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Abstract
In this paper, we study term structure movements in the spirit of Heath et al. (Econometrica
60(1):77–105, 1992) under volatility uncertainty.Wemodel the instantaneous forward rate as
a diffusion process driven by a G-Brownian motion. The G-Brownian motion represents the
uncertainty about the volatility. Within this framework, we derive a sufficient condition for
the absence of arbitrage, known as the drift condition. In contrast to the traditional model, the
drift condition consists of several equations and several market prices, termedmarket price of
risk and market prices of uncertainty, respectively. The drift condition is still consistent with
the classical one if there is no volatility uncertainty. Similar to the traditional model, the risk-
neutral dynamics of the forward rate are completely determined by its diffusion term. The
drift condition allows to construct arbitrage-free term structure models that are completely
robust with respect to the volatility. In particular, we obtain robust versions of classical term
structure models.

Keywords Term structure of interest rates · No-arbitrage · Ambiguous volatility · Knightian
uncertainty · Model uncertainty · Robust finance

Mathematics Subject Classification 91G30

JEL Classification G12

1 Introduction

Most approaches to volatility modeling in mathematical finance are subject to model uncer-
tainty, termed volatility uncertainty, which can be tamed by making models robust with
respect to the volatility. The standard approach to overcome the stylized facts about the
volatility in traditional models of mathematical finance is to model the volatility by a stochas-
tic process. The process is typically chosen such that the volatility shares the characteristics
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of the historical volatility and the resulting option prices are consistent with the current
prices observed on the market. However, there are many choices performing this task and
it is doubtful to assume that a model specification that is consistent with the past and the
present is still valid in the future, since the market environment can change drastically. As
the volatility affects the probabilistic law of the underlying, this approach leads to model
uncertainty, that is, the uncertainty about using the correct probability measure. To solve this
issue, models in robust finance work in the presence of a family of probability measures,
consisting of several beliefs about the volatility, which results in models that are robust with
respect to the volatility.

In the present paper, we study term structure movements in the spirit of Heath, Jarrow,
and Morton [17] (HJM) under volatility uncertainty. As in the classical HJM framework, we
model the behavior of the instantaneous forward rate as a diffusion process. The forward
rate determines all quantities on the related bond market. We represent the uncertainty about
the volatility by a family of probability measures, called set of beliefs, where each measure
represents a different belief about the volatility. Such an approachnaturally leads to a sublinear
expectation and a G-Brownian motion, which was invented by Peng [25]. As a consequence,
the forward rate dynamics are driven by a G-Brownian motion in the presence of volatility
uncertainty. In contrast to the classical HJM model, the forward rate has uncertain drift
terms in addition to the classical (certain) drift term, since the quadratic covariations of a G-
Brownian motion are uncertain processes. Despite the differences, the present model is still
consistent with the classical HJM model. We impose some assumptions on the coefficients
of the forward rate dynamics in order to get a sufficient degree of regularity.

Similar to the traditional HJM model, the main result of the present work is a drift condi-
tion which implies that the related bond market is arbitrage-free. The traditional HJM drift
condition relates the absence of arbitrage to the existence of a market price of risk and shows
that the risk-neutral dynamics of the forward rate are completely characterized by its diffusion
coefficient. In order to derive a drift condition in the presence of volatility uncertainty, we
set up a suitable market structure for the related bond market in this setting. In contrast to the
traditional HJM model, the drift condition in the presence of volatility uncertainty requires
the existence of several market prices. We call the additional market prices (in addition to the
market price of risk) the market prices of uncertainty. As in the traditional HJM model, the
risk-neutral dynamics of the forward rate are completely determined by its diffusion termwith
the addition that the uncertainty of the diffusion term determines the uncertainty of the drift.
If the uncertainty about the volatility vanishes, the drift condition reduces to the traditional
one. The proof of the main result is based on deriving the dynamics of the discounted bonds
and using a Grisanov transformation for G-Brownian motion together with some results on
G-backward stochastic differential equations.

The drift condition derived in this paper is a very powerful tool, since it allows to construct
arbitrage-free term structure models that are completely robust with respect to the volatility.
In the classical casewithout volatility uncertainty, almost every (arbitrage-free) term structure
model corresponds to a specific example in the HJM methodology. Due to the main result of
the present work, we are able to obtain arbitrage-free term structure models in the presence
of volatility uncertainty by considering specific examples. In particular, we recover robust
versions of classical term structure models. The examples include the Ho–Lee term structure,
the Hull–White term structure, and the Vasicek term structure. The examples show that the
drift of the risk-neutral short rate dynamics and the bond prices, which still have an affine
structure, include an additional uncertain factor when there is uncertainty about the volatility.
The interesting thing is that, with this procedure, we obtain term structure models that are
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robust with respect to the volatility as well as its worst-case values, which differs from most
works on pricing under volatility uncertainty.

In order to make the analysis from above work, we construct a space of admissible inte-
grands for the forward rate dynamics. The forward rate is a diffusion process parameterized
by its maturity, which needs to be integrable with respect to its maturity to compute the
bond prices. Therefore, the integrands in the forward rate dynamics need to be regular with
respect to the maturity apart from being admissible stochastic processes in a diffusion driven
by a G-Brownian motion. In order to achieve this, we use the space of Bochner integrable
functions, that is, Banach space-valued functions which are sufficiently measurable and inte-
grable, where the functions aremapping from the set ofmaturities into the space of admissible
stochastic processes in this particular case. For such functions, we can define the Bochner
integral, mapping into the space of admissible stochastic processes. This ensures that the
forward rate is integrable with respect to its maturity. Moreover, we derive further necessary
results for the HJM model, including a version of Fubini’s theorem for stochastic integrals.
We give a sufficient condition for functions to be Bochner integrable, which applies to all
considered examples.

In addition, we provide a sufficient condition ensuring that the discounted bonds and
the portfolio value related to the bond market are well-posed. Each discounted bond is an
exponential of a diffusion process driven by a G-Brownian motion and the portfolio value
consists of integrals with respect to the discounted bonds, respectively. First, we have to
make sure that the discounted bonds are well-posed and, second, we need to ensure that the
dynamics of each discounted bond are sufficiently regular to imply that the portfolio value is
well-posed. For this purpose, we use a condition similar to G-Novikov’s condition of Osuka
[24] to obtain the desired regularity. As in the classical case, the advantage of such a condition
is that it can be easily verified compared to other conditions implying that the exponential
of an Itô diffusion is integrable. One can verify that all examples considered in this article
satisfy this condition.

The present work is the first in the literature on robust finance that provides a general HJM
framework for arbitrage-free term structuremodeling in the presence of volatility uncertainty.
In general, the literature on interest rates andmodel uncertainty is relatively sparse. Early con-
tributions in this regard are due to Avellaneda and Lewicki [1] and Epstein and Wilmott[13],
relying on intuitive arguments rather than a rigorous formulation. A more recent treatment
of interest rates in conjunction with model uncertainty appears in the works of El Karoui and
Ravanelli [12] and Lin andRiedel [23], who do not focus on the term structure of interest rates
and arbitrage. Further related articles of Biagini and Zhang [2] and Fadina and Schmidt [15]
deal with credit risk and model uncertainty. Most related are the work of Fadina, Neufeld,
and Schmidt [14] and a previous work [18]. Fadina, Neufeld, and Schmidt [14] study affine
processes under parameter uncertainty and corresponding interest rate models. However,
the results are restricted to short rate models and a superhedging argument for the pricing
of contracts, which does not apply to the term structure of interest rates, since bonds are
the fundamentals of fixed income markets and cannot be hedged. The previous article [18]
specifically focuses on obtaining an arbitrage-free term structure in the presence of volatility
uncertainty in a short rate model à la Hull–White. The present paper extends the latter results
to a general HJM setting.

While there are various mathematical approaches to analyze volatility uncertainty, the
present paper mainly relies on the calculus of G-Brownian motion. Two classical approaches
to represent volatility uncertainty are the ones of Denis and Martini [11] and Peng [25].
The approach of Denis and Martini [11] works in a probabilistic setting and uses capacity
theory. On the other hand, Peng [25] introduced the calculus of G-Brownian motion. In
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contrast to the first approach, the calculus of G-Brownian motion is motivated by nonlinear
partial differential equations. However, it holds a duality between both approaches, which
was shown by Denis, Hu, and Peng [10]. Apart from that, one can use an approach based
on aggregation [27] or a pathwise approach [7]. In this paper, we start from a probabilistic
setting similar to the one of Denis and Martini [11], since it is a natural approach to represent
volatility uncertainty from an economic point of view, and use the results of Denis, Hu, and
Peng [10] to acquire all results from the calculus of G-Brownian motion. The calculus of
G-Brownian motion is the main pillar for the mathematical analysis, since the literature on
G-Brownian motion is very rich and equips us with a lot of mathematical tools.

The paper is organized as follows. Section 2 introduces the forward rate, determining all
quantities on the related bond market, and the framework representing the uncertainty about
the volatility. In Sect. 3, we set up a market structure for the related bond market and derive
the drift condition, ensuring the absence of arbitrage. In Sect. 4, we study examples, including
the Ho–Lee term structure, the Hull–White term structure, and the Vasicek term structure,
and discuss their implications. Section 5 gives a conclusion. In Section A of the Appendix,
we construct the space of admissible integrands for the forward rate dynamics and derive
related results. Section B in the Appendix provides a sufficient condition for the discounted
bonds to be well-posed.

