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Abstract
We develop an agent-based simulation of the catastrophe insurance and reinsurance
industry and use it to study the problem of risk model homogeneity. The model sim-
ulates the balance sheets of insurance firms, who collect premiums from clients in
return for insuring them against intermittent, heavy-tailed risks. Firms manage their
capital and pay dividends to their investors and use either reinsurance contracts or
cat bonds to hedge their tail risk. The model generates plausible time series of profits
and losses and recovers stylized facts, such as the insurance cycle and the emergence
of asymmetric firm size distributions. We use the model to investigate the problem
of risk model homogeneity. Under the European regulatory framework Solvency II,
insurance companies are required to use only certified risk models. This has led to a
situation in which only a few firms provide risk models, creating a systemic fragility
to the errors in these models. We demonstrate that using too few models increases
the risk of nonpayment and default while lowering profits for the industry as a whole.
The presence of the reinsurance industry ameliorates the problem but does not remove
it. Our results suggest that it would be valuable for regulators to incentivize model
diversity. The framework we develop here provides a first step toward a simulation
model of the insurance industry, which could be used to test policies and strategies for
capital management.
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1 Introduction

The modern insurance system1 has its roots in the establishment of Lloyd’s of London
in the 1680s, which was named for a coffee house that catered to marine insurance
brokers. The first major crisis followed less than a decade later after the Battle of
Lagos in 1693. During this battle a fleet of French privateers attacked an Anglo-Dutch
merchant fleet causing estimated losses of around 1 million British pounds2 (Leonard
2013a;Go2009;Anderson2000).Risk assessmentwas inadequate andunderestimated
several risk factors.3 Worse, it was not only some few underwriters that took the risk
of writing policies for this merchant fleet, it was a significant part of the industry. 33
underwriters went bankrupt. The English parliament considered legislation that would
have resulted in a government bailout (House of Commons 1693), but the bill failed
(Leonard 2013a, b).

Today’s insurance–reinsurance systems build on centuries of experience. Modern
insurance companies have moved beyond the coffee house and are built on a more
solid institutional foundation and are hopefully more prudent and more competent
in assessing risks. Nonetheless, the example serves to illustrate two points. First,
catastrophic damages are difficult to anticipate with any accuracy and unanticipated
high losses remain a reality. More recent examples include the Asbestos case, the
Piper Alpha disaster, the 2017 Caribbean hurricane season, and the fallout of the 2020
Covid-19 pandemic. Second, a lack of diversity in risk models can lead to problems
at a systemic scale.

The insurance industry has made huge progress in its ability to estimate risks.
But there is more to the insurance business than simply estimating individual risks.
Companies need to make a variety of decisions, such as how much total risk to take,
how much capital to hold in reserve, and how to set premiums. Insurance companies
compete with each other and so they do not make these risks in isolation. This can lead
to systemic effects that create systemic risks that are not visible to individual firms.

Our goal here is to create a model that makes it possible to study systemic effects at
the level of the insurance industry as a whole. To do this we simulate individual firms
and the perils they ensure using an agent-based approach. We also simulate how firms
set premiums, how they manage their capital, and how these actions affect each other.
Our model is the first to simulate the catastrophe insurance industry at this level. Here

1 The first insurance contracts emerged much earlier, but the related practices bore little resemblance of
the modern insurance system.
2 This event is also known as the Smyrna fleet disaster and was national tragedy for England. The value of
the English GDP in the year 1693 is estimated to be around 59 million pounds (Campbell et al. 2015).
3 A large number of merchant ships (around 400) with extraordinarily valuable cargo traveled together and
were therefore vulnerable to the same risks. In addition, the measures taken to protect the fleet (22 escorting
warships) were inadequate.
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we use the model to address a specific problem, the dangers of consolidating the entire
industry under a few riskmodels. This is relevant as regulatory frameworks, such as the
European Solvency II, may cause such consolidation as a side effect. We also explore
the role of the reinsurance industry in mitigating risks. However, the possible uses of
this model go beyond those we explore here.

The paper is organized as follows: Section 2 provides a short description of the
insurance industry for context. Section 3 gives an overview of previous work, and
Sect. 4 introduces the model. The results are discussed in Sect. 5. Section 6 concludes.

2 Background: the insurance industry

The business of the retail insurer is to pool and hedge risks and to hold sufficient
capital in sufficiently liquid form to compensate for damages when they happen. This
works very well as long as damages are small and uncorrelated. In this case, providing
all moments exist and the distribution of damages is known, the central limit theorem
makes it possible to estimate damages accurately. For catastrophes, in contrast, the
distributions are not always well understood, the tails are typically heavy, and events
are not always independent.

Perils such as earthquakes, hurricanes, flooding, and other natural catastrophes
occur rarely, but when they do the damages can be significant. Both the intervals
between perils and the damage sizes follow long tailed distributions (Emanuel and
Jagger 2010; Embrechts et al. 1999; Christensen et al. 2002). Insurers typically take
out reinsurance to cover their tail risk; in present times this typically applies to damages
beyond 50millionUSDand up to 200millionUSD. Each insurance or reinsurance firm
typically enters into reinsurance contracts with a wide range of other firms, spreading
the risk. Each firm attempts to estimate risks using models that are typically provided
by third parties. Modern catastrophe risk models are sophisticated but are inevitably
still inaccurate due to the difficulty of fitting heavy tailed, non-stationary distributions.
Climate change, for instance, affects the frequency and severity of windstorms, while
changing settlement patterns affect damage sizes (Grinsted et al. 2019).

The size of the combined insurance and reinsurance sector is trillions US Dollars,
one order of magnitude below the total of the world’s capital markets. In turn, the
reinsurance sector, making up about 10% of the insurance business, is an order of
magnitude smaller than the insurance sector. For example, for the third quarter of
2015, the total global capital was reported (AON Benfield 2016) as $4.2 trillion for
insurance and $565 billion for reinsurance.

