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Abstract
In this study, we analyze whether model complexity improves accuracy of CoCo
pricing models. We compare the out-of-sample pricing ability of four models using
a broad dataset that contains all CoCos which were issued between January 1, 2013
and May 31, 2016 in euros. The regarded models include the standard model from De
Spiegeleer and Schoutens (J Deriv 20:27–36, 2012), a modified version enriched by
credit risk, an extended model that accounts for the effective lifetime of the CoCo, and
a trading model, solely based on historic market prices but no pricing theory at all.
For a normal market environment, the simple trading model provides a higher pricing
accuracy than the theory-basedmodels. Under distress, however, a theory-basedmodel
with a sufficiently high complexity is required.

Keywords Contingent convertible bond · CoCo bond · CoCo pricing ·
Continuous-time derivatives pricing · Model complexity · Test of pricing models

Mathematics Subject Classification G12 · G13

1 Introduction

Contingent convertible bonds (CoCos) are a modern financing instrument for banks
intended to enhance stability. This favorable characteristic comes at the expense that
several features make CoCos highly complex and their accurate pricing a complicated
task for investors. First, when a bank violates a pre-specified regulatory condition,
the CoCo is triggered and the initial coupon bond is converted into stocks (or accord-
ingly suffers a write-down). This special term requires regulatory and/or accounting
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262 C. Koziol, S. Weitz

knowledge and is therefore much more challenging than a plain vanilla option exer-
cise. Second, CoCos are perpetual and callable by the issuer but usually have an initial
blocking period. Hence, the effective lifetime is not known in advance and depends
on the call strategy carried out by the issuer. Third, CoCos are influenced by multiple
sources of risk: the stock price, the interest rate, and the issuer’s solvency.

In an empirical exercise considering only three first generation CoCo issuances,
Wilkens and Bethke (2014) assess the pricing performance of different types of pricing
models. In particular, they regard models from the following three classes: structural
models such as Pennacchi (2011), Buergi (2013) and Brigo et al. (2015) in which the
trigger event is determined by modelling the balance sheet, credit derivatives models
such as Serjantov (2011), De Spiegeleer and Schoutens (2014), Cheridito and Xu
(2015) andTurfus andShubert (2017)which address the additional yield compensation
for the exposure to trigger risk, as well as equity derivatives models like De Spiegeleer
and Schoutens (2012) and Corcuera et al. (2013) which focus on the replication of
the CoCo value using equity derivatives. The findings of Wilkens and Bethke (2014)
favor the use of the equity derivatives model of De Spiegeleer and Schoutens (2012)
compared to both balance sheet and credit risk models from the other two classes.

The objective of our study is to analyze whether models that are more complex,
in fact, provide a higher pricing accuracy. Higher complexity does not automatically
guarantee improved pricing accuracy due to the well-known problem of overfitting.
Since the pricing of CoCos is especially challenging, we focus on this type of securi-
ties for our analysis. In contrast to Wilkens and Bethke (2014), we use a broad dataset
comprised of 27 CoCos all issued between January 1, 2013 andMay 31, 2016 denom-
inated in euros. This broad dataset enables us to figure out to what extend a more
sophisticated model can explain CoCo values in a better way.

For this purpose, we consider four models: As our first model, we refer to the
standard approach from De Spiegeleer and Schoutens (2012). The second model
is a modified version of the standard approach that also allows for credit risk in a
closed-form pricing formula. The closed-form pricing formulae of the first two mod-
els, however, are at the expense of a simplifying maturity structure disregarding the
effective lifetime of the CoCo. Thus, we need to develop an extended approach as
our third model that reasonably accounts for the maturity structure by modelling the
effective trigger date, the perpetual lifetime, the initial blocking period, and a potential
call by the issuer. Finally, our fourth model is a market-based approach which solely
bases on observable market prices but no pricing theory at all.

Our study provides four major results: first, information on credit risk stabilizes the
price prediction and should therefore be included in a CoCo pricing model. Second,
the extendedmodel, which endogenously captures the lifetime of the CoCo, results in a
higher out-of-sample accuracy than the other theory-basedmodels in closed-formwith
and without credit risk. Therefore, the consideration of the effective lifetime is highly
recommended.Third, in comparison to themarket-based approach, the extendedmodel
is no longer dominant but a simple model without pricing theory can be justified on
average. Fourth, in distressedmarkets, the market-based approach is comparably more
exposed to severe mispricing than the more complex extended model which remains
comparably robust in this situations. This finding leads to the conclusion that in an
ordinary market environment a simple market-based approach might be sufficient for
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Does model complexity improve pricing accuracy? The case… 263

accurate CoCo pricing. Under distress, however, a more complex model is required
which considers the CoCo’s product features. Thus, we need to distinguish between
pricing accuracy on average and robustness in distressed markets.

The remainder of our study is organized as follows. In Sect. 2, we introduce the
pricing models. Section 3 contains the empirical analysis in which we present the data,
the calibration procedure and the evaluation of the out-of-sample pricing performance
of the models. In Sect. 4, we focus on distressed market phases and evaluate the
models pricing performance. Section 5 concludes. Technical derivations are in the
“Appendix”.

2 Pricingmodels

In order to analyze CoCo models in terms of their pricing abilities, we particularly
select the following four models:

1. The standard model (SM) introduced by De Spiegeleer and Schoutens (2012).
2. The default riskmodel (DM), an enhancement of theDe Spiegeleer and Schoutens

(2012) pricing model to include credit risk.
3. The extendedmodel (EM)which additionally captures the corresponding lifetime

of the CoCo in form of the effective trigger date, the perpetual lifetime, the initial
blocking period, and a potential call by the issuer.

4. The trading model (TM) which only obtains the CoCo’s exposures for the risk
factors from historic market prices.

The standard model (SM) provides a widely established closed-form solution for the
CoCo price in a Black-Scholes framework (see Black and Scholes 1973). In the numer-
ical CoCo exercise carried out by Wilkens and Bethke (2014), this model exhibited
the most promising results. Since credit risk is apparently a further major source of
risk, we secondly modify the standard model into a default risk model (DM) by incor-
porating credit risk. Our third pricing theory-based model, the extended model (EM),
additionally allows for an appropriate lifetime by accounting for the correct trigger
date, the perpetual lifetime with an initial blocking period, and the issuer’s call right.
In this case, a closed-form solution is no longer possible. The fourth version, the trad-
ing model (TM), ignores any potential pricing theory-based formulae for the CoCo
and only relies on observable market relations. We can interpret this trading model
as a case of a market participant who empirically determines hedge ratios without
knowledge about CoCo pricing theory.

