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Abstract
The pilgrimage to Mecca, which is called Hajj, is the largest annual pedestrian

crowd management problem in the world. During the Hajj, the pilgrims are

accommodated in camps. For safety reasons, exact times and directions are given to

the pilgrims who are moving between holy sites. Despite the importance of com-

plying with those schedules, violations can often be conjectured. Directing a small

workforce between the camps to monitor the pilgrims’ compliance with the

schedule is an important matter, which will be dealt with in this paper. A type of

multi-objective multiple traveling salesperson optimization problem with time

windows is introduced to generate the tours for the employees monitoring the flow

of pilgrims at the campsite. Four objectives are being pursued: As many pilgrims as

possible (1), should be visited with a preferably small workforce (2), the tours of the

employees should be short (3) and employees should have short waiting times

between visits (4). A goal programming, an enumeration, Augmecon2 and an

interactive approach are developed. The topic of supported and non-supported

efficient solutions is addressed by determining all efficient solutions with the enu-

meration approach. The suitability of the approaches is analyzed in a computational

study, while using an actual data set of the Hajj season in 2015. For this application,

the interactive approach has been identified as the most suitable approach to support

the generation of an offer for the project.

Keywords Multi-objective multiple traveling salesperson � Time windows � Hajj �
Mass gatherings � Non-supported efficient solutions
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List of symbols

Sets
I Nodes

C Camps C � I
D Metro stations D � I;C \ D ¼ ;
Ci Camps associated to metro station i 2 D Ci � C
E Set of arcs connecting compatible nodes

EH Set of arcs with waiting times longer than tH EH � E

EL Set of arcs connecting camps with similar starting times EL � E

Ipi Set of immediate predecessor nodes of node i 2 I

Isi Set of immediate successor nodes of node i 2 I
K Set of objective functions

Parameters
pi Number of pilgrims located in camp i 2 C
si Scheduled departure time for pilgrims of camp i 2 C
wij Time needed to walk from node i 2 I to j 2 I
ai Monitoring time needed for an employee at camp i 2 C
tmax
i Maximum allowed delay for an employee at the camp i 2 C

tH Maximum waiting time

Variables
xij 1 if node i 2 I is visited directly after node j 2 I, 0 otherwise

ti Time after si when a camp i 2 C is visite

1 Background

Each year the Hajj attracts two to four million people. See Haase et al. (2016) for a

detailed description of the pilgrimage. During the different movements of pilgrims

between the holy sites, the pilgrims can either walk, use a bus or the Mecca Metro.

See Fig. 1 for images of the metro.

Fig. 1 Images of the Mecca Metro
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The movements of the pilgrims are illustrated in Figure 2.

Before moving between different locations, most of the pilgrims are located in

camps in Mina. See Fig. 3 for images of the tent city of Mina.

Only registered ticket holders in dedicated camps are permitted to use the metro.

Between 300, 000 and 400, 000 pilgrims use the metro each Hajj season. There are

three metro stations in Mina, Muzdalifah, and Arafat, respectively. They are

illustrated in Figure 4.

See Fig. 5 for images of two metro stations.

To prevent congestion and to assure a steady flow of pilgrims from their camps to

the metro stations, a schedule is distributed. The schedule for a camp specifies the

departure time and the path to the metro station. Since all the pilgrims of a camp

cannot depart instantaneously, the expected duration needed for the pilgrims leaving

the camp is given. The number of pilgrims in each camp is known.

The compliance of this schedule is crucial (Helbing et al. 2007). However, it is

still frequently violated, which leads to the necessity of identifying those violations.

An analysis of the pilgrims’ arrival time at the metro station during the Hajj in 2016

indicates major problems with the schedule compliance, which is illustrated in

Fig. 6. It shows the fraction of pilgrims arriving on time at the corresponding metro

Fig. 2 Movements of the pilgrims in the region of Mecca during the Hajj

Fig. 3 Tent city of Mina
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stations. Only 36% of all pilgrims reached their metro station at the scheduled time.

The compliance has been calculated with a 15-min time buffer before and after each

scheduled arrival time.

The goal of this paper is to direct a small and homogeneous workforce between

the camps and detect which camps violate the schedule. It is not strictly necessary to

observe all camps, but as many as possible with a reasonably scaled workforce. The

employees of the workforce start their duty at any metro station and can only visit

camps assigned to that station. This reduces the complexity for the employees of

finding the correct camps in the tent city and empowers them to guide lost pilgrims

to their correct metro station. A schematic representation of a metro station and

some associated camps are given in Fig. 7.

The employees operate a smartphone with an application that instructs the

employees to move to certain camps. After the arrival, the employees monitor

whether the pilgrims already left, are leaving or are still waiting for their departure

and enter this information into the smartphone.

