; Iyetomi et al. 2011; Yoshikawa et al. 2015; Lux et al. 2020).
Indeed, the applications of RMT to the spectral analysis of various types of complex
networks have also received considerable attention in related literature (Bandy-
opadhyay and Jalan 2007; de Carvalho et al. 2009; Potestio et al. 2009; Jalan 2009;
Tran et al. 2013; Dumitriu and Johnson 2016), but to the best of our knowledge
none of them has studied the spectral properties of cross-correlations between nodes
in one set in the formation of links or the strength of interactions with nodes in
another set (e.g. like the correlations between banks in providing loans to firms in
the other sectors of the economy as in the present study).

Practically, in this study, we will, first, compare the eigenvalue spectrum of the
empirical cross-correlation matrix with the theoretical one implied by RMT.
Second, focusing on a group of the largest eigenvalues significantly deviating from
random bulk predicted by RMT, we extract latent information and infer the
significant factors governing the correlation dynamics. This approach allows us to
have a proper selection of the strongest factors containing genuine information
about the properties of the observed data that are different from what would be
expected under a null model. In the next step, in order to identify different states in
the credit market, we examine the evolution of the largest eigenvalues and their
corresponding eigenvectors over time. In addition, building Planar Maximally
Filtered Graphs (PMFG) (Tumminello et al. 2005; Pozzi et al. 2008; Di Matteo
et al. 2010) from the correlation structure for different eigenmodes, we also analyse
the network structure of correlations and investigate how this network changes in
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different periods. Furthermore, to infer systemic risk arising from credit extensions
from banks to firms, we measure the absorption ratios that capture the fraction of the
total variance explained by a finite number of the first principal components
(Kritzman et al. 2011; Billio et al. 2012; Zheng et al. 2012; Lux et al. 2020). It
should be emphasized that the procedure used in the present paper can be employed
to filter noise signals and extract significant patterns out of different large bipartite
networks including those in economics and finance such as bank-borrower credit
networks, investor-asset networks.

Perhaps, among different studies on the bank-firm credit relations, the work of
Fujiwara et al. (2009) is closest to our study. Based on eigenvalue analysis,
Fujiwara et al. (2009) measure the fragility scores in terms of dynamical
propagation of influences from lenders to borrowers and vice versa. However,
there exist important distinctions between ours and theirs. To name a few, first, it
should be emphasized that the main difference to the present paper is, instead of
analysing the correlations between banks in lending to firms, Fujiwara et al. (2009)
define a new weighted matrix P capturing the accumulated interactions between the
two sectors. Hence, their approach cannot answer whether the loan portfolios of
banks tend to be more/less correlated in the credit market in different periods.
Furthermore, in such a setting, the largest eigenvalue is always equal to 1, and few
top largest eigenvalues (i.e. the second and the next largest eigenvalues of P) are
important in the propagation of influences from banks to firms and vice versa over a
finite time-scale.” Different from their approach, we focus on the largest eigenvalues
that significantly deviate from the spectral distribution explained by an appropriate
null model (e.g. the distribution given by the so-called Marchenko-Pastur law
(Mar¢enko and Pastur 1967; Tao and Vu 2012)).> Such eigenvalues and the
corresponding eigenvectors are analysed as they might contain the genuine
information of particular economic mechanisms responsible for an unexpectedly
high level of correlations between banks in lending to the non-financial sector of the
economy.

The remainder of this paper is structured as follows. Section 2 briefly describes
the data and methods used to analyse portfolio correlations. Section 3 reports the
main findings for the weighted version of the bank-firm credit network of Japan.
Discussions and concluding remarks are in Sect. 4. In the “Appendix”, we provide
additional results for portfolio overlaps and similarities, the fractions of eigenvalues
in different ranges, the distributions as well as the evolution of the eigenvector

2 In their study, briefly, from the matrix of weights W% representing loans from banks to firms defined in
the next part of the present study, they obtain a matrix A that stands for relative amounts of lending by
banks to firms and a matrix B that stands for the relative amount of borrowing by firms from banks. Then
the matrix P = AB will capture the accumulated reflections and influences between banks and firms.
Assume that isp) > X(ZP) >...> ixo) are the eigenvalues of P, it can be shown that ),(IP) = 1. Therefore,
over a finite time-scale, only few next largest eigenvalues Z(ZP)... are important in the dynamics of the
propagation of influences from banks to firms and vice versa. For more details, we refer readers to the
study of Fujiwara et al. (2009).

3 Note that to deal with potential effects of the presence of extreme loan values on the largest
eigenvalues, we also consider the other upper bounds obtained from heavy-tailed random matrices (see
Sect. 2.2.2).
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elements, and the more detailed correlation network structure between banks based
on the method of PMFG. We also summarize the main results for the binary version
of the credit network.

2 Data and Methods
2.1 Data

We use a yearly data set containing credit relations between banks and large firms in
Japan over the period from 1980 to 2012. The data were obtained from the firms’
financial statements and the survey by Nikkei Media Marketing, Inc. in Tokyo
(commercially available).4 This covers the most critical time and events over the
past few decades in the Japanese economy, e.g. the bubble period from 1986 to
1991, the burst of the bubble economy and the stagnation time in the subsequent
years (the so called “lost decade”) (e.g. see Hoshi and Kashyap 2000; Brunnermeier
and Schnabel 2016; Himino 2021), the recent global financial crisis.’

Based on the maturity of loans, we separately consider three layers of lending
relationships from banks to firms, i.e. total lending relationships (namely layer 1), short-
term lending relationships (namely layer 2), and long-term lending relationships (namely
layer 3). Note that the layer 2 captures all loan contracts lasting less than or equal to one
year. In contrast, the layer 3 only consists of loan contracts that exceed one year.

For the sake of conciseness, we exclude other financial institutions including
insurance companies and a small number of aggregated banks.® In addition, it
should be emphasized that for each maturity-based layer, we focus on the aggregate
amount of loans from each bank to each firm at the end of the fiscal year, meaning
that we ignore contract-specific frequencies (i.e. separate times that a bank lends to
a firm during the fiscal year).

2.2 Methods

2.2.1 Representation of a Bank-Firm Network, Portfolio Overlaps and Projection
Matrices

We shall start with some basic notations and definitions of a bank-firm credit
network. Assume that in each year we have a weighted bipartite network consisting
of N banks lending to N firms. Let W% = {wzf }wxn, De the matrix of weights (i
runs from 1 to N standing for N banks, and j runs from 1 to Ny representing Np

4 For a more detailed explanation about the data set, we refer readers to, for example, Fujiwara et al.
(2009), Marotta et al. (2015), Marotta et al. (2016).

5 Although additional analysis for more recent data could provide more insights on the evolution of the
portfolio correlations among banks in lending to non-financial firms, we leave it for future study once data
is available.