2 Term structuremovements

In the traditional HJM framework, without volatility uncertainty, term structure movements
are driven by a standard Brownian motion. That means, we consider the canonical process
B = (B1

t , . . . , B
d
t )t≥0, for d ∈ N, on the Wiener space (�,F, P0) and the filtration F =

(Ft )t≥0, which is generated by B and completed by all P0-null sets. Then the canonical
process B is a d-dimensional standard Brownian motion under P0. For T ≤ τ , where τ < ∞
is a fixed terminal time, we denote the forward rate with maturity T at time t by ft (T ) for
t ≤ T . For all T , the dynamics of the forward rate process f (T ) = ( ft (T ))0≤t≤T are given
by

ft (T ) = f0(T ) +
∫ t

0
αu(T )du +

d∑
i=1

∫ t

0
β i
u(T )dBi

u

for some initial (observable) forward curve f0 : [0, τ ] → R, which is integrable, and
sufficiently regular processes α(T ) = (αt (T ))0≤t≤τ and β(T ) = (β1

t (T ), . . . , βd
t (T ))0≤t≤τ .

The forward rate determines all remaining quantities on the bondmarket. Themarket offers
zero-coupon bonds for all maturities, which are discounted by the money-market account.
The bond price process P(T ) = (Pt (T ))0≤t≤T is defined by

Pt (T ) := exp

(
−

∫ T

t
ft (s)ds

)

for all T ≤ τ and the money-market account M = (Mt )0≤t≤τ is defined by

Mt := exp

(∫ t

0
rsds

)
,

where the short rate r = (rt )0≤t≤τ is defined by rt := ft (t). We use the money-market
account as a numéraire, i.e., we focus on the discounted bonds P̃(T ) = (P̃t (T ))0≤t≤T for
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all T ≤ τ , which are defined by

P̃t (T ) := M−1
t Pt (T ).

In the presence of volatility uncertainty, we consider a family of probability measures,
called set of beliefs, where each measure represents a different belief about the volatility. In
order to construct the set of beliefs, we consider all scenarios for the volatility which stay in
a certain state space. That is, we consider all �-valued, F-adapted processes σ = (σt )t≥0,
where � is a bounded and closed subset of Rd×d . For each such process σ , we define the
process Bσ = (Bσ

t )t≥0 by

Bσ
t :=

∫ t

0
σudBu

and the measure Pσ to be the law of the process Bσ , that is,

Pσ := P0 ◦ (Bσ )−1.

The set of beliefs is the collection of all such measures, denoted by P . For such a set of
measures we define the sublinear expectation Ê by

Ê[ξ ] := sup
P∈P

EP [ξ ]

for all measurable randomvariables ξ such thatEP [ξ ] exists for all P ∈ P . One can interprete
Ê as a worst-case measure or as a risk measure.

The set of beliefs naturally leads to a G-expectation and a G-Brownian motion. By the
results from Denis, Hu, and Peng [10, Theorem 54], we know that Ê corresponds to the G-
expectation on L1

G(�) and the canonical process B is a d-dimensional G-Brownian motion

under Ê. The G-expectation is defined by a nonlinear partial differential equation. The letter
G refers to the nonlinear generator G : Sd → R, which is given by

G(A) = 1
2 sup

σ∈�

tr(σσ ′A),

where S
d denotes the space of all symmetric d × d matrices and ·′ denotes the transpose

of a matrix. We assume that G is non-degenerate, i.e, there exists a constant C > 0 such
that G(A) − G(B) ≥ C tr(A − B) for all A ≥ B. The space L1

G(�) denotes the space of
admissible random variables in the calculus of G-Brownian motion, on which we identify
random variables that are equal quasi-surely, that is, P-almost surely for all P ∈ P . For
further insights regarding the calculus of G-Brownian motion, the reader may refer to the
book of Peng [25].

Remark 2.1 Asmentioned in the introduction, there are several approaches tomodel volatility
uncertainty and a lot of extensions. In particular, there are extensions to spaces greater than
L1
G(�) and the other related spaces from this calculus. Yet we stick to the classical spaces

to use all of the results from the literature on G-Brownian motion.

As a consequence, term structure movements are driven by a G-Brownian motion in the
presence of volatility uncertainty. That means, for all T , the forward rate dynamics are now
given by

ft (T ) = f0(T ) +
∫ t

0
αu(T )du +

d∑
i=1

∫ t

0
β i
u(T )dBi

u +
d∑

i, j=1

∫ t

0
γ
i, j
u (T )d〈Bi , B j 〉u
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for some initial forward curve f0 : [0, τ ] → R, which is integrable, and functions α, γ i, j :
[0, τ ] → M1

G(0, τ ) and β i : [0, τ ] → M2
G(0, τ ). The space Mp

G(0, τ ) consists of stochastic
processes which are admissible integrands in the definition of all stochastic integrals related
to a G-Brownian motion. Hence, the forward rate and the short rate are well-defined in the
sense that, for all T , ft (T ), rt ∈ L1

G(�t ) for all t .
In contrast to the traditional HJM model, the forward rate has additional, uncertain drift

terms when there is volatility uncertainty. The additional drift terms of the forward rate are
uncertain due to the fact that they depend on the quadratic covariation processes of the G-
Brownian motion. In the presence of volatility uncertainty, the quadratic covariations of the
driving process are uncertain processes, since they differ among the measures in the set of
beliefs. Moreover, it can be shown that the additional drift terms cannot be included in the
first drift term [28, Corollary 3.3]. Hence, we have to add them to the forward rate dynamics
instead of including them in the first drift term. In this way, we can distinguish between the
part of the drift that is driven by uncertainty and the part that is not.

When there is no volatility uncertainty, the model corresponds to a classical HJM model.
If we drop the uncertainty about the volatility, then B becomes a standard Brownian motion
and its quadratic covariation processes are no longer uncertain. That is, if � = {Id}, where
Id denotes the identity matrix, then, for all i , 〈Bi , Bi 〉t = t and 〈Bi , B j 〉t = 0 for all j �= i .
In that case, the forward rate dynamics are given by

ft (T ) = f0(T ) +
∫ t

0

(
αu(T ) +

d∑
i=1

γ i,i
u (T )

)
du +

d∑
i=1

∫ t

0
β i
u(T )dBi

u

for all T , that is, the model corresponds to a classical HJM model in which the drift is given
by the sum of α and

∑d
i=1 γ i,i .

We henceforth impose the following two regularity assumptions. The first assumption
ensures that the forward rate and the short rate are integrable and that all succeeding compu-
tations are feasible.

Assumption 2.1 There exists a p > 1 such that α, γ i, j ∈ M̃ p
G(0, τ ) and β i ∈ M̃2p

G (0, τ ) for
all i, j .

The space M̃ p
G(0, τ ), whichwe construct in AppendixA, consists of all functionsmapping

from [0, τ ] into Mp
G(0, τ ) which are strongly measurable and whose norm on Mp

G(0, τ ) is
integrable. A function is called strongly measurable if it is Borel measurable and its image
is separable. For example, we know that all continuous functions mapping from [0, τ ] into
Mp

G(0, τ ) belong to M̃ p
G(0, τ ) by Proposition A.1. This implies that all examples in Sect. 4

satisfy Assumption 2.1, as Example A.1 shows. By Proposition A.2, Assumption 2.1 implies
that the forward rate and, by Proposition A.3, the short rate are integrable. The second
assumption ensures that the discounted bonds and the portfolio value are sufficiently regular.

Assumption 2.2 There exist p̃ > p∗ and q̃ > 2, where p∗ := 2pq
p−q for some q ∈ (1, p),

such that, for all T ≤ τ , it holds

Ê

[∫ T

0
exp

(
p̃q̃
q̃−2

(∫ t

0
au(T )du +

d∑
i, j=1

∫ t

0
ci, ju (T )d〈Bi , B j 〉u

))
dt

]
< ∞,

Ê

[∫ T

0
exp

(
1
2 ( p̃q̃)2

d∑
i, j=1

∫ t

0
biu(T )b j

u(T )d〈Bi , B j 〉u
)
dt

]
< ∞.
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The processes a(T ) = (at (T ))0≤t≤τ , bi (T ) = (bit (T ))0≤t≤τ , and ci, j (T ) = (ci, jt (T ))0≤t≤τ ,
for T ≤ τ , are defined by

at (T ) :=
∫ T

t
αt (s)ds, bit (T ) :=

∫ T

t
β i
t (s)ds, ci, jt (T ) :=

∫ T

t
γ
i, j
t (s)ds

for all i, j , for whichwe have a(T ), ci, j (T ) ∈ Mp
G(0, τ ) and bi (T ) ∈ M2p

G (0, τ ) byAssump-
tion 2.1 and Proposition A.3. One can easily verify that all examples in Sect. 4 satisfy
Assumption 2.2. Assumption 2.2 is similar to G-Novikov’s condition from Osuka [24] and
implies that, for every maturity, the discounted bond price is in L1

G(�t ) at each time t . More-
over, Assumption 2.2 ensures that the dynamics of the discounted bonds are regular enough
to imply that the portfolio value, which is defined below, is well-posed. We show both of
these implications in Appendix B, which requires Lemma 3.1 from below.

