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Abstract
We develop a modified exploration–exploitation algorithm which allocates a fixed 
resource (e.g., a fixed budget) to several units with the objective to attain maximum 
sales. This algorithm does not require knowledge of the form and the parameters 
of sales response functions and is able to cope with additive random disturbances. 
Note that additive random disturbances, as a rule, are a component of sales response 
functions estimated by econometric methods. We compare the developed algorithm 
to three rules of thumb which in practice are often used to solve this allocation prob-
lem. The comparison is based on a Monte Carlo simulation for 384 experimental 
constellations, which are obtained from four function types, four procedures (includ-
ing our algorithm), similar/varied elasticities, similar/varied saturations, high/low 
budgets, and three disturbance levels. A statistical analysis of the simulation results 
shows that across a multi-period planning horizon the algorithm performs better 
than the rules of thumb considered with respect to two sales-related criteria.

Keywords Marketing resource allocation · Exploration–exploitation algorithm · 
Monte Carlo simulation · Optimization

JEL Classification M30 · C61 · C63

1 Introduction

Allocation decisions in marketing refer to decision variables like advertising budg-
ets, sales budgets, sales force sizes, and sales calls that are allocated to sales units 
like sales districts, customer groups, individual customers, and prospects. Studies 
using optimization methods and empirical sales response functions provide evidence 
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to the importance of such allocation decisions. These studies demonstrate that sales 
or profits can be increased by changing allocation of budgets, sales force or sales 
calls (Beswick and Cravens 1977; LaForge and Cravens 1985; Sinha and Zoltners 
2001). The average increase of profit contribution across studies analyzed in the 
review of Sinha and Zoltners (2001) compared to the current policies was 4.5% of 
which 71% are due to different allocations and 29% are due to size changes. The 
smaller second percentage can be explained by the well known flat maximum prin-
ciple (Mantrala et al. 1992). According to this principle, deviations of up to ±25% 
from the optimal value of a marketing decision variable affect profit only slightly. To 
our knowledge, Tull et al. (1986) were the first who demonstrate the flat maximum 
principle for different elasticities, contribution margins and sales response functions.

These studies all require knowledge of the mathematical form of sales response 
functions that reproduce the dependence of sales on decision variables. In addition, 
they require that parameter values of sales response functions are available, e.g., 
determined by econometric methods using historical data or by means of a decision 
calculus approach that draws upon managers’ experiences (Gupta and Steenburgh 
2008). Of course, there are situations in which both econometric methods and deci-
sion calculus cannot be applied. Lack of historical data (e.g., for new sales units), 
lack of variation of past allocations, lack of experiences with the investigated or sim-
ilar markets constitute possible causes.

In such difficult situations the question arises how management may arrive at 
rational allocation decisions nonetheless. To our knowledge, Albers (1997) devel-
oped the only relevant approach. The German version of this paper Albers (1998) 
has the same content but was published in a German journal, rather than being a 
conference paper. Albers demonstrates that, in spite of the lack of knowledge on 
functional form and parameters, the allocation problem for one resource may be 
solved by a heuristic that he obtains from the optimality conditions (see expression 
(6) in Sect. 2) by inserting previous period’s elasticity estimates and sales.

Albers (1997) applies this heuristic in several iterations (= periods) in each of 
which he updates elasticity estimates based on allocations and sales of the previous 
period. Being combined with this updating mechanism, the heuristic works without 
knowledge of functional forms and parameters of sales response functions. There-
fore this heuristic seems to be appropriate in situations in which neither econometric 
methods nor decision calculus approaches can be used.

In order to compare the performance of the heuristic to several rule of thumbs we 
generate sales by deterministic simulation, i.e., from response functions that are not 
subject to random disturbances. Albers (1997) investigates several sales response 
functions with different parameter values. Note that these functions and their param-
eters are not used by the heuristic. They only serve to generate sales by deterministic 
simulation.

To our knowledge the heuristic of Albers (1997) has been applied in two 
related publications (Fischer et  al. 2011, 2013). In contrast to Albers (1997) 
in both publications the elasticity estimates considered by the heuristic are not 
updated, but computed from parameters of sales response functions whose func-
tional forms are assumed to be known. In these publications the heuristic serves 
as iterative method that takes the place of a numerical optimization algorithm. 
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On the other hand, sales are generated by deterministic simulation in each period 
and generated sales of the previous period are input into the heuristic just like in 
Albers (1997).

In Fischer et  al. (2011) sales response functions are assumed multiplicative. 
The heuristic provides solutions close to those obtained by numerical optimiza-
tion. Fischer et  al. (2013) assume that one of two functional forms (multiplica-
tive, modified exponential) is true. These authors compute elasticities based on 
the assumed form of the response model alternatively from true and erroneous 
parameters. Sales are generated by deterministic simulation using error-free 
parameters. In case of erroneous parameters the heuristic performs better than 
numerical optimization because the former includes sales of previous periods 
generated by deterministic simulation with error-free parameters, whereas the lat-
ter computes sales from erroneous parameters.

Table  1 contains the main properties of the heuristics and simulation tech-
niques applied in previous relevant publications. It also characterizes the iterative 
algorithm that we introduce here and the type of simulation that we use. We note 
that the simulations presented in Albers (1997) and Fischer et  al. (2011, 2013) 
generate deterministic sales values, as their sales response models do not include 
an overall disturbance term. Of course, ignoring disturbances goes against econo-
metrically estimated sales response models that always comprise such a com-
ponent [for an excellent overview see Hanssens et  al. (2001)]. To remove this 
limitation we perform stochastic simulation based on response models that are 
subject to additive random disturbances.

We pursue the following research goals in this study. Firstly, we investigate 
the performance of the heuristic of Albers (1997) with included updating mecha-
nism to solve the allocation problem, if sales are not deterministic but are gen-
erated from sales response functions with additive disturbance terms. Secondly, 
we develop an iterative algorithm for non-deterministic sales. Like the heuris-
tic in Albers (1997) this algorithm has no knowledge about functional forms and 
parameter values. In addition, the algorithm has no information about the size 
of the random disturbances. In the first stage of the algorithm, exploration, we 
extend the heuristic of Albers by smoothing and projecting elasticity estimates 
into an interval which is based on meta-analytic results. Finally, similar to Albers 
(1997) we compare the algorithm to three rules of thumb and use several func-
tional forms (i.e., multiplicative, modified exponential, ADBUDG) to generate 
sales by (in our case: stochastic) simulation.

Table 1  Comparison of relevant 
publications

Publication Updating of 
elasticities

Functional 
forms and 
parameters

Simulation 
to generate 
sales

Albers (1997) Yes Unknown Deterministic
Fischer et al. (2011) No Known Deterministic
Fischer et al. (2013) No Known Deterministic
This paper Yes Unknown Stochastic
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The three rules of thumb allocate a given resource (e.g., a budget) to sales units 
proportional to a metric. Rule of thumb 1 is based on sales of the previous period, 
Rule of thumb 2 on sales divided by the allocation of the previous period. Maximum 
sales observed so far serves as metric in rule of thumb 3 (please also see Table 2). 
Rules of thumbs 1 and 2 correspond to rules in Albers (1997). Rule of thumb 3 on 
the other hand replaces the original third rule in Albers (1997), allocation propor-
tional to the saturation level, because saturation levels like all parameters of func-
tions are unknown.

Rule of thumb 1 turns out to be stable, but leads to lower average sales than the 
developed algorithm. Rule of thumb 2 leads to sales sometimes close to the opti-
mum. However, in several constellations this rule suffers from unusable results. On 
average sales are lower than for our developed algorithm. Rule of thumb 3 works 
well within a certain range, but does not scale well with either low or high resources. 
In other words, there is a higher overall risk that rule of thumb 3 fails under such 
circumstances.

In Sect. 6 we show that the investigated rules of thumb, which practitioners fre-
quently use, have several shortcomings, which can be overcome by switching to a 
different procedure. In particular, this is a method that practitioners can not only eas-
ily implement, but also modify according to their own particular allocation situation. 
We also explain how some of the rules of thumb can lead to unusable results (please 
see Table 2).

The developed alternative algorithm consists of two stages, exploration and 
exploitation. March (1991) seems to be the first author combining the concepts of 
exploration and exploitation. The idea is to divide the planning horizon into two 
stages. In the first stage, data are generated to explore the shape of the response 
functions. In the second stage, the knowledge of their shape is exploited to find opti-
mal values. In each of several iterations, we approximate the unknown functions by 
quadratic polynomials and obtain a solution of the allocation problem by quadratic 
programming.

To understand the problem setting it may be beneficial to keep the following 
two examples at the back of one’s head while reading. A manufacturer sells and 
advertises in eight different countries. At the beginning of each period (say month 
or week), the total advertising budget is allocated onto the eight countries, and at the 
end of the period, the total sales figures from each country are reported. As another 
example think about the allocation of a given number of total sales calls (= visits by 
sales representatives) to several sales districts. Decision makers want to optimize 
sales/profit in both examples. Customers in each country or sales district might react 
differently, and few data (if any) are known from previous periods.

