
Pferschy, Ulrich; Schauer, Joachim; Thielen, Clemens

Article — Published Version

Approximating the product knapsack problem

Optimization Letters

Provided in Cooperation with:
Springer Nature

Suggested Citation: Pferschy, Ulrich; Schauer, Joachim; Thielen, Clemens (2021) : Approximating the
product knapsack problem, Optimization Letters, ISSN 1862-4480, Springer, Berlin, Heidelberg, Vol.
15, Iss. 8, pp. 2529-2540,
https://doi.org/10.1007/s11590-021-01760-x

This Version is available at:
https://hdl.handle.net/10419/287323

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s11590-021-01760-x%0A
https://hdl.handle.net/10419/287323
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Optimization Letters (2021) 15:2529–2540
https://doi.org/10.1007/s11590-021-01760-x

ORIG INAL PAPER

Approximating the product knapsack problem

Ulrich Pferschy1 · Joachim Schauer2 · Clemens Thielen3

Received: 9 April 2020 / Accepted: 27 May 2021 / Published online: 4 June 2021
© The Author(s) 2021

Abstract
We consider the product knapsack problem, which is the variant of the classical
0-1 knapsack problem where the objective consists of maximizing the product of
the profits of the selected items. These profits are allowed to be positive or nega-
tive. We present the first fully polynomial-time approximation scheme for the product
knapsack problem, which is known to be weakly NP-hard. Moreover, we analyze the
approximation quality achieved by a natural extension of the classical knapsack greedy
procedure to the product knapsack problem.

Keywords Knapsack problem · Approximation scheme · Greedy procedure

1 Introduction

The 0-1 knapsack problem (KP) is a well-studied combinatorial optimization problem
that has been treated extensively in the literature, with two monographs [3,4] devoted
to KP and its relatives. Given a positive knapsack capacityC and n items j = 1, . . . , n
with positive weightsw j and profits p j , the task in the classical 0-1 knapsack problem
is to select a subset of items with maximum total profit subject to the constraint that
the total weight of the selected items may not exceed the knapsack capacity. The
0-1 knapsack problem is (weakly) NP-hard, but it admits a fully polynomial-time

B Clemens Thielen
clemens.thielen@tum.de

Ulrich Pferschy
pferschy@uni-graz.at

Joachim Schauer
joachim.schauer@fh-joanneum.at

1 Department of Statistics and Operations Research, University of Graz, Universitaetsstrasse 15,
A-8010 Graz, Austria

2 Institute of Internet Technologies & Applications, FH JOANNEUM, Werk-VI-Strasse 46,
A-8605 Kapfenberg, Austria

3 TUM Campus Straubing, Technical University of Munich, Essigberg 3, D-94315 Straubing, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-021-01760-x&domain=pdf
http://orcid.org/0000-0003-0897-3571

2530 U. Pferschy et al.

approximation scheme (FPTAS) and can be solved exactly in pseudopolynomial time
by dynamic programming (cf. [3]).

The product knapsack problem (PKP) is a new addition to the knapsack family. It
has recently been introduced in [1] and is formally defined as follows:

Definition 1 (Product knapsack problem (PKP))

INSTANCE: Items j ∈ N := {1, . . . , n} with weights w j ∈ Z and profits p j ∈ Z,
and a positive knapsack capacity C ∈ N+.

TASK: Find a subset S ⊆ N with
∑

j∈S w j ≤ C such that
∏

j∈S p j is
maximized.

The solution S = ∅ is always feasible and is assumed to yield an objective value of
zero. Note that the assumption that the knapsack capacity as well as all weights and
profits are integers is without loss of generality. Indeed, any instance with rational
input data can be transformed into an equivalent instance with integer input data in
polynomial time by multiplying all numbers by their lowest common denominator.

D’Ambrosio et al. [1] list several application scenarios for PKP, in particular in the
area of computational social choice, and also provide pointers to literature on other
nonlinear knapsack problems. Furthermore, two different ILP formulations for PKP
are presented and compared from both a theoretical and a computational perspective.
In addition, D’Ambrosio et al. [1] develop an algorithm performing dynamic program-
ming by weights with pseudopolynomial running timeO(nC). A computational study
exhibits the strengths and weaknesses of the dynamic program and the ILP approaches
for determining exact solutions of PKP depending on the characteristics of the test
instances.

