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Abstract
The recent global financial crisis has shown portfolio correlations between agents as

one of the major channels of risk contagion and amplification. In this work, we

analyse the structure and dynamics of the cross-correlation matrix of banks’ loan

portfolios in the yearly bank-firm credit network of Japan during the period from

1980 to 2012. Using the methods of Random Matrix Theory (RMT), Principal

Component Analysis and complex networks, we aim to detect non-random patterns

in the empirical cross-correlations as well as to identify different states of such

correlations over time. Our findings suggest that although a majority of portfolio

correlations between banks in lending relations to firms are contributed by noise, the

top largest eigenvalues always deviate from the random bulk explained by RMT,

indicating the presence of non-random patterns governing the correlation dynamics.

In particular, we show that this dynamics is mainly driven by a global common

factor and a couple of ‘‘groups’’ factors. Furthermore, different states in the credit

market can be identified based on the evolution of eigenvalues and associated

eigenvectors. For example, during the asset price bubble period in Japan from 1986

to 1991, we find that banks’ loan portfolios tend to be more correlated, showing a

significant increase in the level of systemic risk in the credit market. In addition,

building Planar Maximally Filtered Graphs from the correlations of different

eigenmodes, notably, we observe that the local interaction structure between banks

changes in different periods. Typically, when the dominance of a group of banks in

one period gradually vanishes, the credit market starts to build-up a different

structure in the next period in which another group of banks will become the main

actors in the backbone of the cross-correlations.

Keywords Bank lending � Portfolio correlations � Systemic risk � Random
matrix theory � Principal component analysis � Correlation-based filtered

methods
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1 Introduction

Over the last few years, catastrophic cascade of failures in interdependent systems

has received a remarkable attention in network science. Findings in this line of

research show that the robustness of a system crucially depends on both its internal

structure as well as its pattern of relations to other interdependent ones (e.g. Smart

et al. 2008; Buldyrev et al. 2010; Huang et al. 2011; Brummitt et al. 2012; Reis

et al. 2014; Liu et al. 2016; Bianconi 2018).

In the banking system, the recent global financial turmoil has demonstrated that

besides direct credit linkages1, indirect relations between banks are also the relevant

channels of risk contagion and amplification. For instance, overlapping portfolios

due to common asset holdings have been widely considered as one of the major

sources of risk contagion (e.g. May and Arinaminpathy 2010; Beale et al. 2011;

Huang et al. 2013; Caccioli et al. 2014, 2015; Greenwood et al. 2015; Lillo and

Pirino 2015; Levy-Carciente et al. 2015; Corsi et al. 2016). Analogously, credit

relationships between banks and firms have been suggested as another important

channel of the propagation of distress between the financial system and the real

sector of the economy (e.g. Aoyama et al. 2013; Aoyama 2014; de Castro Miranda

and Tabak 2013; Lux 2016). Accordingly, since banks can be indirectly linked

through a set of joint exposures to firms (i.e. due to loan portfolio overlaps), the

distress originating from a group of banks or firms can be propagated through the

whole system. For these reasons, a number of empirical studies have been devoted

to uncovering the complexity of the topological structure of bank-firm credit

markets world-wide (e.g. Fujiwara et al. 2009; De Masi et al. 2011; De Masi and

Gallegati 2012; Fricke 2016; Marotta et al. 2015, 2016; Fricke and Roukny 2020;

Luu and Lux 2018, 2019; Lux 2020).

It is worthwhile to emphasize that besides portfolio overlaps, portfolio

correlations also play a crucial role in risk management and have been seen as

one of the major sources of financial instability. From a perspective of bankers, the

understanding of the structure of correlations (or co-movements) between banks in

providing loans to non-financial firms as well as the identification of factors

governing such correlations are essential for managing credit risk (e.g. Bülbül and

Lambert 2012; Fenech et al. 2015). The systematic factors driving the correlations

represent market risks that cannot be diversified a way. In contrast, idiosyncratic

risks associated with non-systematic components can be diversifiable as the

dimension of the system grows (e.g. Chamberlain and Rothschild 1983). Further-

more, from a macroeconomic perspective, in a banking system where bank

portfolios are highly unified or coupled, a common shock might trigger the entire

system to follow the similar adjustment strategies. Even if the original shock is

relatively small, it would result in a significant change in the credit supply to the

other sectors of the economy, which in turn might lead to a large impact on

macroeconomic fluctuations (e.g. Kiyotaki and Moore 1997; Khwaja and Mian

2008; Gertler and Kiyotaki 2010; Jorda et al. 2013; Bassett et al. 2014;

1 See, for example, Allen and Gale (2000), Nier et al. (2007), Haldane and May (2011), Acemoglu et al.

(2015), among others.
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Brunnermeier and Schnabel 2016; Cingano et al. 2016; Gambetti and Musso 2017;

Bentolila et al. 2018; Azariadis 2018; Alfaro et al. 2018; Amiti and Weinstein

2018). However, so far, the structure and the key drivers of correlations between

banks in lending to firms still remain a puzzling mystery.

This study, therefore, aims to contribute to a deeper understanding of the

structure and the dynamics of the cross-correlation matrix of banks’ loan portfolios.

In particular, our main objectives are to answer the following research questions that

have not been intensively studied in related literature: (i) how to detect non-random

patterns and latent factors (if they exist) in the empirical cross-correlation matrix of

banks’ loan portfolios?; and (ii) how to identify different states in the correlation

dynamics over time?; and (iii) how to quantify systemic risk from loan portfolio

correlations in the credit markets?.

To guide our analysis, we employ the methods of Random Matrix Theory (RMT)

and Principal Component Analysis (PCA). The methods of RMT have been widely

used to filter noise as well as to extract latent information embedded in empirical

correlations for time series data on stock prices/returns (e.g. Laloux et al.

1999, 2000; Plerou et al. 2000, 2002; Kim and Jeong 2005; Bouchaud and Potters

2009; Wang et al. 2011; Meng et al. 2014; Jiang et al. 2014; Uechi et al. 2015;

MacMahon and Garlaschelli 2015), on financial transactions (e.g. Kyriakopoulos

et al. 2009; Fricke 2012), etc. Empirical evidence also shows that RMT is a useful

tool to enhance the Markowitz mean-variance optimization procedure (e.g. Plerou

et al. 2000; Laloux et al. 2000; Sharifi et al. 2004; Daly et al. 2008; Bai et al. 2009;

Quintana et al. 2015). Recently, RMT has been used to study synchronizations

between different macroeconomic indicators (e.g. Ormerod and Mounfield 2000;

Ormerod 2008; Iyetomi et al. 2011; Yoshikawa et al. 2015; Lux et al. 2020).

Indeed, the applications of RMT to the spectral analysis of various types of complex

networks have also received considerable attention in related literature (Bandy-

opadhyay and Jalan 2007; de Carvalho et al. 2009; Potestio et al. 2009; Jalan 2009;

Tran et al. 2013; Dumitriu and Johnson 2016), but to the best of our knowledge

none of them has studied the spectral properties of cross-correlations between nodes

in one set in the formation of links or the strength of interactions with nodes in

another set (e.g. like the correlations between banks in providing loans to firms in

the other sectors of the economy as in the present study).

Practically, in this study, we will, first, compare the eigenvalue spectrum of the

empirical cross-correlation matrix with the theoretical one implied by RMT.