6 Each aggregated bank consists of a group of small/local banks. However, the main conclusions do not
change very much when we include insurance companies and aggregated banks in the data, since the
market shares of these companies and banks are relatively small.
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bf

firms). Each element w;; is non-negative and implies the monetary amount of loan’ that

bank i lends to firm j. Notrce that from the matrix W, we obtain the adjacency matrix
AY = {a } N, » Where abf =1if wa > 0, and zero otherwise. This adjacency matrix
is associated with the bmary version of the bank-firm credit network.

From a perspective of network theory, one can measure the structural similarity
between banks’ loan portfolios based on various measures of the similarity between
two vectors (e.g. Cai et al. 2018; Pool et al. 2015; Alvarez-Socorro et al. 2015;
Fricke 2016; Luu and Lux 2018, 2019). Briefly, for each pair of nodes in the same
set in the bipartite network, the similarity between them is based on the similarity of
their neighborhoods. For instance, in the weighted version, we can, respectively,
define the similarity matrix of banks and that of firms based on the generalized
Jaccard index as

bf . bf
Zk lmm( zk7wjk)

f b\’
Zk:lmax< zk’wjk)

B—B __
i

(V1<i#j<N), (1)

and

b
Zk 1mm(Wk{kaf)

b
Zk 1max<wk{,wk{)

With non- negative weights in the bank-firm credit network, we have that
b b
0< Zk lmm( lk’ ) Zk | max(w l/{’wjlj:> and 0< Zk 1m1n(Wk{kaf)

Z =1 max(wZ{ , ij ) Furthermore since in the present study we focus on banks that

F*F
Sij

(VI <i#j<Np). (2)

lend to at least one firm and firms that borrow from at least one bank, the two

denominators Zgilmax(wf’,{,wf{) and Zszlmax(wZ{,w,}g) are strictly positive.
Therefore, S;~* and S " range in [0, 1].

Notice that S5~% =1 if and only if w} =w{ for all firms k. Furthermore,

SB-B = 0 if and only if the portfolios of the two banks i and j have no overlaps at all.

Therefore, each element of the matrix S5~ demonstrates the degree of similarity
between the lending portfolios of a pair of banks. In a similar vein, each entry of the
matrix S7F indicates the degree of similarity between the borrowing portfolios of
two firms.

Furthermore, the one-mode projection matrices obtained from the original bank-
firm credit network also indicate the lending portfolio overlaps between banks or the
borrowing portfolio overlaps between firms (e.g. Luu and Lux 2018, 2019). More
specifically, defining

ABE = AP AP, (3)

we then obtain a matrix in which each off-diagonal element is the number of firms

7 Depending on the considered layer, it can be the long-term loan, the short-term loan, or the total loan.
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that a pair of banks co-finance. In a similar way, each off-diagonal element of the
AF=F matrix, with

ATTE = APAY (4)

indicates the number of common lenders that a pair of firms have.

A major disadvantage of the network projection approach is that the information
about the monetary value of loans from banks to firms is partially or completely
discarded (e.g. see Lehmann et al. 2008; Luu and Lux 2018). In addition, often
sparser information about the original bipartite structure of credit links is projected
into denser one-mode networks. More importantly, from an economic perspective,
the network-based analysis of the two projection matrices (and the similarity
matrices) alone cannot help to identify which pairs of banks tend to be more/less
correlated in lending to firms. This provides the motivation for introducing an
appropriate procedure used to measure and analyse the loan portfolio correlations
between banks, which shall be briefly explained in the following.®

2.2.2 Analysis of Portfolio Correlations

2.2.2.1 Correlation Matrix We now introduce the method used to measure the
empirical cross-correlation matrix of banks’ loan portfolios. Here we focus on the
weighted version of bank-firm credit relationships. Additional explanations and
results for the binary version (i.e. based on the elements of the matrix

AY = {azf }xn,) are provided in the “Appendix”.
Similar to the procedure often implemented in the analysis of stock returns/
prices, for wf-’-_Jf- > (, the normalized amount of the loan (in log-scale) from bank i to

X, = ln(wzf) — <ln(wzf)> (5)

)
ajj

firm j is defined as

where for each bank i, (ln(wgf )) and o;; are the average and the standard deviation of
bf bf 09
i j =0

Denote X' = {Xj;} v, the cross-correlation matrix of N banks is then defined as

In(w;! ) over all N firms, respectively. As a special case, we let X;; = 0 if w

8 Note that although in the present work we focus on loan portfolio correlations between banks, we also
summarize the main results for loan portfolio overlaps and similarities in the “Appendix”.

° Tt should be emphasized that in general, almost all main conclusions from this study still hold if we
define

X@/:M

~ I
0jj

with ng = (ng + 1). One can also use the original weight ng instead of the loan amount in log-scale to

define the normalized quantity X;;. Although for the sake of brevity the results for these alternative
definitions of X;; are not reported here, they available from the author upon request.
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536 D.T. Luu

€= {Cyhyar = 3 X7, (©)
F

where X7 is the transposition of X. Note that —1 < C; <1 (for 1 <i<j<N) and
Cii =1 (for all i from 1 to N). From an economic point of view, the value of C;
indicates the correlation between bank i and bank j in lending to all firms. In
particular, C; > 0 (<0) implies that two banks i and j are positively (negatively)
correlated, while C;; = 0 demonstrates that there is no correlation between the two
banks at all.

Note that with the particular application to the bank-firm credit network of Japan
in the present work, the ratio % is larger than 1, since the number of banks is always
less than that of firms over the sample period. However, if the number of borrowers
was less than the number of lenders, the estimated covariance matrix between banks
in lending to firms would become singular.'® Similarly, in analyses of economic and
financial time series, when the number of observations over a relatively short period
is smaller than the number of the indices (e.g. those represent different stock prices
or macroeconomic indicators), such a singularity problem also emerges. In this case,
the estimated covariance matrix will have the singular Wishart distribution (e.g. see
Srivastava 2003; Bouchaud et al. 2007; Bodnar et al. 2013, 2014). As a an
important consequence in portfolio analysis, if the estimated covariance matrix is
singular, the matrix inversion operation used to estimate the portfolio weights is not
possible. To tackle this problem, several transformation methods with practical
applications to portfolio theory haven been proposed (c.f. Pappas and Kaimakamis
2010; Bodnar et al. 2016, 2017, 2018, 2019, among others for a more detailed
discussion on different transformation methods and their practical relevance).

2.2.2.2 Random Matrix Theory and Selection of Factors We shall now introduce
the relevant results of RMT that will be used to analyse the cross-correlations matrix

defined in Eq. (6). Suppose that {/I,-}éjlv are the eigenvalues of a correlation matrix
C and f(2) is the probability density function of the eigenvalues of C. According to
RMT (e.g. Marcenko and Pastur 1967; Tao and Vu 2012), if the elements of

x % (0,6?), then in the limit N, Ny — oo with Q = % — a (a is constant and
a > 1), the eigenvalue distribution f¢(4) is given by the Marchenko-Pastur law

Q \/(;L;knax — /“) (/“ B /l:ml)

fc()n) = 27‘[62 ) if Amin S A S )”max’ (7)
0 elsewhere.

