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Abstract
Lipschitz continuity of the gradient mapping of a continuously differentiable function plays
a crucial role in designing various optimization algorithms. However, many functions aris-
ing in practical applications such as low rank matrix factorization or deep neural network
problems do not have a Lipschitz continuous gradient. This led to the development of a
generalized notion known as the L-smad property, which is based on generalized proximity
measures calledBregman distances.However, the L-smad property cannot handle nonsmooth
functions, for example, simple nonsmooth functions like |x4 − 1| and also many practical
composite problems are out of scope.We fix this issue by proposing theMAP property, which
generalizes the L-smad property and is also valid for a large class of structured nonconvex
nonsmooth composite problems. Based on the proposed MAP property, we propose a glob-
ally convergent algorithm called Model BPG, that unifies several existing algorithms. The
convergence analysis is based on a new Lyapunov function. We also numerically illustrate
the superior performance of Model BPG on standard phase retrieval problems and Poisson
linear inverse problems, when compared to a state of the art optimization method that is valid
for generic nonconvex nonsmooth optimization problems.

Keywords Composite minimization · Bregman proximal minimization algorithms · Model
function framework · Bregman distance · Global convergence · Kurdyka–Łojasiewicz
property
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1 Introduction

We solve possibly nonsmooth and nonconvex optimization problems of the form

(P) inf
x∈RN

f (x) . (1)

where f : RN → R is a proper lower semicontinuous function that is bounded from below.
Special instances of the above mentioned problem include two broad classes of problems,
namely, additive composite problems (Sect. 4.1) and composite problems (Sect. 4.2). Such
problems arise in numerous practical applications such as, quadratic inverse problems [16],
low-rank matrix factorization problems [36], Poisson linear inverse problems [9], robust
denoising problems [38], deep linear neural networks [37], and many more.

In this paper, we design an abstract framework for provable globally convergent algorithms
based on a quality measure for suitable approximation of the objective. A classical special
case is that of a continuously differentiable f : R

N → R, whose gradient mapping is
Lipschitz continuous over RN . Such functions enjoy the well-known Descent Lemma (cf.
Lemma 1.2.3 of Nesterov [39])

− L

2
‖x − x̄‖2 ≤ f (x) − f (x̄) − 〈∇ f (x̄), x − x̄〉 ≤ L̄

2
‖x − x̄‖2 , for all x, x̄ ∈ R

N , (2)

which describes the approximation quality of the objective f by its linearization f (x̄) +
〈∇ f (x̄), x − x̄〉 in terms of a quadratic error estimatewith certain L, L̄ > 0. Such inequalities
play a crucial role in designing algorithms that are used to minimize f . Gradient Descent
is one such algorithm. We illustrate Gradient Descent in terms of sequential minimization
of suitable approximations to the objective, based on the first order Taylor expansion – the
linearization of f around the current iterate xk ∈ R

N . Consider the followingmodel function
at the iterate xk ∈ R

N :

f (x; xk) := f (xk) + 〈∇ f (xk), x − xk〉 , (3)

where 〈·, ·〉 denotes the standard inner product in the Euclidean vector spaceRN of dimension
N and f (·; xk) is the linearization of f around xk . Set τ > 0. Now, the Gradient Descent
update can be written equivalently as follows:

xk+1 = argmin
x∈RN

{
f (x; xk) + 1

2τ
‖x − xk‖2

}
⇔ xk+1 = xk − τ∇ f (xk) . (4)

Its convergence analysis is essentially based on the Descent Lemma (2), which we reinterpret
as a bound on the linearization error (model approximation error) of f . However, obviously
(2) imposes a quadratic error bound, which cannot be satisfied in general. For example,
functions like x4 or (x3 + y3)2 or (1 − xy)2 do not have a Lipschitz continuous gradient.
The same is true in several of the above-mentioned practical applications.

This issuewas recently resolved inBolte et al. [16], based on the initialwork inBauschke et
al. [9], by introducing a generalization of the Lipschitz continuity assumption for the gradient
mapping of a function, which was termed the “L-smad property”. In convex optimization,
similar notion coined “relative smoothness” was proposed in Lu et al. [33]. Such a notion was
also independently considered inBirnbaumet al. [12], before Lu et al. [33]. However, all these
approaches rely on the model function (3), which is the linearization of the function. In this
paper, we generalize to arbitrary model functions (Definition 5) instead of the linearization
of the function.
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We briefly recall the “L-smad property”. The main limitation of the Lipschitz continuous
gradient notion is that it can only allow for quadratic approximation model errors. To go
far beyond this setting, it then appears natural to invoke more general proximity measures
as afforded by Bregman distances [17]. Several variants of Bregman distances exist in the
literature [6,16,19,33]. We focus on those distances that are generated from so-called Leg-
endre functions (Definition 3). Consider a Legendre function h, then the Bregman distance
between x ∈ dom h and y ∈ int dom h is given by

Dh(x, y) := h(x) − h(y) − 〈∇h(y), x − y〉 . (5)

A continuously differentiable function f : RN → R is L-smad with respect to a Legendre
function h : RN → R over RN with L̄, L > 0, if we have

− LDh(x, x̄) ≤ f (x) − f (x̄) − 〈∇ f (x̄), x − x̄〉 ≤ L̄ Dh(x, x̄) ,∀x, x̄ ∈ R
N . (6)

Note that with h(x) = 1
2‖x‖2 in (6) we recover (2). We interpret the inequalities in (6) as a

generalized distance measure for the linearization error of f . Similar to the Gradient Descent
setting, minimization of f (x̄)+〈∇ f (x̄), x − x̄〉+ 1

τ
Dh(x, x̄) results in the Bregman proximal

gradient (BPG) algorithm’s update step [16] (a.k.a. Mirror Descent [10]).
However, the L-smad property relies on the continuous differentiability of the function

f , thus nonsmooth functions as simple as |x4 − 1| or |1 − (xy)2| or log(1 + |1 − (xy)2|)
cannot be captured under the L-smad property. This lead us to the development of the MAP
property (Definition 7), where MAP abbreviates Model Approximation Property. Consider
a function f : RN → R that is proper lower semicontinuous (lsc), and a Legendre function
h : RN → R with dom h = R

N . For certain x̄ ∈ R
N , we consider generic model function

f (x; x̄) that is proper lsc and approximates the function around the model center x̄, while
preserving the local first order information (Definition 5). TheMAP property is satisfied with
constants L̄ > 0 and L ∈ R if for any x̄ ∈ R

N the following holds:

− LDh(x, x̄) ≤ f (x) − f (x; x̄) ≤ L̄ Dh(x, x̄) , ∀x ∈ R
N . (7)

Note that we do not require the continuous differentiability of the function f . Our MAP
property is inspired from Davis et al. [20]. However, their work considers only the lower
bound with a weakly convex model function. Similar to the BPG setting, minimization of
f (x; x̄)+ 1

τ
Dh(x, x̄) essentially results in Model BPG algorithm’s update step. We illustrate

theMAPpropertywith a simple example. Consider a composite problem f (x) = g(F(x)) :=
|x4−1|, where F(x) := x4−1 and g(x) := |x |. Note that neither the Lipschitz continuity of
the gradient nor the L-smad property is valid for this problem. However, the MAP property
is valid with L̄ = L = 4 using f (x; x̄) := g(F(x̄) + ∇F(x̄)(x − x̄)), where ∇F(x̄) is the
Jacobian of F at x̄ , and Dh(x, x̄) = 1

4 x
4 − 1

4 x̄
4 − x̄3(x − x̄), generated by h(x) = 1

4 x
4. We

provide further details in Examples 6 and in 9.

1.1 Contributions and relations to prior work

Our main contributions are the following.

– We introduce the MAP property, which generalizes the Lipschitz continuity assumption
of the gradient mapping and the L-smad property [9,16]. Earlier proposed notions were
restricted to additive composite problems. The MAP property is essentially an extended
Descent Lemma that is valid for generic composite problems (see Sect. 4) and beyond,
based on Bregman distances. MAP like property was considered in Davis et al. [20],
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however with focus on stochastic optimization and lower bounds of their MAP like
property. The MAP property relies on the notion of model function, that serves as a
function approximation, and preserves the local first order information of the function.
Our work extends the foundations laid by Drusvyatskiy et al. [25], Davis et al. [20] based
on generic model functions (potentially nonconvex), andOchs et al. [47] based on convex
model functions. Taking inspiration from the update steps used in [20] and based on the
MAP property, we propose the Model based Bregman Proximal Gradient (Model BPG)
algorithm (Algorithm 1). Apart from the work in Davis et al. [20], another close variant
ofModel BPG is the line search based Bregman proximal gradient method [47], however,
both the works do not consider the convergence of the full sequence of iterates.

– The global convergence analysis typically relies on the descent property of the function
values. However, using function values can be restrictive, and alternatives are sought
[48]. We fix this issue by introducing a new Lyapunov function. We show that the (full)
sequence generated byModel BPG converges to a critical point of the objective function.
Notably, the usage of a Lyapunov function is popular for analysis of inertial algorithms
[3,5,38,46] and through our work we aim to popularize Lyapunov functions also for
noninertial algorithms.

– The global convergence analysis of Bregman proximal gradient (BPG) [16] relies on the
full domain of the Bregman distance, which contradicts their original purpose to repre-
sent the geometry of the constraint set. Our convergence theorem relaxes this restriction
under certain assumptions that are typically satisfied in practice. In general, this requires
the limit points of the sequence to lie in the interior of domain of the employed Legendre
function. While this is certainly still a restriction, nevertheless, the considered setting is
highly nontrivial and novel in the general context of nonconvex nonsmooth optimiza-
tion. Moreover, it allows us to avoid the common restriction of requiring (global) strong
convexity of the Legendre function, a severe drawback that rules out many interesting
applications in related approaches (Sect. 5.2). In the context of convex optimization,
works such as Lu [32], Gutman and Peña [27] use the reference functions (notion similar
to the Legendre function) that are not strongly convex. In nonconvex nonsmooth opti-
mization, Legendre functions that are not strongly convex are considered in Davis et al.
[20].

– We validate our theory with a numerical section showing the flexibility and the superior
performance ofModel BPGcompared to a state of the art optimization algorithm, namely,
InexactBregmanProximalMinimizationLine Search (IBPM-LS) [45], on standard phase
retrieval problems and Poisson linear inverse problems.