2.1 Standardmodel

The standard model proposed by De Spiegeleer and Schoutens (2012) resorts to a
Black-Scholes world, in which the issuer’s stock price is governed by

d St = (r − q)St dt + σ St dzt , (1)
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264 C. Koziol, S. Weitz

where r denotes the risk-free rate,q the dividend yield andσ the instantaneous standard
deviation of the issuer’s stock returns. All risk comes from dzt which is the increment
of a standard Wiener process under the risk-neutral measure. We assume r , q and σ

to be constant.
For the beginning, we follow De Spiegeleer and Schoutens (2012) by only focusing

on conversion CoCos. Later on in this section we will modify their approach such that
it can also be applied to value write-down CoCos. In principle, unless specified, the
term CoCo refers to both types.

De Spiegeleer and Schoutens (2012) value a conversion CoCo by replicating its
payoff at a fixed maturity date T that is given by the end of the call blocking period.
Thus, in the model the CoCo no longer exists after this date. The restrictive maturity
assumption enables them to obtain tractable pricing formulae using the following three
traded securities as building blocks: First, a coupon bond accounts for the coupon
distributions and the notional amount. Second, a knock-in forward that accounts for
the trigger event by a conversion into equity, and third, a binary down-and-in option
that corrects for lost payments once the CoCo is triggered.

The first building block B(1)
t (T ) is represented by a coupon bond, that pays K

coupons C at dates τ1, τ2, . . . , τK with notional amount N until it matures at the end
of the blocking period at time T . The value of this first building block B(1)

t (T ) is
therefore given by:

B(1)
t (T ) =

K∑

i=1

Ce−r ·(τi −t) + Ne−r ·(T −t) (2)

Once the issuer’s stock price S hits a trigger threshold S from above, the trigger event
occurs and the CoCo gets converted. Here, the investor receives n stocks but loses all
coupon payments and the notional amount N . De Spiegeleer and Schoutens (2012)
incorporate this by using a knock-in forward as a secondbuilding block B(2)

t (T , q), that
ensures delivery of n stocks at a price N at maturity T when the trigger threshold S was
hit until maturity. The value of a knock-in forward B(2)

t (T , q) reads (see Rubinstein
and Reiner 1991a)1

B(2)
t (T , q) = n · St e

−q·(T −t)

[(
S

St

)2η

N (y1) + N (−x1)

]
(3)

− Ne−r ·(T −t)

[(
S

St

)2·(η−1)

N (y2) + N (−x2)

]

with

y1 =
ln

(
S

St

)
+ η · σ 2 · (T − t)

σ
√

T − t
x1 =

ln

(
St

S

)
+ η · σ 2 · (T − t)

σ
√

T − t

1 Please note, we specifically refer to the dividend yield, since it will play a certain role when considering
default risk in the subsequent section.
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y2 = y1 − σ
√

T − t x2 = x1 − σ
√

T − t η = r − q + 1
2σ

2

σ 2

To correct for the vanishing coupons once the CoCo was triggered, De Spiegeleer and
Schoutens (2012) consider a binary down-and-in option with barrier S paying one
monetary unit at expiration τ if the CoCo was triggered and zero otherwise. The value
of this third building block B(3)

t (τ, q) can be obtained by (see Rubinstein and Reiner
1991b):

B(3)
t (τ, q) = e−r ·(τ−t)

[
N (−x2,τ ) +

(
S

St

)2·(η−1)

N (y2,τ )

]
(4)

with

y2,τ =
ln

(
S

St

)
+ (η − 1) · σ 2 · (τ − t)

σ
√

τ − t
x2,τ =

ln

(
St

S

)
+ (η − 1) · σ 2 · (τ − t)

σ
√

τ − t

De Spiegeleer and Schoutens (2012) replicate a CoCo by a portfolio consisting of long
positions in a coupon bond and a knock-in forward as well as K short positions in
C binary down-and-in options, each expiring at the corresponding coupon payment
dates.

In summary, if the stock price remains above the trigger barrier S, the CoCo pays
periodic coupons and the investor receives the notional amount at the end of the
blocking period at time T . If the CoCo is triggered, the knock-in forward comes into
play. Here, the investor receives a package of n forwards on the issuers stock at a total
price equal to the notional amount N and the remaining coupons are lost due to the
binary down-and-in options.

We now turn to the case of write-down CoCos. This step is necessary because
write-down CoCos make up approximately half of our dataset, which is in line with
the global distribution by type (see Avdjiev et al. 2017). We modify the framework of
De Spiegeleer and Schoutens (2012) by replacing the knock-in forward with a short
position inαN binary down-and-in options that expire at T andwrite down the notional
amount accordingly by the write-down fraction α. Furthermore, the payments of the
binary down-and-in options that correct for the vanishing coupons are also written
down, so that a short position of αC binary down-and-in options for each of the K
coupon payment dates is required. Again, once the CoCo is triggered, it will turn into
a coupon bond maturing at T that received a haircut of α percent. In absence of a
trigger event, the CoCo is due at the end of the blocking period.

Combining the buildings blocks B(1)
t (T ), B(2)

t (T , q), and B(3)
t (τ, q), today’s price

P SM
t (T , q) for both CoCo types, conversion and write-down, maturing at time T in

the standard model (SM) is given by:

123
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P SM
t (T , q) =

⎧
⎪⎪⎨

⎪⎪⎩

B(1)
t (T ) + n · B(2)

t (T , q) − C ·
K∑

i=1
B(3)

t (τi , q) ,
Conversion

CoCo

B(1)
t (T ) − αN · B(3)

t (T , q) − αC ·
K∑

i=1
B(3)

t (τi , q) ,
Write-down

CoCo

(5)

The advantage of thismodel is its tractability due to the closed-form solution.However,
this benefit come from very restrictive assumptions: first, considering only a fixed
maturity, the model of De Spiegeleer and Schoutens (2012) does not account for the
CoCo’s effective lifetime. Since CoCosmust be perpetual in order to be eligible asAT1
capital and are callable by the issuer after an initial blocking period, the very restrictive
assumption of a fixed maturity by De Spiegeleer and Schoutens (2012) distorts the
interest rate sensitivity of the CoCo. Second, AT1 CoCos are deeply subordinated
securities that are exposed to credit risk. This additional source of risk cannot be
captured in this simple framework omitting credit risk.

2.2 Default risk model

In the next step, we maintain the restrictive maturity assumption of De Spiegeleer
and Schoutens (2012), but allow for a sudden default of the issuer by incorporating
credit risk into the model. Therefore, we specify the issuer’s stock price and solvency
simultaneously and assume the latter to follow a Poisson process Jt with a constant
jump intensity λ. Intuitively speaking, Jt is initially zero at time t = 0 and jumps to
Jt = 1 at the first jump date which is assumed to be independent of the stock price
state. As a consequence, the issuer defaults at the first jump date, the stock price drops
to zero and the CoCo expires worthless, too.

