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Abstract
Several applications in medical imaging and non-destructive material testing lead
to inverse elliptic coefficient problems, where an unknown coefficient function in an
elliptic PDE is to be determined from partial knowledge of its solutions. This is usually
a highly non-linear ill-posed inverse problem, for which unique reconstructability
results, stability estimates and global convergence of numerical methods are very hard
to achieve. The aim of this note is to point out a new connection between inverse
coefficient problems and semidefinite programming that may help addressing these
challenges. We show that an inverse elliptic Robin transmission problem with finitely
many measurements can be equivalently rewritten as a uniquely solvable convex non-
linear semidefinite optimization problem.This allows to explicitly estimate the number
of measurements that is required to achieve a desired resolution, to derive an error
estimate for noisy data, and to overcome the problem of local minima that usually
appears in optimization-based approaches for inverse coefficient problems.

Keywords Inverse Problem · Finitely many measurements · Monotonicity ·
Convexity · Loewner order

Mathematics Subject Classification 35R30 · 90C22

1 Introduction

Inverse elliptic coefficient problems arise in a number of applications in medical
imaging and non-destructive material testing. The arguably most prominent exam-
ple is the Calderón problem [5,6] which models electrical impedance tomography
(EIT) where the electrical conductivity distribution inside a patient is to be determined
from current/voltage measurements on its surface, cf. [1] for an overview. Theoretical
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1600 B. Harrach

uniqueness questions for inverse elliptic coefficient problems havemostly been studied
in the idealized infinite-dimensional setting where (intuitively speaking) the unknown
coefficient function is to be determined with infinite resolution from infinitely many
measurements, cf., e.g., [7,12,15]. Lipschitz stability results have been obtained for
finitely many unknowns and infinitely many measurements in, e.g., [3,4,11]. Recently
there has been progress on the practically very relevant case of finitelymany unknowns
and measurements, cf., e.g., [2,8,14]. But little is known yet about explicitly charac-
terizing the required number of measurements for a given desired resolution.

Practical reconstruction algorithms for inverse coefficient problems are usually
based on regularized data-fitting, which formulates the inverse problem as a mini-
mization problem for a residuum functional together with a regularization term. As
the residuum formulation is typically non-convex, this approachhighly suffers from the
problem of local minima. Convexification approaches for inverse coefficient problems
have been studied in, e.g., [13]. But, to the knowledge of the author, no equivalent con-
vex reformulations of inverse coefficient problems with finitely many measurements
have been found yet.

The aim of this work is to show that a uniquely solvable convex reformulation of
an inverse coefficient problem is indeed possible if enough measurements are being
taken, and that the required number of measurements can be explicitly characterized.
More precisely, we state a criterion that is sufficient for unique solvability and for the
solution minimizing a linear cost functional under a convex non-linear semidefinite
constraint. For a given desired resolution and a given number of measurements, the
criterion can be explicitly checked by calculating finitely many forward solutions. The
criterion is fulfilled if sufficiently many measurements are taken. Thus, the required
number ofmeasurements can be foundby startingwith a lownumber and incrementally
increasing it until the criterion is fulfilled. The criterion also yields explicit error
estimates for noisy data.

This work is closely related to [10] that gives an explicit construction of special
measurements that uniquely determine the same number of unknowns in an inverse
elliptic coefficient problem by a globally convergent Newton root-finding method.
We also formulate our result for the same inverse Robin transmission problem as in
[10] which is motivated by EIT-based corrosion detection and may be considered as
a simpler variant of the Calderón problem. Our main advance in this work is the step
from Newton root-finding to a convex semidefinite program. This allows utilizing a
redundant set of given measurements, and eliminates the need of specially constructed
measurements. It also simplifies the underlying theory as it no longer requires simulta-
neously localized potentials, and allows the criterion to be written using the Loewner
order, which very naturally arises in elliptic inverse coefficient problems with finite
resolution and finitely many measurements [9]. Also, to the knowledge of the author,
this work is the first connection between the emerging research fields of semidefinite
optimization and inverse coefficient problems, which might bring new inspiration to
these important fields.
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2 Inverse problems for convexmonotonous functions