3 Arbitrage-free forward rate dynamics

In the traditional HJM model, the absence of arbitrage on the related bond market is ensured
by the HJM drift condition, which assumes the existence of a market price of risk and
characterizes the drift of the forward rate in terms of its diffusion coefficient. More precisely,
the market is arbitrage-free if there exists a suitable process λ = (λ1t , . . . , λ

d
t )0≤t≤τ such

that, for all T ,

α(T ) − β(T )b(T )′ + β(T )λ′ = 0,

where b(T ) = (b1(T ), . . . , bd(T )). The process λ is termed market price of risk, since it
erases the drift of each discounted bond under an equivalent probability measure, called
risk-neutral measure, to make it a martingale. Then the forward rate dynamics under the
risk-neutral measure are completely determined by its diffusion coefficient, that is,

ft (T ) = f0(T ) +
∫ t

0
βu(T )bu(T )′du +

d∑
i=1

∫ t

0
β i
u(T )d B̄i

u,

where B̄ = (B̄1
t , . . . , B̄

d
t )0≤t≤τ is a Brownian motion under the risk-neutral measure. This

fact is of practical importance, since there is no need to specify the drift term α or the market
price of risk λ.

In order to derive a drift condition in the presence of volatility uncertainty, we first define
admissible market strategies and a suitable notion of arbitrage. The agents in the market are
allowed to select a finite number of bonds they want to trade. The corresponding portfolio
value is determined by the gains from trade, i.e., we restrict to self-financing strategies.

Definition 3.1 An admissible market strategy (π, T ) is a couple consisting of a bounded
process π = (π1

t , . . . , πn
t )0≤t≤τ in M2

G(0, τ ;Rn) and a vector T = (T1, . . . , Tn) ∈ [0, τ ]n
for some n ∈ N. The corresponding portfolio value at terminal time is defined by

ṽτ (π, T ) :=
n∑

i=1

∫ Ti

0
π i
t d P̃t (Ti ).

The portfolio value is well-posed, since the dynamics of P̃(T ), which are derived in Proposi-
tion 3.1 below, are sufficiently regular for each T by Assumption 2.2 and Proposition A.7. In
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addition, we use the quasi-sure notion of arbitrage, which corresponds to the one frequently
used in the literature on model uncertainty [3,5].

Definition 3.2 An admissible market strategy (π, T ) is called arbitrage if ṽτ (π, T ) ≥ 0
quasi-surely and P

(
ṽτ (π, T ) > 0

)
> 0 for at least one P ∈ P . Moreover, we say that the

bond market is arbitrage-free if there is no arbitrage.

Remark 3.1 It is possible to generalize the notion of trading strategies and the concept of
arbitrage. The notion of trading strategies can be generalized by allowing for measure-valued
trading strategies [4] or by using methods from large financial markets [21]. There are also
other no-arbitrage concepts related to bond markets, which are based on the theory of large
financial markets [8]. We stick to the definitions from above, since such a generalization is
not the objective of the present paper.

In the presence of volatility uncertainty, the absence of arbitrage requires the existence of
several market prices. In that case, there is a sublinear expectation under which the discounted
bonds are symmetric G-martingales, ruling out arbitrage opportunities. Moreover, the drift
condition characterizes the dynamics of the forward rate.

Theorem 3.1 The bond market is arbitrage-free if, for some p > 1, there exist bounded
processes κ = (κ1

t , . . . , κd
t )0≤t≤τ and λi, j = (λ

i, j,1
t , . . . , λ

i, j,d
t )0≤t≤τ in M p

G(0, τ ;Rd)

such that

α(T ) + β(T )κ ′ = 0,

γ i, j (T ) − 1
2

(
β i (T )b j (T ) + bi (T )β j (T )

) + β(T )(λi, j )′ = 0
(1)

for almost all T for all i, j . In particular, then there exists a sublinear expectation Ē under
which P̃(T ), for all T , is a symmetric G-martingale and, for almost all T ,

ft (T ) = f0(T ) +
d∑

i=1

∫ t

0
β i
u(T )d B̄i

u +
d∑

i, j=1

∫ t

0

1
2

(
β i
u(T )b j

u(T ) + biu(T )β
j
u (T )

)
d〈B̄i , B̄ j 〉u,

where B̄ = (B̄1
t , . . . , B̄

d
t )0≤t≤τ is a G-Brownian motion under Ē.

The additional market prices occuring in the drift condition represent the market prices
of uncertainty. In comparison to the classical case without volatility uncertainty, the forward
rate and (hence) the discounted bonds have additional drift terms, which are uncertain (as
explained in Sect. 2). As a consequence, we need additional market prices in order to make
the discounted bonds symmetric G-martingales, which ultimately rules out arbitrage. Since
the additional market prices relate to the uncertain drift terms of the discounted bonds, they
are termed market prices of uncertainty.

The risk-neutral dynamics of the forward rate are fully characterized by its diffusion term,
which, in contrast to the classical HJM model, does not only apply to the coefficients but
also to the uncertainty. We call the dynamics of the forward rate under Ē, given in Theorem
3.1, risk-neutral dynamics, since the discounted bonds are symmetric G-martingales under
Ē. As in the classical HJM model, the diffusion coefficient β determines the drift coefficient
of the risk-neutral forward rate dynamics. In addition, the uncertain volatility, included in the
G-Brownian motion B̄, determines the uncertainty of the drift, represented by the quadratic
covariation processes of B̄. That means, arbitrage-free term structure models also exhibit
drift uncertainty in the presence of volatility uncertainty.
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Despite the differences, the drift condition is still consistent with the classical HJM drift
condition. If there is no uncertainty about the volatility, that is, if � = {Id}, then the forward
rate, for all T , satisfies

ft (T ) = f0(T ) +
∫ t

0

(
αu(T ) +

d∑
i=1

γ i,i
u (T )

)
du +

d∑
i=1

∫ t

0
β i
u(T )dBi

u

as it is described in Sect. 2. The drift condition in Theorem 3.1 implies that

(
α(T ) +

d∑
i=1

γ i,i (T )

)
− β(T )b(T )′ + β(T )

(
κ +

d∑
i=1

λi,i
)′

= 0

for almost all T . The latter corresponds to the classical HJM drift condition for a market
price of risk given by the process κ + ∑d

i=1 λi,i .
In order to prove Theorem 3.1, we first of all derive the dynamics of the discounted bond

for each maturity. This is based on the following lemma.

Lemma 3.1 For all T , the logarithm of P̃(T ) satisfies the dynamics

log
(
P̃t (T )

) = log
(
P̃0(T )

) −
∫ t

0
au(T )du −

d∑
i=1

∫ t

0
biu(T )dBi

u −
d∑

i, j=1

∫ t

0
ci, ju (T )d〈Bi , B j 〉u .

Proof We obtain the dynamics by applying Fubini’s theorem, which can be found in
Appendix A. Inserting the forward rate dynamics and the short rate dynamics into the defi-
nition of P̃(T ), the logarithm of P̃(T ) satisfies

log
(
P̃t (T )

) = log
(
P̃0(T )

) −
∫ T

t

∫ t

0
αu(s)duds −

∫ t

0

∫ s

0
αu(s)duds

−
d∑

i=1

∫ T

t

∫ t

0
β i
u(s)dB

i
uds −

d∑
i=1

∫ t

0

∫ s

0
β i
u(s)dB

i
uds

−
d∑

i, j=1

∫ T

t

∫ t

0
γ
i, j
u (s)d〈Bi , B j 〉uds −

d∑
i, j=1

∫ t

0

∫ s

0
γ
i, j
u (s)d〈Bi , B j 〉uds

for all T . Then an application of Corollary A.1 yields, for all i, j ,

∫ T

t

∫ t

0
αu(s)duds +

∫ t

0

∫ s

0
αu(s)duds =

∫ t

0
au(T )du,

∫ T

t

∫ t

0
β i
u(s)dB

i
uds +

∫ t

0

∫ s

0
β i
u(s)dB

i
uds =

∫ t

0
biu(T )dBi

u,

∫ T

t

∫ t

0
γ
i, j
u (s)d〈Bi , B j 〉uds +

∫ t

0

∫ s

0
γ
i, j
u (s)d〈Bi , B j 〉uds =

∫ t

0
ci, ju (T )d〈Bi , B j 〉u

for all T , which proves the assertion. 
�

Since, for all i, j , the processes a(T ), bi (T ), and ci, j (T ) are sufficiently regular for each
T , we can use Itô’s formula for G-Brownian motion from Li and Peng [22] to derive the
dynamics of the discounted bond for each T .
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Proposition 3.1 For all T , the discounted bond P̃(T ) satisfies the dynamics

P̃t (T ) = P̃0(T ) −
∫ t

0
au(T )P̃u(T )du −

d∑
i=1

∫ t

0
biu(T )P̃u(T )dBi

u

−
d∑

i, j=1

∫ t

0

(
ci, ju (T ) − 1

2b
i
u(T )b j

u(T )
)
P̃u(T )d〈Bi , B j 〉u .

Proof The assertion follows by Lemma 3.1 and an application of Itô’s formula for G-
Brownian motion [22, Theorem 5.4]. We are able to apply the latter, since a(T ), ci, j (T ) ∈
M1

G(0, T ) and bi (T ) ∈ M2
G(0, T ) for all i, j by the contruction of the Bochner integral in

Appendix A and Proposition A.3. 
�
We prove Theorem 3.1 by using results on G-backward stochastic differential equations

of Hu, Ji, Peng, and Song [19], including a Girsanov transformation forG-Brownian motion.
Details regarding G-backward stochastic differential equations are stated in the paper of Hu,
Ji, Peng, and Song [19].