Since we are in a world free of arbitrage, there exists an equivalent martingale
measure under which the stock price process discounted by the risk-free rate is a
martingale. To ensure this property, we incorporate the default intensity λ into the
drift of our stochastic differential equation for the issuer’s stock price:

d St = (r − q + λ)St dt + σ St dzt − St d Jt (6)

with q ′ = q − λ. As long as the issuer survives, the CoCo behaves analogously to the
standard model with modified dividend yield q ′ and we can value the CoCo using the
standard model formula given in Eq. (5). Though, we have to account for the changed
drift in Eq. (6) by using the building blocks B(2)

t (T , q ′) and B(3)
t (τ, q ′). In case of

default, the CoCo expires worthless.
Following risk-neutral valuation, we obtain the value of the CoCo with credit risk

by weighting the pricing formula of the standard model P SM
t (T , q ′) with the risk-

neutral probability of default pdt,T while accounting for the changed drift using q ′.
Therefore, the pricing formula P DM

t (T , q ′) for the default risk model (DM) follows:

P DM
t (T , q ′) = (1 − pdt,T ) · P SM

t (T , q ′) (7)
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with the risk-neutral probability of default until time T

pdt,T =
∫ T

t
λe−λ·(s−t)ds = 1 − e−λ·(T −t). (8)

2.3 Extendedmodel

The aimof the extendedmodel is to capture thematurity structuremore accurately. Our
improvements relative to the standardmodel (SM) and the default riskmodel (DM) are
threefold: first, we model the correct trigger time τC , thereby accounting for potential
dividend payments appropriately. Second, we no longer use a fixedmaturity but model
the CoCo as a perpetual security. This is a crucial requirement from the regulator in
order to be eligible as AT1 capital. Third, the issuer can call the CoCo at the call price
P after an initial blocking period of T years. These three extensions are in line with
major contractual details of traded AT1 CoCos and allow the effective lifetime to be
appropriately considered. It is expected that these extensions will improve the pricing
performance relative to the standard model in Sect. 2.1 and the default risk model in
Sect. 2.2.

Figure 1 illustrates the consequences for the CoCo depending on different stock
price evolutions within the extended model framework. Looking at path A(1), the
survivorship case, the CoCo survives the initial blocking period because the issuer’s
stock price reaches neither the call S nor the trigger barrier S. Hence, the CoCo still
exists after the blocking period ends at T and coupon rate c is still paid. Path A(2)

shows the call-scenario, in which the stock price ends up at or above the call barrier
S at the end of the initial blocking period. Thus, as soon as permissible i.e., at time
T , the issuer calls the CoCo at the call price P . In the trigger scenario B, the trigger
barrier S is hit at time τC . Consequently, the CoCo is triggered. Last, path C shows the
default scenario in which the stock price jumps to zero at τD and the CoCo becomes
worthless.

CoCo after the blocking period

For pricing purposes, it is helpful to structure the CoCo framework into two periods:
within and after the initial blocking period. We begin with a CoCo after the blocking
period, which is illustrated to the right of the vertical line at T in Fig. 1.

Analogously to Sects. 2.1 and 2.2, we replicate the payout structure of the CoCo
using a portfolio out of building blocks that are given in the form of perpetual state
prices Ct and C t written on the issuer’s stock price process.

Having a trigger event in mind, we derive a state price Ct that pays one unit if
the stock price hits a lower boundary S and ceases to exist if the stock price hits an
upper boundary S or defaults. Within the boundaries the claim continues without any
payoffs. The value of this state price Ct is given by

Ct = 1

Sγ1 − Sγ2 S
γ1−γ2

Sγ1
t + 1

Sγ2 − Sγ1 S
γ2−γ1

Sγ2
t (9)
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268 C. Koziol, S. Weitz

Fig. 1 Extended model framework.
This graph shows the four possible stock price evolutions across time and the corresponding consequences
for the CoCo within the extended model framework. The horizontal lines at S and S indicate the trigger
and call barriers. The vertical line at T indicates the end of the initial blocking period at time T. Path A(1)

shows a situation in which the CoCo is still alive after the blocking period. In A(2) the issuer calls the CoCo
at T since the stock price S increased above S. A trigger scenario is shown in path B in which the stock
price hits S at time τC . In path C , the issuer defaults at time τD and the stock price jumps to zero

with constant exponents

γ1 = 1

σ 2

[
q ′ − r + 1

2
σ 2 −

√
2(r + λ)σ 2 + 1

4

(
2(q ′ − r) + σ 2

)2]

and

γ2 = 1

σ 2

[
q ′ − r + 1

2
σ 2 +

√
2(r + λ)σ 2 + 1

4

(
2(q ′ − r) + σ 2

)2]

The derivation of Eq. (9) is provided in the “Appendix”.
Similarly, the value of a state price C t that pays one unit at S and expires worthless

at S or at default reads:

C t = 1

S
γ1 − S

γ1 Sγ1−γ2
Sγ1

t + 1

S
γ2 − S

γ1 Sγ2−γ1
Sγ2

t (10)

Given the stock price is within the barriers, the CoCo has the character of a perpetual
coupon bond that is subject to default risk. In this case, the value is given by c

r+λ
.

Once the stock price hits S, the CoCo is triggered and takes on the value P , which is
either the value of the share package n · S or the value of the perpetual coupon bond
after the write-down (1−α) · c

r+λ
. Likewise, if the stock price reaches the call barrier
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S, the issuer calls the CoCo at the call price P . In addition, if the stock price after the
blocking period at time T is above S, the issuer calls immediately at the call price P .
Thus, in the extended model (EM) we obtain the price P E M,P

t of a CoCo after the
initial blocking period at time t > T :

P E M,P
t =

{ c

r + λ
+ Ct ·

(
P − c

r + λ

)
+ C t ·

(
P − c

r + λ

)
, S ≤ St ≤ S

P , S < St

(11)

The CoCo value P E M,P
t can be interpreted as a credit risky bond c

r+λ
with extra

payment P − c
r+λ

in case of a trigger event or P − c
r+λ

in case of a call. These
potential payments are weighted in Eq. (11) with the corresponding state prices.

In the case of a trigger event, the CoCo takes on the trigger value P

P =

⎧
⎪⎪⎨

⎪⎪⎩

n · S ,
Conversion

CoCo

(1 − α) · c

r + λ
,
Write-down

CoCo

(12)

While the conditions under which the CoCo is triggered are contractually fixed and
thus exogenously given by the trigger barrier S, the call barrier S follows endogenously
from the issuer’s optimal behavior. We assume a call strategy that follows the ideas
of Brennan and Schwartz (1977) and Ingersoll (1977), in which the issuer calls the
CoCo so that the value is minimized. We can determine the optimal call barrier using
the smooth-pasting condition (see Sarkar 2003):

∂ P E M,P

∂S

∣∣∣∣
S=S

∗ = 0 (13)

The left side of Eq. (13) corresponds to the derivative of the CoCo pricing function in
Eq. (11) for the stock price S evaluated at the call barrier S:

(
P − c

r+λ

)(
γ1Sγ2 S

γ1 − γ2Sγ1 S
γ2

)
−

(
P − c

r+λ

)
(γ1 − γ2)S

γ1+γ2

S
(

Sγ2 S
γ1 − Sγ1 S

γ2
) = 0 (14)

The optimal call barrier S
∗
solves Eq. (14) and must be obtained numerically.

