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Abstract
It is folklore knowledge that nonconvex mixed-integer nonlinear optimization prob-
lems can be notoriously hard to solve in practice. In this paper we go one step further
and drop analytical properties that are usually taken for granted in mixed-integer
nonlinear optimization. First, we only assume Lipschitz continuity of the nonlinear
functions and additionally consider multivariate implicit constraint functions that can-
not be solved for any parameter analytically. For this class of mixed-integer problems
we propose a novel algorithm based on an approximation of the feasible set in the
domain of the nonlinear function—in contrast to an approximation of the graph of
the function considered in prior work. This method is shown to compute approxi-
mate global optimal solutions in finite time and we also provide a worst-case iteration
bound. In some first numerical experiments we show that the “cost of not knowing
enough” is rather high by comparing our approach with the open-source global solver
SCIP. This reveals that a lot of work is still to be done for this highly challenging class
of problems and we thus finally propose some possible directions of future research.
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1 Introduction

Mixed-integer nonlinear optimization problems (MINLPs) are one of the most impor-
tant classes of models in mathematical optimization. This is due to its capability of
modeling decisions via incorporating discrete aspects as well as the possibility of
modeling nonlinear phenomena. However, the combination of these two aspects also
makes these problems very hard to solve [1,2]. For a general overview about MINLP
we refer to [3].

Both from a theoretic and algorithmic point of view it is important to classify
MINLPs further. Probably the most important distinction is to be made between con-
vex and nonconvexMINLPs. Since gradients yield valid cuts in the convex case, outer
approximations of the feasible sets of the convex nonlinearities can be derived and
exploited in algorithms; see, e.g., [4–8] and the references therein. In the nonconvex
case this is not possible. Here, one typically needs to derive convex underestimators
and concave overestimators that yield (piecewise) convex relaxations of the nonconvex
nonlinearities [9–11]. These approaches and also most other algorithms for computing
global optima of such nonconvexMINLPs are based on spatial branching. Themethod
we propose is different in the sense that we generate an iteratively tightened but non-
convex outer approximation of the feasible set, which is algorithmically realized via
constructing a tightenedmixed-integer linear approximation of theMINLP.Moreover,
spatial branching based on convex underestimators and concave overestimators usu-
ally exploit known analytical properties of the nonconvex nonlinear functions, which
is obviously not possible if these properties, like, e.g., differentiability, are not known
or even knowledge about the explicit representation is missing. In this case, one typ-
ically tries to resort to Lipschitz assumptions about the nonlinearities, which leads
to the field of global Lipschitz optimization; see, e.g., [12–18] to name only a few.
For a more detailed overview about this field see the textbook [19] and the references
therein.

In this paper,we focus on a specific setting that can be observed inmany applications
(see below for someproblem-specific references), namely that theLipschitzianMINLP
under consideration can be decomposed into a mixed-integer linear (MILP) part and a
nonlinear part. Our working hypothesis in this and also the preceding works [20–23] is
that theMILP part can be solved comparably fast and reliable whereas the nonlinearity
really hampers the solution process—at least in combination with the MILP part of
the problem. See also [24–27], where this working hypothesis is followed as well. At
this point, we remark that the cited literature usually tries to get rid of the nonlinear
functions by replacing or, so to say, re-modeling them using MILP-representable
approximations. In this paper, we consider the case in which this re-modeling is not
possible without adding additional unknowns and constraints to the problem.

One specific field of application that fits into the above discussion and that has
been studied very successfully in recent years is mixed-integer nonlinear optimization
of gas transport networks [22,28–31]; see the recent book [32] and the survey [33]
for more references. This application will also be studied later in our numerical case
study. MINLPs from gas transport optimization are defined on graphs that represent
the transport network. Mass balances and simple physical as well as technical bounds
yield linear constraints in this context and controllable elements are typically modeled
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The cost of not knowing... 1357

by mixed-integer (non)linear sets of variables and constraints. Here, the complicating
nonlinearity is the systemof differential equationsmodeling the gasflow throughpipes.
In its full beauty, these equations yield implicit and highly nonlinear constraints that
can be evaluated only by simulation and that do not possess additional and desired
analytical properties like convexity; see [34–39]. In almost all contributions of the
literature cited above the authors make, depending on their special focus, tailored
assumptions that allow to develop very effective solution approaches. In this paper, we
follow the way paved by the paper [21], where general methods have been developed
(and tested on gas transport problems) that only require Lipschitzian, 1-dimensional,
and explicitly given nonlinearities. In this paper, we show that the approach can be
extended to the case where the nonlinearity is only given implicitly. To this end, we
relax the assumptions used in [21] as follows:

1. We consider constraints that are only implicitly given, i.e., constraints of type
F(x) = 0 with x ∈ R

n such that a representation F(x1, . . . , xi−1, xi+1, . . . , xn)
= xi cannot be achieved analytically for any i ∈ {1, . . . , n}.