1.2 Preliminaries and notations

All the notations are primarily taken fromRockafellar andWets [51].Wework in a Euclidean
vector space RN of dimension N ∈ N

∗ equipped with the standard inner product 〈·, ·〉 and
induced norm ‖·‖. For a setC ⊂ R

N , we define ‖C‖− := infs∈C ‖s‖. For any vector x ∈ R
N ,

the i th coordinate is denoted by xi . We work with extended-valued functions f : RN → R,
R := R ∪ {+∞}. The domain of f is dom f := {

x ∈ R
N | f (x) < +∞}

and a function f
is proper, if dom f �= ∅. It is lower semi-continuous (or closed), if lim infx→Nx f (x) ≥ f (x̄)
for any x̄ ∈ R

N . Let int� denote the interior of � ⊂ R
N . We use the notation of f -

attentive convergence x
f→ x̄ ⇔ (x, f (x)) → (x̄, f (x̄)) and the notation k

K→ ∞ for
some K ⊂ N to represent k → ∞ where k ∈ K . The indicator function δC of a set
C ⊂ R

N is defined by δC (x) = 0, if x ∈ C and δC (x) = +∞, otherwise. The (orthogonal)
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projection of x̄ onto C , denoted projC (x̄), is given by a minimizer of minx∈C ‖x − x̄‖,
which is well defined for a non-empty closed C . A set-valued mapping T : RN ⇒ R

M

is defined by its graph GraphT := {
(x, v) ∈ R

N × R
M | v ∈ T (x)

}
with domain given by

dom T := {
x ∈ R

N | T (x) �= ∅}
. Following Rockafellar and Wets [51, Def. 6.3], let x̄ ∈ C ,

a vector v is regular normal to C , written v ∈ N̂C (x̄), if 〈v, x − x̄〉 ≤ o(‖x − x̄‖) for x ∈ C .
Here, v would be a normal vector, written v ∈ NC (x̄), if there exist sequences xk → x̄ and
vk → v, such that xk ∈ C with vk ∈ N̂C (xk) for all k ∈ N. Following Rockafellar and Wets
[51, Def. 8.3], we introduce subdifferential notions for nonsmooth functions. The Fréchet
subdifferential of f at x̄ ∈ dom f is the set ∂̂ f (x̄) of elements v ∈ R

N such that

lim inf
x→x̄
x �=x̄

f (x) − f (x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0 .

For x̄ /∈ dom f , we set ∂̂ f (x̄) = ∅. The (limiting) subdifferential of f at x̄ ∈ dom f is

defined by ∂ f (x̄) :=
{
v ∈ R

N | ∃ yk f→ x̄, vk ∈ ∂̂ f (yk), vk → v
}

, and ∂ f (x̄) = ∅ for

x̄ /∈ dom f . As a direct consequence of the definition of the limiting subdifferential, we have
the following closedness property at any x̄ ∈ dom f :

yk
f→ x̄, vk → v̄, and for all k ∈ N : vk ∈ ∂ f (yk) �⇒ v̄ ∈ ∂ f (x̄) . (8)

A vector v ∈ R
N is a horizon subgradient of f at x̄, if there are sequences xk

f→ x̄, vk ∈
∂̂ f (xk), one has λkvk → v for some sequence λk ↘ 0. The set of all horizon subgradients
∂∞ f (x̄) is called horizon subdifferential. A point x̄ ∈ dom f satisfying 0 ∈ ∂ f (x̄) is a called
a critical point, which is a necessary optimality condition (Fermat’s rule [51, Thm. 10.1]) for
x̄ being a local minimizer. The set of critical points is denoted by

crit f :=
{
x ∈ R

N : 0 ∈ ∂ f (x)
}

.

The set of (global) minimizers of a function f is

Argmin
x∈RN

f (x) :=
{
x ∈ R

N | f (x) = inf
x̄∈RN

f (x̄)
}

,

and the (unique) minimizer of f by argmin
x∈RN

f (x) if Argmin
x∈RN

f (x) is a singleton. We also use

for short Argmin f and argmin f .
Our global convergence theory relies on the so-called Kurdyka–Łojasiewicz (KL) prop-

erty. It is a standard tool that is essentially satisfied by most of the functions that appear in
practice. We just state the definition here from Attouch et al. [4] and refer to Bolte et al.
[13–15], Kurdyka [28] for more details.

Definition 1 (Kurdyka–Łojasiewicz property) Let f : RN → R and let x̄ ∈ dom ∂ f . If there
exists η ∈ (0,∞], a neighborhoodU of x̄ and a continuous concave functionϕ : [0, η) → R+
such that

ϕ(0) = 0, ϕ ∈ C1(0, η), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x ∈ U ∩ [ f (x̄) < f (x) < f (x̄) + η] the Kurdyka–Łojasiewicz inequality
ϕ′( f (x) − f (x̄))‖∂ f (x)‖− ≥ 1 (9)
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holds, then the function has the Kurdyka–Łojasiewicz property at x̄. If, additionally, the
function is lsc and the property holds at each point in dom ∂ f , then f is called a Kurdyka–
Łojasiewicz function.

We abbreviate Kurdyka–Łojasiewicz property as KL property. The function ϕ in the KL
property is known as the desingularizing function. It is well known that the class of functions
definable in an o-minimal structure [21] satisfy the KL property [14, Theorem 14]. Sets and
functions that are semi-algebraic and globally subanalytic (for example, see [14, Section 4],
[42, Section 4.5]) can be defined in an o-minimal structure.

We briefly review the concept of gradient-like descent sequence, that eases the global
convergence analysis of Model BPG. We use the following results from Ochs [43]. Let
F : RN × R

P → R be a proper, lsc function that is bounded from below.

Assumption 1 (Gradient-like Descent Sequence [43]) Let (un)n∈N be a sequence of param-
eters in R

P and let (εn)n∈N be an 
1-summable sequence of non-negative real numbers.
Moreover, we assume there are sequences (an)n∈N, (bn)n∈N, and (dn)n∈N of non-negative
real numbers, a non-empty finite index set I ⊂ Z and θi ≥ 0, i ∈ I , with

∑
i∈I θi = 1 such

that the following holds:

(H1) (Sufficient decrease condition) For each n ∈ N, it holds that

F(xn+1,un+1) + and
2
n ≤ F(xn,un) .

(H2) (Relative error condition) For each n ∈ N, it holds that: (set d j = 0 for j ≤ 0)

bn+1‖∂F(xn+1,un+1)‖− ≤ b
∑
i∈I

θi dn+1−i + εn+1 .

(H3) (Continuity condition) There exists a subsequence ((xn j ,un j )) j∈N and (x̃, ũ) ∈ R
N ×

R
P such that (xn j ,un j )

F→ (x̃, ũ) as j → ∞ .

(H4) (Distance condition) It holds that dn → 0 �⇒ ‖xn+1 −xn‖2 → 0 and ∃n′ ∈ N : ∀n ≥
n′ : dn = 0 �⇒ ∃n′′ ∈ N : ∀n ≥ n′′ : xn+1 = xn .

(H5) (Parameter condition) (bn)n∈N /∈ 
1 , supn∈N 1
bnan

< ∞ , infn an =: a > 0 .

We now provide the global convergence statement from Ochs [43], based on Assump-
tion 1. The set of limit points of a bounded sequence ((xn,un))n∈N is ω(x0,u0) :=
lim supn→∞ {(xn,un)} , and denote the subset of F-attentive limit points by

ωF (x0,u0) :=
{
(x̄, ū) ∈ ω(x0,u0) | (xn j ,un j )

F→ (x̄, ū) for j → ∞
}

.

Theorem 2 (Global convergence [43, Theorem 10]) Suppose F is a proper lsc KL function
that is bounded from below. Let (xn)n∈N be a bounded sequence generated by an abstract
algorithm parametrized by a bounded sequence (un)n∈N that satisfies Assumption 1. Assume
that F-attentive convergence holds along converging subsequences of ((xn,un))n∈N, i.e.
ω(x0,u0) = ωF (x0,u0). Then, the following holds:

(i) The sequence (dn)n∈N satisfies
∑∞

k=0 dk < +∞ , i.e., the trajectory of the sequence
(xn)n∈N has finite length w.r.t. the abstract distance measures (dn)n∈N.

(ii) Suppose dk satisfies ‖xk+1 − xk‖2 ≤ c̄dk+k′ for some k′ ∈ Z and c̄ ∈ R, then (xn)n∈N
is a Cauchy sequence, and thus (xn)n∈N converges to x̃ from (H3).

(iii) Moreover, if (un)n∈N is a converging sequence, then each limit point of the sequence
((xn,un))n∈N is a critical point of F , which in the situation of (ii). is the unique point
(x̃, ũ) from (H3).
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Legendre functions defined below generate Bregman distances, which are generalized
proximity measures compared to the Euclidean distance.

Definition 3 (Legendre function [50, Section 26]) Let h : RN → R be a proper lsc convex
function. It is called:

(i) essentially smooth, if h is differentiable on int dom h, with moreover ‖∇h(xk)‖ → ∞
for every sequence (xk)k∈N ∈ int dom h converging to a boundary point of dom h as
k → ∞;

(ii) of Legendre type if h is essentially smooth and strictly convex on int dom h.

Some properties of Legendre function include dom ∂h = int dom h, and ∂h(x) =
{∇h(x)}, ∀x ∈ int dom h. Additional properties can be found in Bauschke and Borwein
[6, Section 2.3]. For the purpose of our analysis, we later require that the Legendre functions
are twice continuously differentiable (see Assumption 4). Legendre function is also referred
as kernel generating distance [16], or a reference function [33]. Generic reference functions
used in Lu et al. [33] are more general compared to Legendre functions, as they do not
require essential smoothness. The Bregman distance associated with any Legendre function
h is defined by

Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉 , ∀ x ∈ dom h, y ∈ int dom h . (10)

In contrast to the Euclidean distance, the Bregman distance is lacking symmetry. Prominent
examples of Bregman distances can be found in Bauschke et al. [9, Example 1, 2] and for
additional results, we refer the reader to Bauschke and Borwein [6], Bauschke et al. [7–9].
We provide some examples below.