Fig. 5 Aerial view of two metro stations

Fig. 4 Illustration of the metro stations in Mina (MI), Muzdalifah (MU) and Arafat (AR)
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Due to camp sizes of a few thousand pilgrims it is expected that the dispatching

process lasts a certain period of time. To ensure that the observed dispatching status

of the camp is correct, the employee is bound to stay a certain fraction of the

duration of the dispatching process at the camp. The employee’s arrival time is

negligible if they stay the given time during the departure.

Fig. 6 Analysis of the pilgrims’ arrival time at the metro stations during the Hajj 2016 (MU: Muzdalifah,
MI: Mina, AR: Arafat)

Fig. 7 Metro station with camps illustration

123

Application of a multi-objective multi TSP with time windows 39



The components of this project have already been developed and tested during

the Hajj in 2015. For this prototype, a workforce was gathered and they have been

directed to the camps to monitor the dispatching process. They used a mobile

application to send the dispatching status to a central server, which stores the

incoming data. Figure 8a is a screenshot of the mobile application. After receiving

the dispatching statuses at the server, the results have been analyzed. The mobile

application stored the location. An example track of an employee is displayed in

Fig. 8b. The pilgrims of only 30% of the camps departed as scheduled during their

scheduled departure time.

Walking to a camp and sending the dispatching status to a server is called a task.

A tour consists of multiple tasks for a single employee.

A set of tours can be evaluated regarding four different goals. The first goal is to

observe the dispatching process of as many pilgrims as possible. The second goal is

to minimize the number of employees. The third goal is minimizing long waiting

times between two tasks for the employees and the fourth goal is to minimize the

total distance the employees must walk.

An offer for the responsible metro operator in Saudi Arabia should be made. This

offer should contain a bundle of different solutions. Each solution contains a set of

tours with their individual performance for the four goals. The offer receiver wants

to be involved in the decision-making process and select their preferred solution

without being overwhelmed by too many possible solutions. For the numerical

studies, the real data of the camps’ locations as well as their distances are used.

The remainder of this paper has the following structure: The second section

addresses literature relevant for this paper. In Sect. 3, a mixed-integer formulation is

introduced. The results of a numerical study are presented in Sect. 4. First, the goal

(a) (b)

Fig. 8 Figures from the pilot project
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programming approach is described, followed by an enumeration approach. An

interactive approach is the solution approach discussed at last. All solution

approaches use the actual schedule data. This includes the actual location of the

camps with their corresponding number of accommodated pilgrims as well as their

scheduled departure time. Finally, a conclusion is drawn in Sect. 5.

2 Literature

Multi-objective combinatorial optimization (MOCO) is the simultaneous approach

of several objectives in a finite, but often large set of feasible solutions (Czyz _zak

and Jaszkiewicz 1998). Those objectives are usually conflicting (Ehrgott and

Gandibleux 2008). The general MOCO framework can be formulated as

minimizeff1ðxÞ; . . .; fjKjðxÞg ð1Þ

subject to x 2 S, where S is a finite set of feasible solutions and the solution x a

vector of discrete decision variables. K is the set of objective functions with jKj � 2.

MOCO problems find a lot of applications and are, therefore, well studied (Ulungu

et al. 1999). A solution optimizing every objective simultaneously does generally

not exist, but the best compromise for a decision maker (DM) can be found (Ehrgott

and Gandibleux 2004). The best compromise of a DM is part of the set of efficient

solutions and depends on their utility function (Jaszkiewicz 2002). A solution is

efficient (or Pareto-optimal) if there does not exist another feasible solution that

does not perform worse in any objective and better in at least one objective (Teghem

et al. 2000).

The set of efficient solutions of a MOCO problem can be divided into supported

and non-supported efficient solutions (Ehrgott and Gandibleux 2000). Let fk be the

objective value and kk the weight for the objective function k with kk � 0 8 k 2 K
and

P
k2K kk ¼ 1. When using the single objective function:

minimize
X

k2K
kkfk ð2Þ

only the set of supported efficient solutions can be obtained (Ulungu and Teghem

1994). The set of non-supported efficient solutions, therefore, contains the solutions

that cannot be found with this single objective function. For a non-supported effi-

cient solution x0 compared to the set of supported efficient solutions S, no set of

weights can be found, so that:

X

k2K
kkfkðx0Þ �

X

k2K
kkfkðxÞ x 2 S ð3Þ

There are several approaches for MOCO problems. Goal programming is a well-

known technique even though only supported efficient solutions can be obtained.