Proof of Theorem 3.1 First, we rewrite the dynamics of the forward rate and the discounted
bond for each maturity by using the Girsanov transformation for G-Brownian motion from
Hu, Ji, Peng, andSong [19]. For this purpose,we consider the following sublinear expectation.
For ξ ∈ L p

G(�τ ) with p > 1, we define the sublinear expectation Ē by Ēt [ξ ] := Y ξ
t , where

Y ξ = (Y ξ
t )0≤t≤τ solves the G-backward stochastic differential equation

Y ξ
t = ξ +

∫ τ

t
κu Z

′
udu +

d∑
i, j=1

∫ τ

t
λ
i, j
u Z ′

ud〈Bi , B j 〉u −
d∑

i=1

∫ τ

t
Z i
udB

i
u − (Kτ − Kt ).

Then Ē is a time consistent sublinear expectation [19, Theorem 5.1] and the process B̄ =
(B̄1

t , . . . , B̄
d
t )0≤t≤τ , defined by

B̄t := Bt −
∫ t

0
κudu −

d∑
i, j=1

∫ t

0
λ
i, j
u d〈Bi , B j 〉u,

is a G-Brownian motion under Ē [19, Theorems 5.2, 5.4]. The quadratic covariations of B
and B̄, respectively, are the same, since the drift terms of B̄ are of bounded variation. Hence,
for each T , we can rewrite the dynamics of the forward rate as

ft (T ) = f0(T ) +
∫ t

0

(
αu(T ) + βu(T )κ ′

u

)
du +

d∑
i=1

∫ t

0
β i
u(T )d B̄i

u

+
d∑

i, j=1

∫ t

0

(
γ
i, j
u (T ) + βu(T )(λ

i, j
u )′

)
d〈B̄i , B̄ j 〉u

and the dynamics of the discounted bond as

P̃t (T ) = P̃0(T ) −
∫ t

0

(
au(T ) + bu(T )κ ′

u

)
P̃u(T )du −

d∑
i=1

∫ t

0
biu(T )P̃u(T )d B̄i

u

−
d∑

i, j=1

∫ t

0

(
ci, ju (T ) − 1

2b
i
u(T )b j

u(T ) + bu(T )(λ
i, j
u )′

)
P̃u(T )d〈B̄i , B̄ j 〉u .
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Next, we deduce the forward rate dynamics and the dynamics of the discounted bonds
under Ē from the drift condition. By (1), for almost all T ,

ft (T ) = f0(T ) +
d∑

i=1

∫ t

0
β i
u(T )d B̄i

u +
d∑

i, j=1

∫ t

0

1
2

(
β i
u(T )b j

u(T ) + biu(T )β
j
u (T )

)
d〈B̄i , B̄ j 〉u .

Additionally, we can integrate the terms in (1) to get, for all i, j ,
∫ T

·
(
α(s) + β(s)κ ′)ds = a(T ) + b(T )κ ′,

∫ T

·
(
γ i, j (s) + β(s)(λi, j )′

)
ds = ci, j (T ) + b(T )(λi, j )′,

∫ T

·
(
β i (s)b j (s) + bi (s)β j (s)

)
ds = bi (T )b j (T )

for all T . The latter follows from Corollary A.2. Thus, by (3), for all i, j ,

a(T ) + b(T )κ ′ = 0,

ci, j (T ) − 1
2b

i (T )b j (T ) + b(T )(λi, j )′ = 0

for all T , which implies

P̃t (T ) = P̃0(T ) −
d∑

i=1

∫ t

0
biu(T )P̃u(T )d B̄i

u .

In the end, we conclude that the market is arbitrage-free, since the discounted bonds are
symmetric G-martingales. From Assumption 2.2 and Proposition A.7, we deduce that, for
each T , P̃t (T ) ∈ L2

G(�t ) for all t . In addition, the dynamics of the discounted bonds from
above imply that P̃(T ) is a symmetric G-martingale under Ē for all T . Therefore, it can be
shown that the bond market is arbitrage-free [18, Proposition 5.1]. This relies on the fact that
Ē is equivalent to the initial sublinear expectation Ê in the sense that ξ = 0 if and only if
Ē[|ξ |] = 0 for ξ ∈ L p

G(�τ ) with p > 1 [18, Lemma 5.1]. 
�

4 Robust versions of classical term structures

The main reason the HJM methodology is so popular is that essentially every term structure
model corresponds to a specific example in the HJM model. One can verify that the forward
rate implied by any arbitrage-free term structure satisfies the HJM drift condition for a
particular diffusion coefficient. Conversely, the diffusion coefficient fully characterizes the
risk-neutral dynamics of the forward rate and the forward rate, in turn, determines all other
quantities of the model. Thus, one is able to construct arbitrage-free term structure models
by simply specifying the diffusion term of the forward rate.

We investigate what kind of term structure models we obtain when we consider specific
examples in the present setting. Theorem 3.1 shows that the risk-neutral dynamics of the
forward rate are also determined by its diffusion term when there is volatility uncertainty.
Therefore, the drift condition derived in the previous section enables us to construct arbitrage-
free term structure models in the presence of volatility uncertainty by specifying the diffusion
term of the forward rate, which we demonstrate in the succeeding examples. In particular,
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our aim is to recover robust versions of classical term structure models by considering the
corresponding diffusion coefficients in the present framework, respectively.

Throughout the section, we impose the following assumptions. First, we consider a one-
dimensional G-Brownian motion, that is, d = 1 and � = [σ, σ ] for σ ≥ σ > 0. Second, we
suppose that the initial forward curve is differentiable. This is necessary for the derivation
of the related short rate dynamics. Third, we assume that the drift condition is satisfied. This
assumption ensures that themodel is arbitrage-free and allows us to directly compute the risk-
neutral dynamics of the forward rate. It should also be noted that the following examples are
feasible in the sense that the respective diffusion coefficients satisfy the regularity assumptions
from Sect. 2.

4.1 The Ho–Lee term structure

If we consider the diffusion coefficient of the forward rate implied by the Ho–Lee term
structure, we obtain a robust version of the Ho–Lee model.

Example 4.1 If we define β by βt (T ) := 1, then the short rate satisfies

rt = r0 +
∫ t

0

(
∂u f0(u) + qu

)
du + B̄t

and the bond prices are of the form

Pt (T ) = exp
(
A(t, T ) − 1

2 B(t, T )2qt − B(t, T )rt
)
,

where the process q = (qt )0≤t≤τ is defined by

qt := 〈B̄〉t
and the functions A, B : [0, τ ] × [0, τ ] → R are defined by

A(t, T ) := −
∫ T

t
f0(s)ds + B(t, T ) f0(t),

B(t, T ) := (T − t).

The risk-neutral short rate dynamics are determined by the risk-neutral forward rate
dynamics. According to Theorem 3.1, the latter are given by

ft (T ) = f0(T ) + B̄t +
∫ t

0
(T − u)d〈B̄〉u .

By the definition of the short rate, we have

rt = f0(t) + B̄t +
∫ t

0
(t − u)d〈B̄〉u .

Applying Itô’s formula for G-Brownian motion then yields

rt = r0 +
∫ t

0

(
∂u f0(u) + qu

)
du + B̄t .

The bond prices follow from integrating the risk-neutral forward rate dynamics. We have
∫ T

t
ft (s)ds =

∫ T

t
f0(s)ds + B(t, T )B̄t +

∫ T

t

∫ t

0
(s − u)d〈B̄〉uds.
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If we perform some calculations on the last term, we get

∫ T

t

∫ t

0
(s − u)d〈B̄〉uds = B(t, T )

∫ t

0
(t − u)d〈B̄〉u + 1

2 B(t, T )2〈B̄〉t .

Substituting the latter in the previous equation, we obtain

∫ T

t
ft (s)ds = −A(t, T ) + 1

2 B(t, T )2qt + B(t, T )rt ,

which yields the bond prices from above.

4.2 The Hull–White term structure

If we use the diffusion coefficient of the forward rate implied by the Hull–White term struc-
ture, we get a robust version of the Hull–White model.

Example 4.2 If we define β by βt (T ) := e−θ(T−t) for θ > 0, then the short rate dynamics
are given by

rt = r0 +
∫ t

0

(
∂u f0(u) + θ f0(u) + qu − θru

)
du + B̄t

and the bond prices are of the form

Pt (T ) = exp
(
A(t, T ) − 1

2 B(t, T )2qt − B(t, T )rt
)
,

where the process q = (qt )0≤t≤τ is defined by

qt :=
∫ t

0
e−2θ(t−u)d〈B̄〉u

and the functions A, B : [0, τ ] × [0, τ ] → R are defined by

A(t, T ) := −
∫ T

t
f0(s)ds + B(t, T ) f0(t),

B(t, T ) := 1
θ
(1 − e−θ(T−t)).

Again, the risk-neutral short rate dynamics are determined by the risk-neutral forward rate
dynamics. By Theorem 3.1, the latter are given by

ft (T ) = f0(T ) +
∫ t

0
e−θ(T−u)d B̄u +

∫ t

0
e−θ(T−u) 1

θ
(1 − e−θ(T−u))d〈B̄〉u .

The definition of the short rate then implies

rt = f0(t) +
∫ t

0
e−θ(t−u)d B̄u +

∫ t

0
e−θ(t−u) 1

θ
(1 − e−θ(t−u))d〈B̄〉u .