Second, focusing on a group of the largest eigenvalues significantly deviating from

random bulk predicted by RMT, we extract latent information and infer the

significant factors governing the correlation dynamics. This approach allows us to

have a proper selection of the strongest factors containing genuine information

about the properties of the observed data that are different from what would be

expected under a null model. In the next step, in order to identify different states in

the credit market, we examine the evolution of the largest eigenvalues and their

corresponding eigenvectors over time. In addition, building Planar Maximally

Filtered Graphs (PMFG) (Tumminello et al. 2005; Pozzi et al. 2008; Di Matteo

et al. 2010) from the correlation structure for different eigenmodes, we also analyse

the network structure of correlations and investigate how this network changes in
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different periods. Furthermore, to infer systemic risk arising from credit extensions

from banks to firms, we measure the absorption ratios that capture the fraction of the

total variance explained by a finite number of the first principal components

(Kritzman et al. 2011; Billio et al. 2012; Zheng et al. 2012; Lux et al. 2020). It

should be emphasized that the procedure used in the present paper can be employed

to filter noise signals and extract significant patterns out of different large bipartite

networks including those in economics and finance such as bank-borrower credit

networks, investor-asset networks.

Perhaps, among different studies on the bank-firm credit relations, the work of

Fujiwara et al. (2009) is closest to our study. Based on eigenvalue analysis,

Fujiwara et al. (2009) measure the fragility scores in terms of dynamical

propagation of influences from lenders to borrowers and vice versa. However,

there exist important distinctions between ours and theirs. To name a few, first, it

should be emphasized that the main difference to the present paper is, instead of

analysing the correlations between banks in lending to firms, Fujiwara et al. (2009)

define a new weighted matrix P capturing the accumulated interactions between the

two sectors. Hence, their approach cannot answer whether the loan portfolios of

banks tend to be more/less correlated in the credit market in different periods.

Furthermore, in such a setting, the largest eigenvalue is always equal to 1, and few

top largest eigenvalues (i.e. the second and the next largest eigenvalues of P) are
important in the propagation of influences from banks to firms and vice versa over a

finite time-scale.2 Different from their approach, we focus on the largest eigenvalues

that significantly deviate from the spectral distribution explained by an appropriate

null model (e.g. the distribution given by the so-called Marchenko-Pastur law

(Marčenko and Pastur 1967; Tao and Vu 2012)).3 Such eigenvalues and the

corresponding eigenvectors are analysed as they might contain the genuine

information of particular economic mechanisms responsible for an unexpectedly

high level of correlations between banks in lending to the non-financial sector of the

economy.

The remainder of this paper is structured as follows. Section 2 briefly describes

the data and methods used to analyse portfolio correlations. Section 3 reports the

main findings for the weighted version of the bank-firm credit network of Japan.

Discussions and concluding remarks are in Sect. 4. In the ‘‘Appendix’’, we provide

additional results for portfolio overlaps and similarities, the fractions of eigenvalues

in different ranges, the distributions as well as the evolution of the eigenvector

2 In their study, briefly, from the matrix of weightsWbf representing loans from banks to firms defined in

the next part of the present study, they obtain a matrix A that stands for relative amounts of lending by

banks to firms and a matrix B that stands for the relative amount of borrowing by firms from banks. Then

the matrix P ¼ AB will capture the accumulated reflections and influences between banks and firms.

Assume that kðPÞ1 � kðPÞ2 � :::� kðPÞN are the eigenvalues of P, it can be shown that kðPÞ1 ¼ 1. Therefore,

over a finite time-scale, only few next largest eigenvalues kðPÞ2 ... are important in the dynamics of the

propagation of influences from banks to firms and vice versa. For more details, we refer readers to the

study of Fujiwara et al. (2009).
3 Note that to deal with potential effects of the presence of extreme loan values on the largest

eigenvalues, we also consider the other upper bounds obtained from heavy-tailed random matrices (see

Sect. 2.2.2).

123

532 D. T. Luu



elements, and the more detailed correlation network structure between banks based

on the method of PMFG. We also summarize the main results for the binary version

of the credit network.

2 Data and Methods

2.1 Data

We use a yearly data set containing credit relations between banks and large firms in

Japan over the period from 1980 to 2012. The data were obtained from the firms’

financial statements and the survey by Nikkei Media Marketing, Inc. in Tokyo

(commercially available).4 This covers the most critical time and events over the

past few decades in the Japanese economy, e.g. the bubble period from 1986 to

1991, the burst of the bubble economy and the stagnation time in the subsequent

years (the so called ‘‘lost decade’’) (e.g. see Hoshi and Kashyap 2000; Brunnermeier

and Schnabel 2016; Himino 2021), the recent global financial crisis.5

Based on the maturity of loans, we separately consider three layers of lending

relationships from banks to firms, i.e. total lending relationships (namely layer 1), short-

term lending relationships (namely layer 2), and long-term lending relationships (namely

layer 3). Note that the layer 2 captures all loan contracts lasting less than or equal to one

year. In contrast, the layer 3 only consists of loan contracts that exceed one year.

For the sake of conciseness, we exclude other financial institutions including

insurance companies and a small number of aggregated banks.6 In addition, it

should be emphasized that for each maturity-based layer, we focus on the aggregate

amount of loans from each bank to each firm at the end of the fiscal year, meaning

that we ignore contract-specific frequencies (i.e. separate times that a bank lends to

a firm during the fiscal year).

2.2 Methods

2.2.1 Representation of a Bank-Firm Network, Portfolio Overlaps and Projection
Matrices

We shall start with some basic notations and definitions of a bank-firm credit

network. Assume that in each year we have a weighted bipartite network consisting

of N banks lending to NF firms. Let Wbf ¼ fwbf
ij gNxNF

be the matrix of weights (i

runs from 1 to N standing for N banks, and j runs from 1 to NF representing NF

4 For a more detailed explanation about the data set, we refer readers to, for example, Fujiwara et al.

(2009), Marotta et al. (2015), Marotta et al. (2016).
5 Although additional analysis for more recent data could provide more insights on the evolution of the

portfolio correlations among banks in lending to non-financial firms, we leave it for future study once data

is available.
6 Each aggregated bank consists of a group of small/local banks. However, the main conclusions do not

change very much when we include insurance companies and aggregated banks in the data, since the

market shares of these companies and banks are relatively small.
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firms). Each elementwbf
ij is non-negative and implies themonetary amount of loan7 that

bank i lends to firm j. Notice that from the matrixWbf , we obtain the adjacency matrix

Abf ¼ fabfij gNxNF
, where abfij ¼ 1 ifwbf

ij [ 0, and zero otherwise. This adjacency matrix

is associated with the binary version of the bank-firm credit network.

From a perspective of network theory, one can measure the structural similarity

between banks’ loan portfolios based on various measures of the similarity between

two vectors (e.g. Cai et al. 2018; Pool et al. 2015; Alvarez-Socorro et al. 2015;

Fricke 2016; Luu and Lux 2018, 2019). Briefly, for each pair of nodes in the same

set in the bipartite network, the similarity between them is based on the similarity of

their neighborhoods. For instance, in the weighted version, we can, respectively,

define the similarity matrix of banks and that of firms based on the generalized

Jaccard index as

SB�B
ij ¼

PNF

k¼1 min wbf
ik ;w

bf
jk

� �

PNF

k¼1 max wbf
ik ;w

bf
jk

� � ; ð81� i 6¼ j�NÞ; ð1Þ

and

SF�F
ij ¼

PN
k¼1 min wbf

ki ;w
bf
kj

� �

PN
k¼1 max wbf

ki ;w
bf
kj

� � ; ð81� i 6¼ j�NFÞ: ð2Þ

With non-negative weights in the bank-firm credit network, we have that

0�
PNF

k¼1 minðwbf
ik ;w

bf
jk Þ�

PNF

k¼1 maxðwbf
ik ;w

bf
jk Þ and 0�

PN
k¼1 minðwbf

ki ;w
bf
kj Þ�

PN
k¼1 maxðwbf

ki ;w
bf
kj Þ. Furthermore, since in the present study we focus on banks that

lend to at least one firm and firms that borrow from at least one bank, the two

denominators
PNF

k¼1 maxðwbf
ik ;w

bf
jk Þ and

PN
k¼1 maxðwbf

ki ;w
bf
kj Þ are strictly positive.