The managerial implications are twofold: upon entering a new market with no or 
very little prior information, the developed algorithm leads to stable results better 
than those provided by any rule of thumb. Furthermore, in any situation it yields 
better results independent of the circumstances of the market, in particular the size 
of random disturbances.

Section 2 describes the problem from a mathematical point of view. In Sect. 3 we 
present the necessary preparations for the simulation study. In Sect.  4 we describe 
the algorithm. Section 5 explains the investigated rules of thumb. We expect that the 
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developed algorithm is superior to these rules of thumb. In Sect. 6 we present and dis-
cuss results of the simulation study. We investigate the performance of the algorithm 
under conditions different from those in the simulation study in Sect. 7. We also men-
tion several extensions of the allocation problem, which may be solved by modifica-
tions of our algorithm.

We present the algorithm as pseudocode in Appendix A. Further evaluation results 
not given in the main text can be found in Appendix B. We add supplementary notes on 
the generation of sales response functions in Appendix C. In Appendix D we explain 
why higher budgets usually lead to better performance measures for both the algorithm 
and the rules of thumb.

2  Decision problem

A (scarce) resource B needs to be allocated to n ∈ ℕ>1 units. We have one sales 
response function fi for each unit i = 1,… , n that only depends on its allocated input xi . 
The sales response function maps the allocated budget to the obtained sales of the same 
period. Inputs must be non-negative and lower than the resource, i.e., 0 ≤ xi ≤ B.

In addition, the sum of all inputs must not exceed the resource:

A n-tuple (x1,… , xn) satisfying (1) is called an allocation. Total sales, i.e., the sum 
of sales across all units 

∑n

i=1
fi(xi) , represent the objective of this allocation. The 

goal is to find an allocation maximizing total sales:

We use sales as objective instead of profits for several reasons. Firstly, for the sake 
of comparability with Albers (1997), who also considers sales. Secondly, if the 
resource is fixed, sales and profits should be highly correlated, as the only difference 
is the profit contribution for each unit. Thirdly, it makes calculations and interpreta-
tions easier. We doubt that changing the objective to profit will yield more advan-
tages than problems.

As we assume that all sales response functions are monotonically increasing 
(thereby excluding effects such as supersaturation, which we briefly discuss in Sect. 7), 
we conclude that condition (1) is binding and can therefore be rewritten as:

Example 1 We now introduce an example, which we extend throughout this article 
whenever we present a new concept. Note how an allocation of a budget B on two 

(1)
n∑

i=1

xi ≤ B

(2)max

n∑

i=1

fi(xi)

(3)
n∑

i=1

xi = B
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units still has one binding, solvable restriction (3) and is therefore a one-dimensional 
optimization problem. Our example therefore has three units, to make sure the prob-
lem is not solvable with elementary one-dimensional methods. Furthermore we 
round the numbers quite abruptly, indicated by ‘ ≈ ’, to make the examples more eas-
ily readable.

We assume our company runs advertisements in three different countries, and has 
a total advertising budget of B = 6 that needs to be allocated. If we know nothing 
about the market, we might choose equal allocations (x1 = 2, x2 = 2, x3 = 2) that sat-
isfy (3).

For each of the three countries we have an advertising response function fi that 
transforms the input xi to the sales revenue of the country at the end of that month. 
In our example, these functions will be

We know these functions are monotonically increasing, and therefore the condition 
(1) is binding and becomes (3). The objective value in this case is

The decision problem presented so far makes it possible that no (in other words 
zero) resources are allocated to a unit (e.g., to make no sales calls in certain dis-
tricts). Of course, decision makers may find it inappropriate to deprive a unit of 
all resources. To cope with such a situation, one defines a new problem in which a 
modified total resource B� ∶= B −

∑n

i=1
lbi is allocated to the units with functions 

gi(xi) ∶= fi(lbi + xi) where gi is fi shifted by the lower bound. Now the inputs of 
some (or all) units have a lower bound lbi ≥ 0 , i.e., the minimal amount of resource 
allocated to unit i and B′ must be zero or positive. One can henceforth allocate onto 
the functions gi , however to simplify the notation we will still refer to the functions 
as fi . In other words, without loss of generality, we may assume the lower bounds of 
fi and hence the lowest possible value of xi to be 0.

Example 2 Assume now, that the budget is actually B = 9 , and we have to allo-
cate at least lbi = 1 to every unit. All we have to do is allocate the remain-
ing budget B� = B −

∑3

i=1
lbi = 9 − (1 + 1 + 1) = 6 onto the shifted functions 

gi(xi) ∶= fi(lbi + xi) = f1(1 + x1)

Albers (1997) derives the following optimality conditions for this decision prob-
lem from a Lagrangian:

f1(x) = 5 3
√
x; f2(x) = 3 8

√
x; f3(x) = 3 8

√
x.

(4)
n�

i=1

fi(xi) = f1(2) + f2(2) + f3(2) = 5
3
√
2 + 3

8
√
2 + 3

8
√
2

(5)≈ 6.3 + 3.3 + 3.3 = 12.9.

(6)xi =
fi(xi)�i∑
j fj(xj)�j

B for i = 1,… , n
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ff
�i denotes the point elasticity of allocation xi defined as �fi

�xi
⋅

xi

fi
 . Equation (6) cor-

responds to a proportional rule, which makes sure that the xi do add up to the total 
resource B. One can also see that the allocation to a sales unit increases with its sales 
fi(xi) and its elasticity �i . However, please be aware that these optimality conditions 
define a fixed-point problem, because each xi is mapped to itself by the expression 
on the right hand side of Eq. (6). Note that we get a fixed-point problem even if each 
elasticity value is constant, which would be true for multiplicative functions with 
known parameter values.

Example 3 The functions in our example are multiplicative and hence have constant 
elasticity, in this case �1 = 1∕3, �2 = �3 = 1∕8 . Taking the sales values fi from the 
allocation (2,2,2) from Example 1, the denominator of (6) becomes

which leads us to the next allocation of

Indeed, we see that the new objective value is

3  Simulation

To evaluate the allocation procedures, we perform a Monte Carlo simulation. We 
choose experimental conditions as close as possible to the paper presented by Albers 
(1997).

The successive steps of the simulation can be characterized as follows:

– Select one of four functional forms,
– Choose one of two budget levels,
– Determine for each sales unit parameters, which depend on (non-) similarity of 

elasticities and saturation levels,
– select one of four procedures to determine the allocations to sales units,
– Compute deterministic sales given functional form, parameters and allocations,
– Select one of three disturbance levels and add appropriate disturbances to obtain 

total stochastic sales for each unit.

The simulation comprises 384 constellations, which result from four function types, 
four allocation procedures, three disturbance levels, and two budget, elasticity and 
saturation levels. The simulation is replicated twenty times for each constellation. 
The numerical values for these levels will be given in Sect. 3.2.

6.3 ⋅ 1∕3 + 3.3 ⋅ 1∕8 + 3.3 ⋅ 1∕8 ≈ 2.9,

x1 =
6.3 ⋅ 1∕3

2.9
B = 0.72 ⋅ 6 ≈ 4.3, x2 = x3 ≈ 0.85.

f1(4.3) + f2(0.85) + f3(0.85) ≈ 8.1 + 2.9 + 2.9 = 13.9 > 12.9
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Within the simulation, we make the following assumptions:

– Response functions are monotonically increasing, and mostly concave, the only 
exception being the S-shaped ADBUDG function, which is convex beyond its 
inflection point.

– A budget is constant across all periods.
– Response units are mutually independent and the objective function is separable, 

�fi

�xj
= 0 ∀i ≠ j.

– There are no lag-effects, i.e., the response value does not depend on the value of 
the previous periods

– Error terms added to the response functions are normally distributed with mean 
zero.

Note that the last assumption is also usual in the literature on nonlinear regression 
models (see Bates and Watts (1988), Seber and Wild (1989), Cook and Weisberg 
(1999)).

In the next section we explain which functional forms of sales response func-
tions serve to compute sales, how parameters for sales units are determined based 
on properties of the functions (with respect to the (non-)similarity of elasticities and 
saturation levels), and how disturbances are generated.

3.1  Sales response functions

We consider the same four functional forms investigated in Albers (1997), i.e., the 
multiplicative, the modified exponential, the concave and the S-shaped ADBUDG 
functions. The deterministic parts of these functions can be written as follows:

where a, b,Mexp,Madc,MadS, h,Gc,GS,�c,�S all are positive parameters.
We now mention properties of these four functional forms (for more details see, 

e.g., Hanssens et al. (2001)). Each parameter Mexp,Madc,MadS symbolizes a satura-
tion level, i.e. maximum sales. Given certain parameter restrictions, the first three 
functions allow for a concave shape, i.e., they reproduce positive marginal effects 
that decrease with higher values of x. These restrictions are 0 < b < 1 for the mul-
tiplicative function, h > 0 for the modified exponential function and 0 < 𝜙c < 1 for 

(7)fmul(x) = axb

(8)fexp(x) = Mexp(1 − exp(−xh))

(9)fadc(x) = Madc

x�c

Gc + x�c

(10)fadS(x) = MadS

x�S

GS + x�S
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the first version of the ADBUDG function. The second version of the ADBUDG 
function fadS leads to an S-shape for 𝜙S > 1 . S-shaped functions consist of two sec-
tions. The first section is characterized by increasing positive marginal effects, the 
second one by decreasing positive marginal effects.