– Bregman distance generated from h(x) = 1
2‖x‖2 is the Euclidean distance.

– Let x, x̄ ∈ R
N++, the Legendre function h(x) = −∑N

i=1 log(xi ) (Burg’s entropy) is
helpful in Poisson linear inverse problems [9].

– Let x ∈ R
N+ , x̄ ∈ R

N++, the Legendre function h(x) = ∑N
i=1 xi log(xi ) (Boltzmann–

Shannon entropy), with 0 log(0) := 0 is helpful to handle simplex constraints [10].
– Phase retrieval problems [16] use the Bregman distance based on the Legendre function

h : RN → R that is given by h(x) = 0.25‖x‖42 + 0.5‖x‖22 .

– Matrix factorization problems [36,52] use the Bregman distance based on the Legendre
function h : RN1 ×R

N2 → R that is given by h(x, y) = c1(‖x‖2 + ‖y‖2)2 + c2(‖x‖2 +
‖y‖2) with certain c1, c2 > 0 and N1, N2 ∈ N.

2 Problem setting andmodel BPG algorithm

We consider the optimization problem (1) where f satisfies the following assumption, which
we impose henceforth.

Assumption 2 f : RN → R is proper, lsc (possibly nonconvex nonsmooth) and coercive,
i.e., as ‖x‖ → ∞ we have f (x) → ∞.

Due to Rockafellar and Wets [51, Theorem 1.9], the function f satisfying Assump-
tion 2 is bounded from below, and Argmin

x∈RN
f (x) is nonempty and compact. Denote v(P) :=

minx∈RN f (x) > −∞ . We require the following definitions.
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Definition 4 (Growth function [25,47]) A differentiable univariate function ς : R+ → R+
is called growth function if it satisfies ς(0) = ς ′+(0) = 0, where ς ′+ denotes the one sided
(right) derivative of ς . If, in addition, ς ′+(t) > 0 for t > 0 and equalities limt↘0 ς ′+(t) =
limt↘0 ς(t)/ς ′+(t) = 0 hold, we say that ς is a proper growth function.

Example of a proper growth function is ς(t) = η
r t

r for η, r > 0. Lipschitz continuity and
Hölder continuity can be interpreted with growth functions or, more generally, with uniform
continuity [47]. We use the notion of a growth function to quantify the difference between a
model function (defined below) and the objective.

Definition 5 (Model Function) Let f be a proper lower semi-continuous (lsc) function. A
function f (·, x̄) : RN → Rwith dom f (·, x̄) = dom f is calledmodel function for f around
the model center x̄ ∈ dom f , if there exists a growth function ςx̄ such that the following is
satisfied:

| f (x) − f (x; x̄)| ≤ ςx̄(‖x − x̄‖) , ∀ x ∈ dom f . (11)

A model function is essentially a first-order approximation to a function f , which explains
the naming as “Taylor-like model” by Drusvyatskiy et al. [25]. The qualitative approximation
property is represented by the growth function. Informally, the model function approximates
the function well near the model center. Convex model functions are explored in Ochs et al.
[47], Ochs and Malitsky [44]. However, in our setting, the model functions can be noncon-
vex. Nonconvex model functions were considered in Drusvyatskiy et al. [25], however only
subsequential convergence was shown.

We refer to (11) as a bound on the model error, and the symbol ςx̄ denotes the dependency
of the growth function on the model center x̄. Typically the growth function depends on the
model center, as we illustrate below.

Example 6 (Running Example) Let f (x) = |g(x)| with g(x) = ‖x‖4 − 1. With x̄ ∈ R
N as

the model center, and the model function

f (x; x̄) := |g(x̄) + 〈∇g(x̄), x − x̄〉 | .
With the growth function is ςx̄(t) = 24‖x̄‖2t2 + 8t4, the model error obtained is

| f (x) − f (x; x̄)| ≤ 24‖x̄‖2‖x − x̄‖2 + 8‖x − x̄‖4 .

It is often of interest to obtain a uniformapproximation for themodel error | f (x)− f (x; x̄)|,
where the growth function is not dependent on the model center. In general, obtaining such
a uniform approximation is not trivial, and may even be impossible. Moreover, typically
finding an appropriate growth function is not trivial. For this purpose, it is preferable to have
a global bound on the model error that can be easily verified, the dependency on the model
center is more structured, and the constants arising do not have any dependency on the model
center. In the context of additive composite problems, previous works such as Bauschke et
al. [9], Lu et al. [33], Bolte et al. [16] relied on Bregman distances to upper bound the model
error. Based on this idea, we propose the following MAP property, which is valid for a huge
class of structured nonconvex problems and also generalizes the previous works.

Definition 7 (MAP: Model Approximation Property) Let h be a Legendre function that is
continuously differentiable over int dom h. A proper lsc function f with dom f ⊂ cl dom h
and dom f ∩ int dom h �= ∅, and model function f (·, x̄) for f around x̄ ∈ dom f ∩ int dom h
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satisfy the Model Approximation Property (MAP) at x̄, with the constants L̄ > 0, L ∈ R, if
for any x̄ ∈ dom f ∩ int dom h the following holds:

− LDh(x, x̄) ≤ f (x) − f (x; x̄) ≤ L̄ Dh(x, x̄) , ∀x ∈ dom f ∩ dom h . (12)

Remark 8 (Discussion on Definition 7)

(i) The design of a model function is independent of an algorithm. However, algorithms
can be governed by the model function (for example, see Model BPG below). The
property of a model function is rather an analogue to differentiability or a (uniform)
first-order approximation. Note that for x̄ ∈ int dom h, the Bregman distance Dh(x, x̄)
is bounded by o(‖x − x̄‖), which is a growth function. Therefore, the MAP property
requires additional algorithm specific properties of the model function. In particular,
we require the constants L̄ and L to be independent of x̄, which provides a global
consistency between the model function approximations.

(ii) The condition dom f ⊂ cl dom h is a minor regularity condition. For example, if
dom f = [0,∞) and dom h = (0,∞) (e.g., for h in Burg’s entropy), such a function
h can be used in MAP property. However, the L-smad property [16] would require x, x̄
in (12) to lie in int dom h (see also Sect. 4.1).

(iii) Note that the choice of L is unrestricted in MAP property. For nonconvex f , L is
typically a positive real number. For convex f , typically the condition L ≥ 0 holds
true. However, note that the values of L, L̄ are governed by the model function. For
convex additive composite problems, L < 0 can hold true for relatively strongly convex
functions [33].

Example 9 (Running Example – Contd) We continue Example 6 to illustrate the MAP prop-
erty. Let h(x) = 1

4‖x‖4, we clearly have

g(x) − g(x̄) − 〈∇g(x̄), x − x̄〉 ≤ 4Dh(x, x̄) , ∀ x ∈ R
N ,

which in turn results in the following upper bound for the model error

| f (x) − f (x; x̄)| ≤ |g(x) − g(x̄) − 〈∇g(x̄), x − x̄〉 | ≤ 4Dh(x, x̄) .

The upper bound is obtained in terms of a Bregman distance. Clearly, the constants arising
do not have any dependency on the model center.

We now propose the Model BPG algorithm, where the update step relies on the upper bound
of the MAP property.

Algorithm 1 (Model BPG: Model based Bregman Proximal Gradient)

– Initialization: Select x0 = x1 ∈ dom f ∩ int dom h. Choose τ , τ̄ such that 0 < τ <

τ̄ < (1/L̄).
– For each k ≥ 1: Choose τk ∈ [τ , τ̄ ] and compute

xk+1 ∈ Argmin
x∈RN

{
f (x; xk) + 1

τk
Dh(x, xk)

}
. (13)

Remark 10 (i) A closely related work in Davis et al. [20] considers only the lower bound of
theMAPproperty and their algorithm terminates by choosing an iterate based on certain
probability distribution. In stark contrast, Model BPG relies on the upper bound of the
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MAP property and there is no need to invoke any probabilistic argument to choose the
final iterate. Also, Davis et al. [20] considers weakly convex model functions whereas
we do not have such a restriction.

(ii) For the global convergence analysis of Model BPG sequences, in addition to the con-
dition τk ∈ [τ , τ̄ ] on step-size, the condition that τk → τ , as k → ∞ for certain τ > 0
is required (see Theorem 17 , 18).

(iii) We note that Model BPG is applicable to a broad class of structured nonconvex and
nonsmooth problems. In particular, Model BPG can be efficiently applied to those
nonconvex and nonsmooth problems, for which the update step (13) involving the
Bregman distance can be easily computed.

We now collect all the assumptions required for the global convergence analysis of a
sequence generated by the Model BPG algorithm.

Assumption 3 Let h be a Legendre function that is C2 over int dom h. Moreover, the condi-
tions dom f ∩ int dom h �= ∅, crit f ∩ int dom h �= ∅ and dom f ⊂ cl dom h hold true.

(i) The exist L̄ > 0, L ∈ R such that for any x̄ ∈ dom f ∩ int dom h, f and the model
function f (·, x̄) satisfy the MAP property at x̄ with constants L̄, L .

(ii) For any x̄ ∈ dom f ∩ int dom h, the following qualification condition holds true:

∂∞
x f (x; x̄) ∩ (−Ndom h(x)) = {0} , ∀ x ∈ dom f ∩ dom h . (14)

(iii) For all x, y ∈ dom f , the conditions (0, v) ∈ ∂∞ f (x; y) implies v = 0 , and (v, 0) ∈
∂∞ f (x; y) implies v = 0 hold true. Also, f (x; y) is regular [51, Definition 7.25] at
any (x, y) ∈ dom f × dom f .

(iv) The function f (x; x̄) is a proper, lsc function and is continuous over (x, x̄) ∈ dom f ×
dom f .

By ∂x f (x; x̄) we mean the limiting subdifferential of the model function x �→ f (x; x̄)
with x̄ fixed and ∂ f (x; y) denotes the limiting subdifferential w.r.t (x, y); dito for the horizon
subdifferential.