Goal programming minimizes the sum of the deviations of the individual objective

values from their target value (Tamiz et al. 1998). Knowledge of the utility function

of the DM is required to weigh the deviations of the different objectives (Dyer

1972). Gilbert et al. (1985) proposed an interactive method, which generates
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efficient solutions with the integration of the DM in the optimization process iter-

atively. Two more interactive approaches based on local optimality have been

proposed by Paquete et al. (2007). Yet, various genetic algorithm approaches like

Konak et al. (2006) and Fonseca and Fleming (1995) have been developed to find

the approximated set of efficient solutions. Ulungu et al. (1999) describe a multi-

objective simulated annealing method to approximate the set of efficient solutions,

since the problems may be too complex for exact methods. A genetic local search

approach was proposed by Jaszkiewicz (2002) to generate a set of approximated

efficient solutions even for relatively large instances.

The multiple traveling salesperson problem (mTSP), a generalization of the

traveling salesperson problem (TSP), describes the determination of multiple tours

that cover all cities and each salesperson starts and ends their journey in the same

city (Bektas 2006). When adding time-window contraints, each city can only be

served after a permitted starting time and before a permitted ending time (Gendreau

et al. 1998). The multi-objective TSP addresses two or more objectives, commonly

minimizing the number of tours, the total time required and the total tour cost

(Jozefowiez et al. 2008). Bowerman et al. (1995) proposed an approach to the urban

school bus routing problem. Multiple objectives are minimized, e.g. the total bus

route length, the remaining walking distance for the students, as well as balancing

the length of the routes. Many heuristics have been developed to solve multi-

objective TSP. Hansen (2000) illustrated the applicability of using substitute

scalarizing functions to guide a tabu search heuristic. A genetic algorithm has also

been used to solve the multi-objective TSP (Jaszkiewicz 2002). Florios and

Mavrotas (2014) used a multi-objective mathematical programming method to

generate the exact Pareto set in the multi-objective TSP.

3 Multi-objective multiple traveling salesperson problem with time
windows

The problem can be formulated as a directed graph, see Fig. 7. The camps and metro

stations are represented by nodes. The arcs represent compatible connections

between camps and metro stations. As stated in the first section, not every camp

must be visited, since a reasonable workforce should be found. Furthermore, it is

assumed that the employees start their duty at a metro station and can only visit

camps whose pilgrims are assigned to that station. Restrictions concerning the

working hours are not taken into consideration. The following notation formalized

the problem as a mathematical model.

The objective functions K ¼ fpilgrims; employees;wait;walkg are defined as the

following:

minimize fpilgrims ¼
X

j2C

X

i2Ipj

pjð1 � xijÞ ð4Þ
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minimize femployees ¼
X

i2D

X

j2Ci

xij ð5Þ

minimize fwait ¼
X

ði;jÞ2EH

ðsj � ðsi þ ai þ wijÞÞxij ð6Þ

minimize fwalk ¼
X

i2I

X

j2Isi

wijxij ð7Þ

where (4) minimizes the number of pilgrims who are not visited, (5) the number of

employees on duty, (6) the sum of all waiting times between two tasks, which are

longer than tH and, therefore, considered as too long and (7) minimizes the total

walking time over all employees.

The following constraints must be satisfied:
X

i2Ipj

xij � 1 8j 2 C ð8Þ

X

j2Isi

xij � 1 8i 2 C ð9Þ

X

j2Isi

xij �
X

j2Ipi

xji ¼ 0 8i 2 I ð10Þ

ðsi þ ai þ wijÞxij þ ti � sj þ tj 8ði; jÞ 2 EL ð11Þ

xij 2 f0; 1g 8i 2 I; j 2 Isi ð12Þ

0� ti � tmax
i 8i 2 C ð13Þ

The constraints (8)–(10) are well-known network flow constraints. The constraint

(11) detains short cycles and ensures a correct order of visits. Those constraints do

not disable any connection if xij is zero and ti � sj þ tj remains. It is only a matter of

maintaining a correct time reference point so that sj [ tmax
i 8i; j 2 C. The subtour

elimination constraints can be lifted (Desrochers and Laporte 1991):

ui � uj þ ðjCj � 1Þxij þ ðjCj � 3Þxji � jCj � 2 8i; j 2 ELji 6¼ j ð14Þ

with 1� ui � jCj � 1 8i 2 C to strengthen the formulation.

Figure 9 illustrates the parameters and variables for the movement from camp i to

camp j with i; j 2 C.

The graph consists of camps and metro stations I ¼ D [ C and D \ C ¼ ;. A

camp can only be associated to a single metro station Ci [ Cj ¼ ; 8i; j 2 D; i 6¼ j.
The arcs of the graph describe possible connections between the nodes. Two camps

associated to the same depot d 2 D are connected if it is possible to reach the

destination camp before the time window closes:
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E ¼ fði; jÞjði; jÞ 2 Cd ^ si þ ai þ wij � sj þ tmax
j g ð15Þ

Every camp is always connected to its associated metro station. There are two

subsets of arcs E, which contain arcs with certain properties. The first subset EH

connects nodes with long waiting times. They should be avoided if possible,

because long waiting times for employees are disadvantageous:

EH ¼ fði; jÞji; j 2 C ^ sj � si � ai � wij � tHg ð16Þ

The second subset EL connects nodes with similar starting times. Their time win-

dows overlap and the order when a camp is visited may change depending on the

realizations of ti and tj:

EL ¼ fði; jÞji; j 2 C ^ si þ ai þ wij þ tmax
i � sjg ð17Þ

Many computational studies have been conducted to evaluate the scalability of such

problems (Solomon 1987; Cordeau et al. 2001 or Miranda and Conceição 2016).