In (7), 62 is the variance of the elements of X (¢ is equal to 1 in our case), and ),f;mx
and ;. are the upper and lower bounds of eigenvalues predicted by RMT,

respectively. With unit variance, these two bounds are given by

10 This could also happen in other bipartite financial networks such as bank-asset or investor-asset
networks. In particular, when the number of assets is smaller than the number of banks or investors, it also
leads to the singularity problem in the bank-bank covariance matrix or the investor-investor covariance
matrix.
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)“jnax = (1 + I/Q)2 and /ljnin = (1 -V 1/Q)2 (8)

Generally speaking, if some of the eigenvalues of the empirical cross-correlation
matrix are beyond the interval [4, ., 4,...], they carry genuine information about the
correlations between banks (Plerou et al. 2000, 2002). Nevertheless, it should be
emphasized that the presence of extreme values in the elements of X’ (e.g. when X is
a heavy-tailed random matrix) might cause the largest eigenvalues to exceed the
upper bound implied by the Marchenko-Pastur law (e.g. Biroli et al. 2007; Bou-
chaud and Potters 2009). In this case, some eigenvalues that are larger than A,
might actually contain no genuine information.

As shown in Biroli et al. (2007), whenever the largest entry of X (in absolute

terms), S, satisfies that S < (N .Np)%, the upper limit for the largest eigenvalue still
However, if S > (N.NF)%, a new upper bound W will

max

2
2D = (éﬂ%) <1 +%) (9)

Furthermore, when the elements of X’ have power-law tails with exponent p, then
the large values among {X;} will dominate the top largest eigenvalues. The new

. *
remains stuck at A, .
emerge:

upper bound iﬁfa)x now depends on u as

23— NHu-1g2/u=t (10)

max

Hence, in the present study, to capture the potential effects of extreme values of
loans from banks to firms, we also compare the top largest eigenvalues with these
different bounds. As shown later, in our analysis the top five largest eigenvalues of
the empirical correlation matrix C are always larger than all three upper bounds

25 W and 2@

“max> ““max ‘max*

2.2.2.3 Decomposition of Correlation Matrix We now introduce one of the most
important applications of RMT, i.e. how to extract latent information from the
largest eigenvalues deviating from the random bulk. Without loss of generality, we
assume that Ay >/, >...> Ay are the eigenvalues of the empirical correlation
matrix C, and u;,u,...,uy are their corresponding eigenvectors. The correlation
matrix C can be diagonalized as

C = UAUT, (11)

with A = diag{/,..., Ay}, and {U},,y is an orthonormal matrix, whose i’ column
is the normalized eigenvector u; corresponding to the eigenvalue 4;. As a result, for
each 4; we have

Ji = ul Cu; = u? Cov(X)y; = Var(u? X). (12)

Let y; = u/ X, we obtain the following property for the total variance of {X;}Y
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ZVar(X,-) =N= Z Ji= ZVar(y,-). (13)

From Egs. (12) and (13), we can easily show that the ratio AN indicates the percentage

of the total variance va:l Var(X;) explained by the principal component y; = u? X’
(Jolliffe 1986; Wang et al. 2011; Gewers et al. 2018).
In addition, since Eq. (11) can be re-written as

N
C= Ziiuiu?, (14)
=1

we shall now decompose the empirical correlation C into different parts capturing
the effects of different factors. First, if the largest eigenvalue A; deviates signifi-
cantly from the random bulk, the so-called “market” mode, i.e. the global common
factor (or the systematic factor) that influences the lending of all banks in the credit
market, can be extracted from this eigenvalue and its corresponding eigenvector
(Plerou et al. 2000, 2002). Its effect on C is represented by

C" = Juu?, (15)
and the rest of C is
FC"=C-C", (16)

which is the filtered matrix after the market-wide effect is subtracted.
Next, genuine information can be extracted from the next largest eigenvalues if

they are still larger than the selected upper bound (e.g. the bound 4}, implied by
RMT or the more “conservative” one given by /% = max(2:,, AA) 22 ) Such

information may be associated with the level of sub-groups (namely the “groups”
modes) (e.g. Kim and Jeong 2005; Shen and Zheng 2009; Jiang and Zheng 2012). In
that case, following Kim and Jeong (2005), we can further decompose C into three
parts C", C4, and C" as

C=C"+C*+C, (17)

where C® and C” indicate the effect of the “groups” modes and the rest of C,
respectively. From an economic perspective, the matrix C# captures the influence of
non-systematic components (e.g. sectoral factors, regional factors, etc.) that only
affect the lending of a subset of banks in the credit market. The residual represented
by the matrix C” is refereed to as the random noise part.''

! Indeed, the interpretations for different factors used in the decomposition of the matrix C are
somewhat similar to those used for the dynamic factors models, which have also become one of the
important dimension reduction techniques in macro-econometrics as well as financial econometrics (e.g.
Forni et al. 2000; Forni and Lippi 2001; Barigozzi et al. 2014; Forni et al. 2015; Matteo and Marc
2016b, a; Forni et al. 2017).
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Mathematically,

NA‘
Cg = Z /liuiuiT, (18)

i=2

and the rest

N

= 3" ], (19)
i=Ng+1

where N, is determined based on the number of the next largest eigenvalues larger
than the selected upper bound (see also Kim and Jeong (2005), MacMahon and
Garlaschelli (2015) for further discussions about the selection of Ng). From
Egs. (17) to (19), we can define FC"™¢ = (C — C™ — C8) = C" as the filtered matrix,
in which the effects of the “market” and “groups” modes are subtracted.

2.2.2.4 Absorption Ratios and Systemic Risk From Eq. (13), for each
i=1,2,...N, we define the absorption ratio E; as

Z;:1 4 _ Z;:1 Var(X)) (20)
N N ’

Ei =

which indicates the fraction of the total variance of {X j}j\’: , explained by (or
absorbed by) the first i principal components (e.g. Pukthuanthong and Roll 2009;
Wang et al. 2011; Billio et al. 2012).

Since SV, Var(X;) =N =SV, J,, the ratio Ey is equal to 1, representing
100% of the total variance explained by all components together. Hence, comparing
different absorption ratios Ej, ..., E; to Ey = 1 allows us to assess the contribution
of the significant principal components to the total variance.'? On top of this, we can
use the absorption ratios to analyse the systemic risk in the market. For example, if
E; accounts for a larger part of Ey when the largest eigenvalue /; increases, it
indicates a higher level of systemic risk. This is because it implies that banks in the
credit market now become more unified and strongly coupled, and a shock, thus, can
be quickly and widely propagated throughout the whole system (e.g. Pukthuanthong
and Roll 2009; Billio et al. 2012; Zheng et al. 2012; Meng et al. 2014).