Therefore, SB�B
ij and SF�F

ij range in [0, 1].

Notice that SB�B
ij ¼ 1 if and only if wbf

ik ¼ wbf
jk for all firms k. Furthermore,

SB�B
ij ¼ 0 if and only if the portfolios of the two banks i and j have no overlaps at all.

Therefore, each element of the matrix SB�B demonstrates the degree of similarity

between the lending portfolios of a pair of banks. In a similar vein, each entry of the

matrix SF�F indicates the degree of similarity between the borrowing portfolios of

two firms.

Furthermore, the one-mode projection matrices obtained from the original bank-

firm credit network also indicate the lending portfolio overlaps between banks or the

borrowing portfolio overlaps between firms (e.g. Luu and Lux 2018, 2019). More

specifically, defining

AB�B ¼ Abf Afb; ð3Þ

we then obtain a matrix in which each off-diagonal element is the number of firms

7 Depending on the considered layer, it can be the long-term loan, the short-term loan, or the total loan.
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that a pair of banks co-finance. In a similar way, each off-diagonal element of the

AF�F matrix, with

AF�F ¼ AfbAbf ; ð4Þ

indicates the number of common lenders that a pair of firms have.

A major disadvantage of the network projection approach is that the information

about the monetary value of loans from banks to firms is partially or completely

discarded (e.g. see Lehmann et al. 2008; Luu and Lux 2018). In addition, often

sparser information about the original bipartite structure of credit links is projected

into denser one-mode networks. More importantly, from an economic perspective,

the network-based analysis of the two projection matrices (and the similarity

matrices) alone cannot help to identify which pairs of banks tend to be more/less

correlated in lending to firms. This provides the motivation for introducing an

appropriate procedure used to measure and analyse the loan portfolio correlations

between banks, which shall be briefly explained in the following.8

2.2.2 Analysis of Portfolio Correlations

2.2.2.1 Correlation Matrix We now introduce the method used to measure the

empirical cross-correlation matrix of banks’ loan portfolios. Here we focus on the

weighted version of bank-firm credit relationships. Additional explanations and

results for the binary version (i.e. based on the elements of the matrix

Abf ¼ fabfij gNxNF
) are provided in the ‘‘Appendix’’.

Similar to the procedure often implemented in the analysis of stock returns/

prices, for wbf
i;j [ 0, the normalized amount of the loan (in log-scale) from bank i to

firm j is defined as

Xij ¼
ln wbf

ij

� �
� hln wbf

ij

� �
i

rij
; ð5Þ

where for each bank i, hlnðwbf
ij Þi and rij are the average and the standard deviation of

lnðwbf
ij Þ over all NF firms, respectively. As a special case, we let Xij ¼ 0 if wbf

ij ¼ 0.9

Denote X ¼ fXijgNxNF
, the cross-correlation matrix of N banks is then defined as

8 Note that although in the present work we focus on loan portfolio correlations between banks, we also

summarize the main results for loan portfolio overlaps and similarities in the ‘‘Appendix’’.
9 It should be emphasized that in general, almost all main conclusions from this study still hold if we

define

Xij ¼
ln ~wbf

ij

� �
� hln ~wbf

ij

� �
i

~rij
;

with ~wbf
ij ¼ ðwbf

ij þ 1Þ. One can also use the original weight wbf
ij instead of the loan amount in log-scale to

define the normalized quantity Xij. Although for the sake of brevity the results for these alternative

definitions of Xij are not reported here, they available from the author upon request.
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C ¼ fCijgNxN ¼ 1

NF
XXT ; ð6Þ

where XT is the transposition of X . Note that �1�Cij � 1 (for 1� i\j�N) and

Cii ¼ 1 (for all i from 1 to N). From an economic point of view, the value of Cij

indicates the correlation between bank i and bank j in lending to all firms. In

particular, Cij [ 0 ð\0Þ implies that two banks i and j are positively (negatively)

correlated, while Cij ¼ 0 demonstrates that there is no correlation between the two

banks at all.

Note that with the particular application to the bank-firm credit network of Japan

in the present work, the ratio NF

N is larger than 1, since the number of banks is always

less than that of firms over the sample period. However, if the number of borrowers

was less than the number of lenders, the estimated covariance matrix between banks

in lending to firms would become singular.10 Similarly, in analyses of economic and

financial time series, when the number of observations over a relatively short period

is smaller than the number of the indices (e.g. those represent different stock prices

or macroeconomic indicators), such a singularity problem also emerges. In this case,

the estimated covariance matrix will have the singular Wishart distribution (e.g. see

Srivastava 2003; Bouchaud et al. 2007; Bodnar et al. 2013, 2014). As a an

important consequence in portfolio analysis, if the estimated covariance matrix is

singular, the matrix inversion operation used to estimate the portfolio weights is not

possible. To tackle this problem, several transformation methods with practical

applications to portfolio theory haven been proposed (c.f. Pappas and Kaimakamis

2010; Bodnar et al. 2016, 2017, 2018, 2019, among others for a more detailed

discussion on different transformation methods and their practical relevance).

2.2.2.2 Random Matrix Theory and Selection of Factors We shall now introduce

the relevant results of RMT that will be used to analyse the cross-correlations matrix

defined in Eq. (6). Suppose that fkigi¼N
i¼1 are the eigenvalues of a correlation matrix

C and fCðkÞ is the probability density function of the eigenvalues of C. According to

RMT (e.g. Marčenko and Pastur 1967; Tao and Vu 2012), if the elements of

X �iidNð0; r2Þ, then in the limit N;NF ! 1 with Q ¼ NF

N ! a (a is constant and

a[ 1), the eigenvalue distribution fCðkÞ is given by the Marchenko-Pastur law

fCðkÞ ¼
Q

2pr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�max � kÞðk� k�minÞ

p

k
if k�min � k� k�max;

0 elsewhere.

8
<

:
ð7Þ

In (7), r2 is the variance of the elements of X (r2 is equal to 1 in our case), and k�max
and k�min are the upper and lower bounds of eigenvalues predicted by RMT,

respectively. With unit variance, these two bounds are given by

10 This could also happen in other bipartite financial networks such as bank-asset or investor-asset

networks. In particular, when the number of assets is smaller than the number of banks or investors, it also

leads to the singularity problem in the bank-bank covariance matrix or the investor-investor covariance

matrix.
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k�max ¼ ð1þ
ffiffiffiffiffiffiffiffiffi
1=Q

p
Þ2 and k�min ¼ ð1�

ffiffiffiffiffiffiffiffiffi
1=Q

p
Þ2: ð8Þ

Generally speaking, if some of the eigenvalues of the empirical cross-correlation

matrix are beyond the interval ½k�min; k
�
max�, they carry genuine information about the

correlations between banks (Plerou et al. 2000, 2002). Nevertheless, it should be

emphasized that the presence of extreme values in the elements of X (e.g. when X is

a heavy-tailed random matrix) might cause the largest eigenvalues to exceed the

upper bound implied by the Marchenko-Pastur law (e.g. Biroli et al. 2007; Bou-

chaud and Potters 2009). In this case, some eigenvalues that are larger than k�max
might actually contain no genuine information.

As shown in Biroli et al. (2007), whenever the largest entry of X (in absolute

terms), S, satisfies that S�ðN:NFÞ
1
4, the upper limit for the largest eigenvalue still

remains stuck at k�max. However, if S[ ðN:NFÞ
1
4, a new upper bound kð1Þmax will

emerge:

kð1Þmax ¼
1

Q
þ S2

NF

� �

1þ NF

S2

� �

: ð9Þ

Furthermore, when the elements of X have power-law tails with exponent l, then
the large values among fXijg will dominate the top largest eigenvalues. The new

upper bound kð2Þmax now depends on l as

kð2Þmax ¼ N4=l�1Q2=l�1: ð10Þ

Hence, in the present study, to capture the potential effects of extreme values of

loans from banks to firms, we also compare the top largest eigenvalues with these

different bounds. As shown later, in our analysis the top five largest eigenvalues of

the empirical correlation matrix C are always larger than all three upper bounds

k�max, k
ð1Þ
max and kð2Þmax.