2. We consider multi-dimensional constraint functions F(x) = 0 with x ∈ R
n and

n ≥ 2.

Regarding (1) it is of course possible to re-model the implicit constraint as F(x) = y
and by adding additional linear constraints y = 0. We, however, refrain from such a
re-modeling in this paper and consider the case were such a re-modeling, which also
enlarges the problem, is not appropriate. It will turn out that both aspects drastically
accentuate the computational hardness of the problem.

Our contribution is the following. We formalize the problem class in Sect. 2 and
the corresponding assumptions sketched above (Sect. 3). Based on this, we state an
algorithm and prove its correctness, i.e., that it computes approximate global optimal
solutions (or proves the infeasibility of the problem) in finite time. Moreover, we
prove a worst-case iteration bound for the algorithm. Finally, we present a numerical
case study in Sect. 4, where we apply the method to nonconvex problems from gas
transport. This case study reveals that the “cost of not knowing enough” is rather high:
Only small gas transport networks can be solved in reasonable time under the stated
very weak assumptions. Moreover, a comparison with the open-source global solver
SCIP shows that the latter is outperforming our approach if additional structure of the
problem is at hand that is exploited by SCIP but not by our approach. This is why we
consider the addressed problem class as an open computational challenge for which
we state possible directions of future research in Sect. 5.

2 Problem definition

We consider problems of the form

min
x

h�x (1a)

s.t. Ax ≥ b, x ∈ [¯x, x̄], x ∈ R
n × Z

m, (1b)

Fi (xc(i)) = 0, i ∈ [p], (1c)
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1358 M. Schmidt et al.

where A ∈ R
�×(n+m), b ∈ R

�, h ∈ R
n+m , and [p] := {1, . . . , p}. The p constraints

Fi : Rni → R, i ∈ [p], comprise all nonlinearities of the problem. Here, and in what
follows, we use the splitting x = (xc, xd) of the entire variable vector with xc ∈ R

n and
xd ∈ Z

m . That is, xc are all continuous and xd are all discrete variables of the problem
and the nonlinear functions Fi , i ∈ [p], only depend on the continuous variables xc(i),
i.e., xc(i) is a sub-vector of the vector xc of all continuous variables. We remark that
all variables are finitely bounded by −∞ < ¯x ≤ x̄ < ∞. Moreover, we note that
the assumption that the nonlinearities only depend on the continuous variables is only
made to simplify the technical discussions later on—it can always be formally satisfied
by introducing auxiliary continuous variables.

Instead of optimizing the objective of (1) over the feasible set F given by
(1b, 1c) we replace F by an approximating sequence Fk ≈ F and globally opti-
mize the sequence of problems

min {h�x : x ∈ Fk}. (2)

The iteration can then be stopped once a solution xk of (2) is close enough to the
original feasible set F . To this end let

min
x

h�x

s.t. Ax ≥ b, x ∈ [¯x, x̄], x ∈ R
n × Z

m,

|Fi (xc(i))| ≤ ε, i ∈ [p],
(3)

be the ε-relaxed version of the original problem (1). Note that we only relax the
nonlinearities whereas all other constraints stay as they are. The precise choice of the
approximate sets Fk will be detailed later in Sect. 3.

Definition 2.1 (ε-feasibility)We call a point ε-feasible if it is feasible for Problem (3).