The insurance industry has historically tended to oscillate between strongly com-
petitive periods, called soft markets, and less competitive periods, called hard markets.
This oscillation is usually referred to as the insurance cycle or underwriting cycle. As
shown in Fig. 1, the insurance cycle is irregular in both period and amplitude. During
soft markets competition increases, premiums are down, insurers are more willing to
underwrite new business, underwriting criteria are relaxed, and the capacity of the
industry increases. Conversely, during hard markets premiums are high, competition
is low, underwriting criteria are tight, and the capacity of the industry contracts. For
catastrophe insurance the cycle bears some relationship to the incidence of catastro-
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Fig. 1 The insurance cycle is shown here in terms of the global reinsurance Rate-on-Line (ROL) index,
which is plotted as a function of time. The ROL is the ratio of the average premium paid to recoverable
losses (shown here in percent). The ROL index is computed from the ROLs of contracts and renewals in a
number of markets across the globe and provides a measure of the quality of the market for the industry as
a whole. The striking feature is that the ROL varies across a large range, from 100% to almost 400%, and
it is highly correlated from year to year. The data is from Guy Carpenter, who is a reinsurance broker; raw
data and details of the computation are not public

phes, but it does not track this as closely as one might expect, and depends also on
other factors, such as available capital. The insurance cycle occurs even in sectors
such as life insurance and casualty insurance that do not suffer large fluctuations in
claims. There is no consensus about the cause of the insurance cycle.4 During recent
years the amplitude of the insurance cycle has been reduced, which some attribute to
an increased influx of capital.

This volatility and the potential damages in case of a systemic breakdown of the
insurance industrymake some degree of regulation necessary. In the European context,
the Solvency II framework was adopted by the EU in 2009 and implemented after
several delays in 2016. It includes requirements for capital, liquidity, and transparency
on the part of the insurance companies. In addition it also includes standards for
risk models, which must be certified. While the resulting quality control likely has
substantial beneficial effects, there are concerns that the perspective of Solvency II is
too strongly microprudential, and may ignore possible negative effects at the systemic
level Gatzert and Wesker (2012).

There are concerns about systemic fragility that may be caused by using a small
number of risk models. In part because of the strict requirements of Solvency II, insur-
ance firms have been driven to outsource the problem of risk modeling. The provision
of risk models has come to be dominated by three major competitors, RMS (Risk
Management Solutions), AIR (Applied Insurance Research) and EQECAT. Accord-
ing to a survey carried out by the Bermuda Monetary Authority, these three vendors
“practically control the entire catastrophe modelling sector” (BMA (Bermuda Mone-
tary Authority) 2016). In Table 1 we show the relative overall usage of risk models by
insurance firms from 2011–2017. A few overall trends are apparent: Many firms only
use a single risk model. The dominant provider, RMS, is used exclusively by 41%

4 Though see Zhou (2013) and Owadally et al. (2018) for an example of a model for cycles in other
industries.
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Table 1 Market shares of catastrophe risk modelers in Bermuda, presenting data from a survey conducted
by the Bermuda Monetary Authority (BMA (Bermuda Monetary Authority) 2016, 2018) on models used
by insurers and reinsurers

2011 2012 2013 2014 2015 2016 2017

Vendor models usage (in percent of respondents)

AIR 6.1 8.8 11.4 16.7 9.1 12.5 18.9

EQECAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RMS 33.3 26.5 28.6 30.6 39.4 40.6 40.5

AIR and RMS 36.4 44.1 45.7 38.9 45.5 43.8 40.5

AIR and EQECAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0

EQECAT and RMS 3.0 2.9 0.0 0.0 0.0 0.0 0.0

AIR, EQECAT, and RMS 21.2 17.6 14.3 13.9 6.1 3.1 0.0

One risk model 39.4 35.3 40.0 47.3 48.5 53.1 59.4

Two risk models 39.4 47.0 45.7 38.9 45.5 43.8 40.5

Three risk models 21.2 17.6 14.3 13.9 6.1 3.1 0.0

The table shows low and declining risk model diversity

of the firms in 2017, rising from 33% in 2011. The second largest provider, AIR, is
used exclusively by 19% of firms, and the third largest provider, EQECAT, is not used
exclusively by any firms. The remaining firms use a mixture of models by RMS and
AIR. In 2001 21% of the firms used a mixture of models by all three providers; there
are now no firms that do this.

There are good reasons why usingmore than one risk model is desirable. Risk mod-
els are inevitably inaccurate, and using more than one makes it possible to average out
inaccuracies and improve forecasts. This is a consequence of the general desirability
of forecast combination.5 Given a set of models, each of which makes useful forecasts
that are not perfectly correlated, forecasts can be improved by taking weighted aver-
ages of the forecasts of each model. This provides an incentive for individual firms to
use more than one model. From a systemic point of view, it is desirable for different
insurance firms to use different models. This is because one firm goes bankrupt due
to errors in its model, firms with different models (and different errors) may survive
as a result of their diversity. Thus even if one provider’s risk models are superior to
those of other providers, it may still be desirable for the industry as a whole if firms
use a diversity of models from different providers.

3 Literature review

Wewill next discuss the state of the art ofmodels of the insurance sector (Sect. 3.1) that
our model could potentially build upon. Sections 3.2 and 3.3 review previous findings
on two applications of our model, the modeling of the insurance cycle (Sect. 3.2)
and the investigation of systemic risk in insurance systems (Sect. 3.3). We discuss

5 See Bates and Granger (1969), Newbold and Granger (1974), Deutsch et al. (1994) and Hong and Page
(2004).
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empirical findings that may be used for calibration in Sect. 3.4. How these stylized
facts are reflected in the model design is discussed in more detail in Sect. 4.

3.1 Modeling the insurance sector

Very few agent-based models of the insurance sector have been developed so far,
although there are three notable exceptions: The London flood insurance model by
Dubbelboer et al. (2017), the model of premium price setting in non-catastrophe retail
insurance by Zhou (2013), further developed in Owadally et al. (2018), and the agent-
based model extension to Maynard’s study on catastrophe risk (Maynard 2016).

Non-agent-based analytical contributions often take an equilibrium approach
based on game-theory and common assumptions of frictionless markets and ratio-
nal decision-making. While this can offer some basic guidance on modeling specific
elements of insurancemarkets, their value for system-level analyses and for predictions
is limited due to strong assumptions. An example is the hypothesis of the “square-root
rule of reinsurance” (Powers and Shubik 2006), that derives the optimal relation of
the number of reinsurers to that of insurers as following a square-root function of
the size of the system. While the empirical relationship is indeed sub-linear, studies
(Venezian et al. 2005; Du et al. 2015) cannot confirm the exact square-root nature.
Other examples include Plantin’s (2006) model of the reinsurance market, which aims
to prove that reinsurance is necessary for a functioning insurance sector and profitable
as a business model under normal conditions. It proceeds to assume that under ratio-
nality assumptions, some insurance firms will become reinsurers if the reinsurance
sector is not sufficiently large, while making no comment about the dynamics of and
possible friction in this process. The limitations of models of this type are well known
in the literature (see, e.g., Powers and Ren 2003). These limitations can potentially be
overcome by agent-based models.