The focus of this paper is the suitability of different approaches for MOCO

problems.

4 Solution approaches

4.1 Data description and model performance

This paper is based on the real data set containing three metro stations and 104

camps accommodating 178,131 pilgrims. All departures are scheduled within

8 hours. The average time to walk from one camp to another (wij) is about 10 min,

and the average monitoring duration (ai) is 8 minutes. On average, a camp must be

visited not later than 7 minutes after the scheduled departure. A computer with an

Intel Xeon CPU E5-2667 v3 processor, 256 GB RAM and CPLEX as a solver has

been used for all studies in this paper.

Fig. 9 Illustration of the variables and parameters for the movement from camp i 2 C to camp j 2 C
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Solving a single instance of the model with this data does not take longer than a

second. Subtours are only possible when two camps with similar starting times and

long monitoring durations are close together. This is rarely the case since the set EL

contains only 111 arcs. Lifting the subtour elimination constraints with (14) does

not reduce the calculation time for this instance. The stronger formulation becomes

more important when many camps have similar starting times, because they enable

more possible subtours.

4.2 Goal programming

The goal programming approach is one method to address multiple objectives

(Tamiz et al. 1998). All objective values are combined in a single objective

function. This approach requires the knowledge of the objective weights of the DM

to assess the deviation of the individual objectives from their optima. The objective

function minimizes the sum of deviations of the objective k from its individual

optima f �k weighted with �k:

minimize F ¼
X

k2K

�kkjf �k � fkj ð18Þ

Since f �k ¼ 0 8k 2 K in our application, the objective function can be simplified:

minimize F ¼
X

k2K

�kkfk ð19Þ

This simplification leads to a normalized weighted objective function and is a

special case of the goal programming approach, since the individual optima of the

objective are zero. In order to make a comparison between the deviations of the

objectives easier for the DM, the weights can be replaced to normalize the objective

value by its upper bound �kk ¼ kk
jk

. kk is the weight of the DM for the normalized

objective value k 2 K. The calculation of the upper bounds jk is listed in Table 1.

The resulting objective function minimizes the weighted sum of normalized

objective values:

minimize F ¼
X

k2K
kk

fk
jk

ð20Þ

The weights kk of the DM are unknown. Testing multiple sets of weights can give

valuable insights in the structure of the efficient frontier. Systematically varying all

goals in certain steps while ensuring that
P

k2K kk ¼ 1 delivers a set of weights with

constant intervals. Decreasing the step size increases the number of weight

combinations. With a step size of 10% each combination of the weights kk in

f0; 0:1; 0:2; . . .; 0:9; 1g is applied to the objective values as long as
P

k2K kk ¼ 1. An

extract of the weights for a step size of 10% is listed in Table 3. All possible

combinations of weights changing by 10% with a sum of 1 are used for the

computational study. The results obtained by solving the goal programming

123

Application of a multi-objective multi TSP with time windows 45



approach with the objective function (20) and the constraints (8)–(13) for different

step sizes are listed in Table 2.

A given step results in a certain number of instances. Each instance represents a

realization of kk8k 2 K. There are more instances than distinct efficient solutions,

because different weights may still result in the same solution. Decreasing the step

size delivers very few additional efficient solutions compared to a high increase in

instances and, therefore, calculation time. The instances and the corresponding

amount of distinct and efficient solutions is illustrated in Fig. 10b. Even a very large

number of instances cannot deliver the complete set of efficient solutions.

Obviously, some efficient solutions may be skipped due to gaps that are too large

while varying the weights. Additionally, the non-supported solutions are excluded,

because the underlying problem utilizes integer variables (Ulungu and Teghem

1994). Furthermore, even 534 solutions are too many to be included, for example, in

a quotation for the DM. Even if a lot of solutions are skipped, the trade-off between

visited pilgrims and the number of employees for the solutions at hand can be

looked at. To gain some insights of the efficient frontier, the results of the goal

programming approach with a step size of 1% can be analyzed. Here, the maximum

and minimum amount of pilgrims that have not been visited is illustrated in Fig. 10a

for each number of employees. The remaining objective values have not been

plotted in this figure, but the benefit of an additional employee can be estimated

(Table 3).

