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Abstract
Side effects of “solar-radiation management” (SRM) might be perceived as an important metric when society decides on 
implementing SRM as a climate policy option to alleviate anthropogenic global warming. We generalize cost-risk analysis 
that originally trades off expected welfare loss from climate policy costs and risks from transgressing climate targets to also 
include risks from applying SRM. In a first step of acknowledging SRM risks, we represent global precipitation mismatch 
as a prominent side effect of SRM under long-tailed probabilistic knowledge about climate sensitivity. We maximize a social 
welfare function for the following three scenarios, considering alternative relative weights of risks: temperature-risk-only, 
precipitation-risk-only, and equally-weighted both-risks. Our analysis shows that in the temperature-risk-only scenario, 
perfect compliance with the 2 °C-temperature target is attained for all numerically represented climate sensitivities, a unique 
feature of SRM, but the 2 °C-compatible precipitation corridor is violated. The precipitation-risk-only scenario exhibits an 
approximate mirror-image of this result. In addition, under the both-risks scenario, almost 90% and perfect compliance can 
be achieved for the temperature and precipitation targets, respectively. Moreover, in a mitigation-only analysis, the welfare 
loss from mitigation cost plus residual climate risks, compared to the no-climate-policy option, is approximately 4.3% (in 
terms of balanced growth equivalent), while being reduced more than 90% under a joint-mitigation-SRM analysis.

Keywords  Climate targets · Cost-risk analysis · Decision making under uncertainty · Mitigation · Solar-radiation 
management

1  Introduction

Aerosol solar radiation management (SRM) gained promi-
nence as a climate policy option through the study by 
Crutzen [1]. SRM is defined as any deliberate large-scale 
manipulation of the planetary albedo to reduce surface tem-
perature and counteract the risks of climate change caused 
by greenhouse gas (GHG) emissions [2, 3]. Aerosol SRM is 
claimed to be technically feasible and, compared to other cli-
mate policy options, a relatively inexpensive way to quickly 

offset anthropogenic global warming [1, 4–9]. However, 
severe potential side effects are identified for SRM, such as a 
mismatch in global mean temperature and global mean pre-
cipitation compensation, ozone depletion, and a mismatch 
in spatial patterns of various climate variables [1, 2, 10–17]. 
While most extant SRM literature has discussed these in 
isolation, here we start with the hypothesis that society will 
make decisions on SRM in weighing them against costs and 
risks in view of alternative climate policy options, such as 
mitigation. Therefore, we strive for an integrated analysis of 
SRM and mitigation by pursuing a welfare-based portfolio 
approach.

In fact, [18] evaluated SRM in conjunction with mitiga-
tion for a limited set of pre-defined, RCP-inspired mitigation 
scenarios, and investigated the role of SRM in meeting a 
pre-defined temperature target, depending on the degree of 
mitigation encapsulated in the scenario, as well as climate 
sensitivity (linking equilibrium temperature rise and green-
house gas concentration). They found that the contribution 
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of SRM increases with climate sensitivity, while mitigation 
and SRM act as substitutes. However, they did not seek wel-
fare-optimal portfolios of mitigation and SRM.

This, in turn, was done by [4, 19–22], and [23], who 
implemented SRM jointly with mitigation in a cost–benefit 
analysis (CBA), the axiomatically most developed decision-
analytic framework thus far. Here, we follow an alternative 
approach in utilizing a global temperature target as an entry-
point for further analysis. We do so for two reasons. Firstly, 
some fraction of the climate economists’ community asserts 
that currently applying CBA to the climate problem carries 
conceptual difficulties. Extant deep uncertainties regarding 
the necessary global warming impact function and impre-
cise weighing of the costs and benefits would lead to rather 
non-robust results [24, 25]. Therefore, additional studies on 
global warming impacts and their valuation might be requi-
site, at least to determine a probabilistic representation of the 
aggregate global warming impact function. Instead, compli-
ance with an environmental target can be interpreted as an 
operationalization of the precautionary principle in view of 
deep uncertainty. Secondly, one could take temperature tar-
gets embraced at the latest Conferences of the Parties [26] as 
boundary conditions, and elucidate a cost-efficient scenario 
to comply with this environmental boundary condition (cost 
effectiveness analysis, CEA). In fact, on the order of a thou-
sand scenarios are assembled in the latest IPCC report [27], 
that are based on climate targets in conjunction with CEA, 
rather than on CBA. Emmerling and Tavoni [22], Arino et al. 
[28], Ekholm and Korhonen [29], Stankoweit et al. [30], 
and Khabbazan et al. [31] evaluated SRM together with 
mitigation applying CEA. With this article, we aim to serve 
those readers who acknowledge value in utilizing climate 
targets as entry assumptions for further economic analysis.

In the following, we generalize the target concept to 
simultaneously cover the currently most discussed poten-
tial side effect of SRM, and an infinitely tailed probability 
density function on climate sensitivity. For this article, we 
focus on the following side effect. SRM might perfectly or 
in part compensate for greenhouse gases in terms of global 
mean temperature, but might prove unable to simultaneously 
do so for other climate variables, such as precipitation. The 
underlying reason is that SRM and greenhouse gases act 
on the climate system through different spatial symmetries. 
For this reason, for several climate variables, applying SRM 
destroys their scaling with global mean temperature. Con-
sequently, for those variables, global mean temperature 
anomaly without specifying the cause of the anomaly, i.e. 
carbon dioxide vs. SRM, ceases to constitute a useful envi-
ronmental proxy. Therefore, we focus on global mean pre-
cipitation as one additional climate variable that would be 
detached from global mean temperature through SRM. This 
builds a methodological extension to link the scientific com-
munity’s understanding of key environmental side effects of 

SRM and the policymakers’ need for decision making based 
on the current best available information. While consider-
ing regional precipitation is closer to the society’s need for 
policymaking, here we demonstrate a concept for the global 
case which allows for a more transparent and tractable ana-
lytical and numerical analysis. Thus, results of a globally 
aggregated analysis presented in this investigation should be 
interpreted with caution because main side effect of SRM 
arises with regionalization.