3.2  Determining parameters of sales units

For the simulation we have to assign values to the parameters of the functions 
described in Sect. 3.1. For each functional form we construct eight sets of param-
eters (one for each sales unit) which have to fulfill two properties. Firstly, the point 
elasticity at equal allocations for each unit should have a predetermined value. Sec-
ondly, the function’s saturation level should take a predetermined value.

To investigate the effects of elasticities and saturation levels, we distinguish two 
sets of values, which Table 3 presents under the column headings of similar and var-
ied elasticities (saturation levels), respectively. In the two ‘similar’ columns, values 
are within a close range, i.e., an elasticity around 0.3 and a saturation level around 
6,500,000. In the ‘varied columns, four sales units have a low elasticity (saturation), 
and four sales units a high elasticity (saturation).

We construct Table 3 from Table 1 in Albers (1997) which is shown in Appendix 
C.1. In this Appendix we also explain the differences between Table 3 and Table 1 
in Albers (1997).

Let us consider the experimental condition ‘low budget, multiplicative form, var-
ied elasticity, similar saturation’. Here we determine the parameters of eight multi-
plicative functions such that given a low allocation budget of 1,000,000, the point 
elasticity for the equal allocation is one of the eight values in column 3 of Table 3 
and the saturation is one of the values in column 4 of Table 3. For a detailed calcula-
tion, see Example 4 below.

For multiplicative functions, we can simply set b equal to the elasticity value. The 
other parameter a equals M ⋅ B−b , where M is the saturation level.

For modified exponential functions we perform an iterative search to determine 
the values of parameter h. The elasticity of the modified exponential function is

Table 3  Function properties for parameter generation

Sales Similar Varied Similar Varied
Unit Elasticities Elasticities Saturation levels Saturation levels

1 0.26 0.11 6,100,000 4,500,000
2 0.27 0.12 6,200,000 10,000,000
3 0.28 0.13 6,300,000 4,500,000
4 0.29 0.14 6,400,000 10,000,000
5 0.31 0.47 6,600,000 4,500,000
6 0.32 0.48 6,700,000 10,000,000
7 0.33 0.49 6,800,000 4,500,000
8 0.34 0.50 6,900,000 10,000,000
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This expression can be transformed to a fixed-point formula

Using a starting value h0 > 0 and equal allocations x = B∕8 , fixed-point iterations 
quickly converge to a positive value for h that satisfies the conditions in Table 3.

The value of the other parameter M of the modified exponential function is 
directly taken from Table 3. For the ADBUDG-functions, which have an additional 
parameter, we choose special values that yield reasonable shapes and ensure stabil-
ity of the iteration process. The values are obtained by trial and error and controlled 
visually (see Appendix C.2 for a discussion and explanation why this is necessary).

Example 4 In our example so far we used three multiplicative functions, whose 
parameters were predetermined. In our simulation study, we want the functions 
properties to be fixed, as opposed to the parameters.

Starting from the desired properties of � = 1∕3 and f (6) ≈ 9 , we set the expo-
nent b to be the elasticity b = � = 1∕3 and a = M ⋅ B−b = 9 ⋅ 6−1∕3 = 5 . This way we 
obtain the parameters of the first function of Example 1.

3.3  Disturbances

We add normally distributed disturbances u ∼ N(0, �2) to the deterministic part 
of each function. Variances �2 are set to attain a desired share of explained vari-
ance (i.e., R2 value) for the dependent variable sales. We consider additive normally 
distributed disturbances, as these are included in the majority of nonlinear regres-
sion models. Switching to, say, multiplicative error terms might give the algorithm 
we propose an unfair advantage as it is based on elasticities. The desired R2 values 
amount to 0.9, 0.7, and 0.5. For each function, the error variance �2 is set to the 
value which leads the R2-value closest to its desired value in a regression of that 
function using 2000 values from a discrete uniform distribution of integers as inputs. 
We choose these values for R2 as they are easily understood and well known by both 
practitioners and researchers.

To avoid negative outputs ( f (x) + u can be negative when f(x) is too small), the 
output was defined as max( f (x) + u, 0 ). This is a mixed distribution where the dis-
crete value 0 can have positive probability. As this only happens in extreme cases, 
the distribution of sales is very close to a normal distribution.

Example 5 Extending the situation from Example 3 we add the following standard 
normally distributed random numbers (u1 = −0.6, u2 = 0.2, u3 = −0.8) to the sales 
function, to obtain

(11)� =
exp(−hx)hx

1 − exp(−hx)

(12)h =
−log(

�(1−exp(−hx))

hx
)

x
.
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In particular, we see the effect the disturbance has on the objective value, as it is now 
lower than its value for equal allocations, even though allocation (4.3, 0.85, 0.85) is 
better than (2, 2, 2) in the deterministic case.

Let us illustrate the process of obtaining the correct variances. We now sam-
ple 2000 points between zero and six on the function f1(x) = 5 3

√
x + u . We take 

the data of these 2000 pairs (x, f(x)) and perform a non-linear least squares regres-
sion f (x) ∼ axb . This regression gives a value for the coefficient of determination 
R2 ≈ 0.67 . If we want to find the variance such that R2 = 0.5 we need to increase the 
variance of the distribution we are sampling from. If we want to find the variance 
such that R2 = 0.7 we need to decrease it.

4  Developed algorithm

Albers (1997) intends to show that in allocation problems an iterative heuristic 
along elasticities always outperforms rules of thumb, independent from functional 
form, other properties of the functions and correlations of starting values with opti-
mal allocations. He considers for each of the four functions discussed in the previ-
ous section eight constellations of different values of properties and correlations (for 
more information see Appendix C.1). Sales are computed based on these functions 
without adding disturbances though the latter are a component of most econometric 
models. Results obtained by his iterative algorithm are compared to those computed 
by the three rules of thumb, which we explain in Sect. 5 below. Overall, his iterative 
algorithm outperforms all rules of thumb by far.

In our study the iterative algorithm of Albers turns out not to work well for non-
deterministic sales response functions with additive disturbances. Disturbances that 
directly affect sales cause elasticities and new allocation values to fluctuate. In addi-
tion to moving allocations far away from the optimal solution, these fluctuations 
sometimes even lead to negative slopes and hence negative elasticities.

To overcome these problems we develop a modified exploration–exploitation 
algorithm. In the exploration stage we use a modification of the iterative algorithm 
(Albers 1997). In the exploitation stage, we start with an approximation to the 
unknown sales response functions for each unit using a data set generated in the 
exploration stage. We use these approximations as inputs of a quadratic program-
ming problem whose solution provides new allocations to the units. These new allo-
cations and sales due to these allocations are added to the data. Based on the data set 
enlarged this way, approximations of sales response functions are updated, for which 
new allocations are determined by quadratic programming and so on for several 
iterations (i.e., periods). In each iteration the data are extended by allocations deter-
mined by an approximate optimal program and their corresponding sales. Therefore, 
the fit of the approximate response functions in a neighborhood close to the optimal 
solution gets more important.

f1(4.3) + u1 + f2(0.85) + u2 + f3(0.85) + u3 = 8.1 − 0.6 + 2.9 + 0.2 + 2.9 − 0.8 = 12.7
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4.1  Exploration

For exploration we modify the iterative algorithm of Albers (1997). Estimated elas-
ticities are heavily influenced by the additive disturbances and often are even nega-
tive. That is why as first modification we project each elasticity value into the inter-
val [0.01,  0.50], i.e., if the calculated value is above 0.50 it is set to 0.50 and to 
0.01 if it is below 0.01. This value range conforms to the results of meta-analyses 
of advertising elasticities (Assmus et al. 1984; Sethuraman et al. 2011). Again, in 
an actual application a practitioner may choose any interval reasonable based on his 
expectations of the limits of the elasticity.

As second modification we add first order exponential smoothing in the following 
manner:

with � ∈ [0, 1] . We use � ∶= 0.85 based on a Monte Carlo simulation with � as a 
regressor with discrete values between 0.05 and 1. However, other values can be 
used, based on how much influence of the previous period is desired. �̃�t is the 
smoothed elasticity and �̂�t the estimated elasticity in period t.

Exponential smoothing reduces the fluctuation of elasticities while still empha-
sizing more recent data points, which as a rule are nearer to the optimum. Exponen-
tial smoothing also serves to move elasticities away from the boundary values of 
0.01 and 0.50.