CoCo within the blocking period

In a next step, we consider a CoCo within the blocking period, which is graphically
illustrated in Fig. 1 by the area to the left of T . Three different scenarios existwithin this
period: The CoCo survives without being trigger or defaulted (A: T < τC ∧ T < τD).
The CoCo is triggered before the issuer defaults (B: τC < T ∧ τC < τD). The issuer
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270 C. Koziol, S. Weitz

defaults before the CoCo is triggered within the blocking period (C: τD < T ∧ τD <

τC ).
In our extended model (EM), we value P E M

t the CoCo within the blocking period
as the expectation of the discounted mutually exclusive payoff-scenarios under the
risk-neutral measure as

P E M
t = Et

[
A · 1{T <τC ∧T <τD} + B · 1{τC <T ∧τC <τD} + C · 1{τD<T ∧τD<τC }

]
. (15)

A, B and C stand for the value of the CoCo depending on the respective stock price
scenario during the blocking period (BP) which is indicated by the indicator function
1{.}.

A = P E M,P
T · e−r ·(T −t) + c

r
·
(
1 − e−r ·(T −t)

)
Survivorship of BP

B = P · e−r ·(τC −t) + c

r
·
(
1 − e−r ·(τC −t)

)
Trigger within BP

C = c

r
·
(
1 − e−r ·(τD−t)

)
Default within BP

In scenario A the CoCo survives the initial blocking period. At the end of the blocking
period, the stock price is either at/above the call barrier S and the issuer calls the CoCo
immediately (path A(1) in Fig. 1) or it is between the call and trigger barriers (path
A(2)) and the CoCo becomes callable. In both situations, the CoCo pays coupons with
present value of c

r · (1− e−r ·(T −t)) throughout the blocking period. If triggered within
the blocking period at time τC (scenario B), the CoCo equals the value of a share
package (coupon bond after write-down). Furthermore, the CoCo pays coupons until
τC with present value of c

r · (1− e−r ·(τC −t)). In scenario C, the issuer defaults before
a trigger event and the CoCo expires worthless. The CoCo, however, pays coupons
until the default event occurs at τD . This amounts to c

r · (1 − e−r ·(τD−t)).
Accounting for the appropriate trigger date, the perpetual lifetime, the call right of

the issuer, and the initial blocking period of CoCos enables us to capture the effective
maturity more accurately. However, this is at the expense of a closed-form solution
within the blocking period.

2.4 Tradingmodel

In a last step, we use a market-based approach, the trading model, that purely focusses
on observed prices and fully ignores any kind of pricing model or formulae. This
serves as a benchmark for the other models.

For this purpose, we introduce an empirical approach and predict CoCo price
changes using its underlying risk exposures. Due to the hybrid nature of CoCos, we
consider credit, equity and interest rate risk as the crucial drivers. We set up the fol-
lowing linear relationship to explain CoCo price changes in the trading model (TM):

ΔPT M
t = βS · ΔSt + βcs · Δcst + βr · Δrt (16)
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where ΔSt is the change of the issuer’s stock price, Δcst is the change in the credit
default swap spread of the issuer and Δrt is the yield change on the risk-free asset.
The empirical exposures βS , βr and βcs are estimated using time series regression.

3 Pricing accuracy

3.1 Data

Our CoCo sample consists of all AT1 CoCos issued between January 1, 2013 and
May 31, 2016 denominated in euros. Table 1 provides an overview. Twenty banks
issued 27 CoCos with a total volume of 26.9 billion euros. The dataset contains 13
equity conversion and 14 write-down CoCos. The average CoCo in our sample pays a
coupon of 6.88% (usually semi-annually or quarterly) and can be called after an initial
blocking period of 6 years. We obtained information on the coupon size, the coupon
payment frequency, the issuance date, the first call date, the CoCo type as well as the
write-down fraction or the size of the share package from the offering memorandum.
Although CoCos are contractually triggered by a violation of a pre-specified CET1
ratio, we we do not refer to this accounting numbers but consider an implicit trigger
level S of the stock price. First, accounting numbers are known to be backward-oriented
which prevents a proper indication of a CET1 ratio violation due to current changes
in the issuers solvency (see Flannery 2016). Second, an unobservable and presumably
time-dependent regulatory trigger, which accompanies the accounting trigger, is likely
to precede indications of solvency issues in the CET1 ratio. This situation can been
seen in the case of Banco Popular Español. In June 2016, the European Central Bank
(ECB) classified the bank as ‘failing or likely to fail’ (Article 32, Bank Recovery and
Resolution Directory) and enforced immediate conversion of the CoCos although the
bank’s CET1 ratio was above the contractual trigger threshold (see Pennacchi and
Tchistyi 2018).

Market data was retrieved from Thomson Reuters Eikon on a daily basis. We use
clean prices for CoCos and closing prices of the issuer’s stock. The dividend yield is
given by the net annualized historical dividendover the current stock price. Information
on the issuers’ solvency is represented by the mid-spread of five-year credit default
swaps on unsecured senior debt of the issuer. We translated the daily spreads cdst into
instantaneous probabilities of default λt using the following relationship

λt = cdst

1 − ϕ
(17)

assuming a typical recovery of unsecured senior debt of the issuerϕ = 0.4 (seeAltman
et al. 2005).

The risk-free interest rates were estimated using the Svensson (1994) model for
which the ECB estimates the required parameter inputs from AAA-rated European
sovereign debt securities. The daily estimates are available for download on thewebsite
of the ECB. The end of the observed sample period is May 31, 2018.
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Table 1 CoCo sample