Zhou (2013) and Owadally et al. (2018) consider pricing in non-life insurance.
Risk modeling, systemic effects, and catastrophes are side-aspects in this model. Data
used to validate the model are taken from the motor insurance sector of the UK,
where catastrophic damages at system-scale are unlikely. The study considers various
pricing strategies and is able to recover a realistic insurance cycle with direct local
interactions (as opposed to a centralized market) being a major factor. They conclude
that the insurance cycle cannot be solely driven by repeated catastrophic shocks.

Maynard (2016) investigates whether the use of scientific models can improve
insurance pricing. An agent-based approach is used to evaluate how useful those
forecasts are in systems with competing insurance firms. To remove interference from
other effects, the number of companies is limited to two and the forecasting strategies
are fixed, which makes it possible to investigate survival time and commercial success
in a controlled setting.

Dubbelboer et al. (2017) explores the dynamical evolution of flood risk and vul-
nerability in London. This agent-based model is used to study the vulnerability of
homeowners to surface water flooding, a major source of catastrophe risks in the UK.
The model focuses on the role of flood insurance, especially in the public–private
partnership between the government and insurers in the UK, and the UK’s flood rein-
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surance scheme Flood Re, which has been introduced as a temporary measure for 25
years starting in 2014 to support the development of a functioning flood reinsurance
sector in the country.

In contrast to these approaches, we aim to construct amore comprehensive, generic,
and flexible agent-based model of the insurance sector, as introduced in Sect. 4.

3.2 The insurance cycle

There is no consensus in the literature on the causes of the insurance cycle. One
major literature tradition believes that natural disasters and large catastrophes are the
main driving force (cf. Lamm-Tennant and Weiss 1997). Such events are believed to
trigger the transition from a soft market to a hard market. After a catastrophe, the
insurance industry receives a large amount of claims that deplete the capital of most
insurerswhile driving those that are less capitalized out of business. The ones surviving
reconsider their underwriting criteria are more reluctant to take risks, and premiums
start rising as a consequence. Mergers and acquisitions activity also increases during a
hardmarket, especially after a catastrophewhen the claims start depleting the capital of
the industry. This may already start in the immediate aftermath of the event before any
claims are filed, as market participants anticipate substantial damages. The mergers
and acquisitions activity also contributes to the reduction of capital in the industry and
the increase of prices, since the surviving firms have to absorb the losses of the firms
that go out of business and possibly also since they enjoymoremarket power. In reality,
very fewfirms in the sector file for bankruptcy since the ones in financial difficulties are
absorbed by the better capitalized ones due to the value of their customers, branding,
insurance information, and human capital.

This literature tradition is exemplified by Lamm-Tennant and Weiss (1997), who
aim to identify the insurance cycle empirically by fitting an AR(2) process and to
explain its existence and period by running regressions with incidence of catastrophe
events and various other explaining variables. They find that catastrophe events are
significant while many other variables are not. A drawback of this analysis is that the
time series considered are only 20 years long, though they include data for a number
of countries.

Other contributions, most notably in this context the ABM analysis by Zhou (2013)
and Owadally et al. (2018), contradict this explanation, as they are able to model the
emergence of an insurance cycle from price effects without any catastrophe events.

3.3 Systemic risk in insurance

The problem of systemic risk in insurance came into focus after the reinsurer AIG
became illiquid and had to be bailed out by the US government during the financial
crisis in 2008. Park and Xie (2014) conduct a stress test and find that the systemic
damage resulting from one big reinsurer defaulting in the US market would be very
limited. Cummins and Weiss (2014) are more cautious; they point out that there is
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significant counterparty exposurewithin the reinsurancemarket through retrocession,6

and that this is exactly what led to the historic near-meltdown of the insurance system
in the LMX spiral.7

Cummins and Weiss (2014) further note possible challenges from other aspects of
the system, such as the size distribution of the firms and interconnections with asset
markets. This hints at other contagion channels of systemic risk besides counterparty
exposure. As in banking, portfolio similarity may be a serious compounding factor in
the case of sell-offs, and the interaction of multiple contagion channels may aggravate
systemic risk disproportionately (Caccioli et al. 2015).

Solvency II has been hailed for its capacity to decrease capital and liquidity risk
(Ronkainen et al. 2007; Gatzert and Wesker 2012). Even authors with a macropru-
dential focus (Gatzert and Wesker 2012; Kessler 2014) judge systemic risk in modern
insurance systems with up-to-date regulation (and explicitly Solvency II) as unlikely.
However, their assessment is limited to contagion channels present in banking systems.
In this regard, insurance firms, which are not highly leveraged, appear quite safe. How-
ever, Eling and Pankoke (2014) voice concerns regarding a potential pro-cyclicality
of the Solvency II regulation framework.

A final contagion channel, the one investigated in Sect. 5.2, may be caused by risk
model homogeneity. This has beenmentioned in passing remarks (Petratos et al. 2017;
Tsanakas and Cabantous 2018), but the present study is to our knowledge the first to
investigate this issue in a systematic way.

3.4 Empirical findings

Empirical research relevant to agent-based model development in the field of catastro-
phe insurance includes studies on the insurance–reinsurance system by Froot (2001)
andGarven andLamm-Tennant (2003) aswell asBoyer andDupont-Courtade’s (2015)
analysis of reinsurance programs.8 All three papers use proprietary data sets.

Traditional wisdom holds that the insurance cycle is mainly driven by the steady
streamof catastrophe events. Froot (2001) reports extensive data on reinsurance pricing
and shows that prices (in terms of the relation of premium to expected loss) have
decreased in the second half of the 1990s, i.e., in recent years before his paper was
published. He states that the absence of large catastrophic events during this time frame
is the main reason for this decrease of premiums, but also mentions the alternative
interpretation of an insurance cycle driven by a mechanism different from catastrophe
events. Garven and Lamm-Tennant (2003) find, perhaps unsurprisingly, that demand
for reinsurance decreases with the firm size of the insurance firm buying reinsurance
(the ceding insurance firm) and its concentration in line-of-business and location and

6 Reinsurance of reinsurance companies is called retrocession.
7 Reinsurers at the Lloyd’s of London were present in multiple layers of retrocession without realizing it.
When the disaster at the Piper Alpha oil rig in 1988 caused unanticipated high losses, these retrocession
layers were triggered, hitting already cash-strapped firms again and at the same time denying lower layers
a speedy recovery of claim payments. The retrocession branch and the insurance business as a whole have
become more prudent in this regard (Cummins and Weiss 2014).
8 Insurers tend to slice all the risks in a peril region or the whole firm in various layers of reinsurance by
damage size. Each layer is ceded in different contracts and likely to different reinsurance firms.
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increases with leverage of the ceding firm and with the tail weight (thus, risk) of its
written insurance. Boyer and Dupont-Courtade (2015) discuss the layered structure
of reinsurance programs. Data reported in the paper show that treaties with one to
five layers are common,9 but much larger treaties with up to eleven layers occur. A
temporary decrease of the number of contracts with the financial crisis in 2008 is
evident in their data. They report that parameters of the contracts (premium of the
accepted bid, dispersion of the received bids) vary widely across the lines of business.
Higher layers tend to be cheaper in terms of rate-on-line (defined as premium divided
by limit), as losses affecting these layers are less likely albeit potentially heavy.