Remark 11 (Discussion on Assumption 3) The qualification condition in (14) is required for
the applicability of the subdifferential summation rule (see [51, Corollary 10.9]). Assump-
tion 3(iii) and [51, Corollary 10.11] ensure that for all x, y ∈ dom f , the following holds
true:

∂ f (x; y) = ∂x f (x; y) × ∂y f (x; y) , ∂∞ f (x; y) = ∂∞
x f (x; y) × ∂∞

y f (x; y) .

(Assumption 3(iii)’)

Our analysis relies on (Assumption 3(iii)’). However, note that Assumption 3(iii) is a
sufficient condition for (Assumption 3(iii)’) to hold. Certain classes of functions mentioned
in Sect. 4 satisfy (Assumption 3(iii)’) directly, instead of Assumption 3(iii). Assumption 3(iv)
is typically satisfied in practice and plays a key role in Lemma 30. Based onAssumption 3(iii),
for any fixed x̄ ∈ dom f , the model function f (x; x̄) is regular at any x ∈ dom f . Using this
fact, we deduce that the model function preserves the first order information of the function,
in the sense that for x ∈ dom f the condition ∂y f (y; x)|y=x = ∂̂ f (x) holds true (based on
Ochs and Malitsky [44, Lemma 14]).

Many popular algorithms such as Gradient Descent, Proximal GradientMethod, Bregman
Proximal Gradient Method, Prox-Linear method are special cases of Model BPG depending
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on the choice of the model function and the choice of Bregman distance, thus making it a
unified algorithm (also c.f. Ochs et al. [47]). Examples of model functions are provided in
Sect. 4. Let τ > 0, x̄ ∈ dom f ∩ int dom h, the update mapping (as in (13)) is defined by

Tτ (x̄) := Argmin
x∈RN

f (x; x̄) + 1

τ
Dh(x, x̄) . (15)

Denote εk :=
(

1
τk

− L̄
)

> 0 and clearly ε ≤ εk ≤ ε̄, where ε̄ := 1
τ

− L̄ and ε := 1
τ̄

− L̄ .

Well-posedness of the update step (13) is given by the following result.

Lemma 12 Let Assumption 2, 3 hold true and let x̄ ∈ dom f ∩ int dom h. Then, for all
0 < τ < 1

L̄
the set Tτ (x̄) is a nonempty compact subset of dom f ∩ int dom h.

Proof As a consequence of MAP property due to Assumption 3(i) and nonnegativity of
Bregman distances, the following property is satisfied

f (x) ≤ f (x; x̄) + 1

τ
Dh(x, x̄) ,∀ x ∈ dom f ∩ dom h .

Coercivity of f transfers to that of the objective in (15), and we get the conclusion from
standard arguments; see [51, Theorem 1.9]. ��

The conclusion of the lemma remains true under other sufficient conditions. For instance,
if the model has an affine minorant and h is supercoercive (for example, see [16, Section
3.1]). We now show that Model BPG results in monotonically nonincreasing function values.

Lemma 13 (Sufficient Descent Property in Function values) Let Assumptions 2, 3 hold. Also,
let (xk)k∈N be a sequence generated by Model BPG, then for k ≥ 1, the following holds

f (xk+1) ≤ f (xk) − εk Dh(xk+1, xk) .

Proof Due to (13), we have f (xk+1; xk) + 1
τk
Dh(xk+1, xk) ≤ f (xk; xk) = f (xk) . From

MAP property, we have f (xk+1) ≤ f (xk+1; xk) + L̄ Dh(xk+1, xk) . The result follows by
combining the previous arguments. ��
Remark 14 Under Assumptions 2, 3, the coercivity of f , Lemma 13 implies that the iterates
of Model BPG lie in the compact set {x : f (x) ≤ f (x0)}.
Assumption 4 (i) For any bounded set B ⊂ dom f . There exists c > 0 such that for any

x, y ∈ B we have

‖∂y f (x; y)‖− ≤ c‖x − y‖ .

(ii) The function h has bounded second derivative on any compact subset B ⊂ int dom h.
(iii) For bounded (uk)k∈N, (vk)k∈N in int dom h, the following holds as k → ∞:

Dh(uk, vk) → 0 ⇐⇒ ‖uk − vk‖ → 0 .

We now illustrate Assumption 4(i), which governs the variation of the model function
w.r.t. model center.

Example 15 We continue Example 6 to illustrate Assumption 4(i). Note that that ∇2g(x)
is bounded over bounded sets. Consider any bounded set B ⊂ R

N . Define c :=
supx̄∈B ‖∇2g(x̄)‖ and choose any x̄ ∈ B, then consider the model function f (x; x̄) :=
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|g(x̄) + 〈∇g(x̄), x − x̄〉 | . The subdifferential of the model function is given by ∂x̄ f (x; x̄) =
u∇2g(x̄)(x− x̄) , where u ∈ ∂g(x̄)+〈∇g(x̄),x−x̄〉|g(x̄) + 〈∇g(x̄), x − x̄〉 |. Considering the fact
that ‖u‖ ≤ 1 and by the definition of c we have ‖∂x̄ f (x; x̄)‖− ≤ c‖x − x̄‖ , which verifies
Assumption 4(i).

In order to exploit the power of KL property in the global convergence analysis of Model
BPG, we make the following assumption.

Assumption 5 LetO be an o-minimal structure. The functions f̃ : RN×R
N → R , (x, x̄) �→

f (x; x̄) with dom f̃ := dom f × dom f , and h̃ : R
N × R

N → R , (x, x̄) �→ h(x̄) +
〈∇h(x̄), x − x̄〉 with dom h̃ := dom h × int dom h are definable O.

An important feature of our analysis is that the Legendre function h satisfying Assumption 3
is not required to be strongly convex. Instead, we impose a significantly weaker condition in
Assumption 6 provided below.

Assumption 6 For any compact convex set B ⊂ int dom h, there exists σB > 0 such that h
is σB-strongly convex over B, i.e., for any x, y ∈ B the condition Dh(x, y) ≥ σB

2 ‖x − y‖2
holds.

Remark 16 (Discussion on Assumption 4–6) Assumption 4(i) is illustrated in Example 15.
Assumption 4(ii) is typically used in the analysis of Bregman proximal methods [16,38,47].
Assumption 4(iii) (also see [47, Remark 18]) essentially states that the asymptotic behavior
of vanishing Bregman distance is equivalent to that of vanishing Euclidean distance. Note
that Assumption 4(iii) already uses bounded sequences in int dom h, and thus it is satisfied
for many Bregman distances, such as distances based on Boltzmann-Shannon entropy [47,
Example 40] and Burg’s entropy [47, Example 41]. However, such distances may not satisfy
Assumption 4(iii) if the sequences are bounded only in dom h or in cl dom h (for example,
see Sect. 5.2). Assumption 5 is used in Lemma 28 to deduce that Fh

L̄
satisfies KL property.

Assumption 6 plays a key role in proving the global convergence of the sequence generated
by Model BPG.

3 Global convergence analysis of model BPG algorithm

3.1 Main results

Our goal is to show that the sequence generated by Model BPG is a gradient-like descent
sequence such that Theorem 2 is applicable. The convergence analysis of some popular
algorithms (for example, PGM, BPG, PALM [15] etc) in nonconvex optimization is based on
a descent property. Usually, the objective value is shown to decrease (for example, see [16,
Lemma 4.1]). However, techniques used for additive composite setting relying on function
values do not work anymore for general composite problems, hence alternatives like [48] are
sought after. We analyse Model BPG using a Lyapunov function as our measure of progress.
Our Lyapunov function Fh

L̄
is given by

Fh
L̄

: RN × R
N → R , (x, x̄) �→ f (x; x̄) + L̄ Dh(x, x̄) , (16)

and dom Fh
L̄

= (dom f )2 × (dom h × int dom h) . The set of critical points of Fh
L̄
is given

by

critFh
L̄

:=
{
(x, x̄) ∈ R

N × R
N : (0, 0) ∈ ∂Fh

L̄
(x, x̄)

}
. (17)
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The set of limit points of some sequence (xk)k∈N is denoted as follows ω(x0) :={
x ∈ R

N | ∃K ⊂ N : xk K→ x
}

, and its subset of f -attentive limit points

ω f (x0) :=
{
x ∈ R

N | ∃K ⊂ N : (xk, f (xk))
K→ (x, f (x))

}
.

To this regard, denote the following

ωint dom h(x0) := ω(x0) ∩ int dom h and ωint dom h
f (x0) := ω f (x0) ∩ int dom h .

Before we start with the convergence analysis, we present our main results. We defer their
proofs to Sect. 3.2. Informally, the following results state that the sequence generated by
Model BPG converges to a point x such that (x, x) is the critical point of Fh

L̄
and x is a critical

point of f .

Theorem 17 (Global convergence to a critical point of the Lyapunov function) Let Assump-
tions 2, 3, 4, 5, 6 hold. Let the sequence (xk)k∈N be generated by Model BPG (Algorithm 1)
with τk → τ for certain τ > 0 and the condition ωint dom h(x0) = ω(x0) holds true.
Then, convergent subsequences are Fh

L̄
-attentive convergent, and

∑∞
k=0 ‖xk+1 − xk‖ <

+∞ (finite length property) . The sequence (xk)k∈N converges to x such that (x, x) is a crit-
ical point of Fh

L̄
.

Theorem 18 (Global convergence to a critical point of the objective function) Under the
conditions of Theorem 17, the sequence generated by Model BPG converges to a critical
point of f .

It is possible to deduce convergence rates for a certain class of desingularizing functions.
Based on Attouch and Bolte [2], Bolte et al. [15], Frankel et al. [26], we provide the following
convergence rates for Model BPG sequences.

Theorem 19 (Convergence rates) Under the conditions of Theorem 17, let the sequence
(xk)k∈N generated by Model BPG converge to x ∈ dom f ∩ int dom h, and let Fh

L̄
satisfy KL

property with the desingularizing function: ϕ(s) = cs1−θ , for certain c > 0 and θ ∈ [0, 1).
Then, we have the following:

– If θ = 0, then (xk)k∈N converges in finite number of steps.
– If θ ∈ (0, 1

2 ], then ∃ ρ ∈ [0, 1), G > 0 such that ∀ k ≥ 0 we have ‖xk − x‖ ≤ Gρk .

– If θ ∈ ( 12 , 1), then ∃G > 0 such that ∀ k ≥ 0 we have ‖xk − x‖ ≤ Gk− 1−θ
2θ−1 .