In order to tackle this problem, yet remain as close to 
the target concept as possible, [30, 31] suggested not to 
completely switch paradigms towards a full-fledged impact 
analysis, but rather to move only one step further down the 
impact chain. Following them, we explicitly model global 
precipitation and derive an explicit target for it. Similarly, 
we obtain this target from asking, assuming a global tem-
perature target of 2 °C, “What precipitation change would 
a proponent of the 2 °C temperature target have accepted 
before SRM was ever considered in global climate policy?” 
(the latter denotes a phase when the 2 °C temperature target 
was negotiated). In this way, we derive a 2 °C-compatible 
precipitation target.

Furthermore, due to a long-tailed probability density dis-
tribution on climate sensitivity, it is necessary to interpret 
global mean temperature targets probabilistically [32, 33]. 
Target-based analyses, as assembled in [27], correspond to 
generic compliance probabilities of 1/2 or 1/3. However, 
when future learning on climate sensitivity is included in 
intertemporal welfare analysis, lexicographic preferences 
induced by targets would produce inconsistencies. In order 
to resolve these conceptual problems, cost-risk analysis 
(CRA) was proposed by [34] and operationalized by [35].

CRA is indeed a hybrid framework of CBA and CEA, 
which is utilized as a decision-analytic framework that 
allows for including targets in an economic analysis in a 
dynamically consistent manner, while not explicitly requir-
ing a climate damage function. However, CRA necessarily 
requires a climate target as an input since the risk in this 
framework is defined as overshooting the climate target [35, 
36], including probabilistic measures thereof.

Roshan et al. [37] evaluated the optimal SRM in con-
junction with mitigation, applying CRA and considering 
regional disparities in the temperature and precipitation 
risks. However, their analysis only includes a numerical 
investigation which can weakly answer the basic research 
questions regarding the methodology and results. To the 
best of our knowledge, hereby for the first time, we apply 
an analytical integrated CRA of mitigation and SRM con-
sidering climate risks, which is supported by an integrated 
climate-energy-economy assessment model. We seek the 
optimal mix of mitigation and SRM under probabilistic 
knowledge about climate sensitivity. This decision cri-
terion is based on maximizing a social welfare function 
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which trades off between economic costs of climate poli-
cies, here mitigation and SRM, and the risk of transgress-
ing the climate targets. Here, we introduce two risks: 
the risk of temperature rise and the risk of precipitation 
change. SRM is a symptomatic approach that would not 
affect the root cause of the climate change but rather its 
symptoms particularly global warming. While acknowl-
edging the importance of considering CO2 concentrations 
as in [23] in SRM research, our focus is on temperature 
target because international climate targets are articulated 
in global mean temperature limit. Our analysis is based on 
the 2 °C-temperature target with 66% compliance prob-
ability, which is derived from UNFCCC’s agreement in 
2011 [38]. The admissible precipitation corridor is deter-
mined by those values of precipitation that can be found in 
the absence of SRM when increasing global mean temper-
ature from the pre-industrial state to 2 °C. Consequently, 
the precipitation corridor represents those deviations from 
pre-industrial precipitation that are compatible with the 
preference order, as expressed by the 2 °C target. In our 
analysis, climate sensitivity is the key uncertain parameter 
and formally represented here through a log-normal prob-
ability density distribution [35, 39, 40].

To represent the cost-risk of joint-mitigation-SRM 
analysis, we apply the model MIND (model of invest-
ment and technological development) [33, 35, 39, 41] as 
an integrated energy-economy-climate model. Generally, 
MIND is a renewable-fossil distinguishable model based 
on a Ramsey-type macroeconomic growth model.

2 � Cost‑Risk Analysis

In order to clarify some unique concepts of CRA, we dis-
cuss the static problem. In the static minimization prob-
lem of CRA (Eq. 1), a convex decision problem is needed 
to prevent the local optima and switching to a different 
regime of optimum (under a relatively small change of 
emissions or climate sensitivity), which would not be in 
compliance with the value system of the proponents of 
temperature targets [35]. To ensure that this is valid for 
any degrees of convexity of mitigation and SRM cost func-
tions, temperature and precipitation risk functions need to 
be non-concave. Linear risk metrics constitute the most 
conservative functions that we can choose which leads to 
a convex decision problem. For the mitigation cost CM , 
SRM cost CSRM , trade-off parameters α and β, risk due to 
high temperature RT, and risk of precipitation change RP, 
the static optimization problem reads:

(1)Min
{
CM + CSRM + � �(RP) + � �(RT)

}

with

Linear risk metrics are defined as the probability of 
climate targets’ violation proposed by [35] for tempera-
ture risk, and we develop it for precipitation risk, which 
are respectively represented in Eqs. 2 and 3;  f (�) , Φ, Tg
, Pub , and Plb , respectively, refer to the probability density 
distribution of climate sensitivity � , the Heaviside function 
(0 for negative arguments and 1 otherwise), the tempera-
ture target, upper-bound precipitation, and lower-bound 
precipitation. Uncertainty in climate response is a critical 
feature of the climate problem. To account for this facet, 
we consider probabilistic knowledge of climate sensitivity 
with a log-normal density distribution  f (�) ∼ Ln N(�, �) , 
in our work � = 0.973 and � = 0.4748 [40], which rep-
resents a somewhat centred distribution that mediates 
between fat-tailed [42] and thin-tailed [43] distributions. 
In our numerical simulations, the sample number is 20 
with equal probability within the range of 1.01 to 7.17 °C, 
which is chosen with the same approach as [39].