2.2.2.5 Inverse Participation Ratios We use the Inverse Participation Ratio (IPR)
as an indicator of the contribution to the eigenvectors of the correlation matrix
(Plerou et al. 1999, 2002). It is given by

IPR; = i ui(j)*. (21)

The inverse of IPR; indicates the number of elements that contribute significantly to

12 Here k is the largest integer such that /; is larger than the selected bound, e.g. 1"

“max

implied by RMT or
the more “conservative” one A% = max (/4 5@ ).

“max “max’ ““max’ ““max
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u;. More specifically, a lower value for IPR implies that banks contribute more
equally (i.e. a less localized behavior). In contrast, a higher value for IPR shows that
a smaller number of banks dominate in the eigenvector (i.e. a more localized
behavior), signaling the presence of a more hierarchical structure.

In the normalized version of eigenvectors, if Zszl u,-(/')2 =1Wi=12,...N),
the ratio IPR; will have two limiting cases

1
I2IPR; > . ¥i=12,..N. (22)

Notice that IPR; = 4 if and only if u;(j) = \/% for all j = 1,2,...N (i.e. under the

completely homogeneous structure). In contrast, IPR; = 1 if and only if only one
element contributes to the eigenvector u; while all other elements are equal to zero
(i.e. under the most hierarchical structure).

2.2.2.6 Complex Network Approach to Correlation Structure Analysis In order to
identify the backbone of the interdependencies between banks, we use the so-called
Planar Maximally Filtered Graph (PMFG). Broadly speaking, this method allows us
to filter and map the correlation matrix into a sparser graph and retain only the
important correlation parts (e.g. Tumminello et al. 2005; Di Matteo et al. 2010;
Aste et al. 2010; Jiang et al. 2014; Massara et al. 2015). Based on the decompo-
sition of the empirical correlations into different eigenmodes (see Eq. (17)), we can
also construct the PMFG for the different correlation matrices, e.g. the filtered
correlation matrix preserving only the “market” mode (i.e. C™), the filtered
correlation matrix retaining only the “groups” modes (i.e. C¢), or the noise-filtered
correlation  matrix ~ maintaining  all  significant  correlations (i.e.
C"=C"+C8=C—-C").

Indeed, the construction algorithm of the PMFG is similar to the one used for the
so-called Minimal Spanning Tree (MST)-one of the simplest connected graphs
widely used to capture a minimal set of relevant interactions associated with the
strongest correlations (e.g. Mantegna 1999). To construct the MST graph, one can
follow the following steps: First, sorting the pairwise correlations {C;} in
descending order, we obtain a list £ of the N 2 reordered correlation elements. In the
second step, choosing the two banks i and j associated with the first element in L,
we put an edge between banks i and j to the MST graph. In the third step, we select
the next edge in the list £, and then add the corresponding link and nodes to the
graph if it is not connected to the existing nodes and does not form any cycles. We
then repeat the third step until all the correlation elements in the list £ have been
examined.

Notice that since in the third step in the construction of the MST, all new edges
are excluded if they form a cyclic structure, the resulting filtered MST is a tree
graph consisting of N banks with (N — 1) edges. Under such a strong constraint on
an acyclic structure, the presence of significant correlations that have loops will be
definitely discarded (e.g. Tumminello et al. 2005; Di Matteo et al. 2010; Wang
et al. 2018). To provide a more significant and richer structure, Tumminello et al.
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(2005) propose the PMFG in which the resulting connected planar graph retains
(3N — 6) edges and possibly contains 3- and 4- closed cliques (in the third step of
the aforementioned construction algorithm of the MST). In fact, it can be shown that
the resulting MST graph is always a subgraph of the PMFG (e.g. Tumminello et al.
2005; Pozzi et al. 2008).

3 Portfolio Correlations in the Bank-Firm Credit Market of Japan

To begin with, we briefly summarize the main statistical properties of the elements
of the correlation matrices in the three lending layers of the bank-firm credit market
of Japan over the period from 1980 to 2012. The time-varying distributions of Cj; in
the different layers are shown in Fig. 1, while the fundamental statistics including
the mean, median, skewness and kurtosis of Cj; are reported in Fig. 2. Overall, we
observe that the averages of correlations in all layers are relatively small but always
positive. In addition, these distributions exhibit positive skewness and high kurtosis.

In order to investigate whether non-random patterns can be identified in the
correlations between loan portfolios, in each layer, first, we compute the
eigenvalues as well as eigenvectors of the empirical correlation matrix C. After
that, we will compare the distribution of eigenvalues of C with the one predicted by
RMT. Note that in our analysis we also consider the potential effects of extreme
values on the upper limit of eigenvalues by taking into account the other two upper

bounds )Lmax and )max, besides the bound 4, . implied by RMT.
As shown in Fig. 3 and in Fig. 11 (see the “Appendix”), a majority of the
eigenvalues of the empirical correlation matrix lie within the random bulk [4). .

pai]- Compared to this, we find that about additional 10% of the eigenvalues are in
qall

the broader range [1 2% 1 when the more conservative upper bound 1’ =

‘min> max max
max (4., EVBX, A ﬁfzx) is used. Furthermore, we also observe a group of the smallest
eigenvalues deviating from the RMT’s left edge (i.e. less than the lower bound
Z.im)- However, these eigenvalues are not of interest in the present work as their
contribution to the total variance is relatively small.
Moving on to the largest eigenvalues exceeding the RMT’s right edge, typically

from 10 % to 20 % of eigenvalues are always larger than 4, , over the years, while a

smaller fraction is observed when we only count the eigenvalues that exceed /1"”
All taken together, the inspection of the empirical distribution the elgenvalues
suggests that genuine information from the bank-bank correlation matrices and
significant factors driving the correlation dynamics over the years in the three layers
can be extracted from some of the largest eigenvalues.