Concerning the complexity of PKP, a short proof of weak NP-hardness is given
as a side remark in [1]. This proof, however, uses a reduction from KP and requires
an exponential blow-up of the profits of the given instance of KP (by putting them
into the exponent of 2). Since KP is only weakly NP-hard, this does not prove the
desired hardness result. However, a valid NP-hardness proof for PKP has recently
been provided in [2], which shows that the problem is weakly NP-hard even when all
profits are required to be positive.

Note that this proof requires concepts of advanced calculus. As a possibly useful
alternative,weprovide a simpler proof using only elementary operations in an extended
version of this paper, which is available as a technical report [5].

1.1 Our contribution

In this paper,we provide anFPTAS for PKPbased on dynamic programming by profits.
Since PKP is weakly NP-hard, an FPTAS is the best approximation result possible
for the problem unless P = NP. Moreover, the construction of an FPTAS deserves
attention since standard greedy-type algorithms do not yield a constant approximation
ratio for PKP.We demonstrate this in Sect. 4 by providing a tight analysis of the greedy
algorithm obtained by extending the classical greedy procedure for KP to PKP in the
natural way.

123

Approximating the product knapsack problem 2531

We do not report computational experiments on the FPTAS or the greedy algo-
rithm. The presented pseudocode descriptions are provided in order to illustrate the
algorithms and allow a rigorous analysis of the obtained approximation ratios, but are
not optimized for practical efficiency.

2 Preliminaries

In contrast to KP, both the item weights w j and the item profits p j are allowed to be
negative in PKP. However, one can exclude certain weight-profit combinations that
yield “useless” items, which leads to the following assumption used throughout the
paper:

Assumption 1 Any instance of PKP satisfies:

(a) Any single item fits into the knapsack, i.e., w j ≤ C for all j ∈ N.
(b) All profits are nonzero, i.e., p j ∈ Z \ {0} for all j ∈ N.
(c) For each item j ∈ N with negative profit p j < 0, there exists another item j ′ ∈

N \ { j} with negative profit p j ′ < 0 such that w j + w j ′ ≤ C.
(d) All weights are nonnegative, i.e., w j ∈ N0 for all j ∈ N.
(e) All items with weight zero have negative profit, i.e., p j < 0 if w j = 0.

We note that Assumption 1 imposes no loss of generality and can easily be checked
in polynomial time. Indeed, items j ∈ N violating (a), (b), or (c) can never be part
of any feasible solution with positive objective value and may, thus, be removed from
the instance. The nonnegativity of the weights w j demanded in (d) has been shown
to impose no loss of generality in [1]. For (e), we note that items j with w j = 0 can
always be assumed to be packed if their profit is positive (but items j with w j = 0
and negative profit remain part of the optimization).

Using Assumption 1 (b), the item set N can be partitioned into N+ := { j ∈ N |
p j ≥ 1} and N− := { j ∈ N | p j ≤ −1}. For convenience, we define pmax :=
max j∈N |p j |, p+

max := max j∈N+ p j , and p−
max := max j∈N− |p j |.

Throughout the paper, we denote an optimal solution set for a given instance of
PKP by S∗ and the optimal objective value by z∗. Note that we must always have
z∗ ≥ 1 since packing any item from N+ or any feasible pair of items from N− yields
an objective value of at least 1.

Definition 2 For 0 < α ≤ 1, an algorithm A that computes a feasible solution set S ⊆
N with

∏
j∈S p j ≥ α · z∗ in polynomial time for every instance of PKP is called

an α-approximation algorithm for PKP. The value α is then called the approximation
ratio of A.

A polynomial-time approximation scheme (PTAS) for PKP is a family of algo-
rithms (Aε)ε>0 such that, for each ε > 0, the algorithm Aε is a (1− ε)-approximation
algorithm for PKP. A PTAS (Aε)ε>0 for PKP is called a fully polynomial-time approx-
imation scheme (FPTAS) if the running time of Aε is additionally polynomial in 1

ε
.