As an environmental target, we choose the temperature 
target of 2 °C maximum increase in global mean tempera-
ture anomaly with respect to pre-industrial climate and rec-
ognized by the UNFCCC’s 15th COP in 2010. It is worth 
noting that we assess temperature and precipitation on the 
global and global-land scale, respectively. The global-land 
precipitation anomaly is linearly related to the global mean 
temperature change induced by SRM and CO2 emissions. 
We infer the coefficient of CO2-induced temperature change 
from the CO2-quadrupling experiment in [15]. We use tem-
perature and precipitation change within the G1 experiment 
of GeoMIP and CO2-quadrupling experiment from [15] to 
simply derive the SRM-induced precipitation change coef-
ficient through G1-abrupt4 × CO2.

We apply a CRA-based welfare functional that would 
cope with SRM destroying global mean temperature as a 
proxy for most climate variables. In generalizing the static 
model, we readily obtain:

where t, s, p, U, and � represent time, state of the world 
(SOW, climate sensitivity), probability of each SOW, utility, 
and rate of pure time preference, respectively; and � and � 
are the trade-off parameters. The utility function, U, is the 
commonly used constant relative risk aversion (CRRA) 

(2)�(RT) = ∫ f (�)Φ(T − Tg)(T − Tg)d� ,

(3)

�(RP) = ∫ f (�)
[
Φ
(
P − Pub

)(
P − Pub

)
+ Φ

(
Plb − P

)(
Plb − P

)]
d� .

(4)

Max W =

tend∑
t=0

send∑
s1

ps[U(t, s) − �RP(t, s) − � RT(t, s)]e−�t
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utility function U(t, s) = L(t)
(
C(t,s)

L(t)
)
1−∅

1−∅
 , where C(t,s)

L(t)
 is per capita 

consumption, L(t) is the exogenous increasing population, 
and ∅ = 2 is the relative risk aversion parameter. Further-
more, we choose a linear risk metric following the argu-
ments discussed in [35, 36]. Based on their discussion, this 
is an intuitive choice where any non-concave risk function 
is admissible, which is in-line with the preference order of 
a temperature target advocate and would prevent multiple 
optima of the welfare functional. A linear risk metric, how-
ever, is the most conservative and thus informative one. The 
risk metric in the CRA is a mathematical model of a deci-
sion-maker’s attitude towards the temperature target, once 
the economic pressure becomes ‘too large’ i.e. if certain 
emission limits would have been violated or if climate sen-
sitivity would have been learned to be high. This is crucial 
as otherwise the decision maker might give up on climate 
policy.

CRA makes a trade-off between the costs of reducing 
climate warming and excess climate risk. A trade-off param-
eter shows how important the risk of climate change is for 
society [35]. Therefore, trade-off parameters are calibrated,1 
such that welfare function is maximized with at least 66% 
probability (according to IPCC guidance note on uncer-
tainty, the equivalent term is ‘likely’) of remaining below 
the 2 °C-temperature target without considering anticipated 
future learning and in the absence of SRM. This is according 
to the 17th COP to the UNFCCC that “aggregate emissions 
pathways consistent with having a likely chance of hold-
ing the increase in global average temperature below 2 °C 
or 1.5 °C above pre-industrial level” [38]. The calibration 
is simulated in a mitigation-only analysis excluding SRM 
because the 2 °C-temperature target is a political argument 
in line with mitigation. Equation 4 still leaves one degree of 
freedom between α and β. In addition, the larger α, the larger 
the relative weight precipitation has had in the making of 
the 2 °C target. This is currently a normative choice deter-
mining to what extent an explicit representation of global 
precipitation risk would make the precautionary approach 
encapsulated in the 2 °C target obsolete.

We consider three scenarios accordingly, in which for two 
extreme cases of temperature-risk-only and precipitation-
risk-only scenarios, we only account for temperature risk and 
precipitation risk, respectively. As an in-between scenario, 
in the both-risk scenario, we use half of any of the cali-
brated parameters to weigh both risks equally. This choice 

of scenarios is in order to follow a convex combination in 
accounting for temperature and precipitation risks in the 
decision profile. This means that the weight of one risk can 
be increased only if the other risk’s weight is reduced. While 
precipitation is linearly related to temperature and its upper 
bound is 2 °C-compatible, in order to avoid double counting, 
a convex combination of risks should be taken into account; 
otherwise, 66% compliance would not be recovered.

The convex combination of expected discounted tempera-
ture and precipitation risks can be written as follows:

In this equation, the combination parameter, � , shows the 
weight of each risk from 0 to 1. Scenarios in this study pre-
sent three combinations of risks for � that equal 0, 1/2, and 
1 (see Fig. 8 in Appendix 1, which shows the sensitivity 
analysis on 100 different values of ϵ ranging between 0 and 
1 in a mitigation-only analysis).