In the following, for the sake of conciseness, we select the top five largest
eigenvalues of the empirical correlation matrix in each lending layer and then
investigate their temporal evolution over time. As shown in the panels (a), (c), and
(e) of Fig. 4, over the years, these eigenvalues persistently deviate from the random

bulk, and they are always larger than the all three upper bounds 4, . )max and /Imax
To show the contribution of the first five principal components to the total variance

and to infer the systemic risk, we also report the associated absorption ratios defined
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Fig. 1 Temporal evolution of the distributions of Cj; in the three layers. Panels a—c: The distributions of
Cjj in the three layers in the four selected years 1980, 1990, 2000, 2010

in Eq. (20). Overall, to a certain degree, the layer 1 (total loans) and layer 3 (long-
term loans) display a similar trend. As demonstrated in Fig. 4, a couple of regimes in
the bank-firm credit market of Japan can be identified from these two layers. For
example, the temporal evolution shows that almost all top five eigenvalues and the
absorption ratios increase sharply during the period of the lending boom and
Japanese asset price bubble (1986-1991)."* This implies that in this period the top
five significant factors become more important driving forces of the correlation
dynamics, and Japanese banks tend to be more tightly coupled in lending to the non-
financial sector of the economy. Hence, it indicates a higher level of systemic risk in
the credit market during the bubble time in the sense that banks’ lending becomes
more vulnerable to negative shocks (Kritzman et al. 2011; Billio et al. 2012; Meng
et al. 2014). As we can see in the consecutive years after the bubble bursting, all of
these eigenvalues as well as the corresponding absorption ratios substantially

13 See, for example, Hoshi and Kashyap (2000), Posen (2003) and Brunnermeier and Schnabel (2016) for
further discussions on the lending boom and the emergence of asset price bubble in Japan in 1980s.

@ Springer



Portfolio Correlations in the Bank-Firm Credit Market of... 543

e, e )

—median —median —median

0.1 0.1 0.1
02 0.
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010
years years years
(a) mean(C;;), layer 1 (b) mean(C;;), layer 2 (¢) mean( Cij), layer 3
3 5 v e
- ~skewness n - ~skewness A - rkiness
' . 2 R
25 35
3 2
2
25 15
155 e )
1
' 15
1
05 05
05
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010
years years years

(d) skewness(C;;), layer 1 (e) skewness(C;; ), layer 2 (f) skewness(Cij), layer 3

20}~ ~hutosis B0 urosis P ol ross
30
ll 1 \
15 S 2% PN o
2 1of
10 /
15 8
6
. 10
5 4
5 2
1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 ° 1985 1990 1995 2000 2005 2010
years years years
(g) kurtosis(C;;), layer 1 (h) kurtosis(Cj;), layer 2 (i) kurtosis(Cy;), layer 3

Fig. 2 Fundamental statistics of Cj; in the three layers. Panels a—c The averages (together with their 95 %
confidence intervals) and the medians of Cj; in the three layers. Panels d—f The values of the skewness of
C;j in the three layers. Panels g—i The values of the kurtosis of Cj; in the three layers

decline, and even decrease further after the Asian financial crisis (1997-1998). Such
a trend somewhat stops in 2002, when the Bank of Japan (BOJ) implements a
monetary stimulus policy (e.g. Bowman et al. 2015). In addition, as a consequence
of the economic contraction in Japan hit by the recent global crisis (e.g. Kawai and
Takagi 2011), we observe a significant decrease in all of these eigenvalues and
absorption ratios in 2009 in all three layers.

Furthermore, interestingly, compared to the layers 1 and 3, the layer 2 (short-term
loans) possesses a different dynamics: the largest eigenvalues and their contribu-
tions to the total variance show a decline from the Asian financial crisis, suggesting
that from then on Japanese banks tend to be less unified in this layer. Notice that as
shown in panel (b) of Fig. 2, the correlations between banks in the layer 2 also
exhibit a similar dynamics: on average, banks’ short-term loans to firms become less

@ Springer



544 D. T. Luu

! Wlenpical ! Wenpica Wenpiica
—MPlau —MPlaw —MPlaw
12 12
1 , 1
038 0.8,
08, h h 06
05!
04 04
02 02
\ \ \ \ | , | \ H l \ \

"o 0o 2 4 6 8 W0 12 W 1 6 e [PV )

PN
PA)
P(A)

A
(a) Dist. of ,\, layer 1, 1980 (b) Dist. of A, layer 2, 1980 (c) Dist. of A, layer 3, 1980
Mempirical

Werpirical Wempirical
16 —MPlau —MPlaw " —MPlav
12
14 , 12
12|
4 08
< Zos
08 06
06
06
04
0l 04
02 02 02
Il | Il \
0 0
0 2 4 ] 8

10 12 0 1 2 3 4 5 5 15

P(A)

A
(d) Dist. of A, layer 1, 2012 (€) Dist. of A, layer 2, 2012 (D Dist. of )\, layer 3, 2012

Fig. 3 Distributions of the eigenvalues of the correlation matrices, compared with RMT, in the three
layers, in 1980 and 2012. Panels a—c show the distributions of of 4 in 1980, and d—f show the distributions
of A in 2012. In all panels, the red curve represents the spectral distribution explained by the Marchenko-
Pastur law. Note that over the years, we observe that the top five largest eigenvalues of the ernpirical
correlation matrix in each lending layer are always larger than the three upper bounds 4" and /1

(see also Fig. 11 in the “Appendix”)

‘max> ma X

correlated since the aftermath of that crisis. In fact, by a closer inspection from a
network perspective, we find that credit linkages in this lending layer also become
sparser and the average of weights (in absolute terms and in log-scale) substantially
drops since then.

Having discussed the important statistics of the eigenvalues of the correlation
matrix C in each lending layer, we now move on to the analysis of the eigenvectors
of C. Note that the i”* element of an eigenvector u; indicates the contribution of the
bank i to u, thus, showing the role of the bank i in the k" principle component.

To begin with, we compare the distributions of the empirical eigenvector
elements with the theoretical distribution predicted by RMT. According to the
Gaussian prediction of RMT, the elements of each normalized eigenvector will
follow (e.g. Guhr et al. 1998; Laloux et al. 1999; Plerou et al. 2002):

RMT 1 5
P () = N (23)
The detailed comparison results are shown in Fig. 12 in the “Appendix”. Overall,
again we typically find that the distributions of the elements of eigenvectors asso-
ciated with the largest eigenvalues significantly deviate from the Gaussian predic-
tion of RMT. In contrast, the distributions of the elements of eigenvectors associated
with eigenvalues in the random bulk are somewhat more similar to PRMT  This
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Fig. 4 Evolution of the top five largest eigenvalues and absorption ratios for the correlation matrices in
the three layers. All panels on the left show the evolution of the top five largest eigenvalues. These
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conservative bounds ) and ifnza)x The right panels show the five associated absorption ratios (E; to Es)

max

and the absorption ratio of the top ten largest eigenvalues (Ejo) and that of all eigenvalues that exceed
)';mx (ﬂamely Eallsig.facmrs)

observation is in agreement with those reported in analyses of stock returns (e.g.
Laloux et al. 1999; Plerou et al. 1999).

In the next step, based on the eigenvector elements, we investigate the degree of
homogeneity/heterogeneity of banks’ contribution to C. To this end, we compute the
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Inverse Participation Ratios {IPRk}ii1 and then examine the relationship between
these ratios and the corresponding eigenvalues. Large values of IPR; reveal that
only few banks contribute to u;, suggesting the presence of a localized behavior of
banks. In contrast, a small value of IPR; indicates that many banks contribute to uy
together, showing that the factor (if it exists) extracted from that eigenvector has a
pervasive effect in the market.