Throughout the paper, log(x) always refers to the base 2 logarithm of x and ln(x)
refers to the natural logarithm of x .

123

2532 U. Pferschy et al.

3 A fully polynomial-time approximation scheme

Wenowderive a fully polynomial-time approximation scheme (FPTAS) for PKPbased
on dynamic programming.

The most common approach for the exact solution of knapsack-type problems in
pseudo-polynomial time applies dynamic programming by weights. This means that,
for every capacity value d = 0, 1, . . . ,C , the largest profit value reachable by a
feasible solution is determined, which yields a running time polynomial in C (see
[3, Sec. 2.3]). However, for obtaining fully polynomial-time approximation schemes,
one usually performs dynamic programming by profits. In this case, for every profit
value p up to some upper boundU on the objective function value, the smallest weight
required for a feasible solution with profit p is sought, which leads to a running time
polynomial in U (see [3, Lemma 2.3.2]). Then, the profit space is simplified in some
way, e.g., by scaling (cf. [3, Sec. 2.6]), such that the running time of the dynamic
program becomes polynomial and the incurred loss of accuracy remains bounded.
D’Ambrosio et al. [1] provide an algorithm solving PKP with dynamic programming
byweights, where each entry of the dynamic programming array contains the objective
value of a subproblem. However, exchanging the roles of profits and weights (as it is
done, e.g., for KP, see [3, Sec. 2.3]), would require a dynamic programming array of
lengthO(pnmax), which is exponential and does not permit a suitable scaling procedure.

An obvious way out of this dilemmawould be the application of the logarithm to the
profits. In fact, such an approach is suggested as a side remark in [1, Sec. 3] for dynamic
programming byweights (without commenting on the details of the rounding process).
For dynamic programming by profits, however, the profit values must be mapped to
integers as indices of the dynamic programming array and there seems to be no way
to preserve optimality in such a process. It should also be noted that applying any k-
approximation algorithm for KP to the instance resulting from logarithmization would
only yield a (1/z∗)1/k-approximation for PKP. Thus, constant-factor approximations
for PKP require different approaches.

We now construct a scaled profit space that actually yields a (1−ε)–approximation
for PKP. Our scaling construction is based on a parameter K > 0 depending on ε,
which will be defined later. For every item j , we define an integer scaled profit value
in the logarithmized space as

p̃ j :=
⌊
log(|p j |)

K

⌋

. (1)

Since |p j | ≥ 1, we have p̃ j ≥ 0, and we obtain p̃ j = 0 if and only if |p j | = 1.
Note that an item j with p j = −1 and p̃ j = 0 might still be useful for changing

the sign of the solution of PKP. Analogous to pmax, we define p̃max :=
⌊
log(pmax)

K

⌋
.

Ruling out trivial instances, we can assume without loss of generality that pmax ≥ 2,
so log(pmax) ≥ 1.

Regarding the computability of the scaled profits p̃ j , we observe that their definition
involves logarithms log(|p j |), which cannot be computed exactly in polynomial time.

123

Approximating the product knapsack problem 2533

However, these logarithms only appear in expressions that are rounded to integers, so
we do not have to compute these values exactly.

We define the following dynamic programming arrays for profit values p̃ =
0, 1, . . . , n · p̃max:

W+
j (p̃) := min

S⊆{1,..., j}

{
∑

i∈S
wi |

∑

i∈S
p̃i = p̃, |S ∩ N−| is even

}

,

W−
j (p̃) := min

S⊆{1,..., j}

{
∑

i∈S
wi |

∑

i∈S
p̃i = p̃, |S ∩ N−| is odd

}

.

Note that the empty set has even cardinality. For convenience, we set the minimum
over the empty set equal to +∞.