Example 6 Returning to the initial Example 1, we might deduce that unit 1 yields 
higher sales than the other two, and suggest a second allocation of (4, 1, 1), which 
then (in the deterministic case) gives an objective value of

As the functional form is invisible to the allocation methods, we now need to esti-
mate the elasticities, using the formula

where f ′
i
 and x′

i
 denote the values in the second period of unit i. We obtain

which is close enough to the actual elasticities of �1 = 1∕3, �2 = �3 = 0.125.
For the next allocation we use conditions (6) to obtain

which in turn results in a new objective value of

(13)�̃�t ∶= (1 − 𝛽)�̃�t−1 + 𝛽�̂�t

f1(4) + f2(1) + f3(1) = 5
3
√
4 + 3

8
√
1 + 3

8
√
1 ≈ 8 + 3 + 3 = 14.

𝜀i ∶=
𝛥fi

𝛥xi

x�
i

f �
i

𝜀1 =
7.94 − 6.3

4 − 2

4

7.94
≈ 0.41, 𝜀2 = 𝜀3 ≈ 0.09

x1 = B
𝜀1f

�
1

∑3

i=1
𝜀if

�
i

= 6 ⋅
3.27

3.82
= 5.15, x2 = x3 = 0.43,
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and we estimate the next elasticities. For example, we obtain

Had that value been higher than 0.5, we would have set it to 0.5. Before calculating 
the next allocation, we perform exponential smoothing by setting

We summarize these deterministic results on the left hand side of Table 4.

However, the deterministic approach is not in line with econometric sales 
response functions. Therefore, as shown in Example 5, we sample values u from 
a normal distribution whenever sales f are calculated and add them to obtain 
fu ∶= f + u.

Observe now the right hand side of Table 4. In the first two periods, very similar 
data result, however in period three, the error greatly influences the estimation of 
elasticities with 𝜀1

3
= 0.64 > 0.5 and 𝜀3

3
= −0.43 << 0.01 . A naive continuation with 

Alber’s original rule would lead to implausible negative x-values. As explained, we 
set those elasticities to the interval boundaries of 0.50 and 0.01, respectively. We 
then apply exponential smoothing, to give them a small boost in the right direction.

f1(5.15) + f2(0.43) + f3(0.43) = 8.63 + 2.7 + 2.7 = 14.03

�1 =
8.63 − 7.94

5.15 − 4

5.15

8.63
= 0.36.

𝜀1 = (1 − 0.85) ⋅ 0.41 + 0.85 ⋅ 0.36 = 0.3675.

Table 4  Deterministic and 
stochastic examples

Period t Deterministic Variable Stochastic

Unit 1 Unit 2 Unit 3 Unit 1 Unit 2 Unit 3

1 2 2 2 x1 2 2 2
1 6.36 3.3 3.3 f1 6.36 3.3 3.3
1 u1 − 0.18 0.04 0.32
1 f 1

u
6.12 3.31 3.59

2 4 1 1 x2 4 1 1
2 8 3 3 f 2 8 3 3
2 u2 − 0.23 − 0.02 0.03
2 f 2

u
7.71 2.98 3.03

2 0.41 0.09 0.09 �2 0.41 0.11 0.19
3 5.15 0.43 0.43 x3 4.68 0.49 0.83
3 8.63 2.7 2.7 f 3 8.37 2.74 2.93
3 u3 0.14 − 0.05 0.4
3 f 3

u
8.51 2.69 3.33

3 0.36 0.08 0.08 �3 0.64 0.1 − 0.43
3 0.36 0.08 0.08 proj(�3) 0.5 0.1 0.01
3 0.37 0.08 0.08 𝜀3 0.48 0.1 0.04
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In the following, we show how the algorithm tackles an alternative interval of 
elasticity values. To this end we assume that the decision maker operates in a spe-
cific industry and look up sales force elasticities for pharmaceuticals in a published 
meta-analysis (Albers et  al. 2010). Figure  1C of this publication shows that most 
elasticities for pharmaceuticals fall into the interval [0.05,  0.35]. We therefore 
change the values of �1

3
, �3

3
 to 0.35 and 0.05, respectively and continue the calcula-

tion. The updated smoothed elasticities (0.36, 0.10 and 0.07) are a lot closer to the 
exact values of 1

3
 and 1

8
 . That makes sense intuitively, because we restrict the search 

to a smaller interval that contains all the sought elasticity values.

4.2  Exploitation

In the exploration stage the algorithm generates data points close to the optimum 
for a fixed number of periods. Nevertheless, elasticities still jump around too much. 
Therefore we need a method that dampens disturbances.

The general idea of the exploitation stage can be easily understood when looking 
at modified exponential functions with varying parameters. Figure 1 shows an exam-
ple of the modified exponential function for one of the eight sales units upon which 
the budget of 8,000,000 is to be allocated, where x is the budget allocated to that 
unit and y its sales value. The optimal allocation to the unit in the example drawn 
in Figure 1 is around 640,000. Nevertheless, even when disturbances are small, the 
algorithm and each of the three rules of thumb still fluctuate a lot, showing no sign 

Fig. 1  True function and fitted parabola
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of stability, although they do not leave a certain interval of the domain in each vari-
able (and hence of the codomain).

This area, highlighted by a rectangle in the figure, can be easily approximated by 
a parabola, i.e., a polynomial of degree two. Assuming the functions were actually 
polynomials of degree two, quadratic programming gives an exact solution, because 
the total resource restriction (3) is linear.

Exploitation consists of two steps. In the first step, for each unit i a quadratic 
regression of the form

is performed, where yi and xi are the sales and allocation values for unit i and �i,j are 
the coefficients to be estimated. For each regression, the data consist of all periods 
observed so far (using only a smaller number of the most recent values does not 
improve results).

In the second step, an allocation that is optimal for these approximations obey-
ing the total resource restriction is determined by quadratic programming using the 
method of Goldfarb and Idnani (1983). This allocation and its corresponding sales 
value constitute an additional data point for the next quadratic regression. This two-
step process is repeated until a total of 40 periods is reached, where 40 is the plan-
ning horizon within our study.

A problem arises when �i,2 is estimated as a positive number for any sales unit, as 
the matrix in the quadratic program is no longer positive definite. In particular, this 
means that the sampled area suggests a convex shape of the sales function, which 
is problematic. If this estimated function is monotonically increasing this problem 
can be remedied by setting �i,1 to the slope of the regression line, and setting �i,2 to 
a negative value close to zero (we choose −10−15 ). This way the quadratic program 
is forced to approximate a straight line by a parabola. Substantial arguments justify 
this procedure as well. One argument is the predominance of empirical evidence for 
concave sales response functions with decreasing marginal returns. Moreover, deci-
sion makers typically choose values in the region of decreasing marginal returns if 
they think that sales response is S-shaped (Hanssens et al. 2001; Simon and Arndt 
1980). Also please note that the functional forms underlying our simulation are con-
cave with the only exception of the ADBUG function for a parameter 𝜙S > 1.

In the worst-case scenario, in addition the slope of the regression line may be 
negative. This case is very rare and the allocation to this unit will almost certainly 
be zero. One should remember however, what this actually means: The shape of the 
data points resembles a monotonically decreasing, convex (!) function and would 
hence arise either from a few very unfavorable disturbances in a row or an exog-
enous influence that cannot be explained by additive disturbances. Surely, in this 
case, the function should be thoroughly analyzed instead of continuing the applica-
tion of any algorithm. We will briefly deal with this situation in Sect. 7.

It is furthermore reasonable to ask whether exploration and exploitation 
are both necessary, and what the optimal period is to switch from exploration to 
exploitation. Figure  2 shows the average means of total sales and optimality 
(defined as ratio of total sales and optimal total sales) for all constellations of the 

(14)yi = �i,0 + �i,1 ⋅ xi + �i,2 ⋅ (xi)
2
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exploration–exploitation procedures, for switches from exploration to exploitation at 
t = 3, 5, 10, 20, 30 periods.

Switching after three periods represents the case of only exploitation and switch-
ing after 30 periods is essentially only exploration. Figure 2 implies visually, that 
neither of these extremes are useful, and a balance between them must be found. For 
this simulation, we therefore switch from exploration to exploitation at period 10.

Of course, in a practical problem setting one cannot use such a simulation to 
decide about the switching period. This decision can be based on observed changes 
of total sales between consecutive periods. We recommend switching as soon as 
these changes become small.

Example 7 Focusing on the key components of the right hand side of Table  4 
from Example 6, we see that the sum of Sales of the three units, i.e. the objective, 
increases. In period 1 we have 6.12 + 3.31 + 3.59 = 13.02 , period 2 has 13.72 and 
period 3 yields 14.53. However, naively continuing this process gives the following 
results for the next two periods in Table 5.

Fig. 2  Average means of sales and optimality for switching after t periods
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In particular, the sales value in period 4 is 8.78 + 2.72 + 2.59 = 14.09 and in 
period 5 we have 13.9. In other words, the objective has decreased in the last two 
periods. This means that the exploration phase can only go that far, and in particular, 
is still rather unstable.