All panels of Fig. 5 demonstrate a common feature among the three layers: some
smallest eigenvalues have the highest level of IPR and their IPR ratios deviate from

the average of {IPRk}ij]V . This indicates that their associated eigenvectors are more
localized, i.e. only a small group of banks contribute to them. Nevertheless, these
smallest eigenvalues are less than 1 and the contribution of their associated
factors/components to the total variance (recalling also Egs. (12) and (13)) is
actually negligible. Moving on to the IPRs associated with the eigenvalues located
in the center of the eigenvalue distribution, we find that these eigenvalues often have
a relatively low level of IPR. In fact, these features of the smallest eigenvalues and
those located at the center of the distribution are analogous to what universally
found in similar analyses of stock return correlations (e.g. Plerou et al. 1999).
However, interestingly, we do observe a distinct feature for the eigenvector
elements of the largest eigenvalue: over the years, we find that IPR; is typically less

than the average of {IPRk}],zzllv, showing that there are many banks contributing to
the eigenvector associated with the first largest eigenvalue. From an economic
perspective, this indicates a wide effect that the “market” mode has on the banking
system. Such a behavior still emerges in some of the next largest eigenvalues
deviating from the random bulk. This result implies that besides the global common
factor, some “groups” factors also play a certain role in explaining the correlation
dynamics. Furthermore, it also signals the presence of large communities (clusters)
of banks in which the members within each community (cluster) tend to be more
correlated in their lending activities, since they are influenced by some common
pervasive factors.

It should be emphasized that under a more detailed inspection, in each year, we
also observe a more localized behavior in at least one of the eigenvectors associated
with the largest eigenvalues other than A,. In this case, the associated factor only
drives the co-movements among a smaller subset of banks. For instance, as shown
in panels (b), (f) of Fig. 5, in 2012, in the first and the third layers, IPRy is relatively

larger than the average of {IPR; }l,zllv while in the second layer, such a behavior can
be found in the case of IPRg.'* Nevertheless, since we typically observe distinct
localized eigenvectors in different years, it is hard to track the economic imprints
responsible for the emergence of this behavior. We therefore leave this issue for
future research.

Furthermore, if the largest eigenvalue and the next largest ones stand for the
“market” and “groups” modes (i.e. systematic and “non-systematic” factors),
respectively, it would be interesting to examine their effects by comparing the raw

' In Fig. 13 in the “Appendix”, we also show the visualization for a more localized eigenvector and a
more homogenized eigenvector as examples.
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Fig. 5 Inverse Participation Ratios of the eigenvectors of the correlation matrices in the three layers.
Panels a, b show IPR versus / in the layer 1, in 1980 and 2012. Panels ¢, d show IPR versus / in the layer
2, in 1980 and 2012. Panels e, f show IPR versus A in the layer 3, in 1980 and 2012. The red lines stand

for the averages of {IPR;}i="

correlation matrix with the filtered ones. As can be seen in the panels (a) to (f) of
Fig. 6, after excluding the influence of the “market” mode on cross-correlation
matrix C, some significant correlations still remain in the filtered matrix F'C"”. Such
significant correlations are actually mainly driven by the “groups” modes
associated with the next largest eigenvalues. A further decomposition can be
implemented to split the “market” mode-filtered matrix into the correlations driven
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Fig. 6 Correlations and filtered correlations between banks in lending to firms in the three layers, in 2012
as an example. The three upper panels from a to ¢ show the raw correlation matrices. The three panels
from d to f are the filtered correlation matrices, subtracting the influence of the “market” mode. The three
panels from g to i show the filtered correlation matrices, subtracting the effects of the “market” mode as
well as “groups” modes. In each layer, banks are sorted in descending order of eigenvector centrality of
the raw correlation matrix

by the “groups” modes and by noise. The “market” as well as “groups” modes-
filtered matrices FC™¢ in three layers are shown in the panels (g) to (h) of Fig. 6.
We observe that almost all correlations are significantly subtracted in FC™5.

All taken together, the results we have obtained so far demonstrate that the
analysis based on the methods of RMT and PCA can be used to identify important,
significant patterns in the correlations between banks in lending to firms in the other
sectors of the economy. In particular, we have shown that the correlations are
mainly driven by a global common factor influencing the lending of all banks and
some non-systematic factors that only affect the lending of a subset of banks in the
credit market of Japan. To gain a deeper understanding of the structure and the
dynamics of these correlations, we make one more step by combining these methods
with those of complex networks. More specifically, for each year, we use the PMFG
graph to extract the skeleton structure from the different parts of the cross-
correlation matrices, i.e. the part represents the effects of “market” mode (C™), the
part captures the effects of “groups” modes (C¥), the part represents the effects of
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Fig. 7 The interaction structure between banks for C", C$%, and C"# obtained with the PMFG graph, in
layer 1
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Fig. 8 The interaction structure between banks for C", C%, and C™¢ obtained with the PMFG graph, in
layer 2
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(d “market” mode, in 2012 (e) “groups” modes, in 2012 (f) “market” and “groups” modes, in 2012

Fig. 9 The interaction structure between banks for C", C%, and C"™# obtained with the PMFG graph, in
layer 3

both “market” as well as “groups” modes (C"™8 = C™ + C8). We then study the
persistence and changes in the skeleton structure over the years.

For the illustration purpose, in Figs. 7, 8 and 9, we show PMFG graphs extracted
from different parts of the correlation matrices in the two years 1980 and 2012. In
each panel of these Figures, each number corresponds to a bank, and each link (in
green color) indicates the presence of a significant relation between a pair of banks.
The numbers in red color represents the hub banks that have the highest levels of the
degrees in the PMFG graph. Overall, the correlations between banks reveal different
backbone structures in different periods. Indeed, by having a closer inspection over
the years (for example, see Figs. 17 and 18 in the “Appendix”) we often observe
that when the dominance of a group of banks in one period gradually disappears, the
credit market starts to build-up a different structure in the next period in which
another group of banks emerge as the key players in the backbone of the cross-
correlations.
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4 Concluding Remarks

In this paper, we have examined the structure and the dynamics of the correlation
matrices for the banks’ loan portfolios in a large data set of the bank-firm credit
network of Japan during the period from 1980 to 2012. Our results show that only a
subset of the eigenvalues contain genuine information while the rest actually
corresponds to noise or just have a small effect on the correlations between banks in
lending to firms in the other sectors of the economy. This implies that the methods
of RMT and PCA can be used for filtering noise from the empirical correlation
matrices of banks’ loan portfolios.

The dynamics of the largest eigenvalues and the associated absorption ratios
reveal different milestones in the credit market of Japan over the years. More
specifically, there is a dramatic increase in the level of systemic risk during the
period of the Japanese asset price bubble (1986-1991). In contrast, we observe a
significant decrease in all of these eigenvalues and the associated absorption ratios
in 2009, which might be considered as a consequence of the economic contraction
in Japan hit by the global crisis (e.g. Kawai and Takagi 2011).