3 � A Stylized Theoretical Model

3.1 �   Calibration

Before presenting numerical results, to guide intuition, we 
first introduce a stylized static model representing a simpli-
fication of the decision problem as expressed by Eq. 4. For 
this, we firstly derive a theoretical solution for the trade-off 
parameter in the cost-risk framework. To do so, for concep-
tual clarity, we use the static CRA in the temperature-risk-
only scenario of the mitigation-only analysis. For mitigation 
cost CM(ECO2

) as a function of CO2 cumulative emissions 
ECO2

(
C′

M

(
ECO2

) ≤ 0,C′′
M

(
ECO2

) ≥ 0
)
 ,  a temperature 

anomaly T = � a ECO2
 , and temperature risk RT

(
ECO2

)
 , the 

minimization problem in this scenario reads:

In this equation, temperature is the only variable that 
depends on climate sensitivity � , the knowledge of which 
we express through a log-normal probability density dis-
tribution f.

As explained in the previous section, the calibration of 
the trade-off parameter is performed in accordance with the 
statement of the COP17 to reach a minimum safety of 66% 
( pg ) probability of compliance with the 2 °C-temperature 
target ( Tg ). Hereby, the subscript ‘ g ’ denotes ‘guardrail’. 
Similar to [45], by minimizing Eq. 6 to reach this calibra-
tion goal, � equals:

(5)Rtotal =

tend∑
t=0

send∑
s1

ps[� � RT(t, s) + (1 − �)� RP(t, s)]e−�t.

(6)MinECO2

for l ∶= CM(ECO2
) + � �(RT

(
ECO2

)
).

1  The calibration concept is based on the positive mathematical 
programming [44]. In the positive mathematical programming, a 
calibrated term is added to the optimization that forces the model to 
reach the optimum following the desired result. Here, the calibration 
process is on the basis of the preferences of a climate target commu-
nity.
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When determining a Taylor expansion of the cost function 
at the business-as-usual (BAU) emission level, the leading 
order must be the quadratic one. By definition, BAU is a 
scenario without any climate policy. It represents a scenario 
where the decision maker ignores climate risks. This ensures 
that BAU is optimal in the absence of climate risk. Thus, 
the mitigation cost function can be written in the following 
form:

We now derive a calibrated version of � for later numeri-
cal estimations. For this, the expected temperature risk needs 
to be calculated as follows:

From this,2 we can calculate � as follows:

3.2 �  Joint‑Mitigation‑SRM Analysis: Optimal 
Emissions, Optimal SRM Forcing, and Minimum 
Climate Sensitivity

Here, we continue the theoretical solution to determine opti-
mal emissions and SRM forcing in the cost-risk framework. 
Considering probabilistic climate sensitivity, we can pro-
vide information about the borderline climate sensitivity, for 
which the temperature threshold might be trespassed when 
we apply SRM. Similarly, we use the static CRA of the 
temperature-risk-only scenario while including SRM. We 
utilize the above assumptions on the mitigation cost func-
tion. For the SRM cost function CSRM(FSRM) , we choose the 
SRM forcing FSRM as a variable with C′

SRM

(
FSRM

) ≥ 0. The 

(7)� = −
C�

M

(
ECO2,g

)
d

dECO2

�(RT
(
ECO2,g

) .

(8)CM

(
ECO2

)
= k(ECO2

− EBAU)
2
.

(9)�
[
R
(
T
(
ECO2

))]
= ∫

∞

�g

(
T − Tg

)
f (�)d� ,

(10)

�
�
R
�
T
�
ECO2

���
=
1

2

�
ae

�+
�2

2 ECO2

�
1 + Erf

�
� + �2 − Ln�g√

2�

��

+Tg

�
−2 + Erfc

�
� − Ln�g√

2�

��� .

(11)� =
4k
�
EBAU − ECO2,g

�

ae
�+

�2

2

�
1 + Erf

�
�+�2−Ln�g√

2�

�� .

temperature risk then reads RT
(
ECO2

,FSRM

)
 , and the mini-

mization problem is as follows:

For T = �
(
a ECO2

− h FSRM

)
 , expected temperature risk, 

shown in Eq. 2, can be rewritten as �(RT) = ∫ ∞

�g

(
T − Tg

)
f (�)d� , where �g is the minimum climate sensitivity for 
which temperature risk exists. This means that �g is where 
T > Tg (i.e., 𝛾

(
a ECO

2

− h FSRM

)
> Tg → 𝛾 >

Tg

aECO2
−hFSRM

,

�g =
Tg

a ECO2
−h FSRM

 ). Therefore, the expanded minimization 
problem, l , reads: 

The first-order condition for this two-variable problem 
is as follows:

From Eqs. 14 and 15, we know that the optimum will be 
where:

In analogy to the mitigation cost function, we now deter-
mine the leading order term of Taylor expansion at BAU for 
the SRM cost function. As the SRM forcing cannot be posi-
tive, it is here the linear term that ensures BAU is optimal in 
the absence of climate risk. Therefore, assuming a quadratic 
mitigation cost function and a linear SRM cost function, 
respectively, such as:

the obtained solution for ECO2
 at the optimum by exploiting 

Eqs. 17 and 18 in Eq. 16 can be written in the following 
form:

(12)
MinECO2

,FSRM
l for l ∶=CM(ECO2

) + CSRM(FSRM)

+ � �
(
RT(ECO2

,FSRM)
) .

(13)
l =CM(ECO2

) + CSRM(FSRM) + �∫
∞

�g(
� a ECO2

− � h FSRM − Tg
)
f (�)d�

.