However, we now have sufficient data to estimate parabolas for the individual 
sales response functions. For unit 1 we obtain the parabola

which is sketched in Fig. 3

We now use the obtained coefficients and solve the approximate alloca-
tion problem described in Sect.  4.2 by quadratic programming to determine 
the allocation onto the parabolas of x6 = (4.56, 0.91, 0.53) and its sales values 
f6 = (8.29, 2.96, 2.77) , bringing us back to a good objective value of 14.02. We can 
now add this allocation to the dataset, update the estimates for the coefficients of the 
parabolas, get a new allocation by quadratic programming of x7 = (4.71, 0.82, 0.47) , 
sales of f7 = (8.38, 2.93, 2.73) and an objective of 14.04. We obtain consistently 
good values that still are improving. It may first seem that the improvement is rather 
small, but we will immediately see the reason for that.

Let us take a look at the optimal solution of the decision problem described in 
Section . By iterating the rule from Eq. (6) with the true elasticities (i.e., the expo-
nents) � = (1∕3, 1∕8, 1∕8) , we obtain x∗ = (4.8, 0.6, 0.6), f ∗ = (8.43, 2.81, 2.81) with 
an optimal objective of 14.05. In other words, in period 3, the exploration algorithm 

y1 = �1,0 + �1,1 ⋅ x1 + �1,2 ⋅ (x1)
2 ≈ 3.848 + 1.25825 ⋅ x1 − 0.06491 ⋅ (x1)

2

Table 5  Example: switch from 
exploration to exploitation

Period t Variable Unit 1 Unit 2 Unit 3

1 x1 2 2 2
1 f 1

u
6.12 3.31 3.59

2 x2 4 1 1
2 f 2

u
7.71 2.98 3.03

3 x3 4.68 0.49 0.83
3 𝜀3 0.48 0.1 0.04
4 x4 4.47 0.37 0.16
4 f 4 8.81 2.65 2.39
4 u4 − 0.03 0.08 0.2
4 f 4

u
8.78 2.72 2.59

4 �4 0.22 − 0.04 0.07
4 proj(�4) 0.22 0.01 0.07
4 𝜀4 0.26 0.02 0.06
5 x5 5.47 0.16 0.37
5 f 5 8.81 2.37 2.65
5 u5 − 0.08 − 0.21 0.36
5 f 5

u
8.73 2.16 3.01
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got lucky to get that close to the optimal solution, but deviated from that in the fol-
lowing two periods. The exploitation brought us back on track towards the optimal 
solution.

5  Applying the rules of thumb

We continue with an example to demonstrate how the three rules of thumb intro-
duced in Sect. 1 are applied.

Example 8 Starting from the allocation (4, 1, 1) from Example 6, the first rule sug-
gests to use as next allocation x�

i
= B ⋅ fi∕(

∑3

i=1
fi) leading to

and an objective value of

Rule 2 suggests using x�
i
= B ⋅

fi

xi
∕(
∑3

i=1

fi

xi
) leading to

and an objective value of

The third rule uses the maximal observed values of each unit. For the first unit, that 
is 7.94, for the second and third unit that is 3.27. So we allocate

and obtain an objective value of

x�
1
= 7.9∕(7.9 + 3 + 3) = 3.42, x�

2
= x�

3
= 3∕13.9 = 1.29

7.53 + 3.1 + 3.1 = 13.73

x�
1
= 1.5, x�

2
= x�

3
= 2.25

5.7 + 3.3 + 3.3 = 12.3.

x1 = B ⋅

7.94

7.94 + 3.27 + 3.27
= 3.29, x2 = x3 = B ⋅

3.27

7.94 + 3.27 + 3.27
= 1.35

Fig. 3  Estimated parabola of unit 1, original function of unit 1 (bold), points of 5 periods



1016 D. Gahler, H. Hruschka 

1 3

6  Evaluation of procedures

For the sake of comparing the developed algorithm, we conduct a simulation study 
with 384 constellations, which result from four function types, four procedures, 
similar/varied elasticities, similar/varied saturations, two budget-levels, three distur-
bance levels and generate twenty replications for each constellation.

We therefore define the following dummy-coded variables for our models:
“Proc” corresponds to the three rules of thumbs and the developed algorithm, 

“Form” corresponds to the four types of functions, “Dist” corresponds to the R2 val-
ues of 0.9, 0.7 and 0.5, “Elas” and “Satu” correspond to “similar” and “varied” elas-
ticities and saturations, respectively. “Budg” corresponds to the two budget levels of 
1,000,000 and 8,000,000.

The allocation problem of each constellation can be written as

Allocations xt,i may depend on previous sales and allocations, i.e., all values fi(x�,i) 
and x�,i with 𝜏 < t may be used to determine the xt,i.

The performance of procedures is measured by two different dependent variables, 
“Sales” and “Optimality”, which both are computed as arithmetic means across 40 
periods. These two dependent variables normalize total sales attained by rules of 
thumb or the algorithm. We want normalizations to differ with respect to the (non-) 
consideration of additive random disturbances. That is why the denominator in the 
definition of “Sales” includes random disturbances, which on the other hand are 
excluded by the denominator in the definition of “Optimality”.

The first dependent variable “Sales” equals total sales divided by the maximal 
attainable value given a fixed functional form and a fixed budget level over all other 
constellations. The other constellations result from four allocation procedures, three 
disturbance levels, two elasticity levels and two saturation levels. The division to 
compute “Sales” is necessary as the four function types yield quite different values 
for total sales (which is especially pronounced in the case of ADBUDG-functions) 
and the maximal attainable sales depend on the budget level.

The second dependent variable “Optimality” is defined as ratio of total sales 
and optimal total sales. Optimal total sales are determined by optimizing based 
on the true response functions without disturbances, i.e., assuming knowledge of 
sales response functions and their parameters. “Optimality” therefore shows to what 
extent a procedure that lacks knowledge of the response functions attains optimal 
total sales on average. A value of 1.0 for “Optimality” indicates that average total 
sales as a rule equal their optimal value.

7.44 + 3.11 + 3.11 = 13.66.

(15)
max

40∑

t=1

8∑

i=1

fi(xt,i)

s.t.xt,1 +⋯ + xt,8 = B ∀t ∈ {1,… , 40},
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As mentioned above, the S-shaped ADBUDG-function is not concave, and hence 
a problem of local and global optima may arise. In the case of this functional form 
we therefore search for the optimal solution by means of nine algorithms (the heu-
ristic of Albers without adding of disturbances, the three rules of thumb both with-
out and with adding disturbances, the developed algorithm, and generalized simu-
lated annealing from the R package Ganesa). As these algorithms may stuck in local 
optima, we could obtain optimalities greater than 1.0. To make sure that values of 
this dependent variable are not greater than 1.0, we rescale optimalities by dividing 
by their maximum value.

We expect the developed algorithm to lead to higher sales and sales closer to the 
optimum compared to each of the three investigated rules of thumb. In the following 
we examine these expectations by descriptive stastistics and appropriate statistical 
tests.

For each of the four procedures Table 6 gives arithmetic means of both depend-
ent variables. The algorithm attains the highest (i.e., best) values for both depend-
ent variables, followed by the third and the first rule of thumb. The second rule of 
thumb attains the worst values. The third rule of thumb performs fairly well for both 
dependent variables. Nevertheless, the developed algorithm achieves 7.93% and 
20.14% of the maximum improvement left over by the third rule of thumb for “Sales” 
and “Optimality”, respectively (computed as 100 (0.8711 − 0.8600)∕(1 − 0.8600) 
and 100 (0.9536 − 0.9419)∕(1 − 0.9419) ). Moreover, several statistical tests, which 
we present in the following, clearly show that the developed algorithm is signifi-
cantly better.

6.1  Results for main effect regression models

We start from the following two linear regression models comprising main effects 
only to thoroughly compare the procedures:

In these equations for i = 1, 2 , �i,0 is the intercept, 
�i,1, �i,2 ∈ ℝ

3, �i,3 ∈ ℝ
2, �i,4, �i,5�i,6 ∈ ℝ are coefficient vectors, each multiplied by 

dummy-coded variables, and e is the usual normally distributed error term. Refer-
ence categories of these binary dummy variables are the developed algorithm, the 
multiplicative function, low disturbances (i.e., a sales response functions with high 

(16)
Sales = �1,0 + �1,1Proc + �1,2Form + �1,3Dist + �1,4Elas + �1,5Satu + �1,6Budg + e

(17)
Optimality = �2,0 + �2,1Proc + �2,2Form + �2,3Dist + �2,4Elas + �2,5Satu + �2,6Budg + e

Table 6  Arithmetic means of 
dependent variables for each 
procedure

Dependent variable Algorithm Rules of thumb

1 2 3

Sales 0.8711 0.8522 0.7723 0.8600
Optimality 0.9536 0.9305 0.8268 0.9419
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R2 values of about 0.9), the low budget, and similar values for elasticities and satura-
tions, respectively.