Let “≤” denote the entry-wise order on R
n , and “�” denote the Loewner order on the

space of symmetric matrices Sm ⊆ R
m×m , with n,m ∈ N. For A ∈ Sm the largest

eigenvalue is denoted by λmax(A).
Given a-priori bounds b > a > 0, we consider the inverse problem to

determine x ∈ [a, b]n ⊂ R
n+ from F(x) ∈ Sm ⊆ R

m×m, (1)

where F : R
n+ → Sm is assumed to be a continuously differentiable, convex and

monotonically non-increasing matrix-valued function, i.e., for all x, x (0) ∈ R
n+, and

all 0 ≤ d ∈ R
n ,

F ′(x)d � 0, (2)

F(x) − F(x (0)) 	 F ′(x (0))(x − x (0)). (3)

Such problems naturally arise in inverse coefficient problems in elliptic PDEs with
finite resolution and finitely many measurements [9].

Note that, here and in the following, we write the derivative of F in a point x ∈ R
n+

as F ′(x) ∈ L(Rn, Sm), so that F ′(x)d is a symmetric m × m-matrix for all d ∈ R
n .

Also note that a continuously differentiable function F : R
n+ → Sm fulfills (2) and

(3), if and only if F fulfills

F(x (0)) 	 F(x) for all x, x (0) ∈ R
n+, x (0) ≤ x,

F((1 − t)x (0) + t x) � (1 − t)F(x (0)) + t F(x) for all x, x (0) ∈ R
n+, t ∈ [0, 1],

cf., e.g., [9, Lemma 2] for the only-if-part. The if part immediately follows from
writing the directional derivative as differential quotient.

In this sectionwewill derive a sufficient criterion for unique solvability of the finite-
dimensional inverse problem (1) and for reformulating it as a convex optimization
problem. Note that our criterion may appear technical at a first glance, but we stress
that it only requires finitely many evaluations of directional derivatives of F , so that
it can be easily checked in practice. Moreover, for the inverse Robin transmission
problem considered in Sect. 3, we will show that the criterion will always be fulfilled if
sufficientlymanymeasurements are taken.Hence, the criterion allows to constructively
determine the number of measurements that are required for a certain resolution and
for convex reformulation by simply increasing the number of measurements until the
criterion is fulfilled.

To formulate our result, let e j ∈ R
n denote the j-th unit vector, 1 ∈ R

n denote the
vector of ones, and e′

j := 1 − e j is the vector containing zero in the j-th component
and ones in all others. For a matrix A ∈ R

n×n , ‖A‖2 denotes the spectral norm, and
for a number λ ∈ R, �λ� denotes the ceiling function, i.e., the least integer greater
than or equal to λ.
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1602 B. Harrach

Theorem 1 Let F : R
n+ → Sm, n,m ≥ 2, be continuously differentiable, convex and

monotonically non-increasing, and b ≥ a > 0. If

F ′(z j,k)d j � 0 for all k ∈ {2, . . . , K }, j ∈ {1, . . . , n},

where

z j,k := a

2
e′
j +

(
a + k

a

4(n − 1)

)
e j ∈ R

n+, d j := 2b − a

a
(n − 1)e′

j − 1

2
e j ∈ R

n,

and K := � 4(n−1)b
a � − 4n + 5 ∈ N, then the following holds

(a) x̂ ∈ [a, b]n is uniquely determined by knowledge of Ŷ := F(x̂). x̂ is the unique
minimizer of the convex optimization problem

minimize ‖x‖1 =
n∑
j=1

x j subject to x ∈ [a, b]n, F(x) � Ŷ . (4)

(b) For x̂ ∈ [a, b]n, Ŷ := F(x̂), δ > 0, and Y δ ∈ Sm, with ‖Ŷ −Y δ‖2 ≤ δ, the convex
optimization problem

minimize ‖x‖1 =
n∑
j=1

x j subject to x ∈ [a, b]n, F(x) � Y δ + δ I

(5)
possesses a minimum, and every such minimum xδ fulfills

‖x̂ − xδ‖∞ ≤ 2δ(n − 1)

λ
with λ := min

j=1,...,n,
k=2,...,K

λmax(F
′(z j,k)(d j )) > 0.

To prove Theorem 1 we will show the following lemmas.