3 Algorithm

The main idea of our algorithm for solving Problem (1) to approximate global opti-
mality is to split the problem into its mixed-integer linear and its nonlinear part. The
mixed-integer linear part is solved in the so-called master problem, which additionally
contains a successively tightened approximation of the zero sets of the nonlineari-
ties Fi , i ∈ [p]. Let xk denote the master problem’s solution in iteration k. Then,
for every master problem solution, we check the feasibility of the solution w.r.t. the
nonlinearities Fi . In case of feasibility, we have found a global optimal solution of the
original problem; and in case of infeasibility, we construct a tighter approximation of
the zero sets for the next master problem based on the information obtained by evalu-
ating the nonlinearities Fi at the current master solution xk . For the latter, we need (i)
the function values Fi (xkc(i)), i ∈ [p], as well as (ii) the global Lipschitz constants Li

of the Fi w.r.t. the norm ‖ · ‖∞ on R
ni , i.e., it holds

|Fi (x1) − Fi (x2)| ≤ Li‖x1 − x2‖∞ for all x1, x2 ∈ R
ni ∩ [¯xc(i), x̄c(i)].
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The cost of not knowing... 1359

Assumption 1 We have an oracle that evaluates Fi (xc(i)) for all i ∈ [p] and all Fi
are globally Lipschitz continuous on xc(i) ∈ [¯xc(i), x̄c(i)] with known global Lipschitzconstant Li .

Remark 3.1 Let us note that for a continuously differentiable function Fi and arbitrary
x1, x2 ∈ R

ni ∩ [¯xc(i), x̄c(i)], the estimate

|Fi (x1) − Fi (x2)| =
∣
∣
∣
∣

∫ 1

0
∇Fi (x2 + s(x1 − x2))(x1 − x2) ds

∣
∣
∣
∣

≤ max
x∈Rni ∩[¯xc(i),x̄c(i)]

‖∇Fi (x)‖1‖x1 − x2‖∞

holds by the fundamental theorem of calculus. Hence one obtains an estimate of the
needed Lipschitz constant by setting

Li = max
x∈Rni ∩[¯xc(i),x̄c(i)]

‖∇Fi (x)‖1.

We now show how to construct the successively tightened approximations of
the zero sets in case of Assumption 1. Let �k

i denote this approximation of the
zero set of function Fi in iteration k of the algorithm. Initially, we start with the
box �0

i := [¯xc(i), x̄c(i)] defined by the original bounds of the problem (or after
presolving; see Sect. 4). Assume now that the evaluation of the nonlinearity yields
|Fi (xkc(i))| ≥ ε for a prescribed tolerance ε > 0. We then exclude the box

Bk
i :=

{

x ∈ R
ni : ‖x − xkc(i)‖∞ <

|Fi (xkc(i))|
Li

}

(4)

in the next iteration. If |Fi (xkc(i))| < ε holds, we set Bk
i = ∅. Putting these boxes

together, we obtain the nonconvex outer approximation

�k
i = [¯xc(i), x̄c(i)]\

⋃

j∈[k−1]
B j
i , k = 1, 2, . . . (5)

With this at hand, we can now formulate the master problem:

min
x

h�x (6a)

s.t. Ax ≥ b, x ∈ [¯x, x̄], x ∈ R
n × Z

m, (6b)

xc(i) ∈ �k
i , i ∈ [p]. (6c)

The main goal of this section is to prove the correctness of the algorithm, i.e., finite
termination of the algorithm at approximate global optimal points. However, before
we do this, we first state and prove some properties of the master problem that will be
used later and formally state the algorithm.
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1360 M. Schmidt et al.

Proposition 3.2 Assume that Assumption 1 holds. Then, it holds

�k
i ⊇ (ker(Fi ) ∩ [¯xc(i), x̄ c(i)])

for all i ∈ [p] and all k. Thus, the master problem (6) is a relaxation of (1) for all k.

Proof The proposition follows directly from the construction (4) and (5) and the Lip-
schitz continuity of Fi . ��

The next lemma shows that we can use state-of-the-art MILP software for solving
the master problems.