Table shows the estimation results of the main effect models both for “Sales” and 
“Optimality” . Coefficients for procedures are in line with the arithmetic means of 
Table 6. They reflect that all rules of thumb perform worse than the developed algo-
rithm (the reference category). These coefficients also indicate that allocation pro-
portional to maximal sales of a unit observed so far (Proc4) performs better than the 
other two rules of thumb. The second rule of thumb (Proc3), allocation proportional 
to sales of a unit divided by its allocation in the previous period, clearly turns out as 
overall worst procedure.

The other coefficients of Table 7 indicate whether we obtain higher or lower val-
ues of the two dependent variables for a certain category of the respective independ-
ent variable. To our opinion most of these results are intuitive. The higher com-
plexity of S-shaped ADBUDG functions (= Form4) leads to lower values than the 
other functional forms. Both the modified exponential (= Form2) and the concave 
ADBUDG function are better than the multiplicative function (the reference cate-
gory). The coefficients for Dist2 and Dist3 reflect that a higher level of disturbances 
makes it difficult to attain good values of both dependent variables. Varied elastici-
ties are accompanied by lower values “Optimality”, but do not have a significant 
effect on “Sales”. If saturations are varied, values of “Sales” are higher, but values 
of “Optimality” are lower. Higher values of “Sales” are simply a consequence of 
upward-scaled functions. On the other hand, varied saturations lead to higher deriv-
atives and fluctuations, which both make optimization more difficult.

Table 7  Main effect regression models

*p-value < 0.05, **p-value < 0.01, ***p -value < 0.001

Variable Dependent variable: sales Dependent variable: optimality

Coefficient t-value Coefficient t-Value

Intercept 0.81 204.130*** 1.014 274.947***
Proc2 − 0.019 − 5.833** − 0.023 − 7.687***
Proc3 − 0.099 − 30.485*** − 0.127 − 42.108***
Proc4 − 0.011 − 3.42*** − 0.012 − 3.889**
Form2 0.042 12.905*** 0.023 7.476***
Form3 0.078 23.936*** 0.013 4.406***
Form4 − 0.135 − 41.729*** − 0.096 − 31.827***
Dist2 − 0.011 − 3.795*** − 0.021 − 8.118***
Dist3 − 0.038 − 13.605*** − 0.067 − 25.674***
Elas2 0.004 1.884 − 0.046 − 21.608***
Satu2 0.067 29.382*** − 0.036 − 17.067***
Budg2 0.091 39.491*** 0.05 23.640***
df = 7, 668 R2 = 0.5325,R2

adj
= 0.5318 R2 = 0.4485,R2

adj
= 0.4478
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Decision makers should expect sales to remain below their optimal value, if elas-
ticities or staturation levels vary across sales units. Such an expectation also applies 
if sales response is S-shaped rather than concave.

Positive and significant coefficients indicate that higher budgets favor higher val-
ues of both dependent variables. One can show that the dependent variable “Sales” 
increases if at the high budget level additional total sales are greater or not much 
lower than additional maximal attainable sales. This condition is usually fulfilled 
due to the fact that except for the S-shaped ADBUG function all investigated sales 
response functions are characterized by decreasing positive marginal effects (see 
Appendix D). We obtain an analogous result for the dependent variable “Optimal-
ity” by replacing maximal attainable sales with optimal total sales.

6.2  Results for regression models with interactions

We also estimate regression models that include certain sets of interaction terms. 
The most simple of these models add all pairwise interactions to the main effects.

Following suggestions of one anonymous reviewer, we now discuss the models 
with added pairwise interactions in more detail. We start by providing Cohen’s par-
tial eta squared values (see Table 8). These values give the proportion of variance of 
the respective dependent variable attributed to an experimental factor or interaction 
adjusted by all the other factors and interactions (Cohen 1988).

Like Richardson (2011) we set 0.0099, 0.0588, and 0.1379 as thresholds for 
small, medium and large partial eta squared values, respectively. Six and four pair-
wise interactions, respectively, are characterized by medium or large partial eta 
squared values for the dependent variables “Sales” and “Optimality”, respectively. 
These results provide evidence that models including pairwise interactions are to be 
preferred over models with main effects only.

High partial eta squared values of a factor or interaction reflect its importance 
from a managerial point of view. The factor Procedure, which is central to our inves-
tigation, turns out to be important. With respect to the dependent variable “Optimal-
ity” we even obtain for Procedure the highest partial eta squared value across all 
factors and interactions. The factor Form together with interactions between Proce-
dure and Disturbance as well as between Form and Budget are important for both 
dependent variables. Importance also accrues to the factors Saturation and Budget 
with respect to the dependent variable “Sales”, to the factor Disturbance as well as 
to the interactions between Procedure and Form with respect to the dependent vari-
able “Optimality”.

Let us focus on the total effects of the levels of the factor Procedure in the mod-
els with pairwise interactions. That is why we apply Tukey’s test (Jobson 1991) to 
assess the performance of procedures. This test shows whether two procedures have 
different means for any of the two dependent variables “Sales” and “Optimality”. 
To this end it determines a confidence interval for each of the six pairs of the four 
investigated procedures using a studentized range distribution. Tukey’s test takes all 
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main effects and pairwise interactions effects into account as the studentized range 
distribution depends on the error sum of squares of the respective regression model.

We consider the means of a dependent variable for two procedures to be differ-
ent if the respective confidence interval does not include the value zero. Table 9 
contains the results of Tukey’s tests for each of the two dependent variables. All 
differences shown in this table are greater than zero at a confidence level of 95%. 
For both dependent variables the third rule of thumb (Proc4) beats the other two 
rules of thumbs (Proc2 and Proc3), but the developed algorithm (Proc1) attains 
higher values than any of the three rule of thumbs.

In other words, we obtain the same overall performance ranking of the pro-
cedures as for the main effect models. However, main effect models and models 
with pairwise interactions disagree with respect to the importance of factors. As 
Table 8 shows partial eta squared values of the factor Procedure are much higher 
for models with pairwise interactions. The models with interactions also attribute 
higher importances for the other factors.

Table  10 contains the estimation results of the two regression models with 
main effects and pairwise interactions. We select four interactions because of 
the absolute size of their pairwise interaction coefficients. Figure 4 shows plots 

Table 8  Partial eta squared 
values of factors and pairwise 
interactions

Models with inter-
actions

Main effect models

Sales Optimality Sales Optimality

Procedure 0.2774 0.3703 0.1314 0.2271
Form 0.6208 0.3405 0.3923 0.2051
Disturbance 0.0612 0.1524 0.0251 0.0824
Elasticities 0.0012 0.1086 0.0005 0.0574
Saturation 0.2221 0.0706 0.1012 0.0366
Budget 0.3403 0.1273 0.1690 0.0679
Procedure: form 0.0936 0.1847
Procedure: disturbance 0.1768 0.2197
Procedure: elasticities 0.0182 0.0131
Procedure: saturation 0.0915 0.0848
Procedure: budget 0.0153 0.0447
Form: disturbance 0.0170 0.0127
Form: elasticities 0.0705 0.0273
Form: saturation 0.0979 0.0207
Form: budget 0.4478 0.1893
Disturbance: elasticities 0.0006 0.0008
Disturbance: saturation 0.0163 0.0203
Disturbance: budget 0.0088 0.0002
Elasticities: saturation 0.0068 0.0085
Elasticities: budget 0.0305 0.0000
Saturation: budget 0.0065 0.0009
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of these four interactions for each dependent variable. Clearly, rule of thumb 2 
(Proc3) performs worst with respect to both dependent variables. The disadvan-
tage of this rule of thumb increases with the disturbance level (i.e., for Dist2 and 
Dist3).

The developed algorithm (Proc1) performs best, followed by rule of thumb 1 
(Proc2), if sales response is generated by the S-shaped ADBUDG function. For 
each of the other functional forms the developed algorithm and rule of thumb 3 
(Proc4) turn out to be about equal with respect to the dependent variable “Sales”. 
On the other hand, rule of thumb 3 attains slightly higher values for the depend-
ent variable “Optimality”. Overall, rule of thumb 2 (Proc3) performs worst, espe-
cially for the S-shaped ADBUG function. These results suggest that managers 
who expect an S-shaped sales response should prefer the developed algorithm to 
the investigated rules of thumb.

A higher budget together with sales generated by an ADBUDG function (no mat-
ter whether concave or S-shaped) leads to higher values of both dependent variables. 
For the other functional forms we do not obtain differences between high and low 
budgets.

To consider additional interaction terms, we also investigate models (one for each 
dependent variable) with all triple, quadruple, quintuple and sextuple interactions. 
Quite interestingly, the full models with sextuple interactions not only lead to the 
best variance explanations (adjusted R2 values amount to 0.9257 and 0.8705 for 
“Sales” and “Optimality”, respectively), but F-tests also confirm that the full models 
outperform all the restricted models. A comprehensive discussion can be found in 
Appendix B.1.