The proof is only a slight modification to the proof of Attouch and Bolte [2, Theorem 5],
hence we skip it for brevity. In the above theorem θ is the so-called KL exponent (also called
Łojasiewicz exponent in classical algebraic geometry) of the Lyapunov function Fh

L̄
and

not that of the function f . Thus the KL exponent of Fh
L̄
is nontrivial to deduce even if the

KL exponent of f is known, as it has dependency on the model function and the Bregman
distance. In this regard, we refer the reader to Li and Pong [30], Li et al. [31].

3.2 Additional results and proofs

We now look at some properties of Fh
L̄
.

Proposition 20 The Lyapunov function defined in (16) satisfies the following:
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(i) For all x ∈ dom f ∩ dom h and y ∈ dom f ∩ int dom h, we have f (x) ≤ Fh
L̄
(x, y) .

(ii) For all x ∈ dom f ∩ int dom h, we have Fh
L̄
(x, x) = f (x) .

(iii) Moreover, we have inf(x,y)∈RN×RN Fh
L̄
(x, y) ≥ v(P) > −∞ .

Proof (i) This follows from MAP property and the definition of Fh
L̄
.

(ii) Substituting y = x in (16) gives the result.
(iii) By MAP property, we have v(P) ≤ f (x) ≤ f (x; y) + L̄ Dh(x, y) , for all (x, y) ∈

dom Fh
L̄
. Furthermore, we obtain the following:

inf
x∈dom f ∩ dom h

f (x) ≤ inf
(x,y)∈dom Fh

L̄

(
f (x; y) + L̄ Dh(x, y)

)
.

The statement follows using infx∈RN f (x) = v(P) > −∞ due to Assumption 2 . ��
We proved the sufficient descent property in terms of function values in Lemma 13. We now
prove the sufficient descent property of the Lyapunov function.

Proposition 21 (Sufficient descent property) Let Assumptions 2, 3 hold and let (xk)k∈N be a
sequence generated by Model BPG, then for k ≥ 1 we have

Fh
L̄
(xk+1, xk) ≤ Fh

L̄
(xk, xk−1) − εk Dh(xk+1, xk) . (18)

Proof From (13), we have f (xk+1; xk)+ 1
τk
Dh(xk+1, xk) ≤ f (xk; xk) = f (xk). FromMAP

property, we have f (xk) ≤ f (xk; xk−1) + L̄ Dh(xk, xk−1). Thus, the result follows from the
definition of Fh

L̄
in (16). ��

Proposition 22 Let Assumptions 2, 3 hold and let (xk)k∈N be a sequence generated by Model
BPG. The following assertions hold:

(i)
{
Fh
L̄

(xk+1, xk)
}
k∈N is nonincreasing and converges to a finite value.

(ii)
∑∞

k=1 Dh(xk+1, xk) < ∞ and {Dh(xk+1, xk)}k∈N converges to zero.

(iii) For any n ∈ N, we have min1≤k≤n Dh(xk+1, xk) ≤ Fh
L̄
(x1,x0)−v(P)

εn .

Proof (i) Nonincreasing property follows trivially from Proposition 21 and as εk > 0.
We know from Proposition 20(iii) that the Lyapunov function is lower bounded, which

implies convergence of
{
Fh
L̄

(xk+1, xk)
}
k∈N to a finite value.

(ii) Summing (18) from k = 1 to n (a positive integer) and using ε ≤ εk we get

n∑
k=1

Dh(xk+1, xk) ≤ 1

ε

(
Fh
L̄

(x1, x0) − v(P)
)

, (19)

since Fh
L̄

(xn+1, xn) ≥ v(P). Taking the limit as n → ∞, we obtain the first assertion,
from which we deduce that {Dh(xk+1, xk)}k∈N converges to zero.

(iii) Follows from (19) and nmin1≤k≤n (Dh(xk+1, xk)) ≤ ∑n
k=1 (Dh(xk+1, xk)). ��

Lemma 23 (Relative error) Let Assumptions 2, 3, 4 hold. Let the sequence (xk)k∈N be
generated by Model BPG, then there exists a constant C > 0 such that for certain k ≥ 0, we
have

‖∂Fh
L̄
(xk+1, xk)‖− ≤ C‖xk+1 − xk‖ . (20)
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Proof As per Rockafellar and Wets [51, Exercise 8.8] or Mordukhovich [35, Theorem 2.19],
∂Fh

L̄
(xk+1, xk) is given by

∂Fh
L̄
(xk+1, xk) = ∂ f (xk+1; xk) + L̄∇Dh(xk+1, xk) , (21)

because the Bregman distance is continuously differentiable around xk ∈ dom f ∩ int dom h.
Using Rockafellar and Wets [51, Corollary 10.11], Assumption 3(iv), and using the fact that
h is C2 over int dom h (cf. Assumption 3) we obtain

∂Fh
L̄
(xk+1, xk) =

(
∂xk+1 f (xk+1; xk) + L̄

(∇h(xk+1) − ∇h(xk)
)
,

∂xk f (xk+1; xk) − L̄∇2h(xk)(xk+1 − xk)
)

. (22)

Consider the following:

‖∂Fh
L̄
(xk+1, xk)‖− = inf

ξ∈∂ f (xk+1;xk )
‖ξ + L̄∇Dh(xk+1; xk)‖ ,

= inf
(ξx ,ξy)∈∂ f (xk+1;xk )

‖(ξx , ξy) + L̄∇Dh(xk+1, xk)‖ ,

≤ inf
ξx∈∂xk+1 f (xk+1;xk )

‖(ξx + L̄
(∇h(xk+1) − ∇h(xk)))‖

+ inf
ξy∈∂xk f (xk+1;xk )

‖(ξy + L̄∇2h(xk)(xk+1 − xk))‖ , (23)

where in the first equality we use (21), in the second equality we use the result in (22) with
ξ := (ξx , ξy) such that ξx ∈ ∂xk+1 f (xk+1, xk) and ξy ∈ ∂xk f (xk+1, xk), and in the last
step we used∇Dh(xk+1, xk) = (∇h(xk+1)−∇h(xk),∇2h(xk)(xk+1 −xk)) . The optimality
of xk+1 in (13) implies the existence of ξ k+1

xk+1
∈ ∂xk+1 f (xk+1; xk) such that the following

condition holds: ξ k+1
xk+1

+ 1
τk

(∇h(xk+1) − ∇h(xk)) = 0 . Therefore, the first block coordinate

in (22) satisfies

ξ k+1
xk+1

+ L̄
(∇h(xk+1) − ∇h(xk)

) = εk
(∇h(xk+1) − ∇h(xk)

)
. (24)

Now consider the first term of the right hand side in (23). We have

inf
ξx∈∂xk+1 f (xk+1;xk )

‖(ξx + L̄
(∇h(xk+1) − ∇h(xk)))‖

≤ ‖ξ k+1
xk+1

+ L̄
(∇h(xk+1) − ∇h(xk)

)‖ ,

≤ εk‖
(∇h(xk+1) − ∇h(xk)

)‖ ≤ εk L̃h‖xk+1 − xk‖ ,

where in the second step we used (24) and in the last step we applied mean value theorem
along with the fact that the entity ‖∇2h(xk+1 + s(xk+1 − xk))‖ is bounded by a constant
L̃h > 0 for certain s ∈ [0, 1], due to Assumption 4(ii). Considering the second term of the
right hand side in (23), we have

inf
ξy∈∂xk f (xk+1;xk )

‖(ξy + L̄∇2h(xk)(xk+1 − xk))‖

≤ inf
ξy∈∂xk f (xk+1;xk )

‖ξy‖ + ‖L̄∇2h(xk)(xk+1 − xk)‖ ,

≤ c‖xk+1 − xk‖ + L̄ Lh‖(xk+1 − xk)‖ ,

where in the last step we used Assumption 4(i) and the fact that ‖∇2h(xk)‖ is bounded by
Lh . The result follows from combining the results obtained for (24). ��
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We now consider results on generic limit points and show that stationarity can indeed be
attained for iterates produced by Model BPG.

Proposition 24 For a bounded sequence (xk)k∈N such that ‖xk+1 − xk‖ → 0 as k → ∞,
the following holds:

(i) ω(x0) is connected and compact,
(ii) limk→∞ dist(xk, ω(x0)) = 0.

The proof relies on the same technique as the proof of Bolte et al. [15, Lemma 3.5] (also
see Bolte et al. [15, Remark 3.3]). We now show that the sequence generated by Model BPG
(xk)k∈N indeed attains ‖xk+1 − xk‖ → 0 as k → ∞, which in turn enables the application
of Proposition 24 to deduce the properties of the sequence generated by Model BPG crucial
for the proof of global convergence.

Proposition 25 Let Assumption 2, 3, 4 hold. Let (xk)k∈N be a sequence generated by Model
BPG. Then, xk+1 − xk → 0 as k → ∞.

Proof The result follows as a simple consequence of Proposition 22(ii) along with Assump-
tion 4(iii). ��
Analyzing the full set of limit points of the sequence generated by Model BPG is difficult,
as illustrated in Ochs et al. [47]. Obtaining the global convergence is still an open problem.
Moreover, the work in Ochs et al. [47] relies on convex model functions. In order to simplify
slightly the setting, we restrict the set of limit points to the set int dom h. Such a choice
may appear to be restrictive, however, Model BPG when applied to many practical problems
results in sequences that have this property as illustrated in Sect. 5. The subset of Fh

L̄
-attentive

(similar to f -attentive) limit points is

ωFh
L̄
(x0) :=

{
(y, x) ∈ R

N × R
N | ∃K ⊂ N : (xk, Fh

L̄
(xk, xk−1))

K→ (x, Fh
L̄
(y, x))

}
.

Also, we define ω
(int dom h)2

Fh
L̄

:= ωFh
L̄

∩ (int dom h × int dom h).

Proposition 26 Let Assumptions 2, 3, 4 hold. Let (xk)k∈N be a sequence generated by Model
BPG. Then, the following holds:

(i) ωint dom h(x0) = ωint dom h
f (x0),

(ii) x ∈ ωint dom h
f (x0) if and only if (x, x) ∈ ω

(int dom h)2

Fh
L̄

(x0).