Another computational study has been conducted to show the conflict of

objectives. Table 4 lists the objective values and weights for each objective in 12

rows. A small (0.1) a medium (0.52) and a high (0.88) weight has been assigned to

each objective (bold values) with equal weights for the remaining three objectives.

As expected, a high weight reduces the corresponding objective value. A weight

of 52% is already enough to push the number of non-visited pilgrims to 140.

Table 1 Calculation of jk
Objective jk Description

Pilgrims
P

i2C pi No pilgrim is visited

Employees |C| One employee per camp

Walk
P

i2D
P

j2Cðwij þ wijÞ Pendulum tours

Slack max fslack Maximum slack

Table 2 Results of different step sizes for generating the weights for the goal programming approach

Step size (%) Instance count Distinct efficient solutions Calculation time

100 4 2 00 : 00 : 01

50 10 4 00 : 00 : 03

20 56 24 00 : 00 : 13

10 286 102 00 : 01 : 09

5 1771 220 00 : 07 : 32

2 23,426 436 01 : 33 : 05

1 176,851 533 11 : 02 : 41
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Punishing the walking distance with a high weight leads to the trivial solution of not

deploying any employees at all. Increasing the number of employees from five to six

decreases the number of non-visited pilgrims by 1790.

4.3 Enumeration of efficient solutions

Finding all efficient solutions is not guaranteed by using the goal programming

approach. One possible way, described in Sylva and Crema (2004), of calculating

all efficient solutions is to calculate one identified efficient solution iteratively and

restrict all feasible solutions dominated by it, until no further solution can be found.

Let r ¼ 1; . . .;R be the iteration count with R as the amount of passed iterations. frk
is the objective value of goal k 2 K in iteration r. yrk is a binary variable and 1 if the

Table 3 An overview of the

weights for a step size of 10%
for the goal programming

approach

# kpilgrims kemployees kwalk kslack

1 0 0 0 1

2 0 0 0.1 0.9

3 0 0 0.2 0.8

4 0 0 0.3 0.7

..

. ..
. ..

. ..
. ..

.

153 0.2 0.4 0.1 0.3

154 0.2 0.4 0.2 0.2

155 0.2 0.4 0.3 0.1

..

. ..
. ..

. ..
. ..

.

283 0.9 0 0 0.1

284 0.9 0 0.1 0

285 0.9 0.1 0 0

286 1 0 0 0

(a) (b)

Fig. 10 a The minimum and maximum amount of non-visited pilgrims for each number of employees of
the goal programming approach with a step size of 1%. b Relation of the step size and the resulting
amount of distinct efficient solutions of the goal programming approach from Table 2
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current solution is superior to the solution of the iteration r in goal k. Otherwise it is

zero. The objective function of this approach minimizes the sum of the individual

normalized objective values and is defined as r0 ¼ Rþ 1 for a new iteration:

minimize Fr0 ¼
X

k2K

fr0k
jk

ð21Þ

Note that no weights are defined for the individual goals. Those weights lead only to

the order in which the solutions are found. The objective values are normalized to

avoid scaling issues. The constraints (8)–(13) and two additional constraint blocks

are required for this approach:

� � frk � fr0k þMkð1 � yrkÞ 8k 2 K; r ¼ 1; . . .;R ð22Þ
X

k2K
yrk � 1 8r ¼ 1; . . .;R ð23Þ

The Eqs. (22) and (23) force a solution to be found, which has a better objective

value in at least one of the objectives. � is a small positive number and does not

exclude any solutions, since all objective values are integer. This approach can list

all efficient solutions. Due to the increasing number of constraints with each iter-

ation, the numerical study was aborted after 52 h of calculation. In that time, 254

distinct efficient solutions have been found while taking the longest time for the last

iterations. The calculation time per iteration is illustrated in Fig. 11. Only 17 equal

solutions have been observed when comparing the solutions with the solutions of

the goal programming approach. The goal programming approach found solutions

systematically distributed over the efficient frontier, whereas the enumeration

approach delivered solutions relatively close to each other. The objective function in

the enumeration approach does not change, so that each further iteration will deliver

an adjacent solution.

Table 4 Objective values of the

goal programming approach for

12 different weights

Pilgrims Employees Slack Walk

k f k f k f[s] k f[m]

0.1 44,436 0.3 3 0.3 5151 0.3 20,114

0.52 140 0.16 6 0.16 14,555 0.16 32,710

0.88 0 0.04 6 0.04 14,555 0.04 33,756

0.3 1344 0.1 6 0.3 14,555 0.3 31,374

0.16 3134 0.52 5 0.16 14,555 0.16 31,260

0.04 11,5940 0.88 1 0.04 0 0.04 8349

0.3 1344 0.3 6 0.1 20,125 0.3 30,662

0.16 3134 0.16 5 0.52 4510 0.16 35,885

0.04 3134 0.04 6 0.88 0 0.04 38,781

0.3 1285 0.3 5 0.3 4510 0.1 38,507

0.16 16,872 0.16 5 0.16 21434 0.52 24,067

0.04 178,131 0.04 0 0.04 0 0.88 0
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Even though the calculation time is too long for a practical use, this approach still

gives valuable insights in the set of supported efficient solutions. Those insights are

discussed in the Sect. 4.5.