Lemma 3.3 The nonconvex master problem (6) can be modeled as a mixed-integer lin-
ear problem. The number of additional variables and constraints required to formulate
(6c) for an i ∈ [p] is O(k |c(i)|).
Proof The constraints Ax ≥ b, x ∈ [¯x, x̄], and x ∈ R

n × Z
m are obviously mixed-

integer linear constraints. Thus, it remains to prove that xc(i) ∈ �k
i , i ∈ [p], can be

formulated with mixed-integer linear constraints as well. We define the index set

Ik
i := { j ∈ [k − 1] : |Fi (x j

c(i))| ≥ ε}, i ∈ [p],

for the boxes to be excluded. Moreover, we define

¯x
j
c(i) := x j

c(i) − 1
|Fi (x j

c(i))|
Li

and x̄ j
c(i) := x j

c(i) + 1
|Fi (x j

c(i))|
Li

(7)

for all i ∈ [p] and j ∈ Ik
i ; see Fig. 1 for an illustration. In (7) we use the notation 1

for the vector of ones in appropriate dimension.
To model the gray area in Fig. 1, we have to exclude the white rectangles B j

i for
all j ∈ Ik

i . This can be done in the following way:

�k
i =

{

xc(i) : z j,1l , z j,2l ∈ {0, 1} for all l ∈ c(i), j ∈ Ik
i , (8a)

xl ≤ x̄ j
l + z j,1l (x̄ l − x̄ j

l ) for all l ∈ c(i), j ∈ Ik
i , (8b)

xl ≥ ¯xl + z j,1l (x̄ j
l − ¯xl) for all l ∈ c(i), j ∈ Ik

i , (8c)

xl ≤ ¯x
j
l + (1 − z j,2l )(x̄ l − ¯x

j
l ) for all l ∈ c(i), j ∈ Ik

i , (8d)

xl ≥ ¯xl + (1 − z j,2l )(¯x
j
l − ¯xl) for all l ∈ c(i), j ∈ Ik

i , (8e)
∑

l∈c(i)
(z j,1l + z j,2l ) ≥ 1 for all j ∈ Ik

i

}

. (8f)

We remark that (8b, 8c) check if xl < x̄ j
l . If this holds true, then z j,1l = 0. On the

other hand, (8d, 8e) check if xl > ¯x
j
l . If this holds true, then z j,2l = 0. As we want to
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The cost of not knowing... 1361

Fig. 1 Set �2
i with c(i) = {1, 2}

Algorithm 1 Global Optimization of MINLPs with Implicit Nonlinearities
Require: Problem (1) and ε > 0.
Ensure: Returns an approximate global optimal point for Problem (1) or an indication of infeasibility.

1: Set k ← 0 and initialize �0
i ← [¯xc(i), x̄c(i)] for all i ∈ [p].

2: while true do
3: Solve the master problem (6) to global optimality.
4: if (6) is infeasible then return “Problem (1) is infeasible”.
5: Let xk denote the optimal solution of (6).
6: Evaluate Fi (x

k
c(i)) for all i ∈ [p].

7: if |Fi (xkc(i))| ≤ ε for all i ∈ [p] then return xk .
8: for i ∈ [p] do
9: if |Fi (xkc(i))| > ε then set �k+1

i ← �k
i \ Bk

i else set �k+1
i ← �k

i .
10: end for
11: Increase k ← k + 1.
12: end while

ensure that B j
i is excluded, we have to add the inequality (8f). One can easily see that

System (8) requiresO(k |c(i)|) additional variables and constraints for every i ∈ [p].
��

We additionally remark that after having solved the master problem, all Fi can be
evaluated in parallel in every iteration. The overall algorithm is formally stated in
Algorithm 1.
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1362 M. Schmidt et al.

We now prove correctness of the algorithm, i.e., that the algorithm terminates after
a finite number of iterations with an approximate global optimal solution or with
an indication of infeasibility of the original problem. Here, an approximate global
optimum is an optimal point that does not violate any constraint more than a given
ε > 0, i.e., an approximate global optimum is a solution of Problem (3).

Theorem 3.4 Suppose that Assumption 1 holds. Then, Algorithm 1 terminates after a
finite number of iterations at an approximate globally optimal point xk of Problem (1)
or with an indication that Problem (1) is infeasible.

Proof We assume that the algorithm does not terminate after a finite number of itera-
tions. That is, there exists an i ∈ [p] and a corresponding subsequence (indexed by l)
of iterates with

|Fi (xlc(i))| > ε. (9)

We investigate the master problem’s solutions xlc(i). Since all variables are bounded,

the subsequence (xlc(i)) has a convergent subsequence (xμ

c(i)). Thus, we can write

‖xα
c(i) − xβ

c(i)‖∞ < δ (10)

for all sufficiently large indices α and β of the μ-subsequence and arbitrarily small
δ > 0. However, all iterates xlc(i) are excluded from the subsequent feasible set, see (4),
and together with (9) we can write

‖xα
c(i) − xβ

c(i)‖∞ ≥ |Fi (xkc(i))|
Li

>
ε

Li
,

for all α, β. This contradicts (10). ��
Next, we establish a worst-case bound for required number of iterations.