2.2.2.3 Decomposition of Correlation Matrix We now introduce one of the most

important applications of RMT, i.e. how to extract latent information from the

largest eigenvalues deviating from the random bulk. Without loss of generality, we

assume that k1 � k2 � :::� kN are the eigenvalues of the empirical correlation

matrix C, and u1; u2; . . .; uN are their corresponding eigenvectors. The correlation

matrix C can be diagonalized as

C ¼ UKUT ; ð11Þ

with K ¼ diagfk1; . . .; kNg, and fUgNxN is an orthonormal matrix, whose ith column

is the normalized eigenvector ui corresponding to the eigenvalue ki. As a result, for
each ki we have

ki ¼ uTi Cui ¼ uTi CovðXÞui ¼ VarðuTi XÞ: ð12Þ

Let yi ¼ uTi X , we obtain the following property for the total variance of fX igNi¼1:
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XN

i¼1

VarðX iÞ ¼ N ¼
XN

i¼1

ki ¼
XN

i¼1

VarðyiÞ: ð13Þ

From Eqs. (12) and (13), we can easily show that the ratio ki
N indicates the percentage

of the total variance
PN

i¼1 VarðX iÞ explained by the principal component yi ¼ uTi X
(Jolliffe 1986; Wang et al. 2011; Gewers et al. 2018).

In addition, since Eq. (11) can be re-written as

C ¼
XN

i¼1

kiuiu
T
i ; ð14Þ

we shall now decompose the empirical correlation C into different parts capturing

the effects of different factors. First, if the largest eigenvalue k1 deviates signifi-

cantly from the random bulk, the so-called ‘‘market’’ mode, i.e. the global common

factor (or the systematic factor) that influences the lending of all banks in the credit

market, can be extracted from this eigenvalue and its corresponding eigenvector

(Plerou et al. 2000, 2002). Its effect on C is represented by

Cm ¼ k1u1u
T
1 ; ð15Þ

and the rest of C is

FCm ¼ C � Cm; ð16Þ

which is the filtered matrix after the market-wide effect is subtracted.

Next, genuine information can be extracted from the next largest eigenvalues if

they are still larger than the selected upper bound (e.g. the bound k�max implied by

RMT or the more ‘‘conservative’’ one given by kallmax ¼ maxðk�max; k
ð1Þ
max; k

ð2Þ
maxÞ). Such

information may be associated with the level of sub-groups (namely the ‘‘groups’’

modes) (e.g. Kim and Jeong 2005; Shen and Zheng 2009; Jiang and Zheng 2012). In

that case, following Kim and Jeong (2005), we can further decompose C into three

parts Cm, Cg, and Cr as

C ¼ Cm þ Cg þ Cr; ð17Þ

where Cg and Cr indicate the effect of the ‘‘groups’’ modes and the rest of C,
respectively. From an economic perspective, the matrix Cg captures the influence of

non-systematic components (e.g. sectoral factors, regional factors, etc.) that only

affect the lending of a subset of banks in the credit market. The residual represented

by the matrix Cr is refereed to as the random noise part.11

11 Indeed, the interpretations for different factors used in the decomposition of the matrix C are

somewhat similar to those used for the dynamic factors models, which have also become one of the

important dimension reduction techniques in macro-econometrics as well as financial econometrics (e.g.

Forni et al. 2000; Forni and Lippi 2001; Barigozzi et al. 2014; Forni et al. 2015; Matteo and Marc

2016b, a; Forni et al. 2017).
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Mathematically,

Cg ¼
XNg

i¼2

kiuiu
T
i ; ð18Þ

and the rest

Cr ¼
XN

i¼Ngþ1

kiuiu
T
i ; ð19Þ

where Ng is determined based on the number of the next largest eigenvalues larger

than the selected upper bound (see also Kim and Jeong (2005), MacMahon and

Garlaschelli (2015) for further discussions about the selection of Ng). From

Eqs. (17) to (19), we can define FCm;g ¼ ðC � Cm � CgÞ ¼ Cr as the filtered matrix,

in which the effects of the ‘‘market’’ and ‘‘groups’’ modes are subtracted.

2.2.2.4 Absorption Ratios and Systemic Risk From Eq. (13), for each

i ¼ 1; 2; . . .N, we define the absorption ratio Ei as

Ei ¼
Pi

j¼1 kj
N

¼
Pi

j¼1 VarðX jÞ
N

; ð20Þ

which indicates the fraction of the total variance of fX jgNj¼1 explained by (or

absorbed by) the first i principal components (e.g. Pukthuanthong and Roll 2009;

Wang et al. 2011; Billio et al. 2012).

Since
PN

i¼1 VarðX iÞ ¼ N ¼
PN

i¼1 ki, the ratio EN is equal to 1, representing

100% of the total variance explained by all components together. Hence, comparing

different absorption ratios E1; . . .;Ek to EN ¼ 1 allows us to assess the contribution

of the significant principal components to the total variance.12 On top of this, we can

use the absorption ratios to analyse the systemic risk in the market. For example, if

E1 accounts for a larger part of EN when the largest eigenvalue k1 increases, it

indicates a higher level of systemic risk. This is because it implies that banks in the

credit market now become more unified and strongly coupled, and a shock, thus, can

be quickly and widely propagated throughout the whole system (e.g. Pukthuanthong

and Roll 2009; Billio et al. 2012; Zheng et al. 2012; Meng et al. 2014).

2.2.2.5 Inverse Participation Ratios We use the Inverse Participation Ratio (IPR)

as an indicator of the contribution to the eigenvectors of the correlation matrix

(Plerou et al. 1999, 2002). It is given by

IPRi ¼
XN

j¼1

uiðjÞ4: ð21Þ

The inverse of IPRi indicates the number of elements that contribute significantly to

12 Here k is the largest integer such that kk is larger than the selected bound, e.g. k
�
max implied by RMT or

the more ‘‘conservative’’ one kallmax ¼ maxðk�max; kð1Þmax; k
ð2Þ
maxÞ.
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ui. More specifically, a lower value for IPR implies that banks contribute more

equally (i.e. a less localized behavior). In contrast, a higher value for IPR shows that

a smaller number of banks dominate in the eigenvector (i.e. a more localized

behavior), signaling the presence of a more hierarchical structure.

In the normalized version of eigenvectors, if
PN

j¼1 uiðjÞ
2 ¼ 1 (8i ¼ 1; 2; . . .N),

the ratio IPRi will have two limiting cases

1� IPRi �
1

N
; 8i ¼ 1; 2; . . .N: ð22Þ

Notice that IPRi ¼ 1
N if and only if uiðjÞ ¼

ffiffiffi
1
N

q
for all j ¼ 1; 2; . . .N (i.e. under the

completely homogeneous structure). In contrast, IPRi ¼ 1 if and only if only one

element contributes to the eigenvector ui while all other elements are equal to zero

(i.e. under the most hierarchical structure).

2.2.2.6 Complex Network Approach to Correlation Structure Analysis In order to

identify the backbone of the interdependencies between banks, we use the so-called

Planar Maximally Filtered Graph (PMFG). Broadly speaking, this method allows us

to filter and map the correlation matrix into a sparser graph and retain only the

important correlation parts (e.g. Tumminello et al. 2005; Di Matteo et al. 2010;

Aste et al. 2010; Jiang et al. 2014; Massara et al. 2015). Based on the decompo-

sition of the empirical correlations into different eigenmodes (see Eq. (17)), we can

also construct the PMFG for the different correlation matrices, e.g. the filtered

correlation matrix preserving only the ‘‘market’’ mode (i.e. Cm), the filtered

correlation matrix retaining only the ‘‘groups’’ modes (i.e. Cg), or the noise-filtered

correlation matrix maintaining all significant correlations (i.e.