(iii) Fh
L̄
is constant and finite onω

(int dom h)2

Fh
L̄

(x0) and f is constant and finite onωint dom h
f (x0)

with same value.

Proof (i) We show the inclusion ωint dom h(x0) ⊂ ωint dom h
f (x0) and ωint dom h

f (x0) ⊂
ωint dom h(x0) is clear by definition. Let x� ∈ ωint dom h(x0), then we obtain

f (x�) +
(
L + 1

τk

)
Dh(x�, xk)

(12)≥ f (x�; xk) + 1

τk
Dh(x�, xk)

(13)≥ f (xk+1; xk) + 1

τk
Dh(xk+1, xk)

(12)≥ f (xk+1) −
(
L̄ − 1

τk

)
Dh(xk+1, xk)

εk>0≥ f (xk+1) .

123



Journal of Global Optimization (2022) 83:753–781 769

By Assumption 4(iii) combined with the fact that xk
K→ x�, we have Dh(x�, xk) → 0

as k
K→ ∞, which, together with the lower semicontinuity of f , implies the following:

f (x�) ≥ lim inf
k
K→∞ f (xk+1) ≥ f (x�) , thus x� ∈ ωint dom h

f (x0).

(i i) If x ∈ ωint dom h
f (x0), then we have xk

K→ x for K ⊂ N, and f (xk)
K→ f (x). As a

consequence of Proposition 22 and Assumption 4(iii), Dh(xk+1, xk) → 0 as k → ∞, which

implies that xk+1
K→ x. The first part of the proof implies f (xk+1)

K→ f (x). We also have

Fh
L̄
(xk+1, xk)

K→ f (x) which we prove below, which implies that (x, x) ∈ ωint dom h
Fh
L̄

(x0).

Note that by definition of Fh
L̄
we have

Fh
L̄
(xk+1, xk) = f (xk+1; xk) + L̄ Dh(xk+1, xk) ,

= f (xk+1) + ( f (xk+1; xk) − f (xk+1)) + L̄ Dh(xk+1, xk) .

MAP property gives f (xk+1) ≤ Fh
L̄
(xk+1, xk) ≤ f (xk+1) + (L̄ + L)Dh(xk+1, xk) . Thus,

we have that Fh
L̄
(xk+1, xk)

K→ f (x) as Dh(xk+1, xk)
K→ 0. Conversely, suppose (x, x) ∈

ωint dom h
Fh
L̄

(x0) and xk
K→ x for K ⊂ N. This, together with Dh(xk+1, xk) → 0 as k

K→ ∞,

induces Fh
L̄
(xk+1, xk)

K→ f (x), which further implies f (xk+1)
K→ f (x) due to the following.

Note that we have

f (xk+1) = Fh
L̄
(xk+1, xk) + ( f (xk+1) − f (xk+1; xk)) + L̄ Dh(xk+1, xk)

≥ Fh
L̄
(xk+1, xk) + (L̄ − L)Dh(xk+1, xk) .

Finally we have Fh
L̄
(xk+1, xk) + (L̄ − L)Dh(xk+1, xk) ≤ f (xk+1) ≤ Fh

L̄
(xk+1, xk) . Thus,

with Dh(xk+1, xk) → 0 as k
K→ ∞ and Fh

L̄
(xk+1, xk)

K→ f (x), we deduce that f (xk+1)
K→

f (x). And therefore x ∈ ωint dom h
f (x0).

(i i i) By Proposition 21, the sequence (Fh
L̄
(xk+1, xk))k∈N converges to a finite value F .

Note that Dh(xk+1, xk) → 0 as k
K→ ∞ due to Proposition 22 (ii), when combined with

Assumption 4(iii) implies that ‖xk+1 − xk‖ → 0. For (x�, x�) ∈ ω
(int dom h)2

Fh
L̄

(x0, x0) there

exists K ⊂ N such that xk
K→ x� and Fh

L̄
(xk+1, xk)

K→ Fh
L̄
(x�, x�) = f (x�), i.e., the value of

the limit point is independent of the choice of the subsequence. The result follows directly
and by using (i). ��

The following result states that Fh
L̄
-attentive sequences converge to a critical point.

Theorem 27 (Sub-sequential convergence) Let Assumptions 2, 3, 4 hold. If the sequence
(xk)k∈N is generated by Model BPG, then

ω
(int dom h)2

Fh
L̄

(x0) ⊂ crit(Fh
L̄
) . (25)

Proof From (20), we have ‖∂Fh
L̄
(xk+1, xk)‖− ≤ C‖xk+1 − xk‖ for some constant C > 0.

Using ‖xk+1 − xk‖ → 0, convergence of (τk)k∈N, and Proposition 26(i) yields (25), by the
closedness property of the limiting subdifferential (8). ��

Discussion. Subsequential convergence to a stationary point was already considered in
few works. In particular, the work in Drusvyatskiy et al. [25] already provides such a result,
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however, it relies on certain abstract assumptions. Even though such assumptions are valid for
some practical algorithms, the authors do not consider a concrete algorithm. Moreover, their
abstract update step depends on the minimization of the model function, which can require
additional regularity conditions on the problem. For example, if the model function is linear,
then the domain must be compact to guarantee the existence of a solution. A related line-
search variant of Model BPG was considered in Ochs et al. [47], for which subsequential
convergence to a stationarity point was proven. The subsequential convergence results in
Ochs et al. [47] are more general than our work, as they analyse the behavior of limit points
in dom h, cl dom h, int dom h (cf. Ochs et al. [47, Theorem 22]). Our analysis is restricted
to limit points in int dom h, as typically such an assumption holds in practice (see Sect. 5).
Though subsequential convergence is satisfactory, proving global convergence is nontrivial,
in general.

Lemma 28 Let Assumptions 2, 3, 4, 5 hold. Then, the Lyapunov function Fh
L̄
is definable in

O, and satisfies KL property at any point of dom ∂Fh
L̄
.

The proof is straightforward application of Ochs [42, Corollary 4.32] and Bolte et al.
[14, Theorem 14]. For additive composite problems, the global convergence analysis of BPG
based methods [16,38] relies on strong convexity of h. However, in our setting we relax such
a requirement on h, via Assumption 6. Note that imposing such an assumption is weaker than
imposing the strong convexity of h, as we only need the strong convexity property to hold
over a compact convex set. Such a property can be satisfied even if h is not strongly convex,
for example, Burg’s entropy (see Sect. 5.2). We now present the proof of Theorem 17, result
pertaining to the global convergence of the sequence generated by Model BPG.

Proof of Theorem 17 Note that the sequence (xk)k∈N generated by Model BPG is a bounded
sequence (see Remark 14). The proof relies on Theorem 2, for which we need to verify the
conditions (H1)–(H5). Due to Lemma 28, Fh

L̄
satisfies Kurdyka–Łojasiewicz property at each

point of dom ∂Fh
L̄
. Note that as ωint dom h(x0) = ω(x0) holds true, there exists a sufficiently

small ε > 0 such that B̃ := {x : dist(x, ω(x0)) ≤ ε} ⊂ int dom h. As ω(x0) is compact due
to Proposition 24(i), the set B̃ is also compact. Moreover, the convex hull of the set B̃ denoted
by B := conv B̃ is also compact, as the convex hull of a compact set is also compact in finite
dimensional setting. A simple calculation reveals that the set B lies in the set int dom h. Thus,
due to Proposition 25 along with Proposition 24(ii), without loss of generality, we assume
that the sequence (xk)k∈N generated by Model BPG lies in the set B. By definition of σB as
per Assumption 6 we have Dh(xk+1, xk) ≥ σB

2 ‖xk+1 − xk‖2 , through which we obtain

Fh
L̄
(xk+1, xk) ≤ Fh

L̄
(xk, xk−1) − εkσB

2
‖xk+1 − xk‖2 ,

which is (H1) with dk = εkσB
2 ‖xk+1 − xk‖2 and ak = 1. We also have existence of wk+1 ∈

∂Fh
L̄
(xk+1, xk) such that the conclusion of Lemma 23 holds true for some C > 0, which

is (H2) with b = C , since the coefficients for both Euclidean distances are bounded from
above. The continuity condition (H3) is deduced from a converging subsequence, whose
existence is guaranteed by boundedness of (xk)k∈N, and Proposition 26 guarantees that such
convergent subsequences are Fh

L̄
-attentive convergent. The distance condition (H4) holds

trivially as εk > 0 and σB > 0. The parameter condition (H5), holds because bn = 1 in this
setting, hence (bn)n∈N /∈ 
1 and also we have supn∈N 1

bnan
= 1 < ∞ , infn an = 1 > 0 .

Theorem 2 implies the finite length property fromwhichwe deduce that the sequence (xk)k∈N
generated by Model BPG converges to a single point, which we denote by x. As (xk+1)k∈N
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also converges to x, the sequence ((xk+1, xk))k∈N converges to (x, x), which is a critical point
of Fh

L̄
due to Theorem 27. ��

The global convergence result in Theorem 17 shows that Model BPG converges to a point,
which in turn can be used to represent a critical point of the Lyapunov function. However,
our goal is to find a critical point of the objective function f . Firstly, we need the following
result, which establishes the connection between fixed points of the update mapping and
critical points of f .

Lemma 29 Let Assumptions 2, 3 hold. For any 0 < τ < (1/L̄) and x̄ ∈ dom f ∩ int dom h,
the fixed points of the update mapping Tτ (x̄) are critical points of f .

Proof Let x̄ ∈ dom f ∩ int dom h be a fixed point of Tτ , in the sense the condition x̄ ∈ Tτ (x̄)
holds true. By definition of Tτ (x̄), the following condition holds true: 0 ∈ ∂ f (x; x̄) +
1
τ

(∇h(x) − ∇h(x̄)) at x = x̄, which implies that 0 ∈ ∂ f (x̄; x̄). We know that ∂ f (x̄; x̄) ⊂
∂ f (x̄), thus x̄ is a critical point of the function f . ��

We also require the following technical result. The following lemma proves the sequential
closedness property of the update mapping.