Theorem 3.5 For given i ∈ [p], let ni = |c(i)|, i.e., xc(i) ∈ R
ni . Furthermore, let

σ i := x̄ c(i) − ¯xc(i) ∈ R
ni . Then, Algorithm 1 terminates after a maximum number of

∑

i∈[p]

ni∏

j=1

(⌊

σ i
j
Li

ε
+ 1

⌋)

iterations.

Proof We show that for each constraint Fi (xc(i)) = 0, i ∈ [p], there are at most

ni∏

j=1

(⌊

σ i
j
Li

ε
+ 1

⌋)
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The cost of not knowing... 1363

iterations k for which �k+1
i �= �k

i holds. Since in each iteration at least one of the sets
�k

i needs to be changed this proves the assertion.
To see the claim, we notice, that the hypercube [¯xc(i), x̄c(i)] ⊂ R

ni can be covered
by

N =
ni∏

j=1

(⌊

σ i
j
Li

ε
+ 1

⌋)

hypercubes Hk
ε , k ∈ [N ], with side-length ε/Li . To see this, we note that each of the

intervals [¯x j , x̄ j ] for j ∈ c(i) can be decomposed as

¯x j = ¯x j + 0 · ε

Li
< ¯x j + 1 · ε

Li
< · · · < ¯x j +

⌊

σ i
j
Li

ε

⌋
ε

Li
≤ x̄ j

into �σ i
j Li/ε + 1� subintervals of length lower or equal ε/Li . Taking the product of

these intervals gives the desired cover of the hypercube.
Now, by definition, in an iteration k during which �k

i is changed, a point xc(i)
together with its neighborhood Bk

i is excluded from �k
i . In order for this to happen,

|Fi (xc(i))|
Li

>
ε

Li

needs to hold. Consequently, the neighborhood Bk
i contains a hypercube with side-

length 2ε/Li . As a consequence, if xc(i) is contained in Hk
ε , then no future iterate can

be placed in this Hk
ε . This proves the claimed bound on the iterations. ��

The last theorem shows that the maximum number of required iterations is bounded
above by O((Lmax/ε)n̄), where n̄ = max{c(i) : i ∈ [p]} is the maximum number
of arguments of the nonlinear functions Fi and Lmax = max{Li : i ∈ [p]} is the
maximum Lipschitz constant. Moreover, the asymptotic bounds derived in [40,41]
indicate that, in general, no better worst-case iteration bound can be expected.

Remark 3.6 During the course of the algorithm, the excluded boxes Bk
i are determined

based on the master problem’s solution. To tighten the feasible set of the initial master
problem, we first equidistantly sample points from the initial box �0

i . Afterward, we
sort these sampling points by the excluded box volume, see (4), in descending order
and add them to the initial master problem if the sampling points are not excluded by
the box of a previous sampling point. By doing so, we obtain a tighter feasible region
from the beginning at the cost of a larger MILP formulation.

4 Numerical case study

In this sect., we present computational results of Algorithm 1 applied to stationary
gas transport optimization. We briefly describe the model in Sect. 4.1 and discuss the
results in Sect. 4.2.
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1364 M. Schmidt et al.

4.1 Stationary gas transport optimization

One central task in the gas industry is to transport prescribed supplied and discharged
flows at minimum costs. Gas mainly flows from higher to lower pressures and in order
to transport gas over large distances through pipeline systems, it is required to increase
the gas pressure. This is done by compressors. Usually, these compressors add discrete
aspects to the problem. In contrast to that, for this case study we decide to choose
the easiest and, thus, continuous modeling of a compressor so that we can purely
focus on the main aspects of the proposed algorithm, i.e., the iteratively tightened
outer approximation of the nonconvex feasible set induced by the nonlinearities of the
model.