CoCo Coupon Issue date First call Type

Aareal Bank 7.625 Nov. 20, 2014 Apr. 4, 2020 WD

ABN AMRO 5.750 Sep. 22, 2015 Nov. 22, 2020 WD

Allied Irish Banks 7.375 Dec. 3, 2015 Dec. 3, 2020 WD

BBVA (1) 7.000 Feb. 19, 2014 Feb. 19, 2019 EC

BBVA (2) 6.750 Feb. 18, 2015 Feb. 18, 2020 EC

BBVA (3) 8.875 Apr. 14, 2016 Apr. 14, 2021 EC

Ba. Popular (1) 11.500 Oct. 10, 2013 Oct. 10, 2018 EC

Ba. Popular (2) 8.250 Feb. 12, 2015 Apr. 10, 2020 EC

Bank of Ireland 7.375 Jun. 18, 2015 Jun. 18, 2020 WD

Barclays (1) 8.000 Dec. 10, 2013 Dec. 15, 2020 EC

Barclays (2) 6.500 Jun. 17, 2014 Sep. 15, 2019 EC

BNP Paribas 6.125 Jun. 17, 2015 Jun. 17, 2022 WD

Crédit Agricole 6.500 Apr. 8, 2014 Jun. 23, 2021 WD

Danske Bank (1) 5.750 Mar. 12, 2014 Apr. 6, 2020 WD

Danske Bank (2) 5.875 Feb. 18, 2015 Apr. 6, 2022 WD

Deutsche Bank 6.000 May 27, 2014 Apr. 30, 2022 WD

HSBC (1) 5.250 Sep. 17, 2014 Sep. 16, 2022 EC

HSBC (2) 6.000 Sep. 29, 2015 Sep. 29, 2023 EC

Intesa Sanpaolo 7.000 Jan. 19, 2016 Jan. 19, 2021 WD

KBC Group 5.625 Mar. 19, 2014 Mar. 19, 2019 WD

Lloyds Banking 6.375 Apr. 1, 2014 Jun. 27, 2020 EC

Permanent TSB 8.625 May 6, 2015 Apr. 1, 2021 EC

Santander (1) 6.250 Mar. 12, 2014 Mar. 12, 2019 EC

Santander (2) 6.250 Sep. 11, 2014 Sep. 11, 2021 EC

Société Générale 6.750 Apr. 7, 2014 Apr. 7, 2021 WD

UBS 5.750 Feb. 19, 2015 Feb. 19, 2022 WD

UniCredit 6.750 Sep. 10, 2014 Sep. 10, 2021 WD

This table contains all CoCos issued between January 1, 2013 and May 31, 2016 denominated in euros.
The sampling period for the daily market data of each CoCo starts with the issue date and ends at May 31,
2018. The only exceptions are the CoCos of Banco Popular Español for which we regard the data until June
6, 2017, the trigger date of the CoCos. The coupon size is in percentage terms. We also provide information
about the type of CoCo, equity conversion (EC) or write-down (WD)

3.2 Pricing setup

In principle, a pricing model is represented by a function F(Ωt ,Θt ) that depends on
observable Ωt and unobservable Θt parameters. Before a model for the CoCo at a
pricing date t can be applied, we need to clarify of how and at which point in time we
get the unobservable parameters Θt in the first place.

With respect to the latter, we think of a CoCo investor that applies the models
similar to an options trader who insures her portfolio using the delta derived from the
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Fig. 2 Time structure of theory-based models

prominent Black and Scholes (1973) model. Since it is common that options portfolios
are hedged on a daily basis, we use all information available until one day prior to
the pricing date to calibrate the models, i.e., until t − 1. Regarding the calibration
procedure, we distinguish two situations depending on the model type.

In case of the theory-based models, i.e., SM, DM and EM, we proceed according to
the time structure visualized in Fig. 2. In this situation, neither the trigger threshold S
nor the volatility σ of the issuer’s stock price are observable. In contrast to plain vanilla
option pricing, we cannot easily use the implicit volatility from observedmarket prices
since this requires a product with comparable maturity and moneyness. With respect
to moneyness, the CoCo trigger is similar in character to a deep-out-of-the-money put
option. While it is already very difficult to obtain a sensible implicit volatility since
such products are rarely traded, the perpetual lifetime and the call feature makes this
endeavor for CoCos almost impossible.

Corcuera et al. (2012) address this issue by linking market data on credit default
swaps with digital put options and translate the observed premium into an implied
volatility using a Black-Scholes approach. The reported implied volatilities for a CoCo
issued byLlyodsBankingGroup ranged between 77 and 114%,which seems high even
for deep-out-of-the-money options. Thus, we followed a more pragmatic course of
action and treated volatility as a constant parameter equal to 50%. More sophisticated
approaches such as implicit estimates did neither improve the models accuracy nor
result in a different relation between the models.

We fit the model at one single calibration date t − 1 via the trigger barrier S to
the market price Pt−1 using all observable information, e.g., in case of the extended
model Ωt−1 = {St−1, cst−1, rt−1, qt−1}. The trigger barrier that explains the market
price is our estimate Ŝ for the unobservable trigger barrier at the pricing date t . While
Wilkens and Bethke (2014) only calibrate the model at the issue date and keep the
implicit barrier fixed for all subsequent pricing dates, we repeat the calibration for
each pricing date of our sample. This enables us to get more recent market sentiment
as well as the regulatory trigger which is not necessarily constant over time.

For given conversion terms, the pricing function of the theoretical models is u-
shaped in the trigger barrier that results in situations in which two barriers satisfy the
calibration condition. This arises from the fact that a lower barrier makes a trigger
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Fig. 3 Time structure of market-based model

event, usually associated with a loss, less likely and therefore leads to a higher CoCo
value. Conversely, a higher barrier can increase the CoCo value too, since it makes the
share package received upon conversionmore valuable. In line with De Spiegeleer and
Schoutens (2011), we use the lower barrier in these cases. Of course, for write-down
CoCos the pricing function is monotonically decreasing in the barrier since the loss
inevitably associated with the trigger event becomes more likely.

In case of the market-based trading model, we follow a different procedure which
is illustrated in Fig. 3. We estimate the risk exposures βS, βcs, βr of the market-based
model by using historical data out of an estimation window of s = 100 trading days
that ends at the calibration date at t − 1. Using time series regression, we get the set
of estimates Θ̂ = { β̂S, β̂cs, β̂r } which are used to price the CoCo out-of-sample at
t with the model F(Ωt , Θ̂).
For each model, we compute the relative pricing error R P Et at the pricing date t ,
which is given by the deviation of the model price F(Ωt , Θ̂) from the realized market
price Pt divided by the market price Pt :

R P Et = F(Ωt , Θ̂) − Pt

Pt
(18)

3.3 Model comparison

In order to assess the out-of-sample pricing performance of the regarded models,
we calculate different error metrics to identify the strengths and weaknesses of the
individual models. First, we focus on the sample average of the considered metrics.
The results are presented in Table 2.
In principal, an appropriate pricing model should on average capture the realized
market price, i.e., it should be unbiased. The mean relative error (ME) of all models is
between −0.030 to −0.003 percentage points (pts). Since the CoCo trades on average
around par, an error of about −3 cents is rather negligible. This indicates a proper
pricing performance of all models. Yet, there is a slight advantage of the extended
model (EM) and the trading model (TM) over the standard model (SM) and the default
risk model (DM).
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Table 2 Pricing performance, sample average

Metric Theory-based Market-based

SM DM EM TM

ME −0.030 −0.020 −0.011 −0.003

EV 0.930 0.821 0.663 0.604

RMSE 0.945 0.837 0.663 0.604

QE 4.513 3.967 2.936 3.006

This table shows the error metrics in percentage points (pts) for the four pricing models. All metrics are
based on the relative pricing error (RPE). ‘Mean Error (ME)’ is the average of the RPE. ‘Error Variation
(EV)’ is the standard deviation of the RPE. ‘RootMean Squared Error (RMSE)’ is the square root of average
squared RPE. ‘Quantile Error (QE)’ is the 99%-quantile of the absolute RPE. SM represents the standard
model, DM stands for the default risk model, EM denotes the extended model and TM is the market-based
trading model. We used 100.000 paths and weekly steps in our simulation algorithm for the extended model

Besides a low level of errors, a more stable price prediction is desirable. This
characteristic can be measured in terms of error variation (EV) which we calculate
as the standard deviation of the relative pricing error. Comparing the error variation
of the SM with the DM, we observe a lower error variation using the DM, which
shows that information on the issuer’s solvency stabilizes the price prediction. In
addition, the EM reduces the error variation of the DM by 0.158 pts or 19%, proving
that consideration of the effective maturity structure (in the EM) further stabilizes
the price prediction. Remarkably, the trading model without any pricing theoretical
considerations produces the most stable results.