The amount of capital used to support reinsurance worldwide has been growing
quickly. Most of the growth continues to come from reinsurer and insurer profits
and investments, but a substantial amount of capital has recently been injected from
sources that did not exist 20 years ago. While these alternative capital sources have
almost no impact on the typical policyholder, they have significantly affected the way
reinsurance is currently written worldwide. Catastrophe bonds (also known as CAT
bonds) (Cummins 2008) are securities that allow the transfer of risks from insurers
and reinsurers to institutional investors like hedge funds, mutual funds and pension
funds. CAT bonds are attractive to these investors since they have a relatively low
correlation with the rest of the financial market and allow the investors to achieve
higher diversification. The CAT bond market has been growing steadily over the last
20 years and may have contributed to dampen the insurance cycle. The analysis of
CAT bonds by Lane and Mahul (2008) shows that the equivalent measure for CAT
bonds to the premium, spread at issue over LIBOR, is explained quite well by a simple
linear model (spread at issue as a function of expected loss) although there are other
minor influences,10 which make it possible to model the pricing of these instruments
in a rather simple way.

4 Model description

Based on stylized facts from the literature in the previous section, we develop an
agent-based model of insurance–reinsurance systems. To make it possible to study
both systemic aspects and characteristics of individual elements, we choose a modular
design, so that agents of different types can be switched on and off individually. We
discuss a range of relevant applications in Sect. 5.

4.1 Agents

The model, illustrated in Fig. 2, includes five types of agents: insurance customers,
insurers, reinsurers, shareholders, and catastrophe bonds. Customers buy insurance
coverage and pay premiums. Insurance firms may obtain reinsurance from either
traditional reinsurance companies or catastrophe bonds. Insurance and reinsurance

9 They do, however, report a slightly decreasing frequency with the number of layers in their data set: 277
one-layered treaties, 201 two-, 235 three-, 129 four-, 79 five-layered treaties.
10 Data from Lane Financial LLC. seen by the authors of the present paper confirm this.
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Fig. 2 Agents and interaction
structure of the agent-based
model

contracts oblige the customer (or the insurer obtaining reinsurance) to make regular
premium payments, but entitle them to claim reimbursements for covered damages
under certain conditions.

Insurance and reinsurance firms (discussed in more detail below) are the core of
the model. Most of the decision making capacity in the model lies with them. They
consult risk models to support their decision making. They further pay dividends to
shareholders.

4.2 Customer side

4.2.1 Insurance customers (households)

Customers are modeled in a very simple way. They own insurable risks which they
attempt to insure.They approachone insurer per time step and accept the currentmarket
premium if the insurer offers to underwrite the contract. The value of the insurable
risks is normalized to 1 monetary unit each and the total number of insurable risks
is fixed. The risks are not destroyed but are assumed repaired to their previous value
after each damage incident.11

4.2.2 Perils and peril regions

It is convenient to distinguish catastrophic and non-catastrophic perils. Catastrophic
perils are the ones affecting most of the risks of a particular peril region, e.g., resulting
from a hurricane in Florida, an earthquake in Japan or a flood in Southern England.
While perils are rare, they can lead to heavy losses and are thus a primary reason for
reinsurance. Non-catastrophic perils, on the other hand, typically affect only individual

11 Identical or similar values for all risks is fairly realistic for property insurance, which is a large part of
of the catastrophe insurance business. Other types of insurance (ships, airplanes, satellites, etc.) are subject
to size effects on the part of the individual risk and may therefore show a different behavior, but may have
similar characteristics to the excess-of-loss reinsurance business included in our model, which also involves
individual contracts of large value.
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Fig. 3 Peril regions and firms. A
given insurance firm may issue
insurance in multiple peril
regions. When a damage occurs
in a given peril region, we
assume it affects all the policies
issued in that region, leading to
multiple claims with all the firms
involved, but it does not affect
policies issued in other peril
regions. Claims in each peril
region therefore occur in clusters

risks and are more frequent and uncorrelated in time. Examples of this type of perils
are car accidents, residential fires, or retail burglaries.

In our model we only consider catastrophic perils, assuming that the effect of the
non-catastrophic ones is minor, sometimes covered by deductibles, and subject to
averaging out across many risks as a result of the central limit theorem. Catastrophic
perils are modeled as follows:

– Catastrophe event times are determined by a Poisson process, i.e., event separation
times are distributed exponentially with parameter λ.

– Total damage follows a power-law with exponent σ that is truncated at total expo-
sure (since insurance payouts cannot be higher than the amount insured).

– Total damage is assigned to individual risks following a beta distribution calibrated
to add up to the total damage.

In the model each insurable risk belongs to one of n peril regions, see Fig. 3. For
simplicity we assume that all the risks of the respective peril region are affected by
every catastrophic peril hitting that region. In this study we typically consider n = 4.