Lemma 30 (Continuity property) Let Assumptions 2, 3, 4 hold. Let the sequence (xk)k∈N
be bounded such that xk → x̄, where xk ∈ dom f ∩ int dom h ∀ k ∈ N, and x̄ ∈ dom f ∩
int dom h. Let τk → τ , such that 0 < τ ≤ τk ≤ τ̄ < 1/L̄. Assume that there exists a bounded
set B ⊂ int dom h, such that Tτk (xk) ⊂ B, xk ∈ B, ∀k ∈ N. If lim supk→∞ Tτk (xk) ⊂
dom f ∩ int dom h, then lim supk→∞ Tτk (xk) ⊂ Tτ (x̄).

Proof Consider any sequence (yk)k∈N such that for any k ∈ N, the condition yk ∈ Tτk (xk)
holds true. Recall that f (x; y) is continuous on its domain due to Assumption 3(iv). By
optimality of yk ∈ Tτk (xk), for any z ∈ R

N we have

f (yk; xk) + 1

τk
Dh(yk, xk) ≤ f (z; xk) + 1

τk
Dh(z, xk) . (26)

As a consequence of boundedness of the sequence (yk)k∈N, by Bolzano-Weierstrass The-

orem there exists a convergent subsequence. Let yk
K→ π such that π ∈ dom f ∩ int dom h.

Note that τk
K→ τ for some K ⊂ N. Applying limit on both sides of (26) using the continuity

of the model function and the Bregman distance gives

f (π; x̄) + 1

τ
Dh(π , x̄) ≤ f (z; x̄) + 1

τ
Dh(z, x̄) , ∀ z ∈ dom f ∩ dom h , (27)

which implies thatπ minimizes the function f (·; x̄)+ 1
τ
Dh(·, x̄). This implies thatπ ∈ Tτ (x̄)

and the result follows. ��
Wenow provide the proof of Theorem 18, that states that the sequence generated byModel

BPG indeed converges to a critical point of the objective function.

Proof of Theorem 18 The sequence (xk)k∈N generated by Model BPG under the assumptions
as in Theorem 17 is globally convergent, thus let xk → x and also xk+1 → x. As xk+1 ∈
Tτk (xk) and τk converges to τ , with Lemma 30 we deduce that x ∈ Tτ (x) . Additionally,
with the result in Lemma 30, we deduce that x is the fixed point of the mapping Tτ (x), i.e.,
x ∈ Tτ (x). Then, using Lemma 29 we conclude that x is a critical point of the function f .

��
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4 Examples

In this section we consider special instances of (P), namely, additive composite problems
and a broad class of composite problems. The goal is to quantify assumptions for these
problems such that the global convergence result (Theorem 18) of Model BPG is applicable.
We enforce the following blanket assumptions.

(B1) The function h is a Legendre function that is C2 over int dom h. For any compact
convex set B ⊂ int dom h, there exists σB > 0 such that h is σB-strongly convex with
bounded second derivative on B.Moreover, for bounded (uk)k∈N, (vk)k∈N in int dom h,
the following holds as k → ∞:

Dh(uk, vk) → 0 ⇐⇒ ‖uk − vk‖ → 0 .

(B2) The function f is coercive and additionally the conditions dom f ∩ int dom h �= ∅,
crit f ∩ int dom h �= ∅, dom f ⊂ cl dom h hold true.

(B3) The functions f̃ : RN ×R
N → R , (x, x̄) �→ f (x; x̄)with dom f̃ := dom f ×dom f ,

and h̃ : RN × R
N → R , (x, x̄) �→ h(x̄) + 〈∇h(x̄), x − x̄〉 with dom h̃ := dom h ×

int dom h are definable in an o-minimal structure O.

4.1 Additive composite problems

We consider the following nonconvex additive composite problem:

inf
x∈RN

f (x) , f (x) := f0(x) + f1(x) , (28)

which is a special case of (P). Additive composite problems arise in several applica-
tions, such as standard phase retrieval [16], low rank matrix factorization [36], deep
linear neural networks [37], and many more. We present below the BPG algorithm,
a specialization of Model BPG that is applicable for additive composite problems.

BPG is Model BPG (Algorithm 1) with

f (x; xk) := f0(x) + f1(xk) + 〈∇ f1(xk), x − xk〉 . (29)

We impose the following conditions that are common in the analysis of forward–backward
algorithms [46], which are used to optimize additive composite problems.

(C1) f0 : RN → R is a proper, lsc function and is regular at any x ∈ dom f0 and

∂∞ f0(x) ∩ (−Ndom h(x)) = {0} , ∀ x ∈ dom f0 ∩ dom h . (30)

(C2) f1 : RN → R is a proper, lsc function and is C2 on an open set that contains dom f0.
Also, there exist L̄, L > 0 such that for any x̄ ∈ dom f0 ∩ int dom h, the following
holds:

− LDh(x, x̄) ≤ f1(x) − f1(x̄) − 〈∇ f1(x̄), x − x̄〉 ≤ L̄ Dh(x, x̄) , (31)

for all x ∈ dom f0 ∩ dom h .

Note that with Assumption (C1), (C2) it is easy to deduce that dom f0 = dom f . For
x̄ ∈ dom f , the model function f (·; x̄) : RN → R at x ∈ dom f is given by

f (x; x̄) := f0(x) + f1(x̄) + 〈∇ f1(x̄), x − x̄〉 . (32)

123



Journal of Global Optimization (2022) 83:753–781 773

Using the model function in (32) and the condition (31), we deduce that there exist L, L̄ > 0
such that for any x̄ ∈ dom f ∩ int dom h, MAP property is satisfied at x̄ with L, L̄ as the
following holds true:

− LDh(x, x̄) ≤ f (x) − f (x; x̄) ≤ L̄ Dh(x, x̄) , ∀ x ∈ dom f ∩ dom h , (33)

as f (x) − f (x; x̄) := f1(x) − f1(x̄) − 〈∇ f1(x̄), x − x̄〉, thus satisfying Assumption 3(i).
The condition in (33) is similar to the popular L-smad property in Bolte et al. [16]. The main
addition is that x ∈ dom f ∩dom h and x̄ ∈ dom f ∩ int dom h, whereas the L-smad property
requires x, x̄ ∈ dom f ∩ int dom h.

Remark.Consider f1(x) := 1
2 x

2, f0(x) := δ[0,∞)(x) and h(x) = x log(x)with dom h =
[0,∞) under 0 log(0) = 0. Clearly, dom h ⊂ dom f1 and dom f ⊂ dom h hold true. The
function f1 is differentiable at x = 0, and MAP condition in (31) holds true for x = 0. This
scenario is not considered in the L-smad property.

It is straightforward to verify thatAssumptions (C1), (C2), (B1), (B2), (B3) implyAssump-
tions 2, 3, 4, 5, 6. Thus, due toTheorem18, the sequence generated byBPGglobally converges
to a critical point of the function.

4.2 Composite problems

We consider the following nonconvex composite problem:

inf
x∈RN

f (x) , f (x) := f0(x) + g(F(x)) , (34)

which is a special case of the problem (P). Composite problems arise in robust phase retrieval,
robust PCA, censored Z2 synchronization [22–24,29,40]. We present below Prox-Linear
BPG, specialization of Model BPG that is applicable for generic composite problems.

Prox-Linear BPG is Model BPG (Algorithm 1) with

f (x; xk) := f0(x) + g(F(xk) + ∇F(xk)(x − xk)) . (35)

We require the following conditions.

(D1) f0 : RN → R is a proper, lsc function and is regular at any x ∈ dom f0 and:

∂∞ f0(x) ∩ (−Ndom h(x)) = {0} , ∀ x ∈ dom f0 ∩ dom h . (36)

(D2) g : RM → R is a Q-Lipschitz continuous and regular function. There exists P > 0
such that at any x ∈ R

M , the following holds:

sup
v∈∂g(x)

‖v‖ ≤ P . (37)

(D3) F : RN → R
M is C2 over RN and there exist L > 0 such that for any x̄ ∈ dom f0 ∩

int dom h, the following condition holds true:

‖F(x) − F(x̄) − ∇F(x̄)(x − x̄)‖ ≤ LDh(x, x̄) , ∀ x ∈ dom f0 ∩ dom h ,

where ∇F(x̄) is the Jacobian of F at x̄.

The properties (D1), (D2), (D3) along with (B2) imply proper, lsc property and lower-
boundedness of f , thus satisfyingAssumption 2. Note that with Assumption (D1), (D2), (D3)
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it is easy to deduce that dom f0 = dom f . Let x̄ ∈ dom f and the model function with x̄ as
model center evaluated at x ∈ dom f is given by:

f (x; x̄) = f0(x) + g(F(x̄) + ∇F(x̄)(x − x̄)) . (38)

Using (D2), (D3) we deduce that there exists L̄ := LQ > 0 such that for any x̄ ∈
dom f ∩ int dom h, the following MAP property holds at x̄ with L̄:

| f (x) − f (x; x̄)| = |g(F(x)) − g(F(x̄) + ∇F(x̄)(x − x̄))| ≤ L̄ Dh(x, x̄) ,

for all x ∈ dom f ∩ dom h, as g is Q-Lipschitz continuous and (D3) holds true. Thus,
Assumption 3(i) is satisfied with L̄ = L = LQ.

It is straightforward to verify that Assumptions (D1), (D2), (D3), (B1), (B2), (B3) imply
Assumptions 2, 3, 4, 5, 6. Thus, due to Theorem 18, the sequence generated by Prox-Linear
BPG globally converges to a critical point of the function.

5 Experiments

For the purpose of empirical evaluation we consider standard phase retrieval problems and
Poisson linear inverse problems.We compare our algorithmswith Inexact Bregman Proximal
Minimization Line Search (IBPM-LS) [45], which is a popular algorithm to solve generic
nonsmooth nonconvex problems. Beforewe provide the empirical results, we comment below
on a variant of Model BPG based on the backtracking technique, which we used in the
experiments.

Model BPG with backtracking. It is possible that the value of L̄ in the MAP property is
unknown. This issue can be solved by using a backtracking technique, where in each iteration
a local constant L̄k is found such that the following holds:

f (xk+1) ≤ f (xk+1; xk) + L̄k Dh(xk+1, xk) . (39)

The value of L̄k is found by taking an initial guess L̄0
k . If the condition (39) fails to

hold, then with a scaling parameter ν > 1, we set L̄k to the smallest value in the set
{ν L̄0

k , ν
2 L̄0

k, ν
3 L̄0

k, . . .} such that (39) holds true. Enforcing L̄k ≥ L̄k−1 for k ≥ 1 ensures
that after finite number of iterations there is no change in the value of L̄k , which takes us to
the situation that we analyzed in the paper. The condition L̄k ≥ L̄k−1 can be enforced by
choosing L̄0

k = L̄k−1.