Lemma 1 Let F : R
n+ → Sm, n,m ≥ 2, be continuously differentiable, convex and

monotonically non-increasing. If, for some x ∈ R
n+,

F ′(x)((n − 1)e′
j − e j ) � 0 for all j ∈ {1, . . . , n}, (6)

then, for all d ∈ R
n, and y ∈ R

n+,

λmax(F
′(x)d) <

λ‖d‖∞
n − 1

implies
n∑
j=1

d j > 0, and (7)

λmax(F(y) − F(x)) <
λ‖y − x‖∞

n − 1
implies

n∑
j=1

(y j − x j ) > 0, (8)

with λ := min j=1,...,n λmax(F ′(x)((n − 1)e′
j − e j )).
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Solving an inverse elliptic coefficient problem by convex… 1603

Proof We will show that, for all d ∈ R
n ,

λmax(F
′(x)d) <

λ‖d‖∞
n − 1

implies min
j=1,...,n

d j > − 1

n − 1
max

j=1,...,n
d j , (9)

which clearly implies (7). (8) then follows from (7) by the convexity property
F ′(x)(y − x) � F(y) − F(x).

We prove (9) by contraposition and assume that there exists an index k ∈ {1, . . . , n}
with

dk = min
j=1,...,n

d j ≤ − 1

n − 1
max

j=1,...,n
d j .

We have that either

‖d‖∞ = max
j=1,...,n

d j , or ‖d‖∞ = − min
j=1,...,n

d j = −dk,

and in both cases it follows that

dk ≤ − 1

n − 1
‖d‖∞, and thus d ≤ − 1

n − 1
‖d‖∞ek + ‖d‖∞e′

k .

Hence, by (6) and monotonicity,

F ′(x)d 	 ‖d‖∞
n − 1

F ′(x)
(
(n − 1)e′

k − ek
)
,

which yields that

λmax(F
′(x)d) ≥ ‖d‖∞

n − 1
λ,

so that (9) is proven. ��
Remark 1 Lemma 1 can be considered a converse monotonicity result, as it yields that,
for all y ∈ R

n+, with y �= x ,

F(y) � F(x) implies
n∑
j=1

(y j − x j ) > 0.

Lemma 2 Let F : R
n+ → Sm, n,m ≥ 2, be continuously differentiable, convex and

monotonically non-increasing, and b ≥ a > 0. If

λ := min
j=1,...,n,
k=2,...,K

λmax(F
′(z j,k)(d j )) > 0,
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1604 B. Harrach

where z j,k ∈ R
n+, d j ∈ R

n, and K ∈ N are defined as in Theorem 1, then

λmax(F
′(x)((n − 1)e′

j − e j )) ≥ λ for all x ∈ [a, b]n, j ∈ {1, . . . , n}.

Proof We will show that for all j ∈ {1, . . . , n} and x ∈ [a, b]n , there exists t ∈
[a + a

2(n−1) , b + a
2(n−1) ] ⊂ R, so that, for all 0 ≤ δ ≤ a

4(n−1) ,

F ′(x)((n − 1)e′
j − e j ) 	 F ′ (a

2
e′
j + (t − δ)e j

)
d j . (10)

Since a+ K a
4(n−1) ≥ b+ a

4(n−1) , we have that for every t ∈ [a+ a
2(n−1) , b+ a

2(n−1) ],
there exists k ∈ {2, . . . , K }, so that

δ := t −
(
a + k

a

4(n − 1)

)
≤ a

4(n − 1)
fulfills 0 ≤ δ ≤ a

4(n − 1)
.

Hence, if (10) is proven, then

F ′(x)((n − 1)e′
j − e j ) 	 F ′(z j,k)d j ,

so that the assertion follows.
To prove (10), let j ∈ {1, . . . , n}, and x ∈ [a, b]n . We define t := x j + a

2(n−1) .

Then, for all 0 ≤ δ ≤ a
4(n−1)

(n − 1)e′
j − e j = 2(n − 1)

a

(a
2
e′
j + (x j − t)e j

)
≤ 2(n − 1)

a

(
x − a

2
e′
j − te j

)

≤ 2(n − 1)

a

(
x −

(a
2
e′
j + (t − δ)e j

))
,

and

2(n − 1)

a

(
x −

(a
2
e′
j + (t − δ)e j

))

≤ 2(n − 1)

a

((
b − a

2

)
e′
j + (x j − t + δ)e j

)

= 2b − a

a
(n − 1)e′

j + 2(n − 1)

a

(
− a

2(n − 1)
+ δ

)
e j

≤ 2b − a

a
(n − 1)e′

j − 1

2
e j = d j ,

so that we obtain from monotonicity (2) and convexity (3)