(14)
�l

�ECO2

= C�
M

(
ECO2

)
+ �a∫

∞

�g

� f (�)d� = 0

(15)
�l

�FSRM

= C’
SRM

(
FSRM

)
− �h∫

∞

�g

�f (�)d� = 0.

(16)hC�
M

(
ECO2

)
= −aC�

SRM

(
FSRM

)
.

(17)CM

(
ECO2

)
= k

(
ECO2

− EBAU

)2
,

(18)CSRM

(
FSRM

)
= q FSRM

(19)ECO2
= EBAU −

aq

2kh
.

2  Note that the complement error function of x, Erfc[x] , equals 
1 − Erf [x] , where Erf [x] is the error function of x.
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For vanishing SRM cost, optimal emissions approach 
BAU emissions. To calculate the optimal SRM forcing, we 
solve Eq. 15,3 and we obtain:

For a scenario with very low (near zero) SRM cost, 
the optimal SRM forcing would be equal to a

h
EBAU , where 

ECO2
= EBAU . This means that SRM will perfectly compen-

sate for temperature rise from emissions.
In theory, in the cost-risk analysis of the joint-mitigation 

SRM, the following question may arise, “What is the bor-
derline climate sensitivity for which the temperature thresh-
old might be trespassed in a temperature-risk-only sce-
nario?” As explained earlier in this section, we know that 
�g =

Tg

aECO2
−hFSRM

 . We now solve this equation to derive�g: 

We can see in this equation that SRM cost is a signifi-
cant factor in determining the borderline climate sensitiv-
ity. Minimum climate sensitivity, for which the temperature 
target would be transgressed, goes toward infinity for near 
zero SRM cost. (See Fig. 1).

3.3 � Approximate Estimation

3.3.1 � Calibrated ˇ

In this section, we prepare a test to determine to what extent 
our static model can emulate the dynamic analogue model 
MIND. Consequently, we utilize MIND parameters to esti-
mate the calibrated � shown in Eq. 11.

To estimate � , we first calculate �g in the mitigation-only 
portfolio. In CRA, calibration is performed such that tem-
perature remains below the temperature target with at least 
a 66% (= pg ) probability of safety. Therefore, for probability 
p and cumulative density function F(�) of a log-normal dis-
tribution, we have:

(20)

FSRM =
a

h

�
EBAU −

aq

2kh

�
−

Tg

h
e

√
2 � InverseErf

�
2q

�h�(�)
−1

�
−�−�2

.

(21)�g = e
�+�2−

√
2 � InverseErf [

2C�SRM(FSRM)
�h�(�)

−1]
.

The emissions for the 2 °C-temperature policy and the no-
policy (BAU) are, respectively, obtained from the time-aver-
aged cumulative emissions’ results in the MIND model with 
accumulation starting in 2010. In the temperature equation,

we can calculate a = 0.00092 GtCO2
−1 given the informa-

tion that we have for a 2 °C-temperature policy.
Capital letters indicate static and, in some sense time-

averaged, quantities of time-dependent variables. For eco-
nomic variables that experience quasi-exponential growth, 
we suggest exponential discounting in the course of aggrega-
tion. Therefore, for production y(t) = ye�t and its relative 
change Δy(t)

y(t)
= −�t e−nt , we define:

Parameters in the exponential production function are cal-
culated through an exponential fitting regression of model 
output for a BAU analysis (see Fig. 2a). In addition, n within 
the relative production change is the inverse time period to 
peak the maximum output loss in a mitigation-only analysis 
compared to a BAU analysis (Fig. 2b).

(22)F(�) =
�
1

2

�
Erfc

�
� − Ln �

�
√
2

�
,

(23)pg = F
(
�g
)
,

(24)�g = F−1
(
pg
)
,

(25)�g = 3.22 ◦C, for pg = 0.66.

(26)T = � a ECO2

(27)ΔY ∶=
∫ ∞

0
− �y(t)t e−nte

−st
dt

∫ ∞

0
e−stdt

= −
�

−
y s

(s + n − �)2
,

(28)Y ∶=
∫ ∞

0
ye�te−stdt

∫ ∞

0
e−stdt

=
ys

s − �
.

Fig. 1   Optimal emissions (a) 
and minimum climate sensitiv-
ity (b) against SRM costs 
derivative, for which tempera-
ture risk exists in a temperature-
risk-only scenario

3  The complete solution to solve Eq. 15 is explained in Appendix 2.
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Using information that we have so far, we can calculate 

CM

(
ECO2

)
=
|||
ΔY

Y

||| =
�(s−�)

(s+n−�)2
 and k =

CM

(
ECO2

)

(ECO2
−EBAU )

2 . We now 

possess all of the information needed to estimate 
� = 1.3%GDP∕◦C.

3.3.2 �  Optimal Emission, Optimal SRM Forcing, 
and Minimum Climate Sensitivity

Here, we can estimate optimal emissions, optimal SRM 
forcing, and minimum climate sensitivity derived, respec-
tively, as follows:

(29)ECO2
= EBAU −

aq

2kh
= 2035.12 GtCO2

Apparently, this minimum climate sensitivity is higher 
than the upper range climate sensitivity of our numeric 
(see Fig. 9 in Appendix 3 for more information on numeri-
cal sensitivity analysis, which shows this minimum cli-
mate sensitivity in the temperature-risk-only scenario).

Numerical estimations of the model MIND used for cali-
brating the theoretical model are shown in Table 1.