Applying Itô’s formula for G-Brownian motion yields

rt = r0 +
∫ t

0

(
∂u f0(u) + θ f0(u) + qu − θru

)
du + B̄t .
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We obtain the bond prices by integrating the risk-neutral dynamics of the forward rate. We
have ∫ T

t
ft (s)ds =

∫ T

t
f0(s)ds +

∫ T

t

∫ t

0
e−θ(s−u)d B̄uds

+
∫ T

t

∫ t

0
e−θ(s−u) 1

θ
(1 − e−θ(s−u))d〈B̄〉uds.

The first double integral can be written as
∫ T

t

∫ t

0
e−θ(s−u)d B̄uds = B(t, T )

∫ t

0
e−θ(t−u)d B̄u .

After some calculations, the second double integral becomes
∫ T

t

∫ t

0
e−θ(s−u) 1

θ
(1 − e−θ(s−u))d〈B̄〉uds = B(t, T )

∫ t

0
e−θ(t−u) 1

θ
(1 − e−θ(t−u))d〈B̄〉u

+ 1
2 B(t, T )2

∫ t

0
e−2θ(t−u)d〈B̄〉u .

Thus, we obtain
∫ T

t
ft (s)ds = −A(t, T ) + 1

2 B(t, T )2qt + B(t, T )rt ,

which leads to the bond prices given above.

Remark 4.1 TheHull–White model under volatility uncertainty is also analyzed in a previous
work [18]. The paper shows how to obtain an arbitrage-free term structure in the Hull–White
model when there is uncertainty about the volatility. In order to achieve this, the structure of
the short rate dynamics has to be suitably modified. Here we get exactly the same structure.

4.3 TheVasicek term structure

The previous example shows that the Vasicek model needs to be adjusted in order to fit into
the HJM methodology when there is volatility uncertainty.

Example 4.3 If we use the same diffusion coefficient as in the previous example, we see that it
is not possible to exactly replicate the Vasicek model in the presence of volatility uncertainty.
The forward rates implied by the Vasicek term structure and the Hull–White term structure,
respectively, have the same diffusion coefficient. If we define β as in Example 4.2, then the
short rate dynamics are given by

rt = r0 +
∫ t

0

(
∂u f0(u) + θ f0(u) + qu − θru

)
du + B̄t ,

where the process q is defined as in Example 4.2. In order to obtain the short rate dynamics
of the Vasicek model, we need to make sure that, for all t ,

∂t f0(t) + θ f0(t) + qt = μ (2)

for a constant μ > 0, since the mean reversion level of the short rate is constant in the
Vasicek model. As equation (2) does not hold for any initial forward curve, the equation
imposes a condition on f0 that ensures a constant mean reversion level. If there is no volatility
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uncertainty, one can check that the initial forward curve of the Vasicek term structure satisfies
(2). In the presence of volatility uncertainty, there is no initial forward curve f0 satisfying
(2), since then the process q is uncertain, i.e., its realization qt is only known after time t ,
while f0 is observable at inception.

We can circumvent the problem by modifying the Vasicek model. Let us suppose that the
initial forward curve satisfies

∂t f0(t) + θ f0(t) = μ

for all t . That means, f0 solves a simple ordinary differential equation with initial condition
f0(0) = r0, which yields

f0(t) = e−θ t r0 + μB(0, t)

for all t , where the function B is defined as in Example 4.2. Then the short rate dynamics are
given by

rt = r0 +
∫ t

0
(μ + qu − θru)du + B̄t

and, as in Example 4.2, the bond prices are of the form

Pt (T ) = exp
(
A(t, T ) − 1

2 B(t, T )2qt − B(t, T )rt
)
,

where the function A, for all t and T , now satisfies

A(t, T ) = −μ

∫ T

t
B(s, T )ds.

So, instead of exactly replicating the Vasicek model, we can obtain a version of the Vasicek
model in which the mean reversion level of the short rate is adjusted by the process q .

Remark 4.2 The problem mentioned in Example 4.3 does not occur in Example 4.2 due to
the time dependent mean reversion level in the Hull–White model. Since the mean reversion
level can be time dependent and possibly uncertain, equation (2) only imposes a condition
on the mean reversion level but not on the initial forward curve.

In fact, the problematic is related to the ability of term structure models to match arbitrary
forward curves observed on the market, since the HJM methodology is based on modeling
the forward rate starting from an arbitrary initial forward curve. The Hull–White model (as
well as the Ho–Lee model) involves a time dependent parameter and hence, offers enough
flexibility to fit the model-implied term structure to any term structure obtained from data. On
the other hand, the Vasicek model has only three (constant) parameters, restricting the model
to a small class of term structures it can fit. Therefore, one has to impose further assumptions
on f0 to reproduce the Vasicek model in the HJM methodology in general, which, however,
does not work when there is volatility uncertainty.

4.4 Economic consequences

The examples show that arbitrage-free term structure models in the presence of volatility
uncertainty exhibit an additional uncertain factor. In all examples we consider there is an
uncertain process, always denoted by q , that enters the short rate dynamics and the bond
prices. The process q is uncertain, since it depends on the quadratic variation process. It
emerges due to the fact that the risk-neutral forward rate dynamics display drift uncertainty,
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as Theorem 3.1 shows. That means, the additional factor is required in order to make the
model arbitrage-free when the volatility is uncertain. Despite this difference, the short rate
dynamics and the bond prices still have an affine form. In fact, the resulting term structure
models, except the one in Example 4.3, are consistent with the classical ones. If there is
no volatility uncertainty, that is, if σ = σ , then Examples 4.1 and 4.2 correspond to the
traditional Ho–Lee model [16, Subsection 5.4.4] and the traditional Hull–White model [6,
Subsections 3.3.1, 3.3.2], respectively. In that case, the process q is no longer uncertain.
Hence, the process q is actually included in the Ho–Lee model and in the Hull–White model,
but it is hidden as there is no volatility uncertainty in the traditional models. The Vasicek
model does not include such a factor and thus, it has to be adjusted in order to be arbitrage-free
in the presence of volatility uncertainty, as demonstrated in Example 4.3. In such a case, the
additional factor can be interpreted as the market price of uncertainty, since the adjustment
in the drift of the short rate leads to risk-neutral dynamics [18].

The term structure models resulting from the examples are completely robust with respect
to the volatility. The bond prices in the examples are completely independent of the volatility.
They do not even depend on the extreme values of the volatility, σ and σ , which usually
happens in option pricing under volatility uncertainty. Of course, such a degree of robustness
has its price. Instead of the volatility, the bond prices depend on the additional factor q ,
which is determined by the quadratic variation of the driving risk factor. That means, the
term structure models we construct do not require any knowledge about how the volatility
evolves in the future. All necessary information is included in the quadratic variation of
the driver, that is, in the historical volatility. From a theoretical point of view, especially
regarding the motivation of volatility uncertainty given in the introduction, it is desirable to
have a term structure model that does not impose any assumptions on the future evolution of
the volatility. The need to specify the evaluations of the process q instead is not a problem,
since this, in principle, can be done by inferring the evolution of the historical volatility from
data. However, how these models perform in practice is a challenging question for future
research, as many applications of term structure models involve estimation procedures and
simulations [9], which is a nontrivial task in the presence of a family of probability measures.

5 Conclusion

In this paper, we study the famous HJM model in the presence of volatility uncertainty. The
main result is a sufficient condition, called drift condition, for the absence of arbitrage on
the related bond market. In the presence of volatility uncertainty, the absence of arbitrage
requires additional market prices, which are referred to as the market prices of uncertainty.
The drift condition fully characterizes the risk-neutral dynamics of the forward rate in terms
of its diffusion term. Since the latter also includes the uncertain volatility, the risk-neutral
forward rate dynamics exhibit drift uncertainty. Using the drift condition, it is possible to
construct arbitrage-free term structure models in the presence of volatility uncertainty, which
we demonstrate in examples. In particular, we obtain robust versions of the Ho–Lee term
structure and the Hull–White term structure, respectively. In examples where this is not
possible, the drift condition shows how to adjust the model in order to be arbitrage-free when
the volatility is uncertain, which we show in an example corresponding to the Vasicek term
structure. The resulting term structures do not rely on any assumption how the volatility
evolves in the future. Instead, the term structure is determined by the historical volatility. As
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a consequence, the resulting term structure models are completely robust with respect to the
volatility.
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Appendix

A: Admissible integrands for the forward rate

We construct the space of admissible integrands for the forward rate dynamics as follows. Let
us consider the measure space ([0, T ],B([0, T ]), λ), where T < ∞, B([0, T ]) denotes the
Borel σ -algebra on [0, T ], and λ is the Lebesgue measure on [0, T ], and the space Mp

G(0, T )

for p ≥ 1, which is a Banach space with respect to the norm ‖ · ‖p , defined by

‖η‖p := Ê

[∫ T

0
|ηt |pdt

] 1
p

.

for a process η = (ηt )0≤t≤T in Mp
G(0, T ). Then we define by M̃ p,0

G (0, T ) the space of all
functions φ mapping from [0, T ] into Mp

G(0, T ) such that

φ(s) =
n∑

i=1

ϕi1Ai (s),

where (ϕi )ni=1 is a finite sequence of processes ϕi = (ϕi
t )0≤t≤T in Mp

G(0, T ) and (Ai )
n
i=1 is

a finite sequence of pairwise disjoint sets Ai in B([0, T ]). We define the seminorm ‖ · ‖∼,p

by

‖φ‖∼,p :=
∫ T

0
‖φ(s)‖pds
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on the space M̃ p,0
G (0, T ). By considering the quotient space with respect to the null space

M̄ p
G(0, T ) := {

φ ∈ M̃ p,0
G (0, T )

∣∣ ‖φ‖∼,p = 0
}
,

still denoted by M̃ p,0
G (0, T ), we get a normed space. The completion of M̃ p,0

G (0, T ) under
the norm ‖ · ‖∼,p is denoted by M̃ p

G(0, T ), being the space of admissible integrands.
There is an explicit representation of the space of admissible integrands. It can be shown

[26, Section A.1] that the abstract completion of M̃ p,0
G (0, T ) is given by

M̃ p
G(0, T ) = {

φ : [0, T ] → Mp
G(0, T )

∣∣ φ is strongly measurable, ‖φ‖∼,p < ∞}
.