Taking bias and stability into account, we obtain a clear preference order across all
models.Within the theory-basedmodels, the SMwith its simplified structure produces
reasonable price predictions. However, the DM dominates the SMwith respect to both
stability and accuracy. This leads to the conclusion that information on credit risk is
crucial to price CoCos accurately and must therefore be considered in a pricing model.

Summary (The Effect of Credit Risk on Pricing Accuracy)
Augmenting the models with information on the issuer’s solvency stabilizes the

pricing performance. Therefore, information on credit risk is essential for accurate
CoCo pricing and should consequently be included in a pricing model.

Although mean error and error variation are suitable metrics for assessing systematic
pricing bias and stability, one metric which reflects both simultaneously is desirable.
In this study we calculate the average root mean squared relative error (RMSE) of
all CoCos in our sample. This metric accounts for the fact that a model with a given
average accuracy is penalized for a higher error variation.

The root mean squared error confirms the previously discussed preference order.
The sophisticated EM shows the best pricing performance of the theory-based models
with a root mean squared error of 0.663 pts, while the DM has a root mean squared
error of 0.821 pts. The DM is more accurate than the SM which has a root mean
squared error of 0.945 pts. On average, the TM resulted in the most accurate pricing
performance with a root mean squared error of 0.604 pts.
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Table 3 t-values for mean difference between forecast errors of corresponding model combinations

SM DM EM TM

SM – 3.673 8.808 10.161

DM – – 8.605 10.396

EM – – – 6.474

TM – – – –

This table shows the ‘t-values’ for the mean difference of the daily absolute forecast errors between each
combination of two models for the whole CoCo sample and the sample period

While the SM and the DM are based on the same restrictive maturity assumptions,
the EM regards the perpetual lifetime, the initial blocking period as well as the issuer’s
call decision. By comparing the DM with the EM, we can assess the effect of the
maturity assumptions on the pricing performance, given the model already regards
the issuer’s solvency. We observe that a flexible maturity structure results in a 0.174
pts or 21% lower root mean squared error of the EM compared to the DM and thus
leads to a more accurate and stable price prediction. Accordingly, we conjecture that
correctly modelling the effective lifetime improves the predictive pricing accuracy of
AT1 CoCos considerably. Thus, increasing a model’s complexity to include credit risk
and allow for a more realistic maturity structure is not only justified, but necessary for
accurate CoCo pricing.

Summary (The Effect of Maturity Structure on Pricing Accuracy)
Since CoCos are perpetual and callable by the issuer after an initial blocking

period, accurate pricing requires a model that flexibly accounts for the product’s
effective lifetime.

The TM still yields the most accurate pricing performance on average. At first glance,
this result seems surprising since the TMdisregards the CoCo’s product characteristics
and focuses solely on the risk factors it is exposed to. However, in contrast to the
calibration procedure of the theory-basedmodels, forwhich the trigger barrier estimate
is extracted at one single date, the empirical risk exposures of the TM are estimated
across a period of s days. The finding that the TM on average outperforms the theory-
based models indicates that higher model complexity is not always necessary and that
a simple model only using historic market data without pricing theory can at times be
sufficient.

Table 3 contains the t-values for the mean of absolute forecast errors according to
model A (displayed in rows) subtracted by the absolute forecast errors from model
B (displayed in the corresponding column). For all model combinations, we find
a significant effect in the sense that mean forecasts errors from a given model are
statistically different from those of another model.

For the sake of completeness, we also conducted large pricing error investigations
by computing the quantile error (QE) as the 99%-quantile of the absolute relative
pricing error to assess whether a particular model results in severe mispricing. In fact,
this results in a slightly different preference order. The 99%-quantile suggests that the
EM with a quantile error of 2.936 pts is less prone to severe mispricing than the TM
with a quantile error of 3.004 pts. A reason for this superior performance of the EM
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relative to the TM in case of extreme errorsmight be the ability of the EM to capture the
non-linear CoCo sensitivities towards the risk factors which cannot be accomplished
by the TM. For large price changes these non-linearities can be significant. For the
optimal model choice, both the average pricing accuracy and the risk of landing in the
tails of the error distribution must be considered.

Summary (Trade-off: Accuracy vs. Error Tail-Risk)
On average, the trading model which disregards the product characteristics and is
based solely on historic market data outperforms the theory-based models in terms of
root mean squared error. However, consideration of the 99%-quantile of the pricing
errors reveals that a more complex model with a theoretical foundation is required to
prevent severe mispricing. Thus, the decision which model to apply in practice entails
a trade-off between average pricing accuracy and the risk of severe mispricing.

To provide a deeper understanding of our results, we report the root mean squared
error on an individual CoCo level for the considered models in Table 4. The root mean
squared errors for all CoCos and models are in the range between 0.337 pts and 2.232
pts. This underlines the result that CoCos can be priced quite accurately. Furthermore,
there is a clear preference order within the theory-based models: Consideration of the
credit risk significantly improves the accuracy and in total the EM is significantlymore
precise than the DM which indicates that the effective maturity structure matters.

Summary (Accurate Pricing Performance of Individual CoCos)
While the EM and TM show a superior pricing performance relative to SM and DM,
all models are able to price CoCos properly. Hence, accurate CoCo pricing is not
only possible in the aggregate but also on an individual CoCo level.

The only exceptions of this order are BBVA (2) for which the EM is outperformed by
the SM and the DM and HSBC (2) for which the DM outperforms the EM. Comparing
the individual pricing performance of EMwith TM, we observe that the EM has priced
the two issues of Banco Popular Español and the issue of Allied Irish Banks more
accurately than the TM. A closer look reveals that these CoCos share the similarity of
being part of the class of CoCos for which all four models showed the least accurate
pricing results. An explanation for this observation might be the fact that both issuing
banks experienced severe trouble within our sample period. This is in line with the
observed quantile errors in Table 2which suggest a superior pricing performance of the
EM over the TM once non-linear CoCo price dynamics emerge. The EM is considered
as being the more robust model in distress.