Cm;g ¼ Cm þ Cg ¼ C � Cr).

Indeed, the construction algorithm of the PMFG is similar to the one used for the

so-called Minimal Spanning Tree (MST)–one of the simplest connected graphs

widely used to capture a minimal set of relevant interactions associated with the

strongest correlations (e.g. Mantegna 1999). To construct the MST graph, one can

follow the following steps: First, sorting the pairwise correlations fCijg in

descending order, we obtain a list L of the N2 reordered correlation elements. In the

second step, choosing the two banks i and j associated with the first element in L,
we put an edge between banks i and j to the MST graph. In the third step, we select

the next edge in the list L, and then add the corresponding link and nodes to the

graph if it is not connected to the existing nodes and does not form any cycles. We

then repeat the third step until all the correlation elements in the list L have been

examined.

Notice that since in the third step in the construction of the MST, all new edges

are excluded if they form a cyclic structure, the resulting filtered MST is a tree

graph consisting of N banks with ðN � 1Þ edges. Under such a strong constraint on

an acyclic structure, the presence of significant correlations that have loops will be

definitely discarded (e.g. Tumminello et al. 2005; Di Matteo et al. 2010; Wang

et al. 2018). To provide a more significant and richer structure, Tumminello et al.
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(2005) propose the PMFG in which the resulting connected planar graph retains

ð3N � 6Þ edges and possibly contains 3- and 4- closed cliques (in the third step of

the aforementioned construction algorithm of the MST). In fact, it can be shown that

the resulting MST graph is always a subgraph of the PMFG (e.g. Tumminello et al.

2005; Pozzi et al. 2008).

3 Portfolio Correlations in the Bank-Firm Credit Market of Japan

To begin with, we briefly summarize the main statistical properties of the elements

of the correlation matrices in the three lending layers of the bank-firm credit market

of Japan over the period from 1980 to 2012. The time-varying distributions of Cij in

the different layers are shown in Fig. 1, while the fundamental statistics including

the mean, median, skewness and kurtosis of Cij are reported in Fig. 2. Overall, we

observe that the averages of correlations in all layers are relatively small but always

positive. In addition, these distributions exhibit positive skewness and high kurtosis.

In order to investigate whether non-random patterns can be identified in the

correlations between loan portfolios, in each layer, first, we compute the

eigenvalues as well as eigenvectors of the empirical correlation matrix C. After
that, we will compare the distribution of eigenvalues of C with the one predicted by

RMT. Note that in our analysis we also consider the potential effects of extreme

values on the upper limit of eigenvalues by taking into account the other two upper

bounds kð1Þmax and kð2Þmax, besides the bound k�max implied by RMT.

As shown in Fig. 3 and in Fig. 11 (see the ‘‘Appendix’’), a majority of the

eigenvalues of the empirical correlation matrix lie within the random bulk [k�min,
k�max]. Compared to this, we find that about additional 10% of the eigenvalues are in

the broader range [k�min, k
all
max] when the more conservative upper bound kallmax ¼

maxðk�max; k
ð1Þ
max; k

ð2Þ
maxÞ is used. Furthermore, we also observe a group of the smallest

eigenvalues deviating from the RMT’s left edge (i.e. less than the lower bound

k�min). However, these eigenvalues are not of interest in the present work as their

contribution to the total variance is relatively small.

Moving on to the largest eigenvalues exceeding the RMT’s right edge, typically

from 10% to 20% of eigenvalues are always larger than k�max over the years, while a

smaller fraction is observed when we only count the eigenvalues that exceed kallmax.

All taken together, the inspection of the empirical distribution the eigenvalues

suggests that genuine information from the bank-bank correlation matrices and

significant factors driving the correlation dynamics over the years in the three layers

can be extracted from some of the largest eigenvalues.

In the following, for the sake of conciseness, we select the top five largest

eigenvalues of the empirical correlation matrix in each lending layer and then

investigate their temporal evolution over time. As shown in the panels (a), (c), and

(e) of Fig. 4, over the years, these eigenvalues persistently deviate from the random

bulk, and they are always larger than the all three upper bounds k�max, k
ð1Þ
max and kð2Þmax.

To show the contribution of the first five principal components to the total variance

and to infer the systemic risk, we also report the associated absorption ratios defined
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in Eq. (20). Overall, to a certain degree, the layer 1 (total loans) and layer 3 (long-

term loans) display a similar trend. As demonstrated in Fig. 4, a couple of regimes in

the bank-firm credit market of Japan can be identified from these two layers. For

example, the temporal evolution shows that almost all top five eigenvalues and the

absorption ratios increase sharply during the period of the lending boom and

Japanese asset price bubble (1986–1991).13 This implies that in this period the top

five significant factors become more important driving forces of the correlation

dynamics, and Japanese banks tend to be more tightly coupled in lending to the non-

financial sector of the economy. Hence, it indicates a higher level of systemic risk in

the credit market during the bubble time in the sense that banks’ lending becomes

more vulnerable to negative shocks (Kritzman et al. 2011; Billio et al. 2012; Meng

et al. 2014). As we can see in the consecutive years after the bubble bursting, all of

these eigenvalues as well as the corresponding absorption ratios substantially
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Fig. 1 Temporal evolution of the distributions of Cij in the three layers. Panels a–c: The distributions of
Cij in the three layers in the four selected years 1980, 1990, 2000, 2010

13 See, for example, Hoshi and Kashyap (2000), Posen (2003) and Brunnermeier and Schnabel (2016) for

further discussions on the lending boom and the emergence of asset price bubble in Japan in 1980s.
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decline, and even decrease further after the Asian financial crisis (1997–1998). Such

a trend somewhat stops in 2002, when the Bank of Japan (BOJ) implements a

monetary stimulus policy (e.g. Bowman et al. 2015). In addition, as a consequence

of the economic contraction in Japan hit by the recent global crisis (e.g. Kawai and

Takagi 2011), we observe a significant decrease in all of these eigenvalues and

absorption ratios in 2009 in all three layers.

Furthermore, interestingly, compared to the layers 1 and 3, the layer 2 (short-term

loans) possesses a different dynamics: the largest eigenvalues and their contribu-

tions to the total variance show a decline from the Asian financial crisis, suggesting

that from then on Japanese banks tend to be less unified in this layer. Notice that as

shown in panel (b) of Fig. 2, the correlations between banks in the layer 2 also

exhibit a similar dynamics: on average, banks’ short-term loans to firms become less
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Fig. 2 Fundamental statistics of Cij in the three layers. Panels a–c The averages (together with their 95 %
confidence intervals) and the medians of Cij in the three layers. Panels d–f The values of the skewness of
Cij in the three layers. Panels g–i The values of the kurtosis of Cij in the three layers

123

Portfolio Correlations in the Bank-Firm Credit Market of... 543



correlated since the aftermath of that crisis. In fact, by a closer inspection from a

network perspective, we find that credit linkages in this lending layer also become

sparser and the average of weights (in absolute terms and in log-scale) substantially

drops since then.

Having discussed the important statistics of the eigenvalues of the correlation

matrix C in each lending layer, we now move on to the analysis of the eigenvectors

of C. Note that the ith element of an eigenvector uk indicates the contribution of the

bank i to uk, thus, showing the role of the bank i in the kth principle component.