We model a gas network as a directed graph G = (V , A) with node set V and
arc set A. The set of nodes is partitioned into the set of entry nodes V+, where gas is
supplied, the set of exit nodesV−,where gas is discharged, and the set of inner nodesV0.
The set of arcs consists of pipes Api and compressors Acm. We associate positive gas
flow on arcs a = (u, v)with mass flow in arc direction, i.e., qa > 0 if gas flows from u
to v and qa < 0 if gas flows from v to u. Moreover, mass flow variables qa are bounded
from below and above, i.e., qa ∈ [

¯
qa, q̄a]. The sets δin(u) := {a ∈ A : a = (v, u)} and

δout(u) := {a ∈ A : a = (u, v)} are the sets of in- and outgoing arcs for node u ∈ V .
Thus, we model mass conservation by

∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu

⎧

⎪⎨

⎪⎩

≥ 0, u ∈ V+,

≤ 0, u ∈ V−,

= 0, u ∈ V0,

for all u ∈ V , (11)

where qu denotes the supplied or discharged flows. In addition, we need bounded
pressure variables pu ∈ [

¯
pu, p̄u] for each node u ∈ V .

Pipes a ∈ Api are used to transport the gas through the network. We consider
their length La , their diameter Da , their cross-sectional area Aa , their slope sa , and
their friction factor λa , which we model using the formula of Nikuradse; see, e.g.,
[36]. Gas flow in networks is described by a system of partial differential equations—
the Euler equations for compressible fluids [42]. In what follows, we consider the
stationary case and assume small velocities, constant temperature T̂ , and constant
compressibility factor ẑ. This leads to the so-called Weymouth equation, see [24,36],
that describes the relation between pressure and mass flow on a pipe via

p2v − p2u + 
a |qa |qa = 0 for all a = (u, v) ∈ Api, 
a = Laλac2

A2
aDa

, (12)

where c denotes the speed of sound in natural gas.
Finally, we describe our model of compressors a = (pu, pv) ∈ Acm. They are used

to increase the inflow gas pressure to a higher outflow pressure, which we model via

pv = pu + �a, 0 ≤ �−
a ≤ �a ≤ �+

a , (13)
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Fig. 2 GasLib-4 (left) and GasLib-4-Tree (right)

for given lower and upper compression bounds �−
a and �+

a , respectively. For more
complicated compressor models, see, e.g., [35,37]. We can, in principle, also include
these more complex and mixed-integer nonlinear models but refrain from these com-
plicated models to be able to focus on the main algorithmic aspects of the proposed
approach.

We now collect all component models and obtain the mixed-integer optimization
problem

min
∑

a∈Acm

Pa

s.t. pressure and flow bounds, mass conservation: (11),

pipe model: (12), compressor model: (13).

Note that the only nonlinearity of the model is given by the pipe model (12). Con-
sequently, we compute the global Lipschitz constant analytically and obtain (4) by
evaluating (12).

4.2 Results

Our test instances are the networks GasLib-4 and GasLib-4-Tree (see Fig. 2 left and
right) as well as the networks GasLib-11 and GasLib-24; see [43]. The two latter
instances are publicly available at http://gaslib.zib.de and the two first ones are avail-
able at https://github.com/m-schmidt-math-opt/cost-of-not-knowing-enough.

To simplify the presentation and to focus on the main aspects of the proposed
method, we modified the networks GasLib-11 and GasLib-24. For the GasLib-11, we
removed the valve since this element is not covered in the model discussed in this
paper. This makes the resulting network a tree. Moreover, we increased the lower
pressure bound at the exits exit02 and exit03 to provide a higher compression. For
the GasLib-24 network, we deleted the resistor, the short pipe, and the control valve.
The resulting network still contains cycles. Moreover, we again increased the lower
pressure bounds of the exits exit02, exit03, and exit04.

The Lipschitz constants are computed by applying Remark 3.1 to (12). For all
cyclic networks, we fixed the mass flows where possible (usually on the arcs that
connect entries or exits with cyclic parts of the network) two reduce the dimension
of the nonlinear constraint (12) by one. The modified networks together with the
preprocessed data are publicly available as input data in the GitHub repository at
https://github.com/m-schmidt-math-opt/cost-of-not-knowing-enough, where also all
implementations can be found.
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For our algorithm we use the following relative termination criterion. Let xk be the
kth iterate that contains the values pku , p

k
v , and q

k
a for the inflow pressure, the outflow

pressure, and for the mass flow on pipe a. Denote further p̃ku , p̃
k
v , and q̃ka the values

that one gets by solving Equation (12) for the respective value and by plugging in the
two other values from the current iteration. For instance,