4 Performance in distress

This section focuses on distressed situations of the CoCo during which a trigger
event becomes closer and the CoCo changes its nature. Figure 4 contains the price
evolution of the CoCo Ba. Popular (1). During sideways market phases, the CoCo
trades relatively stable at the same level similar to a coupon bond. However, once the
CoCo value drops, a strong increase in volatility can be observed and an equity-like
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Table 4 Root mean squared error, individual level

CoCo Theory-based Market-based

SM DM EM TM

Aareal Bank 1.214 – 0.925 0.821

ABN AMRO 0.601 0.587 0.542 0.514

Allied Irish Banks 1.974 1.750 1.270 1.272

BBVA (1) 0.621 0.606 0.602 0.573

BBVA (2) 0.541 0.556 0.565 0.521

BBVA (3) 0.506 0.468 0.428 0.411

Ba. Popular (1) 1.960 1.378 0.887 0.924

Ba. Popular (2) 2.232 1.847 1.166 1.304

Bank of Ireland 1.032 0.868 0.692 0.616

Barclays (1) 0.746 0.702 0.598 0.536

Barclays (2) 0.760 0.714 0.576 0.505

BNP Paribas 0.508 0.478 0.445 0.381

Crédit Agricole 0.592 0.558 0.517 0.472

Danske Bank (1) 0.750 0.730 0.476 0.367

Danske Bank (2) 0.534 0.494 0.470 0.337

Deutsche Bank 1.050 0.936 0.777 0.685

HSBC (1) 0.841 0.829 0.586 0.451

HSBC (2) 0.588 0.559 0.570 0.496

Intesa Sanpaolo 0.837 0.767 0.646 0.628

KBC Group 0.613 0.578 0.537 0.471

Lloyds Banking 0.609 0.561 0.488 0.416

Permanent TSB 1.504 1.273 0.938 0.753

Santander (1) 0.794 0.724 0.643 0.592

Santander (2) 0.817 0.734 0.690 0.605

Société Générale 1.099 1.065 0.477 0.422

UBS 0.558 0.525 0.496 0.389

UniCredit 1.643 1.470 0.896 0.862

Average 0.945 0.837 0.663 0.604

This table shows the relative ‘Root Mean Squared Error (RMSE)’ of daily predictions of all four models
for the whole CoCo sample on an individual product level. SM represents the standard model, DM stands
for the default risk model, EM denotes the extended model and TM is the market-based trading model. We
used 100.000 paths and weekly steps in our simulation algorithm for the extended model

character becomes visible. This observation highlights the challenge of understanding
CoCos in a distressed situation because their product characteristics might change.

We define distress as a state in which the CoCo return exceeds twice its historical
volatility. We then calculate our error metrics based only on dates during which the
CoCo was in a distressed state. Table 5 shows the resulting conditional error metrics.
As expected, the pricing accuracy of eachmodel suffers when it comes to distress. This
is reflected by the more pronounced conditional error metrics shown in comparison to
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Fig. 4 Exemplary price evolution of CoCo Ba. Popular (1).
This figure shows the evolution of the quoted (clean) price of the CoCo Ba. Popular (1) issued by Banco
Popular Español on October 10, 2013. The dotted line indicates the par value. The CoCo was triggered by
the ECB on June 7, 2017

Table 5 Pricing performance in distress, sample average

Metric Theory-based Market-based

SM DM EM TM

ME −0.162 −0.129 −0.070 −0.044

EV 1.698 1.545 1.283 1.326

RMSE 1.712 1.559 1.294 1.357

This table shows the conditional error metrics in percentage points (pts) for the four pricing models when
the CoCo is in distress. We define distress as a CoCo return that exceeds two standard deviations of the
historical CoCo return. All metrics are based on the relative pricing error (RPE). ‘Mean Error (ME)’ is the
average of the RPE. ‘Error Variation (EV)’ is the standard deviation of the RPE. ‘Root Mean Squared Error
(RMSE)’ is the square root of average squared RPE. SM represents the standard model, DM stands for the
default risk model, EM denotes the extended model and TM is the market-based trading model. We used
100.000 paths and weekly steps in our simulation algorithm for the extended model

the results on average reported in Table 2. With a mean error between −0.162 pts to
−0.044 pts the models reveal a moderate but clearly observable underpricing in times
of distress when compared to the almost non-existing ME for the total sample period.

Regarding stability, we observe the expected picture of a higher error variation for
all the models. However, in contrast to error variation for the total period, we observe
that in distress the EM clearly shows a more stable price prediction than the TM.
This finding is confirmed by the result of the conditional root mean squared errors.
With a root mean squared error of 1.294 pts the EM shows indeed the most stable and
accurate pricing performance of all themodels and now even outperforms the TMwith
a conditional root mean squared error of 1.357 pts. The other theory-based models,
SM and DM, are also better in their relative performance in terms of the root mean
squared error. We therefore conclude that in distressed situations, in which a trigger
event becomes more likely, a simple trading approach is comparably more prone to
severe mispricing than a sophisticated theory model like the EM. This is reflected in
a high error variation resulting in a comparably high conditional root mean squared
error. In contrast, a theory-based model that accounts for the individual characteristics
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Table 6 t-values for mean difference between forecast errors of corresponding model combinations in
distress

SM DM EM TM

SM – 1.537 7.991 7.604

DM – – 7.681 8.051

EM – – – 2.754

TM – – – –

This table shows the ‘t-values’ for the mean difference of the daily absolute forecast errors between each
combination of two models for the whole CoCo sample in distressed states

of a CoCo produces a robust price prediction. Apparently, when in distress, the non-
linear sensitivities towards the risk factors of the EM better capture the changed CoCo
characteristics than the linear sensitivities of the TM.

Summary (Pricing Performance in Distress)
In distress, a robust price prediction requires a sophisticated model with a theoretical
foundation that captures the non-linear sensitivities towards risk factors.

Table 6 contains the t-values for the mean difference of the absolute forecast errors
between the models in distressed states. In line with Table 3, we find statistically
significant differences at a 1% level except for one particular combination between
SM and DM. The corresponding t-value in this case equals 1.537 and corresponds to
a still reasonable p-value of 0.061.

Table 7 shows the conditional root mean squared error on an individual CoCo basis.
It can be seen that the conditional root mean squared errors of all CoCos are more
pronounced compared to the results from total period which are reported in Table 4.
In distress there are nine cases in which the EM shows a higher accuracy than the
TM, compared to three cases for the total period. Furthermore, while the TM strictly
outperforms the DM for all CoCos during the total period, in distress the DM shows a
lower conditional root mean squared error in five cases. This relative catch-up effect
of the theory-based models compared to the market-based model confirms that it is
necessary to consider the CoCo’s product characteristics in a model in order to obtain
an accurate price prediction in distress.