Afunctionφ : [0, T ] → Mp
G(0, T ) is called stronglymeasurable if it isB([0, T ])/B(Mp

G(0, T ))-
measurable and φ([0, T ]) is separable. Therefore, we know that φ ∈ M̃ p

G(0, T ) is a regular
stochastic process for a fixed s, i.e., φ(s) ∈ Mp

G(0, T ) for each s.
As a consequence, we can give a sufficient condition for functions to lie in this space.

Proposition A.1 Let φ : [0, T ] → Mp
G(0, T ) be continuous. Then φ ∈ M̃ p

G(0, T ).

Proof First, we show that φ is strongly measurable. Since φ is continuous, it is clearly
B([0, T ])/B(Mp

G(0, T ))-measurable. Furthermore, [0, T ] is separable and the image of a
continuous function with separable domain is separable. Hence, φ([0, T ]) is separable.

It is left to show that the norm of φ is finite. The norm ‖ · ‖p is obviously a continuous
function. Thus, the function f : R → R, s �→ ‖φ(s)‖p is continuous, since φ is continuous.
Therefore, ‖φ‖∼,p < ∞. 
�

By Proposition A.1, we have the following examples of functions in M̃ p
G(0, T ). First, we

know that continuous real-valued functions on [0, T ] × [0, T ] belong to M̃ p
G(0, T ).

Example A.1 The function φ : [0, T ] → Mp
G(0, T ), s �→ f (·, s) belongs to M̃ p

G(0, T ),
where f : [0, T ] × [0, T ] → R is continuous. φ maps into Mp

G(0, T ), since f (·, s) is
a continuous function for all s. This can be deduced from the representation of the space
Mp

G(0, T ) [20, Theorem 4.7]. The continuity of φ follows from

‖φ(s) − φ(s̃)‖p =
(∫ T

0
| f (t, s) − f (t, s̃)|pdt

) 1
p

and dominated convergence. Thus, by Proposition A.1, φ ∈ M̃ p
G(0, T ).

Second, the product of a continuous real-valued function on [0, T ] and an admissible
stochastic process lies in the space M̃ p

G(0, T ).

Example A.2 The function φ : [0, T ] → Mp
G(0, T ), s �→ f (s)η belongs to M̃ p

G(0, T ), where
f : [0, T ] → R is continuous and η = (ηt )0≤t≤T belongs to Mp

G(0, T ). Clearly, φ maps
into Mp

G(0, T ). The continuity of φ follows from

‖φ(s) − φ(s̃)‖p = ‖η‖p| f (s) − f (s̃)|.
Hence, Proposition A.1 implies that φ ∈ M̃ p

G(0, T ).

We are able to define integrals and, more importantly, double integrals for functions in
M̃ p

G(0, T ). First, we define the Bochner integral for simple functions φ ∈ M̃ p,0
G (0, T ),

∫ T

0
φ(s)ds :=

n∑
i=1

ϕiλ(Ai ).
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The Bochner integral is a linear operator mapping from M̃ p,0
G (0, T ) into Mp

G(0, T ). In addi-
tion, the operator is continuous, since we have the inequality∥∥∥∥

∫ T

0
φ(s)ds

∥∥∥∥
p

≤
∫ T

0
‖φ(s)‖pds. (3)

Thus, we can extend the operator to the completion M̃ p
G(0, T ), still satisfying (3). For

A ∈ B([0, T ]), we define
∫
A φ(s)ds := ∫ T

0 1A(s)φ(s)ds. Since the integral maps into

Mp
G(0, T ), we can define the double integral

∫ T
0

∫
A φt (s)dsdBi

t for φ ∈ M̃2
G(0, T ), mapping

into L2
G(�T ), and the double integrals

∫ T
0

∫
A ψt (s)dsdt and

∫ T
0

∫
A ψt (s)dsd〈Bi , B j 〉t for

ψ ∈ M̃1
G(0, T ), mapping into L1

G(�T ), for all i, j = 1, . . . , d .
We can also define double integrals for the reversed order of integration and interchange

the order. For this purpose, we use the following result [26, Proposition A.2.2].

Proposition A.2 Let φ ∈ M̃ p
G(0, T ), X be a Banach space, and F : Mp

G(0, T ) → X be a
continuous linear operator. Then we can define

∫
A F(φ(s))ds, mapping into X, and it holds

∫
A
(F ◦ φ)(s)ds = F

(∫
A

φ(s)ds

)
.

All stochastic integrals related to the G-Brownian motion are continuous linear operators.
Thus, Proposition A.2 allows us to define the integral

∫
A

∫ T
0 φt (s)dBi

t ds for φ ∈ M̃2
G(0, T ),

mapping into L2
G(�T ), and the integrals

∫
A

∫ T
0 ψt (s)dtds and

∫
A

∫ T
0 ψt (s)d〈Bi , B j 〉t ds

for ψ ∈ M̃1
G(0, T ), mapping into L1

G(�T ), for all i, j = 1, . . . , d . Moreover, we obtain a
version of Fubini’s theorem, which is an essential tool in the HJM model.

Corollary A.1 Let φ ∈ M̃2
G(0, T ) and ψ ∈ M̃1

G(0, T ). Then, for all i, j , it holds
∫
A

∫ T

0
φt (s)dB

i
t ds =

∫ T

0

∫
A

φt (s)dsdB
i
t ,

∫
A

∫ T

0
ψt (s)dtds =

∫ T

0

∫
A

ψt (s)dsdt,

∫
A

∫ T

0
ψt (s)d〈Bi , B j 〉t ds =

∫ T

0

∫
A

ψt (s)dsd〈Bi , B j 〉t .

In addition to the double integrals from above, we need to define more complex integrals.
In order to achieve this, we need the following proposition.

Proposition A.3 Let φ ∈ M̃ p
G(0, T ) and ψ : [0, T ] → Mp

G(0, T ), s �→ 1[0,s]φ(s). Then we
have ψ ∈ M̃ p

G(0, T ).

Proof First, we decompose ψ into several functions to show that it is strongly measurable.
Let us define the subspace

Mp := {
η ∈ Mp

G(0, T )
∣∣ η = 1[0,a], a ∈ [0, T ]} ⊂ Mp

G(0, T ).

and the functions f : [0, T ] → Mp, s �→ 1[0,s], g : [0, T ] → Mp × Mp
G(0, T ), s �→

( f (s), φ(s)), and h : Mp×Mp
G(0, T ) → Mp

G(0, T ), (η, ζ ) �→ ηζ . Thenwe haveψ = h◦g.
We deduce the measurability of ψ from the measurability of the decomposition. f is

continuous, since

‖1[0,a] − 1[0,ã]‖p = |a − ã|
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for a, ã ∈ [0, T ], and thus, f is B([0, T ])/B(Mp)-measurable. By assumption, φ

is B([0, T ])/B(Mp
G(0, T ))-measurable and so g is B([0, T ])/B(Mp) ⊗ B(Mp

G(0, T ))-
measurable.Now it is left to show that h isB(Mp)⊗B(Mp

G(0, T ))/B(Mp
G(0, T ))-measurable

to deduce the measurability of ψ . We equipMp × Mp
G(0, T ) with the norm ‖ · ‖, defined by

‖(η, ζ )‖ := max{‖η‖p, ‖ζ‖p}.
For a, ã ∈ [0, T ] and ζ = (ζt )0≤t≤T and ζ̃ = (ζ̃t )0≤t≤T in Mp

G(0, T ), we have

‖1[0,a]ζ − 1[0,ã]ζ̃‖p ≤ ‖ζ − ζ̃‖p + ‖1[a,ã]ζ̃‖p,

where the last term converges to 0 as a converges to ã. Therefore, h is continuous. So we
need to show that M ∈ B(Mp) ⊗ B(Mp

G(0, T )) for an open set M ⊂ Mp × Mp
G(0, T ) to

obtain the measurability of h. If M is open, we can represent it as a union of open balls in
Mp×Mp

G(0, T ). By the definition of ‖·‖, every open ball inMp×Mp
G(0, T ) can be written

as a rectangle whose sides are open balls inMp and Mp
G(0, T ), respectively. Hence, we can

represent M as a rectangle whose sides are open sets in Mp and Mp
G(0, T ), respectively.

Therefore, M ∈ B(Mp) ⊗ B(Mp
G(0, T )).

We show that the image ofψ is separable by using the continuity from the second step. By
assumption, the image of φ is separable. Moreover, [0, T ] is separable and f is continuous.
Thus, f ([0, T ]) is separable, implying that the image of g is separable. Due to the continuity
of h, also h(g([0, T ])) is separable. Since ψ = h ◦ g, it follows that ψ([0, T ]) is separable.