4.4 Augmecon2

Augmecon2 is an algorithm to find the exact pareto set in MOCO problems

(Mavrotas and Florios 2013). This algorithm improves the Augmecon algorithm

described in Mavrotas (2009). The core idea is to optimize a single objective while

bounding the remaining objective values. Iteratively adjusting the bounds of all

except one objective delivers many efficient solutions. Firstly, the range of every

objective value is obtained by creating the payoff table. Table 5 is the payoff

table and lists the objective values for all objectives while optimizing a single

objective only and improving the remaining objectives afterwards in a lexicographic

order.

The best case scenario for the pilgrim objective is to visit all pilgrims. To achieve

this solution at least six employees are necessary. Optimally for the next objective,

not a single employee is in duty with the consequence of visiting not a single

pilgrim. It is possible to reduce the wait objective to zero while simultaneously

visiting all pilgrims, but seven employees are necessary. Again no employee is in

Fig. 11 Calculation time in CPU seconds for each iteration of the enumeration approach
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duty, when optimizing the last objective, because not a single step needs to be done.

The range for each objective, rangek, is the maximum minus the minimum value of

each column in the payoff table.

With this payoff table every objective can be divided into equidistant steps,

which serve as the bounds during the optimization. For example, the objective range

of minimizing the number of employees can be divided by seven resulting in the

bounds: 0; 1; . . .; 7. Similarly, the objective range of wait are divided by 20 and walk

by 40. Now, while optimizing a single objective, all other objectives are bound to

one of the resulting values when dividing the objective range. This process is

repeated for every possible combination of bounding the three objectives. Dividing

each objective into more steps delivers more solutions which takes a longer

computation time than solving all possible combinations when dividing the

objectives in less steps.

In each iteration one of those steps �k is chosen as a bound for each objective.

The following objective function minimizes the number of pilgrims and maximizes

the normalized SLACKk variables for the three remaining objectives:

minimize F ¼ fpilgrims � 0:1 �
X

k2Knfpilgrimsg
10�indexofðkÞ � SLACKk

rangek

0

@

1

A ð24Þ

Adding weights to the normalized slack variable enforces a sequential optimization

of the remaining objectives.

Despite the model relevant Eqs. (8)–(13) the following restrictions bound the

remaining three objectives:

fk þ SLACKk ¼ �k 8k 2 K n fpilgrimsg ð25Þ

The three remaining objectives cannot be worse than the given bound �k. The

objective value can be lower (better), while increasing the slack, which is nor-

malized and maximized in the objective function (24). Solving the model for all

possible combinations of the values for �k delivers the exact pareto set. Note, that

some computational improvements can be achieved by iterating over the combi-

nations as described in Mavrotas and Florios (2013).

This solution approach found 215 solutions in 8 min. A short extract is listed in

Table 6.

This mainly shows the effect of lowering the number of employees on the

number of non-visited pilgrims. An increasingly growing number of pilgrims are

Table 5 Payoff table for the

Augmecon2 approach
Minimized Resulting objective function values

Objective k fpilgrims femployees fwait fwalk

Pilgrims 0 6 2190 40,406

Employees 178,131 0 0 0

Wait 0 7 0 41,277

Walk 178,131 0 0 0
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missed when decreasing the number of employees. Employing only five instead of

six employees misses 1190 pilgrims, while reducing the number of employees once

again, reduces the number of missed pilgrims by 12,848. The other two objectives

change simultaneously, because a reduced number of employees trivially leads to a

reduced total walking time. This approach points out the trade-offs between the

various objectives. Note, that the trade-off depends on the step size of the �k bounds.

A smaller step size than 1 (which was used in Table 6) is futile, because the number

of employees is always integer.

Table 7 scrutinizes the effects of adjusting the walk objective. It is possible as

shown in the first row, to employ only six persons and still visit all pilgrims while

fulfilling the walk objective. Limiting the walk objective further, decreases the

number of visited pilgrims and again this increase is growing.

Calculating those trade-off representations can help inform the DM about the

connection of the underlying problem.