4.2.3 Risk event and loss distributions

Time distribution of catastrophes We assume that the number of catastrophes in the
different peril regions follow a Poisson distribution, which means that the separation
time between them is exponentially distributed with density function

e(t) = λe−λt , (1)

where λ is the parameter of the exponential distribution and the inverse of the average
time between catastrophes. We generally set λ = 3/100, that is, a catastrophe should
occur on average every 33 years. We draw all the random variables necessary to set
the risk event profile (when a catastrophe occurs and of what size the damages are)
at the beginning of the simulation. In order to compare the n different “worlds” with
different risk model diversity settings, we set the same M risk event profiles for the
M replications of all n risk model diversity settings. That is, we compare the same
hypothetical “worlds”with different riskmodel settings, butwith the samecatastrophes
happening at the same time and with the same magnitude.
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Global loss distributionWe use a Pareto probability distribution ϕ for the total damage
inflicted by every catastrophe, since historically they follow a power law. The Pareto
distribution is defined as

ϕ(Dx ) = σ

Dσ+1
x

, (2)

where Dx are the values of the damages caused by the catastrophes. We generally set
the exponent σ = 2. The distribution is truncated with a minimum (below which the
damagewould be too small to be considered a catastrophic event) and amaximum. The
maximum is given by the value of insured damages. The density function is therefore:

ϕ̃(Dx ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 1 ≤ Dx ,
ϕ(Dx )∫ 1

0.25 ϕ(Dx )dDx
0.25 ≤ Dx ≤ 1,

0 Dx ≤ 0.25.

(3)

Like the separation times, the damages of the catastrophes are drawn at the beginning
of the simulation and are the same for the different risk model settings. We denote the
total normalized loses drawn from this truncated Pareto distribution as Li .

4.2.4 Individual loss distribution

For the sake of simplicity we assume all risks in the region to be affected by the
catastrophe, albeit with a different intensity. To determine the specific distribution of
the known total damage across individual risks we use a beta distribution, defined as

β(dx ) = Γ (g + h)xg−1(1 − dx )h−1

Γ (g)Γ (h)
, (4)

where Γ is the Gamma function and dx is in this case the individual loss inflicted by
the catastrophe to every individual risk. The two parameters g and h determine the
shape of the distribution and define the expected value of the beta distribution which
is,

E[β(x)] = g

g + h
. (5)

Since the total loss inflicted by the catastrophe is Lx and this shouldmatch the expected
value (for large numbers of risks), we use this fact to compute h for every catastrophe
while always setting g = 1. That is,

Lx = 1

1 + h
. (6)

Solving for b we get
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h = 1

Lx
− 1. (7)

The shape of the individual loss distribution depends on the total loss value and has
to be adjusted for every catastrophe. We draw as many values from the distributions
as we have risks in the peril region. Finally, the claims received by the insurer j from
all risks i insured by j are computed as

Claimsx, j =
∑

i

{
min(ei , dx,i · v) − Qi Qi ≤ dx,i · vi ,

0 dx,i · vi ≤ Qi .
(8)

where ei is the excess of the insurance contract, dx,i is the individual loss, vi the total
value of the risk and Qi is the deductible. For convenience, we generally have vi = 1.

4.3 Insurer side

4.3.1 Firms, capital, entry, exit

The number of firms in the model at time t is ft = it + rt , of which it are insurance
firms and rt are reinsurance firms. The number of firms is dynamic and endogenous
with initial values i0 and r0.

Market entry is stochastic with constant entry probabilities for insurers (ηi ) and
reinsurers (ηr ). New insurance firms have a given initial capital ki and new reinsurance
firms have initial capital kr . These are both constants, chosen so that kr is substantially
larger than ki .

Market exit occurs with bankruptcy or when insurers or reinsurers are unable to find
enough business to employ at least a minimum share γ of the cash that they hold for
τ time periods. (We calibrate the model so that one time period is roughly a month).
Since the return on capital would be extremely low in that case insurers and reinsurers
prefer to leave the market or focus on other lines of business. We typically set the
parameters to γi = 0.6, τi = 24 for insurance firms and to γr = 0.4, τr = 48 for
reinsurance firms. That is insurance firms exit if they employ less than 60% of their
capital for 24 months, reinsurance firms when they employ less then 40% of their
capital for 48 months.12

Firms obtain income from premium payments and interest on capital k j,t (of firm
j at time t) at interest rate ξ . Firms also cover claims and may attempt to increase
capacity by either obtaining reinsurance or issuing CAT bonds. They pay dividends at
a rate � of positive profits. Firms decide whether or not to underwrite a contract based
onwhether their capital k j,t can cover the combined value-at-risk (VaR) of the new and
existing contracts in the peril region with an additional margin of safety corresponding
to a multiplicative factor μ. They additionally try to maintain a diversified portfolio
with approximately equal values at risk across all n peril regions.

12 While underwriting decisions are not discussed publicly, it is reasonable to assume that investors would
pull their capital if the firm is unable to write enough business. The different values for insurance and
reinsurance companies reflect the longer timehorizon and the larger scope reinsurance should have compared
to insurance.
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Table 2 Risk model diversity (underestimated (U) and overestimated (+) peril regions) and risk model
usage by risk model diversity setting (right)

Risk model properties Risk model usage by setting

Peril region A PR B PR C PR D Setting 1 (%) Setting 2(%) Setting 3(%) Setting 4(%)

Risk model 1 U + + + 100 50 33.3 25

Risk model 2 + U + + 0 50 33.3 25

Risk model 3 + + U + 0 0 33.3 25

Risk model 4 + + + U 0 0 0 25

Policyholders, shareholders, catastrophe bonds, and institutional investors that
would buy catastrophe bonds (such as pension funds and mutual funds ) are not repre-
sented as sophisticated agents in this model. Shareholders receive dividend payments.
Institutional investors buy catastrophe bonds at a time-dependent price that follows the
premium price. They do not otherwise reinvest or have any impact on the companies’
policies.

CAT bonds pay claims as long as they are liquid and are dissolved at bankruptcy
or otherwise at the scheduled end of life (at which point the remaining capital is paid
out to the owners). The modular setup of the ABM allows us to run replications with
and without reinsurance and CAT bonds.

4.3.2 Dividends

Firms in the simulation pay a fixed share of their profits as dividends in every iteration,
provided there were positive profits. In time periods in which the firm writes losses
no dividend is paid. That is,

R = max(0, � · profits), (9)

where R are the dividends and � is the share of the profits that is paid as dividends.
For the results that we report in this paper we have fixed � = 0.4.

4.3.3 Risk models

VaR Each insurance and reinsurance firm employs only one risk model. It uses this
risk model to evaluate whether it can underwrite more risks (or not) at any given time.
We assume that risk models are imperfect in order to allow investigation of effects of
risk model homogeneity and diversity.