It is left to show that the norm of ψ is finite. We have
∫ T

0
‖ψ(s)‖pds ≤

∫ T

0
‖φ(s)‖pds < ∞,

which completes the proof. 
�
Due to Proposition A.3, we are able to define integrals of the form

∫ T
0

∫ T
t φt (s)dsdBi

t and,

by Proposition A.2,
∫ T
0

∫ s
0 φt (s)dBi

t ds for φ ∈ M̃2
G(0, T ), mapping into L2

G(�T ), for all i .
Moreover, Corollary A.1 implies that, for all i ,

∫ T

0

∫ T

t
φt (s)dsdB

i
t =

∫ T

0

∫ s

0
φt (s)dB

i
t ds.

The same holds if we replace dBi
t , M̃

2
G(0, T ), and L2

G(�T ) by dt , as well as d〈Bi , B j 〉t for
all j , M̃1

G(0, T ), and L1
G(�T ), respectively.

In the end,wedealwith the differentiability of integrals and, especially, the differentiability
of products of two integrals, used for the calculations on the diffusion coefficient of the
forward rate. As the classical Lebesgue integral, integrals of functions in M̃ p

G(0, T ) are,
loosely speaking, differentiable and absolutely continuous.

Proposition A.4 Let φ ∈ M̃ p
G(0, T ) and Φ : [0, T ] → Mp

G(0, T ), s �→ ∫ s
0 φ(u)du. Then

(i) Φ is almost everywhere differentiable and Φ ′ = φ,
(ii) for all ε > 0, there exists a δ > 0 such that

n∑
i=1

‖Φ(si ) − Φ(s̃i )‖p < ε

for every sequence of disjoint open intervals ((s̃i , si ))ni=1 such that
∑n

i=1(si − s̃i ) < δ.
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Proof We deduce all statements from the inequality (3) and the properties of the Lebesgue
integral. By (3), we have

∥∥ 1
s−s̃

(
Φ(s) − Φ(s̃)

) − φ(s̃)
∥∥
p ≤ ∣∣ 1

s−s̃

(
f (s) − f (s̃)

)∣∣,
where f : [0, T ] → R is defined by f (s) := ∫ s

0 ‖φ(u)−φ(s̃)‖pdu. Due to the differentiabil-
ity of the Lebesgue integral, the expression on the right-hand side of the previous inequality
converges to 0 as s converges to s̃ for almost all s̃. Therefore, Φ is almost everywhere
differentiable and Φ ′ = φ. Furthermore, we can use (3) to obtain

‖Φ(s) − Φ(s̃)‖p ≤ |g(s) − g(s̃)|,
where g : [0, T ] → R is defined by g(s) := ∫ s

0 ‖φ(u)‖pdu. Since the Lebesgue integral is
absolutely continuous, for all ε > 0, we can find a δ > 0 such that

n∑
i=1

‖Φ(si ) − Φ(s̃i )‖p ≤
n∑

i=1

|g(si ) − g(s̃i )| < ε

for every sequence of disjoint open intervals ((s̃i , si ))ni=1 such that
∑n

i=1(si − s̃i ) < δ. 
�
Conversely, we have a version of the fundamental theorem of calculus for functions in
M̃ p

G(0, T ) which are differentiable and absolutely continuous.

Proposition A.5 Let Φ : [0, T ] → Mp
G(0, T ) be almost everywhere differentiable and Φ ′ =

φ, where φ ∈ M̃ p
G(0, T ). If for all ε > 0, there exists a δ > 0 such that

n∑
i=1

‖Φ(si ) − Φ(s̃i )‖p < ε

for every sequence of disjoint open intervals ((s̃i , si ))ni=1 such that
∑n

i=1(si − s̃i ) < δ, then
it holds

Φ(s) − Φ(0) =
∫ s

0
φ(u)du.

Proof We prove the assertion by using a consequence of the Hahn-Banach theorem and the
fundamental theorem of calculus for Lebesgue integrals. Let F : Mp

G(0, T ) → R be a
continuous linear functional. Then we have

|(F ◦ Φ)(s) − (F ◦ Φ)(s̃)| ≤ C‖Φ(s) − Φ(s̃)‖p

for some constantC > 0. Due to the last assumption onΦ, we deduce that F ◦Φ is absolutely
continuous. The fundamental theorem of calculus for Lebesgue integrals implies that F ◦ Φ

is almost everywhere differentiable, its derivative is integrable, and

(F ◦ Φ)(s) − (F ◦ Φ)(0) =
∫ s

0
(F ◦ Φ)′(u)du.

Furthermore, (F ◦ Φ)′ = F ◦ φ, since the continuity and the linearity of F imply

|(F ◦ Φ)′(s̃) − (F ◦ φ)(s̃)| ≤ ∣∣(F ◦ Φ)′(s̃) − 1
s−s̃

(
(F ◦ Φ)(s) − (F ◦ Φ)(s̃)

)∣∣
+ C

∥∥ 1
s−s̃

(
Φ(s) − Φ(s̃)

) − φ(s̃)
∥∥
p
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for some constantC > 0, where the terms on the right-hand side converge to 0 as s converges
to s̃ for almost all s̃. Hence, we obtain

(F ◦ Φ)(s) − (F ◦ Φ)(0) =
∫ s

0
(F ◦ φ)(u)du.

By Proposition A.2 and the linearity of F , it holds

F

(
Φ(s) − Φ(0) −

∫ s

0
φ(u)du

)
= 0.

Since this holds for every continuous linear functional, the Hahn-Banach theorem implies
the assertion. 
�
In order to derive a product rule for differentiable and absolutely continuous functions, we
use the following lemma.

Lemma A.1 Let φ,ψ ∈ M̃2p
G (0, T ) and υ : [0, T ] → Mp

G(0, T ), s �→ φ(s)ψ(s), where φ

is continuous. Then υ ∈ M̃ p
G(0, T ).

Proof First of all, we know that υ maps into Mp
G(0, T ), since one can show, by Hölder’s

inequality, that the product of two processes in M2p
G (0, T ) belongs to Mp

G(0, T ).
Next, we show that υ is strongly measurable. The strong measurability follows as in

the proof of Proposition A.3 if f : M2p
G (0, T ) × M2p

G (0, T ) → Mp
G(0, T ), defined by

f (η, ζ ) := ηζ , is continuous, where we equip M2p
G (0, T ) × M2p

G (0, T ) with the norm ‖ · ‖,
defined by

‖(η, ζ )‖ := max{‖η‖2p, ‖ζ‖2p}.
By applying Hölder’s inequality, for (η, ζ ) = (ηt , ζt )0≤t≤T and (η̃, ζ̃ ) = (η̃t , ζ̃t )0≤t≤T in
M2p

G (0, T ) × M2p
G (0, T ), we have

‖ηζ − η̃ζ̃‖p ≤ ‖η‖2p‖ζ − ζ̃‖2p + ‖η − η̃‖2p‖ζ̃‖2p.
Therefore, f is continuous, since ‖η‖2p and ‖ζ̃‖2p are finite and ‖η − η̃‖2p and ‖ζ − ζ̃‖2p
converge to 0 as (η, ζ ) converges to (η̃, ζ̃ ).

Finally, we deduce that the norm of υ is finite. The function s �→ ‖φ(s)‖2p is continuous
due to the continuity of φ and the norm and hence, bounded. Thus,

∫ T

0
‖υ(s)‖pds ≤

∫ T

0
‖φ(s)‖2p‖ψ(s)‖2pds ≤ C

∫ T

0
‖ψ(s)‖2pds < ∞

for some constant C > 0, which completes the proof.

With the help of Lemma A.1, we obtain the desired product rule.

Proposition A.6 Let Φ,Ψ : [0, T ] → M2p
G (0, T ) be almost everywhere differentiable and

Φ ′ = φ and Ψ ′ = ψ , where φ,ψ ∈ M̃2p
G (0, T ). If for all ε > 0, there exists a δ > 0 such

that
n∑

i=1

‖Φ(si ) − Φ(s̃i )‖p,

n∑
i=1

‖Ψ (si ) − Ψ (s̃i )‖p < ε
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for every sequence of disjoint open intervals ((s̃i , si ))ni=1 such that
∑n

i=1(si − s̃i ) < δ, then
it holds

Φ(s)Ψ (s) − Φ(0)Ψ (0) =
∫ s

0
φ(u)Ψ (u) + Φ(u)ψ(u)du.