Because of the superiority of the full models we need a test of differences 
between the algorithm and each rule of thumb that goes beyond the main effects 
model by also considering all interactions. We therefore use a method described in 
Gahler (2020)

to construct a vector (= matrix with one row) of multiplicities (= appearances) 
for the coefficients in the OLS-estimator. The corresponding matrix (whose product 
with the coefficient vector is zero under the null hypothesis) is the basis of an F-test. 
Hence, a positive product indicates that the algorithm performs better than a rule 

Table 9  Tukey’s tests Difference Dependent variable: 
sales

Dependent variable: 
optimality

Mean 95% confidence 
interval

Mean 95% confi-
dence interval

Poc2–Proc3 0.080 0.075 0.085 0.104 0.098 0.109
Proc4–Proc3 0.088 0.082 0.093 0.115 0.110 0.121
Proc1–Proc3 0.098 0.094 0.104 0.127 0.121 0.132
Proc4–Proc2 0.008 0.003 0.013 0.011 0.006 0.017
Proc1–Proc2 0.019 0.014 0.024 0.023 0.018 0.029
Proc1–Proc4 0.011 0.006 0.016 0.012 0.006 0.017
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Table 10  Pairwise interaction effects regression models

Variable Dependent variable: sales Dependent variable: optimality

Coefficient t-value Coefficient t-value

(Intercept) 0.778 139.155*** 1.005 171.887***
Proc2 − 0.001 − 0.165 − 0.003 − 0.446
Proc3 0.017 2.781** − 0.007 − 1.016
Proc4 − 0.006 − 0.984 − 0.010 − 1.621
Form2 0.08 13.041*** − 0.003 − 0.451
Form3 0.072 11.721*** − 0.046 − 7.146***
Form4 − 0.276 − 44.992*** − 0.113 − 17.635***
Dist2 0.006 1.084 − 0.004 − 0.691
Dist3 0.012 2.141* − 0.018 − 3.04**
Elas1 0.043 8.904*** − 0.047 − 9.384***
Satu1 0.145 30.387*** 0.012 2.484*
Budg2 0.043 9.049*** − 0.026 − 5.168***
Proc2:Form2 − 0.007 − 1.218 − 0.007 − 1.135
Proc3:Form2 0.047 8.068*** 0.058 9.574***
Proc3:Form3 0.050 8.652*** 0.058 9.528***
Proc2:Form4 − 0.021 − 3.634*** − 0.028 − 4.583***
Proc3:Form4 − 0.076 − 13.155*** − 0.139 − 23.085***
Proc4:Form4 − 0.066 − 11.412*** − 0.081 − 13.393***
Proc3:Dist2 − 0.045 − 9.045*** − 0.049 − 9.403***
Proc3:Dist3 − 0.157 − 31.487*** − 0.187 − 35.682***
Proc4:Dist3 0.008 1.596 0.014 2.717**
Proc2:Elas1 − 0.014 − 3.392*** − 0.016 − 3.666***
Proc3:Elas1 − 0.044 − 10.842*** − 0.044 − 10.197***
Proc2:Satu1 − 0.013 − 3.258** − 0.014 − 3.277**
Proc3:Satu1 − 0.099 − 24.192*** − 0.1 − 23.31***
Proc4:Satu1 − 0.008 − 1.976* − 0.009 − 2.088*
Proc3:Budg2 0.036 8.869*** 0.072 16.797***
Proc4:Budg2 0.029 7.138*** 0.035 8.262***
Form2:Dist2 0.016 2.952** 0.019 3.547***
Form3:Dist2 0.014 2.885** 0.015 2.8**
Form4:Dist2 0.022 4.427*** − 0.006 − 1.084
Form2:Dist3 0.008 1.697 0.026 4.922***
Form3:Dist3 0.030 6.042*** 0.041 7.834***
Form4:Dist3 0.050 9.954*** 0 0.066
Form2:Elas1 − 0.059 − 14.342*** 0.016 3.758***
Form3:Elas1 − 0.011 − 2.575* − 0.024 − 5.556***
Form4:Elas1 0.039 9.51*** 0.037 8.579***
Form2:Satu1 − 0.031 − 7.576*** − 0.017 − 3.897***
Form3:Satu1 − 0.097 − 23.678*** 0.031 7.166***
Form4:Satu1 0.009 2.283* − 0.03 − 7.051***
Form2:Budg2 − 0.022 − 5.282*** − 0.001 − 0.277
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of thumb, and the F-statistic reveals the significance of better performance. A more 
detailed explanation can be found in Appendix B.2.

For the dependent variable “Sales” we obtain average differences between 
the algorithm and each of the three rules of thumb of 1.6093, 9.3232, and 
0.8757, respectively (the corresponding F-statistics are 176.4363, 5,922.021, 
and 52.2406). These differences are all significant at a level (far) below 0.001. 
For the other dependent variable “Optimality” we obtain differences of 1.9223, 
11.8959, and 0.8215, respectively (F-statistics are 198.7278, 7,610.8667, and 
36.2925). These differences are all significant at a level (far) below 0.001.

In the analysis above, we use 20 replications as we have a large model and 
wish to have 20 times as many data points as coefficients in the full regression 
model. To answer a question from one anonymous reviewer we reduce the num-
ber of replications to five. We also perform a Bonferroni correction to take into 
account that we make multiple comparisons between procedures. This addi-
tional analysis confirms the robustness of our results. It shows that the effect 
differences between the rules of thumb and our procedure as described above 
keep their correct signs (i.e., the effect of the procedure is higher than the effect 
of each rule of thumb), the corresponding F-tests remain significant below 
� = 0.001 and the combined significances from the Bonferroni correction remain 
below 0.001 as well. Therefore, even under these restrictive conditions, the null 
hypotheses can be rejected, individually and collectively.

Furthermore, issues might be raised concerning the similarity of the results 
between the developed algorithm and the third rule of thumb. Therefore, we 
investigate the distributions of the two dependent variables after 40 periods by 
means of box-plots (see Fig. 5). We see that the third rule of thumb not only has 
more outliers, but also more extreme outliers. With respect to optimality, there 

*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001
Cntains only pairwise iteractions whose coefficients are > 0.005 in absolute size

Table 10  (continued)

Variable Dependent variable: sales Dependent variable: optimality

Coefficient t-value Coefficient t-value

Form3:Budg2 0.064 15.614*** 0.046 10.75***
Form4:Budg2 0.226 65.131*** 0.155 36.357***
Dist2:Elas1 − 0.007 − 2.112* − 0.011 − 2.441*
Dist2:Satu1 − 0.017 − 4.685*** − 0.003 − 5.555***
Dist3:Satu1 − 0.040 − 11.201*** − 0.021 − 12.54***
Dist2:Budg2 − 0.015 − 4.113*** − 0.046 − 0.486
Dist3:Budg2 − 0.029 − 8.208*** 0.002 1.216
Elas1:Satu1 0.021 7.205*** 0.004 8.099***
Elas1:Budg2 − 0.045 − 15.479*** 0 0.025
Satu1:Budg2 − 0.020 − 7.074*** − 0.008 − 2.683**

R2 = 0.8157,R2

adj
= 0.8143 R2 = 0.7245,R2

adj
= 0.7224
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Fig. 4  Pairwise interaction plots
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are individual outliers below 0.5, i.e., this rule leads to values over the entire 
planning horizon that are below half of the optimal possible values and quite a 
lot of the outliers are below 0.7. For sales, this holds true for all methods, how-
ever the third rule of thumb now has many outliers below 0.4.

7  Conclusion

Our study shows that the iterative algorithm of Albers (1997) is not appropriate if 
sales response functions are not deterministic and include additive disturbances. 
Disturbances that directly affect sales cause elasticities and new allocation values to 
fluctuate and sometimes even produce negative elasticities. Let us remind you that 
elasticities should be positive and lie in a certain interval (see Sect.  4.1). Moreo-
ver, performance of this algorithm does not really improve if elasticity estimates are 
only projected into this interval. Our iterative algorithm does not suffer from such 
problems.

A conventional approach begins by estimating a sales response function for each 
unit based on a given data set of sales and allocations. Then numerical optimization 
using the estimated sales response functions solves the proper allocation problem. 
Because of its iterative nature, our algorithm is different. In the exploitation stage, 
we start with an approximation to the unknown sales response functions for each 
unit using a data set generated in the exploration stage. These approximations serve 
as inputs of a quadratic programming problem whose solution provides new allo-
cations to the units. These new allocations and sales due to these allocations are 
added to the data. Based on the data set enlarged this way, approximations of sales 
response functions are updated, for which new allocations are determined by quad-
ratic programming and so on for several iterations (i.e., periods).

In each iteration the data are extended by allocations determined by an approxi-
mate optimal program and their corresponding sales. Therefore, the fit of the approx-
imate response functions in a neighborhood close to the optimal solution gets more 

Fig. 5  Box-plot of optimality and sales



1026 D. Gahler, H. Hruschka 

1 3

important. The conventional approach on the other hand tries to estimate response 
functions that also fit well for allocations far from the optimal solution.