(30)FSRM =
1

h

(
a ECO2

−
Tg

�g

)
= 6.04 W∕m2,

(31)
�g = e

�+�2−
√
2 � InverseErf [

2C�SRM(FSRM)

� h e
�+

�2

2

−1]

= 8.5 ◦C.

Fig. 2   Exponential fitted output (a) and relative output change in mitigation-only portfolio with regard to BAU analysis (b)

Table 1   Numerical values used 
for calibrating the theoretical 
model

* Cumulative emissions are averaged over the time period 2010–2200
** According to [46], h equals the reciprocal of the radiative forcing induced by a doubling of the concentra-
tion of CO2 with respect to its pre-industrial value
*** Social discount rate, s , is calculated utilizing the Ramsey equation s = � + �� , where � , � , and � are, 
respectively, pure rate of time preference (1%/year), production growth rate (2%/year), and constant relative 
risk aversion (2)
**** SRM cost parameter, q , is calibrated from upper bound estimation of [47] as a percentage change in 
annual global GDP of $50 trillion [19] from World Bank, World Development Indicator

Climate parameters Economic parameters

Eq. 6 Tg 2 °C Eq. 28 n 5%/year
Eq. 11 ECO

2
,g (mitiga-

tion-only)*
675.93 GtCO2 Eq. 28,

Eq. 29
� 2.1%/year

Eq. 11 EBAU 2098.59 GtCO2 Eq. 28,
Eq. 29

s*** 5%/yr

Eq. 20,
Eq. 21

(μ,σ) (0.973, 0.4748) Eq. 18 q**** 0.024%GDP/(W/m2)

Eq. 23 pg 66% Eq. 28 ω 0.28%/year
Eq. 13 h** 1/3.7/(W/m2) Eq. 8 k 6.4284 × 10

−7%GDP/(GtCO2)2

Eq. 27 a 0.0009 GtCO2
−1

Eq. 25 �2
◦
C,66%

g
3.22 ℃
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4 � Numerical Results

In a joint-mitigation-SRM analysis, mitigation would be 
almost crowded out by SRM in the temperature- and pre-
cipitation-risk-only scenarios, which can be explained by the 
low cost of SRM in order to reduce climate risk (see Fig. 3). 
Society would experience almost no welfare-loss compared 
to the no-climate-policy option (business as usual, BAU) in 
these two scenarios. In the both-risks scenario, welfare loss 
due to climate-policies costs and climate risks is more than 
these two scenarios, and amounts to approximately 0.38% 
(in terms of balanced growth equivalent, BGE) compared 
to the BAU welfare, which is very low relative to 4.3% in 
the mitigation-only portfolio, as shown in Fig. 4. In the 
mitigation-only portfolio, mitigation cost (consumption 
loss relative to BAU consumption) is approximately 1.7% 
(economic-related part in Fig. 4).

Figure 5 presents the temperature and precipitation trends 
for all of the numerically represented climate sensitivities 
(SOWs) in the BAU and mitigation-only analysis in the time 
horizon until 2100. In the BAU analysis (Fig. 5a and a*), 
temperature target and precipitation upper bound are vio-
lated for most of the SOWs.

In the mitigation-only portfolio (Fig. 5b and b*), tempera-
ture and precipitation trends exhibit a significant transgres-
sion reduction compared to BAU analysis, although they 
would exceed their targets in the twenty-first century for 
the 20% upper range of SOWs at the end of the century. 
These patterns in the mitigation-only option are the same 
for all investigated scenarios, which can be explained by the 
same calibration process in the extreme scenarios, a convex 
combination of risks, and compatible choice of temperature 
and precipitation risks when SRM is excluded. Therefore, 
if climate sensitivity is sufficiently large, mitigation cannot 
assure that temperature and precipitation remain confined 

to their thresholds at all times. This is where SRM might be 
considered as a climate policy option to help avert the 2 °C 
transgressions.

By adding SRM to the portfolio, we again consider 
the temperature-risk-only, precipitation-risk-only, and 
both-risks scenarios (Fig. 6). Figure 6a and a*) represent 

Fig. 3   Investment in renewables. In temperature- and precipitation-
risk-only scenarios, mitigation would be crowded out (a) while in 
both-risks scenarios (c), the starting point of investment on renewa-

bles would be approximately 30 years earlier than BAU analysis (a), 
but still 30 years later than mitigation-only analysis (b)

Fig. 4   Welfare loss (in terms of BGE) in the both-risks scenario from 
climate risks and economic costs for the mitigation-only and joint-
mitigation-SRM portfolio. This shows that by adding SRM to the 
mitigation portfolio, more than 90% of welfare loss due to tempera-
ture and precipitation risks and mitigation cost can be conserved
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temperature-risk-only scenarios, in which SRM is added to 
the portfolio but its side effects are not taken into account. 
In this scenario, we obtain perfect compliance with the 
2 °C-temperature target for all of the SOWs. This is a feature 

that is impossible to achieve without SRM. The “borderline” 
climate sensitivity value for which a transgression would 
still occur is determined by equalizing the marginal wel-
fare gain from avoiding climate risk through an extra unit 

Fig. 5   Temperature (a, b) and 
precipitation (a*, b*) change 
with respect to the preindustrial 
level for 20 different states 
of the world from blue (low 
climate sensitivity) to red (high 
climate sensitivity). Left and 
right graphs represent scenarios 
for the BAU and mitigation-
only portfolios, respectively. 
Dashed lines show the relevant 
target. In the BAU analysis, 
both temperature and precipita-
tion targets would be trans-
gressed for most of the SOWs, 
while they comply with their 
targets for approximately 66% 
of SOWs in the mitigation-only 
portfolio by construction