Proof We show that ϒ : [0, T ] → Mp
G(0, T ), s �→ Φ(s)Ψ (s) satisfies the assumptions of

Proposition A.5 to deduce the assertion. Using Hölder’s inequality, we have

‖ϒ(s) − ϒ(s̃)‖p ≤ ‖Φ(s)‖2p‖Ψ (s) − Ψ (s̃)‖2p + ‖Φ(s) − Φ(s̃)‖2p‖Ψ (s̃)‖2p.
The last assumption implies that s �→ ‖Φ(s)‖2p and s̃ �→ ‖Ψ (s̃)‖2p are continuous and
thus, bounded. Hence, for all ε > 0, we can find a δ > 0 such that

n∑
i=1

‖ϒ(si ) − ϒ(s̃i )‖p < ε

for every sequence of disjoint open intervals ((s̃i , si ))ni=1 such that
∑n

i=1(si − s̃i ) < δ. Let
υ : [0, T ] → Mp

G(0, T ), s �→ φ(s)Ψ (s) + Φ(s)ψ(s). By Lemma A.1, υ ∈ M̃ p
G(0, T ),

since φ,ψ ∈ M̃2p
G (0, T ) and Φ and Ψ are continuous and belong to M̃2p

G (0, T ) by the
assumptions. Furthermore, we have

∥∥ 1
s−s̃

(
ϒ(s) − ϒ(s̃)

) − υ(s̃)
∥∥
p ≤ ∥∥ 1

s−s̃

(
ϒ(s) − Φ(s̃)Ψ (s)

) − φ(s̃)Ψ (s)
∥∥
p

+ ‖φ(s̃)Ψ (s) − φ(s̃)Ψ (s̃)‖p

+ ∥∥ 1
s−s̃

(
Φ(s̃)Ψ (s) − ϒ(s̃)

) − Φ(s̃)ψ(s̃)
∥∥
p.

The three terms on the right-hand side converge to 0 as s converges to s̃ for almost all s̃. The
first term converges almost everywhere to 0, since

∥∥ 1
s−s̃

(
ϒ(s) − Φ(s̃)Ψ (s)

) − φ(s̃)Ψ (s)
∥∥
p ≤ ∥∥ 1

s−s̃

(
Φ(s) − Φ(s̃)

) − φ(s̃)
∥∥
2p‖Ψ (s)‖2p,

Φ is almost everywhere differentiable, Φ ′ = φ, and s �→ ‖Ψ (s)‖2p is continuous. The
second term converges to 0, since

‖φ(s̃)Ψ (s) − φ(s̃)Ψ (s̃)‖p ≤ ‖φ(s̃)‖2p‖Ψ (s) − Ψ (s̃)‖2p,
φ(s̃) ∈ M2p

G (0, T ), and s �→ ‖Ψ (s)‖2p is continuous. The third term converges to 0 almost
everywhere, since

∥∥ 1
s−s̃

(
Φ(s̃)Ψ (s) − ϒ(s̃)

) − Φ(s̃)ψ(s̃)
∥∥
p ≤ ‖Φ(s̃)‖2p

∥∥ 1
s−s̃

(
Ψ (s) − Ψ (s̃)

) − ψ(s̃)
∥∥
2p,

Φ(s̃) ∈ M2p
G (0, T ), Ψ is almost everywhere differentiable, and Ψ ′ = ψ . Therefore, ϒ is

almost everywhere differentiable and ϒ ′ = υ. This completes the proof. 
�
Combining Proposition A.4 and Proposition A.6, we have the following result, which we
apply to the diffusion coefficient of the forward rate.

Corollary A.2 Let φ,ψ ∈ M̃2p
G (0, T ) andΦ,Ψ : [0, T ] → Mp

G(0, T ) be defined byΦ(s) :=∫ s
0 φ(u)du and Ψ (s) := ∫ s

0 ψ(u)du, respectively. Then it holds

Φ(s)Ψ (s) =
∫ s

0
φ(u)Ψ (u) + Φ(u)ψ(u)du.
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B: Regularity of the discounted bonds

In order to show that the discounted bonds are sufficiently regular,we consider the exponential
of a diffusion process driven by a G-Brownian motion. Let us define the process X =
(Xt )0≤t≤T by

Xt := exp

(∫ t

0
audu +

d∑
i=1

∫ t

0
biudB

i
u +

d∑
i, j=1

∫ t

0
ci, ju d〈Bi , B j 〉u

)
,

where a = (at )0≤t≤T and ci, j = (ci, jt )0≤t≤T belong to M1
G(0, T ) and bi = (bit )0≤t≤T

belongs to M2
G(0, T ) for all i, j = 1, . . . , d . Then the dynamics of X are given by

Xt = 1 +
∫ t

0
au Xudu +

d∑
i=1

∫ t

0
biu XudB

i
u +

d∑
i, j=1

∫ t

0
(ci, ju + 1

2b
i
ub

j
u)Xud〈Bi , B j 〉u

by Itô’s formula for G-Brownian motion.
The following result provides a sufficient condition ensuring that the dynamics of the

process X are regular. As a consequence, we obtain that X itself is well-posed.

Proposition A.7 If there exists a p > 1 such that a, ci, j ∈ Mp
G(0, T ) and bi ∈ M2p

G (0, T )

for all i, j = 1, . . . , d and there exist p̃ > p∗ and q̃ > 2, where p∗ := 2pq
p−q for some

q ∈ (1, p) such that

Ê

[∫ T

0
exp

(
p̃q̃
q̃−2

(∫ t

0
audu +

d∑
i, j=1

∫ t

0
ci, ju d〈Bi , B j 〉u

))
dt

]
< ∞,

Ê

[∫ T

0
exp

(
1
2 ( p̃q̃)2

d∑
i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)
dt

]
< ∞,

then we have X ∈ Mp∗
G (0, T ). In particular, this implies aX , (ci, j + 1

2b
ib j )X ∈ M1

G(0, T )

and bi X ∈ M2
G(0, T ) for all i, j = 1, . . . , d.

Proof In order to show that X ∈ Mp∗
G (0, T ), we use the characterization of the space

Mp∗
G (0, T ) from Hu, Wang, and Zheng [20]. The space Mp∗

G (0, T ) consists of all progres-

sively measurable processes η = (ηt )0≤t≤T such that ‖η‖p∗
p∗ < ∞, η has a quasi-continuous

version, and

lim
n→∞ Ê

[∫ T

0
|ηt |p∗

1{|ηt |≥n}dt
]

= 0

[20, Theorem 4.7]. Since a, ci, j ∈ Mp
G(0, T ) and bi ∈ M2p

G (0, T ) for all i, j , we know that
X is progressively measurable and has a quasi-continuous version. Therefore, since

Ê

[∫ T

0
|Xt |p∗

1{|Xt |≥n}dt
]

≤ 1
n p̃−p∗ Ê

[∫ T

0
|Xt | p̃dt

]
,
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it is left to show that ‖X‖ p̃
p̃ < ∞ in order to deduce that X ∈ Mp∗

G (0, T ). We have

Ê

[∫ T

0
|Xt | p̃dt

]
= Ê

[ ∫ T

0
exp

(
p̃

d∑
i=1

∫ t

0
biudB

i
u − 1

2 p̃
2q̃

d∑
i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)

× exp

(
1
2 p̃

2q̃
d∑

i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)

× exp

(
p̃

(∫ t

0
audu +

d∑
i, j=1

∫ t

0
ci, ju d〈Bi , B j 〉u

))
dt

]
.

By Hölder’s inequality, we get

Ê

[∫ T

0
|Xt | p̃dt

]
≤ Ê

[∫ T

0
exp

(
p̃q̃

d∑
i=1

∫ t

0
biudB

i
u − 1

2 ( p̃q̃)2
d∑

i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)
dt

] 1
q̃

× Ê

[∫ T

0
exp

(
1
2 ( p̃q̃)2

d∑
i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)
dt

] 1
q̃

× Ê

[∫ T

0
exp

(
p̃q̃
q̃−2

(∫ t

0
audu +

d∑
i, j=1

∫ t

0
ci, ju d〈Bi , B j 〉u

))
dt

] q̃−2
q̃

.

By assumption, we know that the second and the third term on the right-hand side are finite.
Hence, it is left to show that the first term is also finite. We can use the classical Fubini
theorem and the last assumption to get

EP

[
exp

(
1
2 ( p̃q̃)2

d∑
i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)]
< ∞

for almost all t for all P ∈ P . Thus, we know that Novikov’s condition is satisfied, which
implies that

EP

[
exp

(
p̃q̃

d∑
i=1

∫ t

0
biudB

i
u − 1

2 ( p̃q̃)2
d∑

i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)]
= 1

for almost all t for all P ∈ P . Integrating and using Fubini’s theorem once more, we obtain

EP

[∫ T

0
exp

(
p̃q̃

d∑
i=1

∫ t

0
biudB

i
u − 1

2 ( p̃q̃)2
d∑

i, j=1

∫ t

0
biub

j
ud〈Bi , B j 〉u

)
dt

]
= T

for all P ∈ P , which implies the desired finiteness.
We are left to show that aX , (ci, j + 1

2b
ib j )X ∈ M1

G(0, T ) and bi X ∈ M2
G(0, T ) for

all i, j . By the argument from the first step, we need to show that ‖aX‖qq < ∞ in order to
deduce that aX ∈ M1

G(0, T ). By Hölder’s inequality, it holds
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Ê

[∫ T

0
|at Xt |qdt

]
≤ Ê

[∫ T

0
|at |pdt

] q
p

Ê

[∫ T

0
|Xt | 12 p∗

dt

] p−q
p

.

The two terms on the right-hand side are finite, since a ∈ Mp
G(0, T ) and X ∈ Mp∗

G (0, T ).
Thus, we obtain ‖aX‖qq < ∞. We can show that (ci, j + 1

2b
ib j )X ∈ M1

G(0, T ) and bi X ∈
M2

G(0, T ) for all i, j in the same way. 
�
If a, bi , and ci, j , for all i, j , satisfy the assumptions of Proposition A.7, we get Xt ∈ L1

G(�t )

for all t by Itô’s formula. If, in addition, a = 0 = ci, j + 1
2b

ib j for all i, j , we even have
Xt ∈ L2

G(�t ) for all t .
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