4.5 Gilbert et al.’s interactive approach

The two previous approaches have shown that the set of efficient solutions is too big

to be included in an offer completely. The approach of Gilbert et al. includes the

interaction with the DM Gilbert et al. (1985). The benefit of this approach compared

to other approaches is the simple explanation and fast execution concerning the

cooperation with the DM. Start with any efficient solution with the objective values

fk8k 2 K. During each iteration m, the DM selects the objective �k 2 K they want to

improve next. The DM defines an �m�k [ 0 for the objective �k based on his or her

utility function. �m�k is the amount the objective �k should be improved in iteration m if

possible. Afterwards, the model with the objective function (26) subject to the

constraints (8)–(13) is solved jKj � 1 times. Each time one of the remaining

objective functions K n �k is minimized. An improvement in objective �k is achieved

by taking into account a loss in the objective function k while introducing an upper

bound for all remaining objectives.

minimize f mk ð26Þ

Subject to (8)–(13) and:

Table 6 Subset of the solutions

obtained with the Augmecon2

algorithm with �wait ¼ 2190 and

�walk ¼ 41; 277

�employee Pilgrims Employees Wait Walk

6 0 6 2190 40,406

5 1190 5 2190 40,836

4 14,038 4 0 38,446

3 28,217 3 0 33,167

2 67,447 2 0 21,592

1 115,940 1 0 8349
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f m�k � f m�1
�k � �m�k ð27Þ

f mk0 � f m�1
k0 8k0 2 K n f �k; kg ð28Þ

Constraint (27) ensures an improvement in the objective �k selected by the DM. A

deterioration of the objective value for k is accepted while ensuring that all other

objective values cannot increase in constraint (28). Out of the jKj � 1 solutions, the

DM selects the feasible solution best matching their utility function, which is the

starting point for the following iteration. This approach takes advantage of the

utility function of the DM while their involvement additionally raises the accep-

tance of the offer. It also simplifies the process for the DM, because choosing from a

small set of alternatives requires less effort and preparation than quantifying certain

weights for various objectives that are difficult to compare.

The result of a sample implementation is given in Table 8. Each iteration

contains the results of one or more solutions with their corresponding k and �m�k . The

DM chose one solution of each iteration, which was used as the base for the

following iteration. The solutions chosen by the DM are marked with a star �.

4.6 Comparison

Many indicators measuring the performance of MOCO problems are introduced in

the literature (e.g. Okabe et al. 2003 or Zitzler et al. 2008). Four different

performance indicators listed in Zitzler et al. (2008) are calculated comparing the

resulting solution set of all four solution approaches. Table 9 lists all performance

indicators. The first two performance indicators are cardinality-based. Overall Non-

dominated Vector Generation (ONVG) counts the number of generated solutions.

Very high and very low values for the ONVG indicate a bad performance. The

Error Ratio, indicating the ratio of the solutions which are not efficient, is not listed

in Table 9 because it is zero for all solution approaches. The Coverage of two Sets
indicator compares the solution set of two approaches. It counts how many solutions

are found by both approaches relatively to the total number of solutions found by

either approach. The total number of solutions is hinted in each row of the coverage

indicator in Table 9. Another performance indicator calculates the Distribution by

taking the average difference of each solution with its closest neighbor. The closest

Table 7 Subset of the solutions

obtained with the Augmecon2

algorithm with �wait ¼ 2190 and

�employee ¼ 7

�walk Pilgrims Employees Wait Walk

41,277 0 6 2190 40,406

40,245 0 7 2190 39,913

39,213 140 7 2190 38,867

38,181 1035 7 2190 37,931

37,149 2294 7 2190 37,066

36,117 4079 7 2190 35,897

123

52 J. Bonz



neighbor is the solution with the smallest sum of differences in all objectives.

Lastly, the Overall Pareto Spread indicates the area of the efficient solutions which

is covered by one approach. The value is between 0 and 1 while bigger values

indicate a better performance. It computes how much of the range of each objective

is covered by the solutions found by a solution approach. For each objective the

maximum minus the minimum value of all found solutions is divided by the nadir

point minus the best possible value. The nadir value is the worst objective value of

pareto optimal solutions. Multiplying all values for each objective delivers the

Overall Pareto Spread.

Gilbert et al.’s (1985) approach delivers a reasonable small and, therefore, easy-

to-grasp set of solutions. The Distribution indicates a big variety between the

solutions. The spread is very small because only the area of the solutions relevant

for the DM is examined. The goal programming approach spreads nearly around all

solutions due to the parametrization of the weights. After 52 h the enumeration

approach was stopped and, in that time, many similar solutions have been found in a

small area. This means that the goal programming approach skips many supported

and non-supported efficient solutions even with small changes in the weights for the

objectives. Augmecon2 delivers well distributed solutions with a relatively big

Table 8 Results of a sample implementation of the interactive approach of Gilbert et al. (1985), where

solutions chosen by the DM are marked with a star �

It. Objectives fk Improvement Deterioration

m pilgrims Employee Slack Walk �m�k
�k k

0� 0 6 2190s 40; 406s

1� 1815 6 0 40; 198s 600s Slack Pilgrims

2� 934 7 0 40; 153s 500 Pilgrims Employees

2 1035 6 2190s 39; 777s 500 Pilgrims Employees

2 1285 6 0 41; 403s 500 Pilgrims Employees

3 11,344 7 0 38; 895s 100s Walk Pilgrims

3� 140 7 2190s 38; 867s 100s Walk Slack

4 1654 7 0 38; 805s 600s Slack Pilgrims

4� 140 7 0 40; 231s 600s Slack Walk

Table 9 Performance indicators for all four solution sets

Metric Goal Enumeration Augmecon2 Gilbert et al. (1985)