The computation of these arrays can be done by the following recursion, which is
related to Algorithm DPPKP in [1, Fig. 1]:

If p j ≥ 1, then:
W+

j (p̃) := min{W+
j−1(p̃), W

+
j−1(p̃ − p̃ j) + w j }

W−
j (p̃) := min{W−

j−1(p̃), W
−
j−1(p̃ − p̃ j) + w j }

If p j ≤ −1, then:
W+

j (p̃) := min{W+
j−1(p̃), W

−
j−1(p̃ − p̃ j) + w j }

W−
j (p̃) := min{W−

j−1(p̃), W
+
j−1(p̃ − p̃ j) + w j }

The obvious initialization is given byW+
0 (0) := 0 and setting all other entries (includ-

ing the hypothetical ones with p̃ < 0) to +∞.
The approximate solution set SA is represented by the array entry with max{ p̃ |

W+
n (p̃) ≤ C}. It follows by construction that SA maximizes the total profit in the

associated instance of KP with scaled profits p̃ j among all subsets of N that fulfill the
weight restriction and contain an even number of items from N−. In the following,
we show that, by choosing

K := ε

n2
> 0 , (2)

the set SA yields a (1−ε)-approximation for PKP and can be computed in polynomial
time via the above dynamic programming procedure. To this end, we use the following
two lemmas:

Lemma 1 For ε ∈ (0, 1), we have ε ≤ − log(1 − ε).

Proof The statement follows since, for any x ∈ (0, 1), we have

− log(1 − x) = − ln(1 − x)/ ln(2) ≥ − ln(1 − x) =
∞∑

k=1

xk

k
≥ x .

��

123

2534 U. Pferschy et al.

Lemma 2 Any optimal solution set S∗ for PKP satisfies

∑

j∈S∗
log(|p j |) ≥ log(pmax).

Proof Let jmax ∈ N denote an item with |p jmax | = pmax. If p jmax > 0, then the set
{ jmax}, which is feasible for PKP by Assumption 1 (a), has objective value pmax. If
p jmax < 0, Assumption 1 (c) implies that there exists another item j ′
= jmax with
p j ′ < 0 such that { jmax, j ′} is feasible for PKP, and this set has objective value
p j ′ · p jmax ≥ pmax since p j ′ ≤ −1 by Assumption 1 (b). Thus, in both cases, the
optimality of S∗ for PKP implies that

∏

j∈S∗
p j ≥ pmax ⇔ log

⎛

⎝
∏

j∈S∗
p j

⎞

⎠ ≥ log(pmax)

⇔ log

⎛

⎝
∏

j∈S∗
|p j |

⎞

⎠ ≥ log(pmax) ⇔
∑

j∈S∗
log(|p j |) ≥ log(pmax).

��
Proposition 1 The running time for computing SA is in O(n

4

ε
log(pmax)), which is

polynomial in 1/ε and encoding length of the input of PKP.

Proof Clearly, for each of the n items, one has to pass through the whole length of the
two dynamic programming arrays. Therefore, the total running time is in

O(n2 p̃max) = O
(

n2
log(pmax)

K

)

= O
(

n4
log(pmax)

ε

)

.

��
Proposition 2 The set SA yields a (1 − ε)–approximation for PKP.

Proof The proof consists of two parts. First, we analyze the effect of scaling by K
and rounding down in (1) by showing that SA yields an objective value close to the
value of an optimal solution set S∗ for PKP in the associated instance of KP with
profits log(|p j |). The argumentation closely follows the standard FPTAS for KP (see
[3, Sec. 2.6]):

∑

j∈SA

log(|p j |) ≥
∑

j∈SA

K ·
⌊
log(|p j |)

K

⌋

≥
∑

j∈S∗
K ·

⌊
log(|p j |)

K

⌋

(3)

≥
∑

j∈S∗
K ·

(
log(|p j |)

K
− 1

)

≥
∑

j∈S∗
log(|p j |) − n · K (4)

123

Approximating the product knapsack problem 2535

Table 1 Profits p j , weights w j ,
and scaled profits p̃ j of the
items in Example 1

item j 1 2 3 4 5

p j 1 210 − 1 −(210 + 1) 210 −1

w j 1 5 5 5 4

p̃ j 0 9998 10001 10000 0

To obtain the second inequality in (3), we exploited the optimality of SA for the KP
instance with profits p̃ j . We now set

ε′ := − log(1 − ε)

n · log(pmax)
> 0. (5)

Then, using the definition of K in (2) and that ε ≤ − log(1 − ε) for ε ∈ (0, 1), we
obtain

n · K = ε

n
≤ − log(1 − ε)

n
= ε′ · log(pmax),

and using that
∑

j∈S∗ log(|p j |) ≥ log(pmax) by Lemma 2, the chain of inequalities in
(3)–(4) yields that

∑

j∈SA

log(|p j |) ≥
∑

j∈S∗
log(|p j |) − ε′ · log(pmax) ≥ (1 − ε′)

∑

j∈S∗
log(|p j |).