Based on the eigenvector elements, we have further investigated the localization
and clustering behaviours of banks. One the one hand, we find that in the case of the
eigenvectors corresponding to a group of smallest eigenvalues, there are only few
banks contributing to them. Such a localization behavior is similar to what is often
found in analyses of stock price changes (e.g. Plerou et al. 1999). However, since
these eigenvalues are smaller than 1 and the top largest eigenvalues, the contribution
of their corresponding principal components to the total variance is actually
negligible. On the other hand, we find that the eigenvectors corresponding to the top
largest eigenvalues are typically not very localized. This indicates that latent factors
extracted from them have a more pervasive effect on banks in providing credit to the
firms.

Interestingly, building Planar Maximally Filtered Graphs (PMFG) from the
correlations driven different eigenmodes, we find that the local interaction structure
between banks changes in different periods. More specifically, when the dominance
of a group of banks in one period gradually disappears, the credit market starts to
build-up a different structure in the next period in which another group of banks
become the new hubs in the backbone of the cross-correlations.

Several directions for future research can be suggested from our present work.
First, as we can see in the analysis of eigenvector elements, it is often observed that
in a couple of the eigenvectors corresponding to the top largest eigenvalues, a large
group of banks tend to have a higher degree of correlations among themselves.
Therefore, the clustering behaviours and the community structure of banks in the
correlation matrices in the different lending layers should be studied further (e.g.
Almog et al. 2015; MacMahon and Garlaschelli 2015). Second, it would also be
interesting to examine the effects of the bank characteristics (e.g. bank locations,
bank types, balance sheets’ information) on the formation of such clusters and
communities. Last but not least, another important direction for future research is to
analyse the multilayer architecture of the interdependencies between banks, e.g. to

@ Springer



552 D.T. Luu

consider together various layers including the network of loan portfolio overlaps,
the network of loan portfolio correlations, the correlation network of bank stock
returns, and the physical interbank trading network (e.g. Brunetti et al. 2015;
Montagna and Lux 2017). We believe that this direction will help to gain a deeper
understanding of the complex structure of interactions within the banking system
and between the banking system and the other sectors of the economy.

Appendix

Here we provide additional results for portfolio overlaps and similarities, the
fractions of eigenvalues in different ranges, the distributions as well as the evolution
of the eigenvector elements, and the more detailed correlation network structure
between banks based on the method of PMFG. We also report the main results for
the binary version of the bank-firm credit network of Japan.

Portfolio Overlaps and Similarities

In this part, we briefly summarize the main results for portfolio overlaps and
portfolio similarities between banks. Recall that in each lending layer, each element
of the binary version of the bank-bank projection matrix A®~5 explained in Eq. (3)
implies whether a pair of banks share at least one common borrower. Meanwhile,
each element of the similarity matrix S8~2, which is based on the generalized
Jaccard index defined in Eq. (1), indicates the degree of structural similarity
between two loan portfolios. Figure 10 demonstrates the binary version of the bank-

o 2 4 6 8 10 120 o 20 4 6 8 100 120 o 2 4 6
Banks Banks Banks

(a) Overlaps, layer 1 (b) Overlaps, layer 2 (¢) Overlaps, layer 3

I T B

80 10 120

%

60 8 100 120 20 60 20 0 60 80 100 120
Banks Banks Banks

(d) Similarity, layer 1 (e) Similarity, layer 2 (f) Similarity, layer 3

Fig. 10 Binary overlaps and portfolio similarities between banks in the three layers, in 2012. Banks are
sorted in descending order of the eigenvector centrality of the adjacency matrix obtained from A%~5.
Panels a to ¢ The binary version of the bank-bank projection matrices in the three layers. Each blue point
in these panels indicates a pair of banks have at least one common borrower. Panels d to f The similarity
matrices in the three layers. The colorbar indicates the range [0, 1] for the elements of the similarity
matrices .(Colour figure online)
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Fig. 11 Fractions of eigenvalues in different ranges for the three layers. Panels a, d, g Fractions of
aall

eigenvalues larger than the considered upper bound A . (blue lines) or A, (red lines) for layers 1, 2, 3,
respectively. Panels b, e, h Fractions of eigenvalues lie within [17,,,, 27.] (blue lines) or [17,,, A" ] (red

lines) for layers 1, 2, 3, respectively. Panels ¢, f, i Fractions of eigenvalues less than the lower bound 4,
for layers 1, 2, 3, respectively .(Colour figure online)

bank projection matrices (panels (a) to (c)) and the similarity matrices (panels (d) to
(f)) in the three lending layers, for the data in 2012 as an example. We observe that
many pairs of banks have overlaps in their loan portfolios, especially in the layer 1
and layer 3. Furthermore, the loan portfolios also tend to have a relatively high
degree of similarities.'”

Fractions of Eigenvalues in Different Ranges

Figure 11 shows the fractions of eigenvalues in different ranges, i.e. larger than the
/11

max?

*

max }jmx)), within the interval

from the lower bound to the considered upper bound ([, , A% Jor [A%. . 2%" 1), and

“min’ ““max ‘min’ ““max

less than the lower bound 4, . Although the fractions change over the years, in

or /4" — max (1}

considered upper bound (4 e

15 To illustrate the similarity matrices, for the sake of convenience, we still use the same order of banks
as in the analysis of binary overlaps in Fig. 10a—c, i.e. banks are sorted in descending order of the
eigenvector centrality (e.g. see Bonacich (2007)) of the adjacency matrix obtained from A28, We do not
conclude any nature of the relationship between that order and the elements of the portfolio matrix S5~5.

@ Springer



554 D.T. Luu

general we find that a majority of the eigenvalues lie within the random bulk or are
smaller than the lower bound 4,.. In contrast, only a small subset of the top

eigenvalues persistently exceed the upper bound 4, or /lf,fix over the whole period.
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Fig. 12 Distributions of the eigenvector elements of four selected eigenvalues of C, in 2012, in the three
layers. Panels a to ¢ show the distribution of the eigenvector elements of uy. Panels d to f show the
distribution of the elements of an eigenvector in the random bulk. Panels g to i show the distribution of
the eigenvector elements of uy. Panels j to 1 show the distribution of the eigenvector elements of u;
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Fig. 13 The eigenvectors (sorted in descending order) of 4, and /4, in the three layers, in 2012. Without
loss of generality, we fix the signs of eigenvector elements such that their sum is non-negative. Panels a, b
show the eigenvectors of 4; and A4 in the layer 1. Panels ¢, d show the eigenvectors of A; and A4 in the
layer 2. Panels e, f show the eigenvectors of 4; and /4 in the layer 3

Additional Results for Eigenvector Elements

Distribution of Eigenvector Elements

In Fig. 12, we compare the distributions of the elements of the four selected
eigenvectors of C, i.e. the eigenvector uy associated with the smallest eigenvalue
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Fig. 14 The evolution of the elements of the eigenvectors corresponding to /; (panel (a)), 2, (panel (b)),
A3 (panel (¢)), and 44 (panel (d)), for 115 banks activating in all years, in the layer 1

A, the eigenvector ugyr corresponding to a representative eigenvalue located in the
random bulk, the eigenvector uy associated with /4, and the eigenvector u;
corresponding to the largest eigenvalue 4;. Note that for the illustration purpose, in
this Figure we re-normalize the eigenvector elements such that EJN:I w(j)> =N
(Vi). We can see that uy has only few significant elements, revealing that this
eigenvector is very localized. In addition, the distributions of the elements of #; and
uy are different from the distribution of the elements of ugy7.