Summing up, we suggest to prefer the developed algorithm over the investigated 
rules of thumb and the iterative algorithm of Albers (1997) if marketing alloca-
tion problems of the form shown in Sect. 2 must be solved and the underlying sales 
response functions are unknown and not deterministic. We justify this suggestion 
by the good performance of the algorithm demonstrated by the simulation study 
and its stability under changing conditions. Nonetheless, let us point to the trade-off 
between the better statistical performance of the developed algorithm and its higher 
complexity compared to rule of thumb 3. Please note that in certain constellations 
investigated in our simulation this rule of thumb performs equally well.

Modifying the algorithm to solve more general marketing decision problems also 
seems to be an interesting task of future research. One extended decision problem 
results if one or several sales functions may change suddenly, for example due to 
quality problems, successful advertising campaigns, entering another stage of the 
product life cycle or the addition or eliminations of allocation units. We suspect that 
under such circumstances the exploration stage will have to start once again. For 
situations with gradual change on the other hand an appropriate adjustment would 
be to delete older data points before each iteration. One could also investigate multi-
variable generalizations. In one generalization, allocations affect sales of the same 
unit as well as sales of other units. Another more challenging generalization allows 
for marketing variables of different types. Examples of such variables are advertis-
ing and price or advertising and sales effort, where both variables have an effect on 
sales of different units. Finally, one might extend the problem by eliminating the 
monotony condition from the assumptions. In the case of supersaturation a response 
function has an actual maximum after which its values decrease when increasing the 
input. However, supersaturation is well outside the usual operation ranges for mar-
keting instruments (Hanssens et al. 2001) as their optimal values are even lower than 
their values at saturation. Optimal values are further reduced due to the fact that the 
investigated decision problem deals with a scarce resource.

Appendix

A The developed algorithm in pseudocode

Notation: for two vectors a and b of the same dimension, we denote by ⟨a, b⟩ their 
dot product, and by a ∗ b the componentwise multiplication, i.e. the vector (aibi)ni=1
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Remark: The functions Test and Test2 check if the entries are too small or too 
close to each other, epstest projects elasticities into the Interval [0.01,0.5].
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The function solve.QP solves the quadratic program as described in Goldfarb and 
Idnani (1983) with the notation from the R-Package “quadprog” by Berwin and Tur-
lach (2013).

B Additional regression results

B.1 Comparison of nested models

While Table 7 has entries from which certain statements can be deduced, one should 
take these values with a grain of salt. The R2 and adjusted R2 of these main effect 
models amount for “Sales” to 0.5325 and 0.5318 and for “Optimality” to 0.4485 and 
0.4478, respectively.

For 1 ≤ k ≤ 6 we therefore define the k-fold interaction model (or short, k-fold 
model) as the linear multiple regression model that contains all interactions up to 
degree k, whereby the 1-fold interaction model is just the main effect model and 
the 6-fold interaction model is the full model. The R2 and adjusted R2 of these full 
models amount for “Sales” to 0.9294 and 0.9257 and for “Optimality” to 0.877 and 
0.8705, respectively.

To be confident that the full model is better at estimating effects, we perform sta-
tistical tests. For 1 ≤ k < k′ ≤ 6 , the k-fold model is nested within the k′-fold model. 
We therefore perform F-tests between the 6-fold model and each k-fold model nested 
within, for both dependent variables. For both dependent variables, the 6-fold model 
is superior to the 5-fold model at a significance level of 0.05. In both cases for all 
1 ≤ k < 5 , the 6-fold model is superior to the k-fold model at a significance level 
(far) below 0.001. Note that these tests are in fact necessary, since the F-tests of 
several nested models do not always behave in a transitive manner (see Cameron and 
Trivedi (2005) Sect. 7.2.7).

B.2 F‑tests in the full models

We test the full model by the method explained in Gahler (2020) and use the termi-
nology introduced there. In our case the procedure variable is the primary variable, 
and the other predictors are secondary variables.

The conditions necessary for using the method are as follows: 

1. The multiple regression model contains categorical predictors only.
2. The regression includes all interaction terms of every possible degree.
3. There are no empty cells, i.e. the constructed design matrix is a generic design 

matrix in the sense of Definitions 1 and 4 in Gahler (2020).

The first two conditions are satisfied by construction, the third is satisfied since our 
design is balanced.
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Furthermore, it only makes sense to use the method if the explanatory power of 
the full interaction model is higher than for all nested models. This condition is sat-
isfied as well, as detailed in Appendix B.1.

We could use Theorems 2 and 3 from Gahler (2020) to determine the estimated 
cell means from the coefficients. Thankfully, we can skip this rather tedious pro-
cedure by directly applying the result from Section  2.3 in Gahler (2020), which 
states that the number of appearances (= the multiplicity) of a coefficient in the null 
hypothesis is zero if it does not describe the non-reference category one wishes to 
compare to, and equal to the product of the number of categories which according to 
the coefficient are in the reference category otherwise.

Therefore, when comparing the algorithm to the first rule of thumb, coefficients 
of an interaction term that does include the first rule of thumb (for example the coef-
ficient of Proc3 ∗Elas2 ), have a multiplicity of zero. The multiplicity of all the other 
coefficients equals the product of the number of categories for those variables that 
assume a reference value. For example, the cell where Proc = ROT1, Form = mul-
tiplicative, Dist = 0.9, Elas = similar, Satu = varied and Budg = low has four vari-
ables (Form, Dist, Satu and Budg) in their reference categories. The multiplicity is 
therefore the product of their numbers of categories: 4 * 3 * 2 * 2 = 48.

This way the multiplicity of each coefficient can be determined. The product of 
this vector of multiplicities and the OLS estimated coefficients gives the effect of the 
algorithm relative to another procedure. The significance of this relative effect can 
be obtained using these vectors as basis for an F-test.

C Supplementary material

C.1 Comparison to Albers (1997)

Albers (1997) investigates three different starting solutions, one of which consists of 
equal allocations. The other two starting solutions are either positively or negatively 
correlated with the optimal solution and differ from the equal allocation by 5% . In 
our case, the magnitude of the error terms, even in the case of R2 = 0.9 (see Sec-
tion 3.3), greatly exceeds a 5% boundary. Therefore we do not need different starting 
conditions and use equal starting allocations with B/8 for each unit.

The original table from Albers (1997), reproduced as Table 11, has more columns 
and slightly different values than Table 3. We explain why we use fewer columns 
due to a problem with the degrees of freedom for the determination of parameters. 
Albers specifies three restrictions: 

1. The elasticity for an equal allocation corresponds to the elasticity value from 
Table 11.

2. The contribution (which is equivalent to sales in our decision problem, because 
contribution margins are constant) for an equal allocation must be the contribution 
value from Table 11.
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3. The function’s saturation is defined as sales for an equal allocation multiplied by 
the saturation multipliers from Table 11.

For the ADBUDG function we have one additional restriction, 𝜙c < 1 or 𝜙S > 1 , 
depending on the intended concave or S-shape.

Determining parameters requires that the number of restrictions equals the num-
ber of parameters of a sales response function. However, the number of restrictions 
is higher than the number of parameters for each considered sales response function 
(three parameters for the ADBUDG function and two parameters for each of the 
other sales response functions). That is why we eliminate the second restriction and 
accordingly the columns for equal and variated profit contributions in Table 11.

C.2 Visually testing S‑shaped functions

We use visual control of the graphs of the S-shaped ADBUDG-functions to ensure 
that the functions do not behave badly. The functions shown here are scaled such 
that they only take values between zero and one, where one is the actual saturation, 
and the exponent is greater than one, i.e. there is an actual S-shape in the graph.

Functions with graphs such as the four in Figure 6 are rejected for the following 
reasons:

In the first image, the saturation is not reached within the domain of the function.

Fig. 6  Bad functions
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In the second image, the saturation is reached at an unreasonably small input.
In the third image, the lower bound zero is not exceeded before a reasonable 

input.
In the fourth image, the non-constant part of the function is found on an unrea-

sonably short interval of the input.
To make sure that these functions do not have such undesirable properties, we test 

them visually after generating parameter values.

D Dependent variable “Sales” at the high budget level

The dependent variable “Sales” increases at the high budget level if:

S1, S0 denote total sales at the high and low budget levels, respectively. Smax
1

 and Smax
0

 
are the corresponding maximal attainable total sales. Substituting S1 by S0 + �S0 and 
Smax
1

 by Smax
0

+ �Smax
0

 with �S0 and �Smax
0

 as additional total sales and additional max-
imal attainable sales at the high budget level and rewriting several times we obtain:

The last expression shows that the dependent variable “Sales” increases if at the high 
budget level the relative increase of total sales is greater than the relative increase of 
maximal attainable sale. Please note that the total sales S0 are less than the maximal 
attainable sales Smax

0
 . That is why the dependent variable “Sales” increases if addi-

tional total sales are higher or not much lower than additional maximal attainable 
sales at the high budget level. This condition is usually fulfilled because except for 
the S-shaped ADBUG function all investigated sales response functions are charac-
terized by decreasing positive marginal effects.
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