ONVG 533 254 215 9

Coverage (Goal) 100% 4:5% 7:3% 1:0%

Coverage (Enumeration) 9:4% 100% 3:9% 1:2%

Coverage (Augmecon2) 18:6% 4:7% 100% 2:3%

Coverage (Gilbert et al. 1985) 55:6% 33:3% 55:6% 100%

Distribution 2.5 0.5 4.4 52.6

Spread 0.9 0.00014 0.02 0.000002
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spread, while also finding many different solutions. Even though the number of

solutions found by the Augmecon2 approach is still too big to present to the DM,

they still can be utilized to illustrate the trade-offs between the different objectives

as done in Sect. 4.4. Those insights can help the DM,while interacting with Gilbert

et al.’s (1985) approach. Alternatively, the DM could, if he is interested, be guided

through systematically structured solutions obtained by the Augmecon2 approach.

5 Managerial implications

While applying the solution approaches to the described problem, broader insights

emerged apart from the performance indicators that compare the computational

results. Despite being practical and applicable, the obtained solutions cannot only be

used for creating a quotation for the responsible decision makers. It is also usable

for the operation itself. The selected solution contains the number of employees and

the sequence of camps (paths) each individual employee should visit. A smartphone

application stores the path for each employee to help them locate the camps. The

next camp including the shortest route to it is displayed to the employee. Upon

arrival, the employee can log the dispatching status of the pilgrims in the camp.

Knowing the path for each employee before the event starts has several

advantages. Firstly, the employees can be trained with their own specific path, since

finding the correct camps can be difficult in crowded areas. Furthermore, no internet

connection and communication between the smartphone application and a central

server is necessary during the operation. The network stability cannot be guaranteed

in harsh climate conditions and with a myriad of connected devices. Training the

employees can, therefore, reduce the number of mistakes done during the operation.

After completing the operation, the execution can be analyzed, if the smartphone

tracked the positions of every employee. The planned and actual travel and waiting

times can be compared and the parametrization can be tweaked for future

operations. Additionally, the observations by the employees have an increased

credibility, because the presence at the correct camp at the correct time is recorded.

This empirical data might be important when accusing a group of pilgrims violating

the schedules.

Further strategical conclusions can be made. As discussed in Haase et al. (2016),

the schedule compliance is important for the safety of the pilgrims during the Hajj.

This underlines the importance of monitoring and potentially increasing the

schedule compliance during the operation. Decision makers on site thought about a

model of penalizing schedule violations. An organizer gets less pilgrims approved

for next year’s Hajj, if their pilgrims violate the schedules. The excess capacity of

pilgrims can be reallocated to more compliant organizers. Monitoring the schedule

compliance is essential for the effectiveness of this incentive to work. We

emphasize that the effectiveness of the strategy has not been researched yet and is

not subject of this paper.
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6 Conclusion and outlook

If an automated system, which monitors the exact departure times of all pilgrims, is

not available, manually recording the departure times is necessary. There are many

different aspects which can be measured and evaluated when directing a small

workforce between the camps. Four of those aspects have been considered in this

paper. While solving a MOCO problem, many different OR methods with

individual advantages and disadvantages can be applied. The goal programming

approach illustrates the trade-off between the different goals, even if the weights of

the DM are not known. Unfortunately, too many supported efficient solutions are

generated to be presented to the DM. Additionally, the non-supported efficient

solutions are not obtained. The enumeration approach compensates this disadvan-

tage by listing both the supported and non-supported efficient solutions. For this

problem, the time needed to list all efficient solutions is not practical. The

Augmecon2 approach delivers well-spread solutions without overwhelming the DM

with a myriad of solutions. It also can be used to show the trade-offs between the

four objectives. Gilbert et al.’s interactive approach Gilbert et al. (1985) helps to

systematically search through the efficient solutions, even if the utility function of

the DM is not known. The involvement of the DM in the decision process also raises

their acceptance. Due to this consideration, the interactive approach of Gilbert et al.

(1985) was chosen to select an efficient solution for the described problem. The

presented approach does not include any fairness criterion concerning the tasks for

the employees. In further research, the resulting routes for the employees could be

compared in terms of length and waiting times.
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