In the second part of the proof, we simply raise two to the power of both sides of this

inequality, i.e., 2
∑

j∈SA log(|p j |) ≥
(

2

(∑
j∈S∗ log(|p j |)

))1−ε′

, so

∏

j∈SA

|p j | ≥
⎛

⎝
∏

j∈S∗
|p j |

⎞

⎠

1−ε′

= z∗ · (1/z∗)ε′ ≥ z∗ ·
(

1

(pmax)n

)ε′

(6)

= z∗ · 2−ε′ n log(pmax) = z∗ · 2log(1−ε) = (1 − ε)z∗. (7)

Here, the right inequality in (6) is derived from the trivial bound z∗ ≤ (pmax)
n , and

the second equality in (7) from the definition of ε′ in (5). Recalling that SA contains
an even number of items from N−, the claim follows. ��
Propositions 1 and 2 immediately yield the following theorem:

Theorem 1 There exists an FPTAS with running time in O(n
4

ε
log(pmax)) for PKP. ��

We conclude this section with an example illustrating how the FPTAS works.

Example 1 Consider the instance of PKP given by the n = 5 items with profits and
weights as shown in Table 1 and a knapsack capacity ofC := 9. We choose ε = 0.025
so that K = ε

n2
= 0.001.

123

2536 U. Pferschy et al.

The resulting scaled profits p̃ j are shown in the last row of Table 1 and we have
p̃max = 10001, so n · p̃max = 50005. Thus, the FPTAS computes the relevant dynamic
programming arrays W+

j (p̃) and W−
j (p̃) for all profit values p̃ = 0, 1, . . . , 50005.

Note that N+ = {1, 2, 5} and N− = {3, 5}.
For this instance, the FPTAS finds the optimal solution set S∗ = {3, 5} during the

computation of W+
5 (10001), which is given as follows:

W+
5 (10001) = min

{
W+

4 (10001), W−
4 (10001 − 0) + 4

} = min {+∞, 5 + 4} = 9

Here, W+
4 (10001) = +∞ since a scaled profit of 10001 cannot be obtained

by any subset S ⊆ {1, 2, 3, 4} containing an even number of items from N−,
and W−

4 (10001) = 5 since a scaled profit of 10001 is reachable by the sub-
set S = {3} ⊆ {1, 2, 3, 4} that contains an odd number of items from N−. Thus,
the solution set corresponding to the array entry W+

5 (10001) is {3, 5} = S∗, and
since p̃ = 10001 is indeed the highest value of p̃ for which W+

5 (p̃) ≤ C = 9, this is
also the set SA returned by the FPTAS.

4 A greedy-type algorithm

ForKP, the classical greedyprocedure is probablyoneof themost obviousfirst attempts
for anybody confronted with the problem. Hence, it is interesting to evaluate the
performance of a variant of this greedy procedure also for PKP.

It is known that, for obtaining a bounded approximation ratio for KP in the classical
greedy procedure, one has to take into account also the item with largest profit as a
singleton solution (cf. [3, Sec. 2.1]). Extending this requirement to the negative profits
allowed in PKP, we additionally determine, among all items with negative profits,
a feasible pair of items with largest profit product. Moreover, if the greedy solution
contains an odd number of items from N−, we simply remove the negative-profit item
whose profit has the smallest absolute value. This leads to the following natural greedy
algorithm for PKP, which we refer to as Product Greedy:

Algorithm 1 Algorithm Product Greedy

1: Sort and renumber the items in nonincreasing order of
log(|p j |)

w j
.