Focusing on the theory-based models, we also recognize that the SM and the DM
come closer in precision to the EM. Compared to the EM, the SM and DM showed
lower rootmean squared error in four and five cases respectively. This finding indicates
that in distressed states, the importance of the call decision and the perpetual lifetime
become comparably less important than the changing sensitivities associated with a
likely trigger event. As expected, comparing the DM with the SM we still observe a
clear improved pricing accuracy when information on the issuers solvency is included.
Relative to the root mean squared error improvement for the total sample period of
0.108 pts, the inclusion of credit risk leads to a reduction of 0.153 pts in distress.

Combining the result from within the class of theory-based models with the result
across model classes, we conclude that especially in distress the CoCo’s sensitivity
with respect to the more likely trigger event is important which cannot be captured
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Table 7 Root mean squared error in distress, individual level

CoCo Theory-based Market-based

SM DM EM TM

Aareal Bank 2.506 – 2.193 2.355

ABN AMRO 1.650 1.400 1.054 0.996

Allied Irish Banks 3.571 3.290 2.609 3.440

BBVA (1) 1.247 1.207 1.241 1.150

BBVA (2) 1.256 1.276 1.385 1.224

BBVA (3) 0.787 0.755 0.789 0.780

Ba. Popular (1) 3.184 3.027 1.163 1.345

Ba. Popular (2) 4.504 4.040 2.450 3.973

Bank of Ireland 2.297 1.921 1.297 1.120

Barclays (1) 1.701 1.628 1.303 1.234

Barclays (2) 1.544 1.471 1.126 1.099

BNP Paribas 0.998 0.956 0.940 0.908

Crédit Agricole 1.009 0.969 0.918 0.936

Danske Bank (1) 1.153 1.085 0.836 0.773

Danske Bank (2) 1.051 0.942 0.823 0.747

Deutsche Bank 2.220 2.024 1.964 1.993

HSBC (1) 1.149 1.088 1.207 1.115

HSBC (2) 1.326 1.270 1.348 1.304

Intesa Sanpaolo 1.162 1.111 0.858 0.849

KBC Group 1.219 1.198 1.179 1.119

Lloyds Banking 1.326 1.258 1.016 0.910

Permanent TSB 1.989 1.674 1.252 1.122

Santander (1) 1.466 1.346 1.272 1.294

Santander (2) 1.475 1.323 1.308 1.364

Société Générale 1.367 1.294 0.704 0.700

UBS 1.100 1.033 1.030 0.908

UniCredit 2.291 2.178 1.822 1.952

Average 1.712 1.559 1.294 1.357

This table shows the conditional relative ‘Root Mean Squared Error (RMSE)’ of all four models sample on
an individual product level. We condition on the pricing dates at which the CoCo is in a state of distress.
SM represents the standard model, DM stands for the default risk model, EM denotes the extended model
and TM is the market-based trading model. We used 100.000 paths and weekly steps in our simulation
algorithm for the extended model

by the market-based model. Hence, accurate CoCo pricing in distress requires more
complex theory-based models.

In total, based on the results, we conclude that especially in distress the CoCo’s
sensitivity with respect to the increased likelihood of a trigger event is important. As
this cannot be captured by the market-based model, accurate CoCo pricing in distress
requires more complex theory-based models.
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5 Conclusion

This study provides an analysis ofCoCopricingmodels. For this reason,we considered
four different pricing models and assessed their out-of-sample pricing ability using a
broad dataset of 27 CoCos which comprises all issuances between January 1, 2013
and May 31, 2016 denominated in euros.

We regarded four models: a standard model proposed by De Spiegeleer and
Schoutens (2012) which relies on a highly restrictive maturity assumption in order
to obtain closed-form pricing formulae. A modified version of the standard model
with which we allow for a sudden default of the issuer to incorporate credit risk but
still impose restrictive maturity assumptions for the sake of a closed form solution.
An extended model that flexibly accounts for the CoCos corresponding lifetime by
regarding the effective trigger date, the perpetual lifetime as well as the issuer call right
after an initial blocking period. Amarket-based model without any pricing-theoretical
background that solely relies on historical data.

To the best of our knowledge this is the first serious empirical study in the literature
on CoCos dedicated to assess the out-of-sample pricing performance of different mod-
els. Our study reveals four major results: First, information on the issuer’s solvency
stabilizes the pricing performance and must therefore be included in a CoCo pricing
model. Second, capturing the effective lifetime of the CoCo by incorporating more
product characteristics into the model further improves the out-of-sample accuracy of
theory-based models. Thus, within the class of theory-based models, increasing the
complexity improves pricing accuracy. Third, in a normal market environment, on
average a more sophisticated theory-based model is not advantageous over a market-
based trading model. Last, once the CoCo turns into distress, however, the trading
model is comparably more exposed to severe mispricing than a more complex theory-
based model. In this case the more sophisticated EM outperforms the market-based
approach.

From these findings we conclude that in a normal market environment a simple
model only based on historic data can be sufficient for the pricing of CoCos. In this case
increasing amodel’s complexity does not necessarily improve its out-of-sample pricing
ability. However, in distress, the simple trading model leads to severe mispricing since
it cannot capture the changing (non-linear) CoCo sensitivities once the trigger event
becomes more likely. Therefore, distressed states require a sophisticated model with
a theoretical foundation in order to price CoCos accurately.
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Appendix

Derivation of state prices

A state price with perpetual lifetime written on the stock price S follows the following
ordinary differential equation (ODE):

1

2
σ 2S2

t
∂2P

∂S2 + (r − q + λ)St
∂ P

∂S
− (r + λ)Pt = 0 (19)

We can obtain a closed-form solution for a state price which satisfies the ODE in Eq.
(19) by using the general relationship

Ct = c1Sγ1
t + c2Sγ2

t , (20)

in which c1 and c2 are arbitrary constants and the exponents γ1 and γ2 are given by:

γ1 = 1

σ 2

[
q − r − λ + 1

2
σ 2 −

√
2(r + λ)σ 2 + 1

4

(
2(q − r − λ) + σ 2

)2
]

and

γ2 = 1

σ 2

[
q − r − λ + 1

2
σ 2 +

√
2(r + λ)σ 2 + 1

4

(
2(q − r − λ) + σ 2

)2
]

Using the barriers S and S as boundary conditions, we derive the value of a state price
Ct for the trigger event and that for the issuer call Ct .

The boundary conditions for the trigger state price Ct are:

Ct =
{
1 , St → S
0 , St → S

(21)

Using this boundary condition in Eq. (21), we can determine the constants c1 and c2
in Eq. (20) and obtain the trigger state price Ct

Ct = 1

Sγ1 − Sγ2 S
γ1−γ2

Sγ1 + 1

Sγ2 − Sγ1 S
γ2−γ1

Sγ2 . (22)

Similarly, the boundary conditions for the call state price C t read:

Ct =
{
0 , St → S
1 , St → S

(23)
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Solving for the constants c1 and c2 in Eq. (20), we get the call state price C t :

Ct = 1

S
γ1 − S

γ1 Sγ1−γ2
Sγ1 + 1

S
γ2 − S

γ1 Sγ2−γ1
Sγ2 (24)
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