F ′(x)((n − 1)e′
j − e j )

	 2(n − 1)

a
F ′(x)

(
x −

(a
2
e′
j + (t − δ)e j

))
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	 2(n − 1)

a

(
F(x) − F

(a
2
e′
j + (t − δ)e j

))

	 2(n − 1)

a
F ′ (a

2
e′
j + (t − δ)e j

) (
x −

(a
2
e′
j + (t − δ)e j

))

	 F ′ (a
2
e′
j + (t − δ)e j

)
d j ,

which proves (10) and thus the assertion. ��

Proof of Theorem 1 Under the assumption of Theorem 1, it follows from Lemma 2,
that the assumptions of Lemma 1 are fulfilled, so that (8) holds for all x, y ∈ [a, b]n .
In particular this yields that Ŷ := F(x̂) uniquely determines x̂ ∈ [a, b]n . Moreover,
for every x ∈ [a, b]n with x �= x̂ , and F(x) � Ŷ = F(x̂), we obtain from Remark 1
that

n∑
j=1

(x j − x̂ j ) > 0,

which shows that x̂ is the uniqueminimizer of (4). This proves Theorem 1(a). To prove
Theorem 1(b), we note that the set of all x ∈ [a, b]n with F(x) � Ŷ δ + δ I is compact
and non-empty since it contains x̂ . Hence, at least one minimizer of (5) exists. Every
minimizer xδ ∈ [a, b]n fulfills

F(xδ) � Ŷ δ + δ I � F(x̂) + 2δ I .

If 2δ <
λ‖xδ−x̂‖∞

n−1 , then (8) would imply that

n∑
j=1

(xδ
j − x̂ j ) > 0,

which contradicts the minimality of xδ . Hence ‖xδ − x̂‖∞ ≤ 2δ(n−1)
λ

. ��

3 Application to an inverse elliptic coefficient problem

We will now study the problem of determining a Robin transmission coefficient in an
elliptic PDE from finitely many measurements. Using Theorem 1 we will show that
this inverse coefficient problem can be rewritten as a uniquely solvable convex non-
linear semidefinite optimization problem if enough measurements are being used.
This also gives a constructive criterion whether a certain number of measurements
suffices to determine the Robin parameter with a given desired resolution by convex
optimization, and yields an error estimate for noisy data.
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1606 B. Harrach

3.1 The infinite-dimensional inverse Robin transmission problem

Let Ω ⊂ R
d (d ≥ 2) be a bounded domain and D ⊂ Ω be an open subset with

D ⊂ Ω . Ω and D are assumed to have Lipschitz boundaries, ∂Ω and Γ := ∂D, and
Ω\D is assumed to be connected. L∞+ (Γ ) denotes the subset of L∞(Γ )-functions
with positive essential infima.

We consider the inverse problem of recovering the coefficient γ ∈ L∞+ (Γ ) in the
elliptic Robin transmission problem

Δugγ = 0 in Ω\Γ , (11)

∂νu
g
γ |∂Ω = g on ∂Ω, (12)

�ugγ �Γ = 0 on Γ , (13)

�∂νu
g
γ �Γ = γ ugγ on Γ , (14)

from the Neumann-Dirichlet-Operator

Λ(γ )g := ugγ |∂Ω, where ugγ ∈ H1(Ω) solves(11)−(14).

Using the Lax-Milgram theorem and the compactness of the trace operator from
H1(Ω) to L2(∂Ω), it easily follows that (11)–(14) is uniquely solvable, and that
Λ(γ ) ∈ L(L2(∂Ω)) is self-adjoint and compact.

We summarize and reformulate some known results on the Neumann-Dirichlet
operator that motivate why the corresponding finite-dimensional inverse problem can
be treated with the methods from Sect. 2. In the following theorem “≤” is to be
understood pointwise almost everywhere for L∞-functions, and “	” is the Loewner
order on the space of self-adjoint operators.

Theorem 2 Λ : L∞+ (Ω) → L(L2(∂Ω)) is Fréchet differentiable. Moreover,

(a) Λ is monotonically non-increasing and convex, i.e.,

Λ′(γ )δ � 0 for all γ ∈ L∞+ (Ω), 0 ≤ δ ∈ L∞(Ω),

Λ(γ ) − Λ(γ (0)) 	 Λ′(γ (0))(γ − γ (0)) for all γ, γ (0) ∈ L∞+ (Ω).