To begin with, we compare the distributions of the empirical eigenvector

elements with the theoretical distribution predicted by RMT. According to the

Gaussian prediction of RMT, the elements of each normalized eigenvector will

follow (e.g. Guhr et al. 1998; Laloux et al. 1999; Plerou et al. 2002):

PRMTðuÞ ¼ 1
ffiffiffiffiffiffi
2p

p e�
u2

2 : ð23Þ

The detailed comparison results are shown in Fig. 12 in the ‘‘Appendix’’. Overall,

again we typically find that the distributions of the elements of eigenvectors asso-

ciated with the largest eigenvalues significantly deviate from the Gaussian predic-

tion of RMT. In contrast, the distributions of the elements of eigenvectors associated

with eigenvalues in the random bulk are somewhat more similar to PRMT . This
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Fig. 3 Distributions of the eigenvalues of the correlation matrices, compared with RMT, in the three
layers, in 1980 and 2012. Panels a–c show the distributions of of k in 1980, and d–f show the distributions
of k in 2012. In all panels, the red curve represents the spectral distribution explained by the Marchenko-
Pastur law. Note that over the years, we observe that the top five largest eigenvalues of the empirical

correlation matrix in each lending layer are always larger than the three upper bounds k�max, k
ð1Þ
max and kð2Þmax

(see also Fig. 11 in the ‘‘Appendix’’)
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observation is in agreement with those reported in analyses of stock returns (e.g.

Laloux et al. 1999; Plerou et al. 1999).

In the next step, based on the eigenvector elements, we investigate the degree of

homogeneity/heterogeneity of banks’ contribution to C. To this end, we compute the
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Fig. 4 Evolution of the top five largest eigenvalues and absorption ratios for the correlation matrices in
the three layers. All panels on the left show the evolution of the top five largest eigenvalues. These
eigenvalues are persistently larger than the bound k�max implied by RMT as well as the two more

conservative bounds kð1Þmax and kð2Þmax. The right panels show the five associated absorption ratios (E1 to E5)

and the absorption ratio of the top ten largest eigenvalues (E10) and that of all eigenvalues that exceed
k�max (namely Eallsig:factors)
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Inverse Participation Ratios fIPRkgk¼N
k¼1 and then examine the relationship between

these ratios and the corresponding eigenvalues. Large values of IPRk reveal that

only few banks contribute to uk, suggesting the presence of a localized behavior of

banks. In contrast, a small value of IPRk indicates that many banks contribute to uk
together, showing that the factor (if it exists) extracted from that eigenvector has a

pervasive effect in the market.

All panels of Fig. 5 demonstrate a common feature among the three layers: some

smallest eigenvalues have the highest level of IPR and their IPR ratios deviate from

the average of fIPRkgk¼N
k¼1 . This indicates that their associated eigenvectors are more

localized, i.e. only a small group of banks contribute to them. Nevertheless, these

smallest eigenvalues are less than 1 and the contribution of their associated

factors/components to the total variance (recalling also Eqs. (12) and (13)) is

actually negligible. Moving on to the IPRs associated with the eigenvalues located

in the center of the eigenvalue distribution, we find that these eigenvalues often have

a relatively low level of IPR. In fact, these features of the smallest eigenvalues and

those located at the center of the distribution are analogous to what universally

found in similar analyses of stock return correlations (e.g. Plerou et al. 1999).

However, interestingly, we do observe a distinct feature for the eigenvector

elements of the largest eigenvalue: over the years, we find that IPR1 is typically less

than the average of fIPRkgk¼N
k¼1 , showing that there are many banks contributing to

the eigenvector associated with the first largest eigenvalue. From an economic

perspective, this indicates a wide effect that the ‘‘market’’ mode has on the banking

system. Such a behavior still emerges in some of the next largest eigenvalues

deviating from the random bulk. This result implies that besides the global common

factor, some ‘‘groups’’ factors also play a certain role in explaining the correlation

dynamics. Furthermore, it also signals the presence of large communities (clusters)

of banks in which the members within each community (cluster) tend to be more

correlated in their lending activities, since they are influenced by some common

pervasive factors.

It should be emphasized that under a more detailed inspection, in each year, we

also observe a more localized behavior in at least one of the eigenvectors associated

with the largest eigenvalues other than k1. In this case, the associated factor only

drives the co-movements among a smaller subset of banks. For instance, as shown

in panels (b), (f) of Fig. 5, in 2012, in the first and the third layers, IPR4 is relatively

larger than the average of fIPRkgk¼N
k¼1 , while in the second layer, such a behavior can

be found in the case of IPR8.
14 Nevertheless, since we typically observe distinct

localized eigenvectors in different years, it is hard to track the economic imprints

responsible for the emergence of this behavior. We therefore leave this issue for

future research.

Furthermore, if the largest eigenvalue and the next largest ones stand for the

‘‘market’’ and ‘‘groups’’ modes (i.e. systematic and ‘‘non-systematic’’ factors),

respectively, it would be interesting to examine their effects by comparing the raw

14 In Fig. 13 in the ‘‘Appendix’’, we also show the visualization for a more localized eigenvector and a

more homogenized eigenvector as examples.
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correlation matrix with the filtered ones. As can be seen in the panels (a) to (f) of

Fig. 6, after excluding the influence of the ‘‘market’’ mode on cross-correlation

matrix C, some significant correlations still remain in the filtered matrix FCm. Such

significant correlations are actually mainly driven by the ‘‘groups’’ modes

associated with the next largest eigenvalues. A further decomposition can be

implemented to split the ‘‘market’’ mode-filtered matrix into the correlations driven
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Fig. 5 Inverse Participation Ratios of the eigenvectors of the correlation matrices in the three layers.
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by the ‘‘groups’’ modes and by noise. The ‘‘market’’ as well as ‘‘groups’’ modes-

filtered matrices FCm;g in three layers are shown in the panels (g) to (h) of Fig. 6.

We observe that almost all correlations are significantly subtracted in FCm;g.

All taken together, the results we have obtained so far demonstrate that the

analysis based on the methods of RMT and PCA can be used to identify important,

significant patterns in the correlations between banks in lending to firms in the other

sectors of the economy. In particular, we have shown that the correlations are

mainly driven by a global common factor influencing the lending of all banks and

some non-systematic factors that only affect the lending of a subset of banks in the

credit market of Japan. To gain a deeper understanding of the structure and the

dynamics of these correlations, we make one more step by combining these methods

with those of complex networks. More specifically, for each year, we use the PMFG

graph to extract the skeleton structure from the different parts of the cross-

correlation matrices, i.e. the part represents the effects of ‘‘market’’ mode (Cm), the

part captures the effects of ‘‘groups’’ modes (Cg), the part represents the effects of
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Fig. 6 Correlations and filtered correlations between banks in lending to firms in the three layers, in 2012
as an example. The three upper panels from a to c show the raw correlation matrices. The three panels
from d to f are the filtered correlation matrices, subtracting the influence of the ‘‘market’’ mode. The three
panels from g to i show the filtered correlation matrices, subtracting the effects of the ‘‘market’’ mode as
well as ‘‘groups’’ modes. In each layer, banks are sorted in descending order of eigenvector centrality of
the raw correlation matrix
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(a) (b) (c)

(d) (e) (f)

Fig. 7 The interaction structure between banks for Cm, Cg, and Cm;g obtained with the PMFG graph, in
layer 1
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Fig. 8 The interaction structure between banks for Cm, Cg, and Cm;g obtained with the PMFG graph, in
layer 2
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both ‘‘market’’ as well as ‘‘groups’’ modes (Cm;g ¼ Cm þ Cg). We then study the

persistence and changes in the skeleton structure over the years.

For the illustration purpose, in Figs. 7, 8 and 9, we show PMFG graphs extracted

from different parts of the correlation matrices in the two years 1980 and 2012. In

each panel of these Figures, each number corresponds to a bank, and each link (in

green color) indicates the presence of a significant relation between a pair of banks.