There is empirical evidence that risk models are inaccurate (see Sect. 2). In some
peril regions they tend to underestimate risk while in others they overestimate it.
In our model risk models are inaccurate in a controlled way: they are calibrated to
underestimate risks in exactly one of the n peril regions and to overestimate the risks
in all other peril regions by a given factor ζ (see Table 2). Since the n peril regions
are structurally identical, with about the same number of risks and with risk events
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governed by the same stochastic processes, this allows up to n different risk models
of identical quality.13

The risk models use the VaR in order to quantify the risk of the insurers in each one
of the peril regions. TheVaR is a statistic thatmeasures the level of financial riskwithin
an insurance or reinsurance firm over a specific time frame. It is employed in some
regulation frameworks including Solvency II, where it is used to estimate the Solvency
Capital Requirement. Under Solvency II, insurers are required to have 99.5% confi-
dence they could copewith theworst expected losses over a year. That is, they should be
able to survive any year-long interval of catastropheswith a recurrence frequency equal
to or less than200years. Theprobability that catastrophes generatingnet losses exceed-
ing the capital of the insurer in any given year is α = 1

recurrence interval = 1
200 = 0.005.

For a random variable X that would represent the losses of the portfolio of risks of the
insurer under study, the VaR with exceedance probability α ∈ [0, 1] is the α-quantile
defined as

VaRα(X) = inf{x ∈ R : P(X > x) ≤ α}. (10)

This means that, e.g., under Solvency II, the capital that the insurer is required to hold
can be computed with the VaR0.005(X).
Computation of the firm’s capital requirement A firm’s VaR can be derived from the
firm’s risk model as a margin of safety factor over the VaR of the entire portfolio:
companies should hold capital k j,t such that

k j,t ≥ μVaR(X1 + X2 + X3 + · · · + XN ),

where the Xi represent all sources of cash flow for the company (including investment
returns, credit risk, insurance losses, premium income, expenses, operational failures,
etc.) and μ ≥ 1 is a factor for an additional margin of safety. In other words the
firm’s whole balance sheet from t0 to t0 +1 year must be modeled and capital must be
sufficient for the firm to have a positive balance sheet 99.5% of the time as a minimum.
Due to catastrophes, this condition can occasionally be violated, e.g., if the company
takes a loss such that k j is suddenly and severely reduced. In the present model, the
companies will in such cases stop underwriting until enough capital is recovered.
Estimation of the VaR in the simulation We opt for a simplified approximation of the
computation of the true VaR in the firm’s risk models. This simplification is necessary
in order to save significant amounts of the otherwise prohibitively long computation
time. This section elaborates on why this simplification is necessary and how we
nevertheless ensure a largely accurate result.

Computing the VaR over the firm’s portfolio requires computation of the convolu-
tion of the distributions of damages and those of the frequency of catastrophes both
over time and in all peril regions while also taking into account reinsurance contracts.
Reinsurance contracts essentially remove part of the support of the damage distribu-

13 To investigate the effects of risk model diversity, it is important that the risk models should be of identical
quality in order to avoid interference from effects based on quality differences.
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tion and make them non-continuous.14 Estimating the non-continuous distribution of
cash flows would require a Monte Carlo approach. Since this is necessary for every
underwriting decision, it would increase the computation time required for the ABM
by orders of magnitude.

We argue that to study the effects of systemic risk of risk model homogeneity, it is
not necessary to compute the VaR combined for all peril regions and over the entire
year.15 We will make two simplifications: (1) working with the values at risk due to
individual catastrophes in the model and (2) considering the VaR separately by peril
region and combining the peril regions with a maximum function.

(1) The focus on individual catastrophes instead of on 12-month periods transforms
the timescale in the results of our simulations, but the type of dynamics and the shape of
distributions obtained are the same. Evidently, bankruptcies should be more frequent
in our approach since we are only holding capital to survive individual catastrophes
with a returning period of 200 years, but not catastrophe recurrence in 12-month period
intervals. However, bankruptcy frequency is the only aspect that is affected.16

(2) Further, computationally expensive convolution of distributions across peril
regions can be avoided, since a good approximation can be obtainedwith themaximum
function over the VaRs in individual peril regions. To see this, consider two extreme
cases. If, on the one hand, the separation times of catastropheswere perfectly correlated
between all n peril regions and catastrophes would therefore always coincide, we
would have VaRc = VaR1 + VaR2 + · · · + VaRn . If, on the other hand, catastrophes
would never coincide, we would have VaRc = max(VaR1,VaR2, . . . ,VaRn). The
first scenario overestimates the VaR; the second underestimates it, by neglecting the
probability of the coincidence of multiple catastrophes. In other words, there is a
residual VaR term VaRr to account for this:

VaRc = max(VaR1,VaR2, . . . ,VaRn) + VaRr .

We choose our parameters such that the probability of such a coincidence happening
is small,

Pcoincidence = 1 − (n
0

)
(1 − Pperil)n − (n

1

)
Pperil(1 − Pperil)n−1

= 1 − (n
0

)
(e−λ)n − (n

1

)
e−λ(e−λ)n−1.

Namely, we choose λ = 100/3, n = 4, hence Pcoincidence ≈ 0.005. Consequently, our
VaRr is smaller than the Solvency II capital requirement threshold. We can therefore
avoid performing the prohibitively resource-consuming exact computation of the VaR
in the risk models and approximate

14 For reinsurance firms, reinsurance contracts add parts of other companies’ risk distributions between
the contract’s limit and deductible, also making the resulting distribution non-continuous.
15 We aim to assess the effect of risk model diversity. As explained below, we consider risk models that
underestimate the risk in exactly one peril region, while overestimating that in others. The model setup for
this approach is correct as long as the true VaR is between the underestimating and overestimating values
returned by the various risk models. In fact, we can expect our estimate to be much closer to the true VaR.
16 Changing the interpretation of the model’s time steps from months to years would correct this aspect
exactly. We opt not to do this, as it entails other problems such as the companies’ reaction times, as well as
loss of the model’s present level of detail.
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ṼaRc = max(VaR1,VaR2, . . . ,VaRn)

k j,t ≥ μṼaRc = μmax(VaR1,VaR2, . . . ,VaRn). (11)

Balancing of portfolios based on VaR in the simulation In addition, and especially
when getting close to the limit k j,t ≈ μVaRi , firms will prefer to underwrite risks
in different peril regions such that the portfolio is approximately balanced, keeping a
similar amount of risk in every peril region. More specifically, they underwrite a new
contract only if the new standard deviation of the VaR∗ in all peril regions is lower
with than without this new contract. That is,

std(VaR1∗,VaR2∗, . . . ,VaRn∗) > std(VaR1,VaR2, . . . ,VaRn), (12)

where VaRn∗ would be the estimated VaR in every peril region if the new contract is
accepted. If the standard deviation is higher, firms will only be willing to accept a new
contract if they are already balanced enough. In other words, the standard deviation
computed with the new VaRn∗ must be small compared to the total cash held by the
firm:

std(VaR1∗,VaR2∗, . . . ,VaRn∗) < ϑ
k

n
, (13)

where ϑ ∈ [0, 1] is a parameter that regulates how balanced a firm wants to be and n
is the number of peril regions.