(Items j with w j = 0 are put to the beginning of the ordering.)
2: Perform the classical greedy procedure with this ordering yielding solution set S̄ ⊆ N .
3: if |S̄ ∩ N−| is odd then
4: j− := argmin{|p j | | j ∈ S̄ ∩ N−}
5: S := S̄ \ { j−}
6: else
7: S := S̄
8: end if
9: Let { j1, j2} ⊆ N− be a pair of items with w j1 +w j2 ≤ C maximizing the profit product p j1 · p j2 over

all such pairs.
10: Let j+max := argmax{p j | j ∈ N+} be an item with largest positive profit.

11: return the best among the three solutions S, { j1, j2}, and { j+max}.

123

Approximating the product knapsack problem 2537

We note that, since log(|p j |)/w j = log
(|p j |1/w j

)
and the logarithm is a strictly

increasing function, the sorting and renumbering of the items in step 1 of Product
Greedy can equivalently be done by sorting the items in nonincreasing order of
|p j |1/w j , which means that the values log(|p j |)/w j do not have to be computed in
the algorithm.

Let j+max := argmax{p j | j ∈ N+} denote an item with largest positive profit (i.e.,
with p j+max

= p+
max) as in Product Greedy. Similarly, we let j−max := argmax{|p j | |

j ∈ N−} denote an item with smallest negative profit (i.e., with −p j−max
= p−

max).
Then, by Assumption 1 (c), there exists another item in N− that can be packed into
the knapsack together with j−max. This implies that the profits of the items j− and j1, j2
considered in Product Greedy satisfy

p j1 · p j2 ≥ −p j−max
≥ −p j− . (8)

In the following analysis,wedenote the objective value obtainedbyProduct Greedy
by zH .

Theorem 2 (a) Product Greedy is a 1/(z∗)2/3-approximation algorithm for PKP.
(b) Product Greedy is a 1/(pmax)

2-approximation algorithm for PKP.

Proof The algorithm clearly runs in polynomial time. In order to analyze its approxi-
mation ratio, let s ∈ N be the split item, i.e., the first item in the given order that cannot
be packed into the knapsack anymore during the greedy procedure performed in step 2.
Similar to the analysis of the greedy procedure for KP, the analysis concentrates on
the split solution, i.e., the set of items S̄ = { j ∈ N | j ≤ s − 1} produced in step 2 of
Product Greedy.

We distinguish two cases depending on the number of items with negative profits
in S̄ and, for each of the two cases, two subcases depending on the sign of the profit ps
of the split item s:
Case 1: |S̄ ∩ N−| is even.
In this case, the solution S = S̄ is considered when choosing the best solution in
step 11. Consider the sign of the split item’s profit. If ps > 0, then

2 · log(zH) ≥ 2 · max

⎧
⎨

⎩

∑

j∈S̄
log(|p j |), log(p+

max)

⎫
⎬

⎭

≥
∑

j∈S̄
log(|p j |) + log(p+

max) ≥
s∑

j=1

log(|p j |).

Obviously, we also have log(zH) + log(p+
max) ≥ ∑s

j=1 log(|p j |).

123

2538 U. Pferschy et al.

Similarly, if ps < 0, then

2 · log(zH) ≥ 2 · max

⎧
⎨

⎩

∑

j∈S̄
log(|p j |), log(|p j1 |) + log(|p j2 |)

⎫
⎬

⎭

≥
∑

j∈S̄
log(|p j |) + log(|p j1 |) + log(|p j2 |)

≥
∑

j∈S̄
log(|p j |) + log(|ps |) =

s∑

j=1

log(|p j |),

where the third inequality follows from (8).Moreover, we have log(zH)+log(p−
max) ≥∑s

j=1 log(|p j |).
Case 2: |S̄ ∩ N−| is odd.
In this case, the solution S = S̄ \ { j−} is considered when choosing the best solution
in step 11. If ps > 0, we obtain

3 · log(zH) ≥ 3 · max

⎧
⎨

⎩

∑

j∈S̄\{ j−}
log(|p j |), log(|p j1 |) + log(|p j2 |), log(p+

max)

⎫
⎬

⎭

≥
∑

j∈S̄\{ j−}
log(|p j |) + log(|p j1 |) + log(|p j2 |) + log(p+

max)

≥
∑

j∈S̄\{ j−}
log(|p j |) + log(|p j−|) + log(ps) =

s∑

j=1

log(|p j |),

by invoking (8) again. In this case, we also have log(zH) + log(p−
max) + log(p+

max) ≥∑s
j=1 log(|p j |).