The numbers in red color represents the hub banks that have the highest levels of the

degrees in the PMFG graph. Overall, the correlations between banks reveal different

backbone structures in different periods. Indeed, by having a closer inspection over

the years (for example, see Figs. 17 and 18 in the ‘‘Appendix’’) we often observe

that when the dominance of a group of banks in one period gradually disappears, the

credit market starts to build-up a different structure in the next period in which

another group of banks emerge as the key players in the backbone of the cross-

correlations.
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Fig. 9 The interaction structure between banks for Cm, Cg, and Cm;g obtained with the PMFG graph, in
layer 3
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4 Concluding Remarks

In this paper, we have examined the structure and the dynamics of the correlation

matrices for the banks’ loan portfolios in a large data set of the bank-firm credit

network of Japan during the period from 1980 to 2012. Our results show that only a

subset of the eigenvalues contain genuine information while the rest actually

corresponds to noise or just have a small effect on the correlations between banks in

lending to firms in the other sectors of the economy. This implies that the methods

of RMT and PCA can be used for filtering noise from the empirical correlation

matrices of banks’ loan portfolios.

The dynamics of the largest eigenvalues and the associated absorption ratios

reveal different milestones in the credit market of Japan over the years. More

specifically, there is a dramatic increase in the level of systemic risk during the

period of the Japanese asset price bubble (1986–1991). In contrast, we observe a

significant decrease in all of these eigenvalues and the associated absorption ratios

in 2009, which might be considered as a consequence of the economic contraction

in Japan hit by the global crisis (e.g. Kawai and Takagi 2011).

Based on the eigenvector elements, we have further investigated the localization

and clustering behaviours of banks. One the one hand, we find that in the case of the

eigenvectors corresponding to a group of smallest eigenvalues, there are only few

banks contributing to them. Such a localization behavior is similar to what is often

found in analyses of stock price changes (e.g. Plerou et al. 1999). However, since

these eigenvalues are smaller than 1 and the top largest eigenvalues, the contribution

of their corresponding principal components to the total variance is actually

negligible. On the other hand, we find that the eigenvectors corresponding to the top

largest eigenvalues are typically not very localized. This indicates that latent factors

extracted from them have a more pervasive effect on banks in providing credit to the

firms.

Interestingly, building Planar Maximally Filtered Graphs (PMFG) from the

correlations driven different eigenmodes, we find that the local interaction structure

between banks changes in different periods. More specifically, when the dominance

of a group of banks in one period gradually disappears, the credit market starts to

build-up a different structure in the next period in which another group of banks

become the new hubs in the backbone of the cross-correlations.

Several directions for future research can be suggested from our present work.

First, as we can see in the analysis of eigenvector elements, it is often observed that

in a couple of the eigenvectors corresponding to the top largest eigenvalues, a large

group of banks tend to have a higher degree of correlations among themselves.

Therefore, the clustering behaviours and the community structure of banks in the

correlation matrices in the different lending layers should be studied further (e.g.

Almog et al. 2015; MacMahon and Garlaschelli 2015). Second, it would also be

interesting to examine the effects of the bank characteristics (e.g. bank locations,

bank types, balance sheets’ information) on the formation of such clusters and

communities. Last but not least, another important direction for future research is to

analyse the multilayer architecture of the interdependencies between banks, e.g. to
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consider together various layers including the network of loan portfolio overlaps,

the network of loan portfolio correlations, the correlation network of bank stock

returns, and the physical interbank trading network (e.g. Brunetti et al. 2015;

Montagna and Lux 2017). We believe that this direction will help to gain a deeper

understanding of the complex structure of interactions within the banking system

and between the banking system and the other sectors of the economy.

Appendix

Here we provide additional results for portfolio overlaps and similarities, the

fractions of eigenvalues in different ranges, the distributions as well as the evolution

of the eigenvector elements, and the more detailed correlation network structure

between banks based on the method of PMFG. We also report the main results for

the binary version of the bank-firm credit network of Japan.

Portfolio Overlaps and Similarities

In this part, we briefly summarize the main results for portfolio overlaps and

portfolio similarities between banks. Recall that in each lending layer, each element

of the binary version of the bank-bank projection matrix AB�B explained in Eq. (3)

implies whether a pair of banks share at least one common borrower. Meanwhile,

each element of the similarity matrix SB�B, which is based on the generalized

Jaccard index defined in Eq. (1), indicates the degree of structural similarity

between two loan portfolios. Figure 10 demonstrates the binary version of the bank-
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Fig. 10 Binary overlaps and portfolio similarities between banks in the three layers, in 2012. Banks are

sorted in descending order of the eigenvector centrality of the adjacency matrix obtained from AB�B.
Panels a to c The binary version of the bank-bank projection matrices in the three layers. Each blue point
in these panels indicates a pair of banks have at least one common borrower. Panels d to f The similarity
matrices in the three layers. The colorbar indicates the range [0, 1] for the elements of the similarity
matrices .(Colour figure online)
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bank projection matrices (panels (a) to (c)) and the similarity matrices (panels (d) to

(f)) in the three lending layers, for the data in 2012 as an example. We observe that

many pairs of banks have overlaps in their loan portfolios, especially in the layer 1

and layer 3. Furthermore, the loan portfolios also tend to have a relatively high

degree of similarities.15

Fractions of Eigenvalues in Different Ranges

Figure 11 shows the fractions of eigenvalues in different ranges, i.e. larger than the

considered upper bound (k�max or k
all
max ¼ maxðk�max; k1max; k2maxÞ), within the interval

from the lower bound to the considered upper bound (½k�min; k
�
max� or ½k

�
min; k

all
max�), and

less than the lower bound k�min. Although the fractions change over the years, in
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Fig. 11 Fractions of eigenvalues in different ranges for the three layers. Panels a, d, g Fractions of

eigenvalues larger than the considered upper bound k�max (blue lines) or k
all
max (red lines) for layers 1, 2, 3,

respectively. Panels b, e, h Fractions of eigenvalues lie within ½k�min; k
�
max� (blue lines) or ½k

�
min; k

all
max� (red

lines) for layers 1, 2, 3, respectively. Panels c, f, i Fractions of eigenvalues less than the lower bound k�min
for layers 1, 2, 3, respectively .(Colour figure online)

15 To illustrate the similarity matrices, for the sake of convenience, we still use the same order of banks

as in the analysis of binary overlaps in Fig. 10a–c, i.e. banks are sorted in descending order of the

eigenvector centrality (e.g. see Bonacich (2007)) of the adjacency matrix obtained from AB�B. We do not

conclude any nature of the relationship between that order and the elements of the portfolio matrix SB�B.
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general we find that a majority of the eigenvalues lie within the random bulk or are

smaller than the lower bound k�min. In contrast, only a small subset of the top

eigenvalues persistently exceed the upper bound k�max or k
all
max over the whole period.
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Fig. 12 Distributions of the eigenvector elements of four selected eigenvalues of C, in 2012, in the three
layers. Panels a to c show the distribution of the eigenvector elements of uN . Panels d to f show the
distribution of the elements of an eigenvector in the random bulk. Panels g to i show the distribution of
the eigenvector elements of u4. Panels j to l show the distribution of the eigenvector elements of u1
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Additional Results for Eigenvector Elements

Distribution of Eigenvector Elements
In Fig. 12, we compare the distributions of the elements of the four selected

eigenvectors of C, i.e. the eigenvector uN associated with the smallest eigenvalue
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Fig. 13 The eigenvectors (sorted in descending order) of k1 and k4, in the three layers, in 2012. Without
loss of generality, we fix the signs of eigenvector elements such that their sum is non-negative. Panels a, b
show the eigenvectors of k1 and k4 in the layer 1. Panels c, d show the eigenvectors of k1 and k4 in the
layer 2. Panels e, f show the eigenvectors of k1 and k4 in the layer 3
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kN , the eigenvector uRMT corresponding to a representative eigenvalue located in the

random bulk, the eigenvector u4 associated with k4, and the eigenvector u1
corresponding to the largest eigenvalue k1. Note that for the illustration purpose, in

this Figure we re-normalize the eigenvector elements such that
PN

j¼1 uiðjÞ
2 ¼ N

(8i). We can see that uN has only few significant elements, revealing that this

eigenvector is very localized. In addition, the distributions of the elements of u1 and
u4 are different from the distribution of the elements of uRMT .