4.3.4 Premium prices

The insurance industry is highly competitive. This justifies the assumption that all
agents are price takers. Insurance and reinsurance premiums depend on the total capital
KT
t = ∑ ft

j=1 k j,t available in the insurance sector. For the sake of simplicity we

assume that insurance premiums oscillate around the fair17 premium p f . When the
total capital of the industry increases, the premiums paid by a policyholder decrease,
and conversely, they increase when the total capital decreases. To avoid unrealistically
high volatility, we set hard upper and lower bounds to the premium proportional to
p f , p f ·MaxL and p f ·MinL . This gives us a development equation for the premium
price:

pt =

⎧
⎪⎪⎨

⎪⎪⎩

p f · MaxL p f · MaxL ≤ pt

p f · MaxL − s×KT
t

K I
0×D̃×H

p f ∗ MinL ≤ pt ≤ p f ∗ MaxL

p f · MinL pt ≤ p f · MinL,

(14)

17 By fair premium we mean in this context a premium that would on average offset the damages and thus
lead to zero profits and zero losses.
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where the slope s×KT
t

K I
0×D̃×H

depends on the available capital KT
t , the number of risks

available in the market H , the expected damage by risk D̃, and the initial capital held
by insurers at the beginning of the simulation, K I

0 . s = si is a sensitivity parameter.
The thresholds MaxL and MinL are implemented in the model as parameters and

can be varied, although we have run most of the simulations with values of MinL =
70% of the fair premium as lower boundary and MaxL = 135% of the fair premium
as upper boundary. The boundaries are rarely hit.

Reinsurance prices also follow Eq. 14. The thresholds MaxL and MinL are the
same. The only differences are that

– the reinsurance premium depends only on the capital available in the reinsurance
market

KT
t =

ft∑

j=1

z j,t k j,t

where z is a vector of length ft such that element z j,t is 1 for reinsurers and 0 for
insurers)

– initial capital is also that of the reinsurers K R
0

– the sensitivity to capital changes, s = sr is larger than for the insurance premium
(steeper slope), sr > si .

The capital in the reinsurancemarket is usually an order ofmagnitude below the capital
available in the insurance market. This is true for contemporary global insurance and
reinsurancemarkets (see Sect. 2) and is reproduced by themodel in the average steady-
state values of the capital after careful calibration (see Sect. 5).

For the sake of simplicity premiums are the same for all peril regions. This is a base
case that allows us to design risk models of identical quality.

4.4 Contracts

4.4.1 Insurance and traditional reinsurance contracts

Insurers provide standard insurance contracts lasting 12 iterations (months). At the
end of a contract the parties try to renew the contract, which leads to a high retention
rate.

Insurers may obtain excess-of-loss reinsurance18 for any given peril region. The
standard reinsurance contract lasts 12 iterations (months). The insurer proposes a
deductible for the reinsurance contract; the reinsurer will evaluate whether or not to
underwrite the contract. Each reinsurance contract has a deductible (i.e., the maximum
amount of damages the insurer has to pay before the contract kicks in). In our model,
the deductible for each contract is drawn from a uniform distribution between [25%,
30%] of the total risk held per peril region by the insurer at the start of the contract.

18 The ABM also allows the possibility of using only proportional reinsurance, although we this is not
explored in the present study.
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4.4.2 Alternative reinsurance: CAT bonds

Themodel also includes a simplified alternative insurance capitalmarket:Both insurers
and reinsurers may issue catastrophe bonds (CAT bonds) by peril region. A CAT
bond is a risk-linked security that allows institutional investors like mutual funds and
pension funds to reinsure insurers and reinsurers. They are structured like a typical
bond, where the investors transfer the principal to a third party at the beginning of
the contract and they receive coupons (some points over LIBOR) every year for it. If
during the validity of the contract no catastrophe occurs the principal is returned to the
investor. If a catastrophe occurs the losses of the insurer and reinsurer are covered with
the principal until it is exhausted. CAT bonds are attractive since they are uncorrelated
with the other securities available in the financial market. Since institutional investors
are risk averse only the high layers of the reinsurance programs with a low probability
of loss are covered by CAT bonds.

If insurers cannot get reinsurance coverage over five or more iterations they issue a
CAT bond. The premium of CAT bonds is a few points over the reinsurance premium
of the traditional reinsurance capital market.

4.5 Model setup and design choices

4.5.1 Settings

Risk model homogeneity and diversity can be studied by comparing settings with
different numbers of risk models used by different firms. In a one risk model case, all
firms use the same (imperfect) risk model. In a two risk model case, firms are divided
between two equally imperfect risk models, etc.

4.5.2 Experimental design

We compare n settings with different numbers of risk models ν = 1, 2, . . . , n. The
up to ν = n different risk models are of identical accuracy and distinguished by
underestimating risks in different peril regions. As a consequence, we need to model n
different peril regions;we retain this number of peril regions in all settings including the
ones with ν < n different risk models in order to allow for a more direct comparison.

Simulations are run as ensembles of M replications for each of the n settings
considered. In every replication we run the model with identical parameters, changing
only the original random seed. We typically set M = 400 and n = 4, which means
we run 4 × 400 = 1600 replications of a simulation just varying the number of risk
models (M = 400 each for ν = 1, 2, 3, 4).

The catastrophes in the model are random, but occur at the same time steps for the
different model diversity settings to provide a meaningful comparison. If a catastrophe
x of size Dx happens in time step tx in replicationmx for the one risk model case, then
a catastrophe of the same size Dx will hit the simulation in the same time step (tx ) in
the same replication mx in the two risk model case, in the three risk model case, and
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in the four risk model case. This allows us to isolate the effects of risk model diversity
as the four different settings are exposed to the same sequences of perils.

We run experiments for various parameter values, e.g., to consider the effects of
different margins of safety μ and the effect of the presence or absence of reinsurance.

We have designed themodel so that after transients die out the behavior is stationary.
This allows us to take long time averages of quantities such as the frequency of
bankruptcies. Quantities such as the number of firms and number of reinsurance firms
are set initially, but these change in time in response to the other parameters. After
a long time the initial settings become irrelevant. To avoid biasing our results with
data from the transient stage we remove the first 1200 periods (100 years) of the
simulations.19

4.5.3 Software

The model was written in Python. The source code is publicly available.20 It is still
under development, e.g., with extensions for validation, calibration, and visualization.