Similarly, if ps < 0, then

3 · log(zH) ≥ 3 · max

⎧
⎨

⎩

∑

j∈S̄\{ j−}
log(|p j |), log(|p j1 |) + log(|p j2 |)

⎫
⎬

⎭

≥
∑

j∈S̄\{ j−}
log(|p j |) + 2

(
log(|p j1 |) + log(|p j2 |)

)

≥
∑

j∈S̄\{ j−}
log(|p j |) + log(|p j−|) + log(|ps |) =

s∑

j=1

log(|p j |).

Moreover, we have log(zH) + 2 log(p−
max) ≥ ∑s

j=1 log(|p j |).
Summarizing all four cases, we always have 3 · log(zH) ≥ ∑s

j=1 log(|p j |).
Then, since

∑s
j=1 log(|p j |) is an upper bound on the optimal objective value of the

LP relaxation of the associated instance of KP with profits log(|p j |) (see, e.g., [3]),

123

Approximating the product knapsack problem 2539

Table 2 Profits p j and weights w j of the items in Example 2 with items indexed in nonincreasing order of
log(|p j |)/w j

item j 1 2 3 4 5 6

p j 2 M + 2 −(M + 1) M M −1

w j 1 M M M M M

we have
∑s

j=1 log(|p j |) ≥ ∑
j∈S∗ log(|p j |) = log(

∏
j∈S∗ p j) = log(z∗) (clearly,

|S∗ ∩ N−| must be even). This yields

3 · log(zH) ≥ log(z∗) ⇐⇒ zH ≥ (z∗)1/3

and proves the approximation ratio in (a).
Moreover, in all four cases the additive error in the logarithmic space can be bounded

by max{log(p+
max), log(p

−
max)}+ log(p−

max) ≤ 2 · log(pmax), which yields the approx-
imation ratio in (b). ��

The approximation ratios obtained by Product Greedy are rather disappointing.
The following example, however, shows that the analysis in the proof of Theorem 2 is
asymptotically tight and that a considerable deviation from the greedy principle would
be necessary to improve upon the obtained approximation ratios:

Example 2 Consider the instance of PKP given by the item profits and weights shown
in Table 2 and a knapsack capacity of C := 3M for some large, positive integer M .

Algorithm Product Greedy first finds S̄ = {1, 2, 3} in step 2, but has to remove
item 3 in step 5 since |S̄ ∩ N−| = 1, which yields S = {1, 2} with an objective value
of 2(M +2). The best negative pair found in step 9 is given by j1 = 3 and j2 = 6, and
has profit product M + 1. Finally, j+max = 2 with p j+max

= p+
max = M + 2 in step 10.

Therefore, Product Greedy returns the solution {1, 2} with an objective value of
zH = 2(M+2), while the optimal solution consists of items 2, 4, and 5 with objective
value z∗ = (M + 2)M2.

Acknowledgements The work of Ulrich Pferschy has been supported by the Field of Excellence
“COLIBRI” at the University of Graz

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123

2540 U. Pferschy et al.

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. D’Ambrosio, C., Furini, F., Monaci, M., Traversi, E.: On the product knapsack problem. Optim. Lett.
12(4), 691–712 (2018)

2. Halman, N., Kovalyov, M., Quilliot, A., Shabtay, D., Zofi, M.: Bi-criteria path problem with minimum
length and maximum survival probability. OR Spectr. 41, 469–489 (2019)

3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
4. Martello, S., Toth, P.: Knapsack problems: Algorithms and computer implementations. Wiley, New

Jersey (1990)
5. Pferschy, U., Schauer, J., Thielen, C.: The product knapsack problem: Approximation and complexity.

arXiv: 1901.00695. (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1901.00695

	Approximating the product knapsack problem
	Abstract
	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	3 A fully polynomial-time approximation scheme
	4 A greedy-type algorithm
	Acknowledgements
	References