Code. The code is open sourced at the following link: https://github.com/mmahesh/
composite-optimization-code. It contains the implementation of the algorithms, the random
synthetic datasets generation process, the choices for hyper-parameters, the plots generation
process and all the other related details.

5.1 Standard phase retrieval

The phase retrieval problem involves approximately solving a system of quadratic equations.
Let bi ∈ R and Ai ∈ R

N×N be a symmetric positive semi-definite matrix, for all i =
1, . . . , M . The goal of standard phase retrieval problem is to find x ∈ R

N such that the
following system of quadratic equations is satisfied: xTAix ≈ bi , for i = 1, . . . , M , where
bi ’s are measurements and Ai ’s are so-called sampling matrices. In the context of Bregman
proximal algorithms, regarding the phase retrieval problem, we refer the reader to Bolte et al.
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[16], Mukkamala et al. [38]. Further references regarding the phase retrieval problem include
[18,34,53]. The standard technique to solve such system of quadratic equations is to solve
the following optimization problem:

min
x∈RN

P0(x) , P0(x) := 1

M

M∑
i=1

(xTAix − bi )
2 + R(x) , (40)

where R(x) is the regularization term. We use 
1 regularization with R(x) = λ‖x‖1 and
squared 
2 regularization with R(x) = λ

2‖x‖2, with some λ > 0. We consider two model
functions in order to solve the problem in (40).

Model 1. Here, the analysis falls under the category of additive composite problems
(Sect. 4.1), where we set f0(x) := R(x) , and f1(x) := 1

M

∑M
i=1 (xTAix − bi )2 . Consider

the standard model for additive composite problems [16], where around y ∈ R
N , the model

function P0(·; y) : RN → R is given by

P0(x; y) := 1

M

M∑
i=1

(
(yTAiy − bi )

2 + (yTAiy − bi ) 〈2Aiy, x − y〉
)

+ R(x) . (41)

We use the Legendre function: h(x) = 1
4‖x‖4+ 1

2‖x‖2 . Then, due to Bolte et al. [16, Lemma
5.1] the following L-smad/MAP property is satisfied:

|P0(x) − P0(x; y)| ≤ L0Dh(x, y) , for all x, y ∈ R
N , (42)

where L0 ≥ ∑M
i=1(3‖Ai‖2F + ‖Ai‖F |bi |). In this setting, Model BPG subproblems have

closed form solutions (see [16,38]).
Model 2. The importance of finding better models suited to a particular problem was

emphasized in Asi and Duchi [1]. The above provided model function in (41) is satisfactory,
however, wewould like take advantage of the structure of the function (40). Taking inspiration
fromAsi andDuchi [1], a simple observation that the objective is nonnegative can be exploited
to create a newmodel function.We incorporate such a behavior in our secondmodel function
provided below.We use the Prox-Linear setting described in Sect. 4.2, where for any x ∈ R

N

we set

f0(x) := R(x) , (F(x))i = (xTAix − bi )
2 , for all i = 1, . . . , M , (43)

and, for any ỹ ∈ R
M we set g(ỹ) := 1

M ‖ỹ‖1 , for ỹ ∈ R
M . Based on (38), for fixed y ∈ R

N ,
the model function P1(·; y) : RN → R is given by

P1(x; y) := 1

M

M∑
i=1

|(yTAiy − bi )
2 + (yTAiy − bi ) 〈2Aiy, x − y〉 | + R(x) . (44)

Considering the Legendre function h(x) = 1
4‖x‖4 + 1

2‖x‖2 and [16, Lemma 5.1] shows that
the L-smad (or MAP) property holds true:

|P0(x) − P1(x; y)| ≤ L0Dh(x, y) , for all x, y ∈ R
N , (45)

with L0 ≥ ∑M
i=1(3‖Ai‖2F + ‖Ai‖F |bi |). Unlike the Model 1 setting, we do not have closed

form solutions for Model BPG subproblems in Model 2 setting. Here, we solve such sub-
problems using Primal-Dual Hybrid Gradient Algorithm (PDHG) [49]. We use a random
synthetic dataset, for which we provide empirical results in Fig. 1, where we show superior
performance of Model BPG variants compared to IBPM-LS, in particular, with the model
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(a) (b)

(c) (d)

Fig. 1 In this experimentwe compare the performance ofModel BPG,Model BPGwithBacktracking (denoted
as Model BPG-WB), and IBPM-LS [45] on standard phase retrieval problems, with both 
1 and squared 
2
regularization. For this purpose, we consider M1 model function as in (41) without absolute sign (which is the
same setting as Bolte et al. [16]), and with M2 model function as in (44). Model BPG with M2 (44) is faster
in both the settings and Model BPG variants perform significantly better than IBPM-LS. By reg, we mean
regularization

function provided in (44). For simplicity, we choose a constant step-size τ in all the iter-
ations, such that τ ∈ (0, 1/L0). We empirically validate Proposition 21 in Fig. 2. All the
assumptions required to deduce the global convergence of Model BPG are straightforward
to verify, and we leave it as an exercise to the reader. Note that here int dom h = R

N , thus
ωint dom h(x0) = ω(x0) holds trivially.

5.2 Poisson linear inverse problems

We now consider a broad class of problems with varied practical applications, known as
Poisson inverse problems [9,11,41,47]. For all i = 1, . . . , M , let bi > 0, ai �= 0 and
ai ∈ R

N+ be known. Moreover, we have for any x ∈ R
N+ , 〈ai , x〉 > 0 and

∑M
i=1(ai ) j > 0,

for all j = 1, . . . , N , i = 1, . . . , M . Equipped with these notions, the optimization problem
of Poisson linear inverse problems as following:

min
x∈R+

{
f (x) :=

M∑
i=1

(〈ai , x〉 − bi log(〈ai , x〉)) + φ(x)

}
, (46)
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(a) (b)

(c) (d)

Fig. 2 We illustrate that when Model BPG applied to standard phase retrieval problem in (40), with model
function chosen to be either Model 1 in (41) or Model 2 in (44), result in sequences where the Lyapunov
function value evaluations are monotonically nonincreasing. In terms of iterations, Model BPG with Model 2
(Model BPG M2) is better than Model BPG with Model 1 (Model BPG M1). In terms of time, Model BPG
M1 and Model BPG M2 perform almost the same, however, towards the end Model BPG M2 is faster in both
the cases. By reg we mean regularization, and by Lyapunov f.v. we mean Lyapunov function values

where φ is the regularizing function, which is potentially nonconvex. For simplicity, we set
φ = 0. The function f1 : RN → R at any x ∈ R

N is defined as:

f1(x) :=
M∑
i=1

(〈ai , x〉 − bi log(〈ai , x〉)) .

Note that the function f1 is coercive. The Legendre function h : RN++ → R (Burg’s entropy)
that is given by

h(x) = −
N∑
i=1

log(xi ) , for all x ∈ R
N++, (47)

where xi is the i th coordinate of x.

Lemma 31 Let h be defined as in (47). For L ≥ ∑M
i=1 bi , the function Lh − f1 and Lh + f1

is convex onRN++, or equivalently the following L-smad property or the MAP property holds
true:

−LDh(x, x̄) ≤ f1(x) − f1(x̄) − 〈∇ f1(x̄), x − x̄〉 ≤ LDh(x, x̄) , for all x, x̄ ∈ R
N++ .
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(a) (b) (c)

Fig. 3 In this experimentwe compare the performance ofModel BPG,Model BPGwithBacktracking (denoted
as Model BPG-WB) and IBPM-LS [45] on Poisson linear inverse problems with 
1 regularization, squared

2 regularization and with no regularization. We set the regularization parameter λ to 0.1. The plots illustrate
that Model BPG-WB is faster in all the settings, followed by Model BPG

(a) (b) (c)

Fig. 4 Under the same setting as in Fig. 3, we illustrate here that Model BPG results in sequences that have
monotonically nonincreasing Lyapunov function value evaluations. By Lyapunov f.v. we mean Lyapunov
function values

Proof The proof of convexity of Lh − f1 follows from Bauschke et al. [9, Lemma 7]. The
function Lh + f1 is convex as f1 is convex. ��

When Model BPG is applied to solve (46) with h given in (47), if the limit points of
the sequence generated by Model BPG lie in int dom h, our global convergence result is
valid. However, it is difficult to guarantee such a condition. This is because, there can exist
subsequences forwhich certain components of the iterates can tend to zero. In such a scenario,
some components of∇2h(xk)will tend to∞, whichwill lead to the failure of the relative error
condition in Lemma 23. In that case, our analysis cannot guarantee the global convergence of
the sequence generated by Model BPG. Thus, in such a scenario it is important to guarantee
that the iterates of Model BPG lie inRN++. To this regard, we could modify the problem (46),
by adding certain constraint set, such that all the limit points lie in int dom h. In particular,
with certain ε > 0, we use the constraint set given by Cε = {x : xi ≥ ε, ∀i = 1, . . . , N },
(Fig. 4).

6 Conclusion

Bregman proximalminimization framework is prominent in solving additive composite prob-
lems, in particular, using BPG [16] algorithm or its variants [38]. However, extensions to
generic composite problems was an open problem. To this regard, based on foundations of
Drusvyatskiy et al. [25], Ochs et al. [47], we proposed Model BPG algorithm that is applica-
ble to a vast class of structured nonconvex nonsmooth problems, including generic composite
problems. Model BPG relies on certain function approximation, known as model function,
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which preserves first order information about the function. The model error is bounded via
certain Bregman distance, which drives the global convergence analysis of the sequence gen-
erated by Model BPG. The analysis is nontrivial and requires significant changes compared
to the standard analysis of Bolte et al. [15,16], Attouch and Bolte [2], Attouch et al. [4].
Moreover, we numerically illustrate the superior performance of Model BPG on various real
world applications.
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