Fig. 6   Temperature (a, b, c) and precipitation (a*, b*, c*) change 
from preindustrial climate in the joint-mitigation-SRM analysis for 
20 different states of the world from blue (low climate sensitivity) 
to red (high climate sensitivity). Left, middle, and right graphs rep-
resent trends for temperature-risk-only, precipitation-risk-only, and 
both-risks, respectively. Dashed lines show the relevant target. In the 

temperature-risk-only scenario, perfect compliance with the temper-
ature target can be achieved, but the precipitation target is violated. 
The precipitation-risk-only and both-risks scenarios exhibit perfect 
compliance with the precipitation target, while the temperature target 
is transgressed
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of SRM, and per-unit SRM costs. The former, in turn, will 
depend on the properties of the probability density function 
of climate sensitivity. Apparently, the above borderline value 
of climate sensitivity is larger than our resolved upper end 
as of 7.17 °C (see Fig. 9 in the Appendix 3).

However, precipitation violates its lower bound for all SOWs 
by the end of the century. Precipitation declines more dramati-
cally for those with higher climate sensitivities than those with 
lower climate sensitivities. SRM reduces temperature risk 
by compensating the CO2-induced temperature rise, which 
is greater for higher climate sensitivities. Therefore, SRM-
induced temperature and precipitation reductions are larger 
when climate sensitivity is higher (see upper graphs in Fig. 7).

In contrast, in the precipitation-risk-only scenario in 
which only the precipitation risk is activated (Fig. 6b and 
b*), the temperature guardrail is transgressed for approxi-
mately 30% of SOWs in the joint-mitigation-SRM analy-
sis by the end of the century, while precipitation lies in its 
acceptable range for all SOWs. In Fig. 6c and c*), which 
display the results of the both-risk scenario in which both 
precipitation and temperature risks are activated with equal 
weights, almost 90% and perfect compliance, respectively, 
with temperature target and precipitation corridor, can be 
achieved for the time horizon until 2100. CO2- and SRM-
induced precipitation changes in this scenario are shown in 
the lower graphs of Fig. 7. As both risks are taken into the 
optimization problem in this scenario, both risks are mini-
mized compared to the extreme scenarios.

5 � Conclusions

We emphasize the need for jointly evaluating solar radia-
tion management (SRM) and mitigation. Here, we consider 
precipitation mismatch as a key risk category of SRM and 

formalize a target-based risk-cost-risk trade-off between 
risks from global warming, policy costs, and risks from 
SRM side effects. We choose cost-risk analysis (CRA) as 
our decision analytic framework, as it successfully deals 
with both deep uncertainty on global warming- and SRM-
induced damages, as well as the infinitely tailed probability 
density function of climate sensitivity. This investigation 
is a conceptual innovation to also include side effects of 
policy measures in the CRA-based social welfare function. 
By referring to global aggregates only, the present study 
represents the simplest-possible option for such an inclusion. 
Its simplicity allows for an analytic treatment of the interplay 
of SRM costs and target overshoot. In turn, the present study, 
deliberately abstaining from analyzing regional pattern mis-
matches, is not to be put into the context of policy advice.

CRA combines the mathematical structure of cost–benefit 
analysis with the target concept used in cost-effectiveness 
analysis. The trade-off parameters are calibrated within a 
universally applicable procedure, which makes a trade-off 
between expected welfare-loss due to mitigation costs and 
avoided risks of climate targets transgression consider-
ing uncertainty in reaching the climate targets. We choose 
a probabilistic compliance level of 66%, in-line with an 
IPCC-calibrated language adjusted interpretation of “likely” 
achieving the 2 °C target [38]. We invent an extension of 
CRA such that it can deal with multiple climate targets, in 
our case precipitation target, in addition to the original tem-
perature target. For the sake of transparency of the method-
ology, here we focus on the interplay of targets for globally 
aggregated climate variables.

To identify the optimal choice between mitigation 
and SRM, we utilize an integrated assessment model and 
develop three scenarios: two as the extreme cases when 
either temperature risk or precipitation risk are considered, 
i.e. temperature-risk-only and precipitation-risk-only, and 

Fig. 7   Division of temperature 
(a, b, c) and precipitation (a*, 
b*, c*) changes into the CO2- 
and SRM-induced changes. 
Top figures divide temperature 
change in the temperature-risk-
only scenario into the CO2- and 
SRM-induced changes. Lower 
figures display CO2- and SRM-
induced precipitation changes 
in the both-risks scenario. As 
shown, SRM-induced changes 
are in a manner that compen-
sates for all of the changes 
induced by CO2, and thus this 
compensation is more for higher 
climate sensitivities
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one scenario which considers both risks with equal weight, 
called both-risks scenario. Overall, our results demonstrate 
that welfare-loss for the mitigation-only option compared to 
BAU is approximately 4.3% (BGE) due to mitigation cost 
and climate risk, while it is approximately 1.7% (BGE) only 
due to mitigation cost.

By adding SRM to the portfolio, in the temperature- and 
precipitation-risk-only scenarios, welfare rises approxi-
mately to its BAU level. In addition, SRM almost completely 
crowds out mitigation without significant welfare-loss in 
comparison with BAU, which can be explained by its low 
cost. In the temperature-risk-only scenario, perfect compli-
ance and perfect incompliance, respectively, with tempera-
ture target and precipitation corridor can be achieved for all 
SOWs. In the precipitation-risk-only scenario, precipitation 
perfectly lies within its acceptable range for all SOWs, but 
temperature remains confined to its threshold for 70% of 
SOWs. Results of the both-risks scenario show almost 90% 
and perfect compliance with temperature and precipitation 
targets, respectively. Although SRM does not completely 
crowd out mitigation in this scenario, it can save 90% of 
welfare loss from economic costs and climate risks.