Localization Behavior
As two examples, with one for a more localized behavior of eigenvector elements

and another for a less localized behavior of eigenvector elements, Fig. 13 shows the

entries of u1 and u4 in descending order. We can see that in the first and third layers,

the homogeneity degree is much stronger in u1 than in u4. However, it should be

emphasized that this does not implies that all banks contribute equally to the factor

extracted from k1 and u1. Indeed, as shown in Fig. 13a, c and e, we still observe a

certain level of heterogeneity among banks.
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Fig. 14 The evolution of the elements of the eigenvectors corresponding to k1 (panel (a)), k2 (panel (b)),
k3 (panel (c)), and k4 (panel (d)), for 115 banks activating in all years, in the layer 1
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Evolution of Eigenvector Elements
From Figs. 14, 15, 16, we show the evolution of the eigenvectors (in absolute

terms) associated with the top four largest eigenvalues in the three lending layers.

Here we focus on 115 banks that activate in the bank-firm credit market of Japan in

all years from 1980 to 2012. As we can see, some banks correspond to a higher level

eigenvector elements in certain sub-periods, but overall, in almost all years, the

distribution ranges of these elements are not very wide. This result is consistent with

those obtained from the analysis of IPR.
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Fig. 15 The evolution of the elements of the eigenvectors corresponding to k1 (panel (a)), k2 (panel (b)),
k3 (panel (c)), and k4 (panel (d)), for 115 banks activating in all years, in the layer 2
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Additional Results for PMFG Graphs Over the Years

In the following we provide additional results for the evolution of PMFG graphs

based on the matrix Cm;g ¼ ðCm þ CgÞ, which captures the effects of significant

factors (i.e. the global common factor as well as the ‘‘groups’’ factors) on the

correlations between banks in lending to firms. Again, we focus on 115 banks

activating in the bank-firm credit market of Japan in all the years from 1980 to 2012.

For the sake of conciseness, here we only show the PMFG graphs in the layer 1 (the

total lending layer).16 In each panel of Figs. 17 and 18, the green links indicate

significant pairwise correlations retained in the PMFG graph. The numbers

represent banks, and those in red color are the banks that have highest degrees in the

PMFG network. We can see that the correlation structure between banks changes in

different periods. In particular, when the dominant role of a group of banks in one

period gradually vanishes, the credit market starts to build-up a different structure in

the next period in which another group of banks will become the new hubs in the

backbone of the cross-correlations.
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Fig. 16 The evolution of the elements of the eigenvectors corresponding to k1 (panel (a)), k2 (panel (b)),
k3 (panel (c)), and k4 (panel (d)), for 115 banks activating in all years, in the layer 3

16 However, the results for the other layers are available from the author upon request.
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(a) “market” and “groups” modes, in 1980
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(b) “market” and “groups” modes, in 1981
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(c) “market” and “groups” modes, in 1982
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(d) “market” and “groups” modes, in 1983
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(e) “market” and “groups” modes, in 1984
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(f) “market” and “groups” modes, in 1985
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(m)“market” and “groups” modes, in 1992
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(n) “market” and “groups” modes, in 1993
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(o) “market” and “groups” modes, in 1994
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(p) “market” and “groups” modes, in 1995
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(q) “market” and “groups” modes, in 1996
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(r) “market” and “groups” modes, in 1997
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(a) “market” and “groups” modes, in 1998
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(b) “market” and “groups” modes, in 1999
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(c) “market” and “groups” modes, in 2000
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(d) “market” and “groups” modes, in 2001
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(e) “market” and “groups” modes, in 2002
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(f) “market” and “groups” modes, in 2003
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(g) “market” and “groups” modes, in 2004
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(h) “market” and “groups” modes, in 2005
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(i) “market” and “groups” modes, in 2006
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(j) “market” and “groups” modes, in 2007
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(k) “market” and “groups” modes, in 2008
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Fig. 18 The interaction structure between banks for the correlation matrix Cm;g obtained with the PMFG
graph, in layer 1, from 1998 to 2012

b Fig. 17 The interaction structure between banks for the correlation matrix Cm;g obtained with the PMFG

graph, in layer 1, from 1980 to 1997
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Binary Analysis

Using the similar methods, we can also analyse the binary version of the bank-firm

credit relationships. Interestingly, in general, our results suggest that this version

also contains genuine information about the structure and dynamics of the cross-

correlation matrix of banks’ loan portfolios.

Recalling that under the binary case, for each pair (i, j), we have

abfi;j ¼ 1 if bank i lends to firm j;

abfi;j ¼ 0 otherwise:

(

ð24Þ

We then define the matrix Xbin ¼ fXi;j;bingNxNF
with each element is given by

Xi;j;bin ¼
abfi;j � habfi;j i
rðabfi;j Þ

; ð25Þ

where for each bank i, habfi;j i and rða
bf
i;j Þ are the average and the standard deviation of

abfi;j over all NF firms, respectively. The correlation matrix Cbin of the binary data is

then defined as

Cbin ¼ fCbin
ij gNxN ¼ 1

NF
X binXT

bin; ð26Þ

with XT
bin is the transposition matrix of X bin.

For the sake of conciseness, in the following we will only summarize the main

results for the analysis of the binary data. First, we find that a group of largest
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Fig. 19 Binary data: Distribution of eigenvalues of Cbin, compared with RMT, in the three layers, in 1980
and 2012. Panels a–c show the distributions of of k in 1980, and panels d–f show the distributions of of k
in 2012. In all panels, the red curve represents the spectral distribution explained by the Marchenko-
Pastur law .(Colour figure online)
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eigenvalues (typically from 10 % to 15 %) always deviate from the random bulk

predicted by RMT (see Fig. 19). In addition, we often observe that more than half of

the eigenvalues lie between the two RMT bounds k�min and k�max.
Compared to the weighted data, we also find a similar evolution dynamics for the

top largest eigenvalues and their absorption ratios, although in general the factors

extracted from these eigenvalues contribute slightly less to the total variance in the
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Fig. 20 Binary data: Evolution of the top 5 largest eigenvalues and the associated absorption ratios for

Cbin in the three layers. The panels on the left show the evolution of the top 5 largest eigenvalues. These
eigenvalues are always larger than the upper bound k�max implied by RMT. The three panels on the right

show their associated absorption ratios as well as the absorption ratio of the top 10 largest eigenvalues
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binary data than in the weighted data (e.g. see Fig. 20, in comparison to Fig. 4 in the

main text).

Furthermore, as demonstrated in Fig. 21, the localization behavior still emerges

in the eigenvectors corresponding to the smallest eigenvalues, as their IPR ratios are

often much higher than the average of IPR. Besides this, again many banks

contribute to the eigenvectors corresponding to the top largest eigenvalues,
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Fig. 21 Binary data: Inverse Participation Ratios of the eigenvectors of Cbin in the three layers, in 1980
and 2012. Panels a, b show IPR versus k in the layer 1, in 1980 and 2012. Panels c, d show IPR versus k
in the layer 2, in 1980 and 2012. Panels e, f show IPR versus k in the layer 3, in 1980 and 2012. The red

lines stand for the averages of fIPRkgk¼N
k¼1
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signalling that the ‘‘market’’ mode as well as some of the ‘‘groups’’ modes extracted

from the binary version of the credit network also have a wide effect.
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