p̃ku =
√

(pkv)
2 + 
a |qka |qka

holds. We terminate our algorithm if the maximum relative error

max

{

| p̃ku − pku |
p̃ku

,
| p̃kv − pkv |

p̃kv
,
|q̃ka − qka |

q̃ka

}

is below 1% for all pipes of the network.
Our algorithm is implemented in Python 3.8.8 using the corresponding Python

interface of Gurobi. We solve all MILPs with Gurobi 9.1.1 using 2 physical cores, 4
logical processors, and up to 4 threads; see [44]. We also implemented the nonconvex
model using Pyomo 5.7.3 [45,46] and solved it to global optimality with the open-
source global solver SCIP 7.0.2 [47] to obtain a benchmark for our method. The time
limit is set to 15 min for all tests. All computations were performed on an Intel©

CoreTM i5-3360M CPU with 4 cores and 2.8 GHz each and 4 GB RAM.
The first part of Table 1 displays the results for the GasLib-4-Tree network. This

network is a tree so that we never sample the flow space (see the “—” entries in
the second column). This instance is always solved in less the 1s, independent of
how coarse or fine the sampling is done before the main algorithm starts. SCIP (taken
as a benchmark) solves the problem in 0.04 s and terminates with a global optimal
objective function value of 6.74. Note that the objective function values in the first
part of Table 1 are always slightly smaller, which is consistent to that we compute
approximate global optimal points and that this approximation always corresponds to
a relaxation. Finally, we see that the maximum relative error is always below 1% as
desired. We see that the number of required iterations is monotonically decreasing in
dependence of the granularity of the sampling process that we apply before the main
algorithm starts. This is to be expected since the more sampling points we use, the
better our initial outer approximation of the zero set of the nonlinearities usually will
be.

However, this is not always the case as can be seen in the middle part of the
table that displays the results for the GasLib-4 network, which contains a cycle. SCIP
solves this model in 0.64 s and delivers the optimal objective function value of 9.57.
The algorithm inside SCIP is using the explicitly given algebraic representation of the
constraints to set up a spatial branching process that is based on concave overestimators
and convex underestimators of the nonlinearities. This significantly outperforms our
method, which is not using the explicit representation of the constraint. Nevertheless,
we can still solve the instance in approximately 150 s. Interestingly, less sampling
in the preprocessing phase seems to be favorable since, otherwise, already the initial
MILP is getting too large so that every iteration (in which we have to solve MILPs
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Table 1 The results of Algorithm 1 for the GasLib-4-Tree network (top), the GasLib-4 network (middle),
and the GasLib-11 network (bottom). The first two columns state the equidistant step sizes for sampling the
feasible pressure intervals (σp) and for the feasible mass flow intervals (σq ), k is the number of iterations
required by Algorithm 1, “t (sampling)” and “t (total)” is the time spent in the sampling routine and the
overall solution time (in seconds). “Obj.” is the approximate global optimal objective function value and
“Rel. Err.” is the achieved maximum relative error (in percent)

σp σq k t (sampling) t (total) Obj. Rel. err.
(in bar) (in kg s−1) (in s) (in s) (in %)

— — 14 — 0.10 6.58 0.66

10.0 — 12 0.00 0.09 6.65 0.61

5.0 — 13 0.00 0.09 6.62 0.88

2.5 — 12 0.00 0.09 6.58 0.98

1.0 — 7 0.00 0.08 6.56 0.62

0.5 — 4 0.01 0.13 6.56 0.97

0.1 — 2 0.33 0.55 6.62 0.78

— — 150 — 148.03 9.46 0.85

10.0 100.0 154 0.00 147.34 9.45 0.85

5.0 50.0 167 0.00 166.07 9.46 0.80

5.0 10.0 172 0.00 367.07 9.48 0.98

5.0 5.0 153 0.01 440.38 9.48 0.96

1.0 50.0 168 0.02 508.19 9.46 0.82

1.0 10.0 122 0.26 595.17 9.45 0.73

1.0 5.0 — — — — —

1.0 1.0 — — — — —

— — 55 — 16.27 12.64 0.78

10.0 — 51 0.00 20.84 12.57 0.90

5.0 — 52 0.01 30.01 12.64 0.83

2.5 — 47 0.02 29.38 12.58 0.98

1.0 — 37 0.17 37.05 12.52 0.95

0.5 — 27 0.86 57.58 12.62 0.96

0.1 — 22 49.81 336.67 12.53 0.98

of increasing size) is getting too costly. The extreme case is the very fine sampling
shown in the last two rows of the middle part of the table, which leads to the case that
our approach hits the time limit.