As a note of caution, we would like to highlight that we 
expect qualitatively different results when regional guardrails 
are added. In this sense, the fact that mitigation is crowded 
out in a joint-mitigation-SRM portfolio (in temperature- and 
precipitation-risk-only scenarios) could constitute a unique 

feature of global guardrails, which might not be robust under 
regionalization. Furthermore, we would like to emphasize that 
our analysis comprises only one out of several potential risks 
accompanying SRM. Thus this study is silent regarding ethical 
implications of SRM—being spatial (e.g. alteration of regional 
precipitation patterns) and intergenerational (e.g. discontinua-
tion and abrupt termination) distributive justice or procedural 
justice (e.g. unilateral deployment and free driver issue) (for 
further information about ethics of SRM deployment see [4, 
48, 49]. Here, the contribution of this work is that we merely 
propose a viable idea of how to generalize a single probabil-
istic target to multiple targets for discussion, and highlight the 
unique feature of SRM of achieving almost 100% compliance 
levels.

Appendix 1

In this section, we present the results of our sensitivity analysis 
for a convex combination of climate risks in the decision-making  
shown in Eq. 5 of the main manuscript. Figure 8 displays the 
total risks for 100 different values of combination parameter, ɛ, 
ranging from 0 to 1. This clearly demonstrates that the total risks 
in a mitigation-only analysis will not change by using a convex 
combination of the different climate variables’ risks. This assists 
our cost-risk analysis to add further precipitation risk in addition 
to temperature risk, and analyzing both risks simultaneously.

Fig. 8   Convex combination of 
temperature and precipitation 
risks. This figure shows the 
sensitivity analysis on combina-
tion parameter of Eq. 5 in the 
mitigation-only portfolio, for 
100 different ϵ ranging between 
0 and 1. As shown, the convex 
combination of temperature 
and precipitation recover 66% 
compliance goal of calibration 
and prevent double counting
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Appendix 2

Here, we can find the solution for Eq. 15 to be solved for opti-
mal SRM forcing, FSRM . The solutions are numbered as 32–39. 
Eq. 15 can be written as follows:

In order to solve this equation for FSRM , we need to expand 
the right-hand side integral so that we obtain:

where �(�) is the expected value of climate sensitivity in 
a log-normal distribution, �(�) = e

�+
�2

2  . Thus, to obtain 
FSRM at the optimum, Eq. 32 can be written in the following 
forms:

(32)
C�

SRM

(
FSRM

)
�h

= ∫
∞

Tg

a ECO2
−hFSRM

� f (�)d� .

(33)

∫
∞

Tg

a ECO2
−hFSRM

� f (�)d� =
1

2
�(�)

⎛
⎜⎜⎜⎝
1 + Erf

⎡
⎢⎢⎢⎣

� + �2 − Ln(
Tg

a ECO2
−hFSRM

)

�
√
2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

(34)

C�
SRM

�
FSRM

�
�h

=
1

2
�(�)

⎛
⎜⎜⎜⎜⎝
1 + Erf

⎡
⎢⎢⎢⎢⎣

� + �2 − Ln

�
Tg

a ECO2
−hFSRM

�

�
√
2

⎤
⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠

(35)

2C�
SRM

�
FSRM

�
�h �(�)

− 1 = Erf

⎡
⎢⎢⎢⎢⎣

� + �2 − Ln

�
Tg

a ECO2
−hFSRM

�

�
√
2

⎤
⎥⎥⎥⎥⎦
,

We can insert the optimal emissions ECO2
 , Eq. 19, in Eq.  

39. From this, we derive the optimal SRM forcing shown 
in Eq. 20.

Appendix 3

To test the accuracy of our theoretical model, we simulate the 
temperature-risk-only scenario for a sample of climate sensi-
tivities that range from 1.01 to 20 °C. The result of this sen-
sitivity analysis is displayed in Fig. 9. From this figure, it can 
clearly be seen that if climate sensitivity is higher than 8 °C, 
temperature will transgress the 2 °C-temperature guardrail.

(36)

InverseErf [
2 C�

SRM

�
FSRM

�
�h �(�)

− 1] =

� + �2 − Ln

�
Tg

a ECO2
−hFSRM

�

�
√
2

(37)
Ln

�
Tg

a ECO2
− hFSRM

�
=� + �2 −

√
2 � InverseErf

[
2 C�

SRM

�
FSRM

�
�h �(�)

− 1]

,

(38)
Tg

a ECO2
− hFSRM

= e
�+�2−

√
2 � InverseErf [

2 C�SRM(FSRM)
�h �(�)

−1]
,

(39)

FSRM =
1

h

�
a ECO2

− Tge

√
2 � InverseErf

�
2 C�SRM(FSRM)

�h �(�)
−1

�
−�−�2

�
.

Fig. 9   Maximum temperature 
for different climate sensitivi-
ties in the temperature-risk-only 
scenario. This figure shows a 
numerical sensitivity analysis, for 
30 different climate sensitivities 
within the range of 1.01 to 20 °C, 
to test the accuracy of our ana-
lytic solution. The filled circles 
display climate sensitivities for 
which temperature will transgress 
the temperature target by using 
SRM in the temperature-risk-
only scenario
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