(b) For all γ ∈ L∞+ (Ω), C > 0, and M ⊆ Γ measurable with positive measure

Λ′(γ )(CχΓ \M − χM ) � 0.

(c) For all γ1, γ2 ∈ L∞+ (∂Ω)

γ1 ≤ γ2 if and only if Λ(γ1) 	 Λ(γ2).

In particular, Λ(γ ) uniquely determines γ .
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Proof Fréchet differentiability, monotonicity and convexity of Λ are shown in [10,
Lemma 5], cf. also [11, Lemma 4.1]. (b) follows from the localized potentials result
in [11, Lemma 4.3]. The “only if”-part in (c) follows from (a), and the “if”-part in (c)
easily follows from using (b) together with (a). ��

3.2 The inverse problemwith finitely manymeasurements

We now consider the inverse Robin transmission problem with finite resolution and
finitely many measurements as in [10]. We assume that the unknown coefficient func-
tion γ ∈ L∞+ (Γ ) is piecewise constant on an a-priori known partition of Γ , i.e.

γ (x) =
n∑
j=1

γ jχΓ j (x), with Γ =
n⋃
j=1

Γ j ,

where Γ1, . . . , Γn , n ≥ 2, are pairwise disjoint measurable subsets of Γ . For the ease
of notation, we identify a piecewise constant function γ ∈ L∞(Γ ) with the vector
γ = (γ1, . . . , γn)

T ∈ R
n in the following. We also assume that we know a-priori

bounds b > a > 0, so that γ ∈ [a, b]n .
We aim to reconstruct γ ∈ [a, b]n from finitely manymeasurements ofΛ(γ ). More

precisely, we assume that (g j ) j∈N ⊆ L2(∂Ω) has dense span in L2(∂Ω), and that we
can measure

F(γ ) :=
(∫

∂Ω

g jΛ(γ )gk ds

)
j,k=1,...,m

∈ R
m×m

for somenumberm ∈ N. Thus, the questionwhether a certain number ofmeasurements
determine the unknown coefficient with a certain resolution can be written as the
problem to

determine γ ∈ [a, b]n from F(γ ) ∈ R
m×m . (15)

Using our results in Sect. 2we can now show that this inverse problem is uniquely solv-
able if sufficiently many measurements are being used, and that it can be equivalently
reformulated as a convex semidefinite program.

Theorem 3 (a) If m ∈ N is sufficiently large then Ŷ := F(γ̂ ) ∈ Sm uniquely
determines γ̂ ∈ [a, b]n. γ̂ is the unique minimizer of the convex semi-definite
optimization problem

minimize ‖γ ‖1 =
n∑
j=1

γ j subject to γ ∈ [a, b]n, F(γ ) � Ŷ .

(b) The assertion in (a) holds if all matrices F ′(z j,k)d j ∈ Sm, (with z j,k ∈ R
n+,

d j ∈ R
n, and K ∈ N given in Theorem 1) possess at least one positive eigenvalue.

This criterion is fulfilled for sufficiently large m ∈ N. Moreover, for δ > 0, and

123



1608 B. Harrach

Y δ ∈ Sm, with ‖Ŷ − Y δ‖2 ≤ δ, the convex optimization problem

minimize ‖γ ‖1 =
n∑
j=1

γ j subject to γ ∈ [a, b]n, F(γ ) � Y δ + δ I

possesses a minimum, and every such minimum γ δ fulfills

‖γ̂ − γ δ‖∞ ≤ 2δ(n − 1)

λ
with λ := min

j=1,...,n,
k=2,...,K

λmax(F
′(z j,k)(d j )) > 0.

Proof F(γ ) is a symmetric matrix sinceΛ(γ ) is self-adjoint. Fréchet differentiability,
monotonicity and convexity of F : R

n+ → Sm immediately follow from the corre-
sponding properties of Λ in Theorem 2. For all j = 1, . . . , n, k = 2, . . . , K , we have
that Λ′(z j,k)d j � 0 by Theorem 2(b). By density, it follows that for all j = 1, . . . , n,
k = 2, . . . , K there exists m ∈ N so that F ′(z j,k)d j � 0, and since there are only
finitely many such combinations of j and k, there exists m ∈ N, so that all these
matrices possess a positive eigenvalue. Hence, the assertions follow from Theorem 1.
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