Finally, the bottom part of the table shows the results for the GasLib-11 network.
This network is larger than the two other ones but is again a tree. This leads to the
fact that all mass flows can be fixed in the preprocessing and that the dimensions of
the nonlinear constraints on the arcs are reduced by one. Again, less sampling leads
to better results. We can solve the instance in 16 s if we do not apply any sampling.
However, SCIP is much faster and solves the instance in 0.12 s, yielding an optimal
objective function value of 12.93. For the GasLib-24 network, our method always
reached the time limit, whereas SCIP solves the instance in 1.13 s with an optimal
objective function value of 27.76.
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Fig. 3 Iterates in the (pu , pv) space of an exemplary pipe of the GasLib-11 network

To sum up, we see that the “cost of not knowing” is rather high since the benchmark
(SCIP) is solving the problems much faster. However, one has to remark that we
compare a hand-crafted implementation of our method with a highly evolved and
large-scale software package. SCIP is (of course, on purpose) exploiting all the given
insights based on the explicit algebraic representation of the constraints to construct
tight convex envelopes.We, in contrast to that, do not exploit (again, on purpose) all this
information. The strength of our method lies in the fact that the required assumptions
are very weak. However, for such instances, a comparison with a global solver such
as SCIP does not make sense since such a global solver would simply not be able to
solve the problem.

Let us finally take a closer look into the behavior of the proposed method by
analyzing the iterates in the (pu, pv) space of an exemplary pipe during the solution
process of the GasLib-11 network; see Fig. 3.

First, we see that the nonlinearity (the red curve) is rather moderate in this exam-
ple, which is something that SCIP explicitly exploits since the constructed convex
envelopes are rather tight in this case. Our method, on the other hand, is blind to such
structural characteristics of the model. The blue box is the initial feasible box that our
algorithm starts with. Black points correspond to iterates and the respective yellow
boxes represent the excluded boxes. Since the Lipschitz constant stays the same over
the course of the iteration, the size of the boxes is monotonic in the infeasibility of
the corresponding iterate. One can nicely see the automatic adaptivity of the method:
The nonlinearity is approximated much more accurately close to the optimal point.
Moreover, the objective function of the problem solved in each iteration yields iterates
mostly above the feasible curve.
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Both aspects make clear that a more sophisticated sampling method in the prepro-
cessing phase could lead to much better result than those presented for the equidistant
sampling used in our numerical results. Finally, our method is, in general, very well
suited for warmstarting since theMILPs do not differ very much from iteration to iter-
ation. However, our method right now does not use this possibility since a direct use of
the warmstarting capabilities of Gurobi cannot be used. The reason is that the variable
space changes from iteration to iteration and that the old point is not feasible anymore
since it is explicitly excluded from the feasible set by the last added box. Exploiting
the potential of warmstarting would, in our opinion, improve the performance of the
algorithm since it will speed up the running time in every iteration of the method.

5 Conclusion

Without any doubt, mixed-integer nonlinear optimization is hard. Fortunately, in many
practically relevant situations effective solution approaches exist. In this paper, we
considered especially hard cases ofmixed-integer nonlinear optimizationwith implicit
constraints that have the adverse property that evaluating the constraint does not give
a feasible point and that they may be multi-dimensional. The numerical results are
somehow sobering since we show that the “cost of not knowing enough” about the
problem’s structure is rather high. On the other hand, the class of considered problems
is of high importance in many fields of applications.

Thus, there is need for computational improvement for this class of problems if
they are tackled using MILP technology as a working horse. At this point, we suggest
three possible directions of future research.

1 Is it possible to exploit local Lipschitz information to increase the volume of
excluded infeasible regions during the course of the iteration?

2 Is it possible to create iterates that both yield larger excluded regions for the next
iteration but that are also near the feasible region of the original problem?

3 We showed that a naive sampling does not necessarily lead to improved compu-
tation times. However, more involved sampling strategies together with suitable
presolve strategies to decrease the initial box sizes has good chances of improving
the computational performance and is part of our future work.
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