Localization Behavior

As two examples, with one for a more localized behavior of eigenvector elements
and another for a less localized behavior of eigenvector elements, Fig. 13 shows the
entries of u; and u4 in descending order. We can see that in the first and third layers,
the homogeneity degree is much stronger in u; than in u4. However, it should be
emphasized that this does not implies that all banks contribute equally to the factor
extracted from 4; and u;. Indeed, as shown in Fig. 13a, ¢ and e, we still observe a
certain level of heterogeneity among banks.
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Fig. 15 The evolution of the elements of the eigenvectors corresponding to Z; (panel (a)), 4, (panel (b)),
43 (panel (c)), and 44 (panel (d)), for 115 banks activating in all years, in the layer 2

Evolution of Eigenvector Elements

From Figs. 14, 15, 16, we show the evolution of the eigenvectors (in absolute
terms) associated with the top four largest eigenvalues in the three lending layers.
Here we focus on 115 banks that activate in the bank-firm credit market of Japan in
all years from 1980 to 2012. As we can see, some banks correspond to a higher level
eigenvector elements in certain sub-periods, but overall, in almost all years, the
distribution ranges of these elements are not very wide. This result is consistent with
those obtained from the analysis of IPR.
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Fig. 16 The evolution of the elements of the eigenvectors corresponding to 4; (panel (a)), 4, (panel (b)),
A3 (panel (c)), and 44 (panel (d)), for 115 banks activating in all years, in the layer 3

Additional Results for PMFG Graphs Over the Years

In the following we provide additional results for the evolution of PMFG graphs
based on the matrix C"™# = (C™ 4 C#), which captures the effects of significant
factors (i.e. the global common factor as well as the “groups” factors) on the
correlations between banks in lending to firms. Again, we focus on 115 banks
activating in the bank-firm credit market of Japan in all the years from 1980 to 2012.
For the sake of conciseness, here we only show the PMFG graphs in the layer 1 (the
total lending layer).'® In each panel of Figs. 17 and 18, the green links indicate
significant pairwise correlations retained in the PMFG graph. The numbers
represent banks, and those in red color are the banks that have highest degrees in the
PMEFG network. We can see that the correlation structure between banks changes in
different periods. In particular, when the dominant role of a group of banks in one
period gradually vanishes, the credit market starts to build-up a different structure in
the next period in which another group of banks will become the new hubs in the
backbone of the cross-correlations.

16 However, the results for the other layers are available from the author upon request.
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(a) “market” and “groups” modes, in 1980 (b) “market” and “groups” modes, in 1981 (c) “market” and “groups” modes, in 1982

(m) “market” and “groups” modes, in 1992 (n) “market” and “groups” modes, in 1993 (0) “market” and “groups” modes, in 1994

(p) “market” and “groups” modes, in 1995 (q) “market” and “groups” modes, in 1996 (r) “market” and “groups” modes, in 1997
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<«Fig. 17 The interaction structure between banks for the correlation matrix C"$ obtained with the PMFG
graph, in layer 1, from 1980 to 1997

(m) “market” and “groups” modes, in 2010 (n) “market” and “groups” modes, in 2011 (0) “market” and “groups” modes, in 2012

Fig. 18 The interaction structure between banks for the correlation matrix C"# obtained with the PMFG
graph, in layer 1, from 1998 to 2012
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Fig. 19 Binary data: Distribution of eigenvalues of C*™, compared with RMT, in the three layers, in 1980
and 2012. Panels a—c show the distributions of of 4 in 1980, and panels d—f show the distributions of of 4
in 2012. In all panels, the red curve represents the spectral distribution explained by the Marchenko-
Pastur law .(Colour figure online)

Binary Analysis

Using the similar methods, we can also analyse the binary version of the bank-firm

credit relationships. Interestingly, in general, our results suggest that this version

also contains genuine information about the structure and dynamics of the cross-
correlation matrix of banks’ loan portfolios.

Recalling that under the binary case, for each pair (i, j), we have

ali =1 if bank ilends to firmj,
e | (24)
a;; =0  otherwise.

We then define the matrix X, = {X; ,/}hin} NxNy with each element is given by

bf bf
a;; — <ai.'>
Xijbin = Jibfj7 (25)
G(aq)

where for each bank i, (af’-g ) and a(al-’f ) are the average and the standard deviation of

i
a% over all N firms, respectively. The correlation matrix C*™ of the binary data is
then defined as

. i 1
Cbm = {Ct}']jm}NxN = N_FXbinXZ;W (26)

with X Zn is the transposition matrix of X'p;,.
For the sake of conciseness, in the following we will only summarize the main
results for the analysis of the binary data. First, we find that a group of largest
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Fig. 20 Binary data: Evolution of the top 5 largest eigenvalues and the associated absorption ratios for
Cb" in the three layers. The panels on the left show the evolution of the top 5 largest eigenvalues. These
eigenvalues are always larger than the upper bound /2 _implied by RMT. The three panels on the right

‘max

show their associated absorption ratios as well as the absorption ratio of the top 10 largest eigenvalues

eigenvalues (typically from 10 % to 15 %) always deviate from the random bulk
predicted by RMT (see Fig. 19). In addition, we often observe that more than half of
the eigenvalues lie between the two RMT bounds A4, and A .

Compared to the weighted data, we also find a similar evolution dynamics for the
top largest eigenvalues and their absorption ratios, although in general the factors

extracted from these eigenvalues contribute slightly less to the total variance in the
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binary data than in the weighted data (e.g. see Fig. 20, in comparison to Fig. 4 in the

main text).

Furthermore, as demonstrated in Fig. 21, the localization behavior still emerges
in the eigenvectors corresponding to the smallest eigenvalues, as their IPR ratios are
often much higher than the average of IPR. Besides this, again many banks
contribute to the eigenvectors corresponding to the top largest eigenvalues,
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signalling that the “market” mode as well as some of the “groups” modes extracted
from the binary version of the credit network also have a wide effect.
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