5 Results

We now demonstrate applications of the model. We aim to highlight its capabilities
and demonstrate insights on the behavior of catastrophe insurance systems that can be
gained from it.

Section 5.1 discusses the behavior of the model within single replications. Using
the example of the insurance cycle, it will be highlighted that the model is able to
reproduce realistic time series.

Section 5.2 compares ensemble simulations with four different risk model diversity
settings. The four risk model diversity settings correspond to the one, two, three, and
four risk models used by the firms in the respective simulation. It serves to demon-
strate that the model can be used to investigate systemic risk of model homogeneity
in insurance. We show time development patterns in the ensemble simulations (pre-
miums, revenue, numbers of active firms), provide evidence of systematic differences
between risk model diversity settings and discuss distributions of firm bankruptcy
cascade sizes and of amounts of non-recovered claims.

Section 5.3 investigates the effect of reinsurance by comparing simulations in the
base scenario with the normal complement of reinsurance firms (as discussed in previ-
ous subsection) on the one hand and counterfactual ones without a reinsurance sector
on the other.

Section5.4discusses emergingdistributions offirmsizes that reproduce asymmetric
firm size distributions in reality nicely in spite of initially equal firm sizes in the model.

If not indicated otherwise, the parameter settings are as given in Table 8.

19 We have observed that the model settles after about 800 time periods. We remove 1.5 times that, i.e.,
1200 time periods, to be absolutely sure the transient is not included in the data.
20 See https://github.com/INET-Complexity/isle.
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Fig. 4 Insurance cycle for the model. a Time series of the premium in percent of the fair premium (expected
loss) in a typical simulation run, where 100% means that premiums are on average equal to claims. b Time
series for the same simulation run of the sum of profits and losses of all insurers in normalized monetary
units. The insurance cycle emerging in the development of the premium (a) has realistic characteristics and
is distinct from (albeit influenced by) the development of profits and losses (b)

5.1 Reproducing the insurance cycle

The insurance model presented here is able to reproduce the most important stylized
facts of the insurance cycle as discussed in Sects. 2 and 3.2. In panel (a) of Fig. 4, the
time evolution of the premium in a single run of the model over a span of more than 80
years is shown. For the sake of simplicity we ran this simulation without reinsurance.
The transitions from soft markets to hard markets can take several years. In line with
real insurance cycles, fluctuations are irregular in both frequency and amplitude. The
time series of profits and losses of the industry in the same simulation run is shown in
panel (b) of Fig. 4. During most years, the industry is growing (profits are positive),
but this growth is disrupted in years with catastrophes and the immediately following
years. The industry as a whole experiences losses only in years with catastrophes.

In Fig. 5 we show a comparison between the real insurance cycle published by the
reinsurance broker Guy Carpenter and a simulated insurance cycle generated by the
model.21 The cycle generated by the model is a 25-year sample in a single run of more

21 Source: http://www.guycarp.com/. We only have ca. 25 years of data since time series are only available
starting in 1990.
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Fig. 5 a Real insurance cycle in terms of the Rate-on-Line index (same as Fig. 1). b Insurance cycle as
generated by the ABM, rescaled to the same magnitude as in panel a and over a shorter span of time
in comparison with the previous figure. We had to rescale because the algorithm used for computing the
Rate-on-Line is not public, but the range of variation of the period and amplitude are similar

Table 3 Comparison of mean and standard deviation of the real insurance cycle (Rate-on-Line from Guy
Carpenter data) and an artificial time series from the ABM rescaled to a similar amplitude with a linear
transformation. Both mean and variance match closely after rescaling

Mean Standard deviation

Real data 224.730 59.949

Generated data 224.702 59.973

than 200 years. The algorithm Guy Carpenter uses to generate the index is not public
as it is commercially sensitive information. To obtain a comparable measure, we have
rescaled the premium time series produced by the ABM using a linear transformation
to obtain fluctuations of the same magnitude as in the real index. Although there are
differences in detail, both time series share approximately the same range of variation
in period and amplitude. The rescaled premium time series also have a very similar
mean and standard deviation as shown in Table 3.
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Fig. 6 Autocorrelation spectrum of both the real insurance cycle and the artificial one generated with the
ABM. The real insurance cycle has peaks at 8 years. The artificial one generated with the ABM has peaks
at 8 or 11 years

We also show the autocorrelation spectrum in Fig. 6. Here we can see that the real
insurance cycle has a peak at 8 years, while the data generated artificially with the
ABM has peaks at 8 and 11 years, which constitutes a fair approximation.

5.2 Systemic risk due tomodel homogeneity

We now study the characteristics of the insurance system as we vary the number
of distinct risk models available to the insurance and reinsurance companies from
absolute homogeneity (one risk model) to four risk models with intermediate cases of
two and three alternatives.

We have chosen the models so their average accuracy is the same but they are
inaccurate in different circumstances (see Sect. 4). Specifically, each model under-
estimates risks in a different peril region. A catastrophe in a particular peril region
will therefore hit firms that employ the one risk model which underestimates this peril
region particularly hard.

The results for any given simulation are very diverse, with large variations from run
to run. By performing 400 simulations we reduce the variation sufficiently to make
the differences clear. To reduce the variance we construct the M = 400 ensembles
for each of the four risk model diversity settings so that they have identical risk event
profiles.22 The mean results corresponding to the four settings are shown in Figs. 7
8, 9 and 10: red (circles) for the setting where all firms use the same risk model, blue

22 That is, we consider 400 different realizations of the stochastic processes governing when and where
catastrophic perils ofwhat size occur and run these realizations for each of the riskmodel settings. Initializing
the simulationwith the same emsemble of random seedswould not give similar risk event profiles andwould
not be a sufficiently meaningful comparison. As many aspects of the system are subject to heavy-tailed
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Fig. 7 Number of non-insured risks as a function of time. Ensemble simulation with 400 replications for
each risk model diversity settings. Margin of safety is μ = 2. Time steps 1200–4000 (months) are shown
(transient in time steps 1–1199 removed). Ensemblemeans are shown as solid lines. The interquartile ranges
of the settings with one (red) and two (blue) risk models are depicted as shaded areas. (The overlap of both
areas is shaded in magenta.) (color figure online)

(squares) for the setting with two different risk models, green (crosses) for the setting
with three risk models, and yellow (triangles) for the setting with four risk models.
To convey an idea of the dispersion, the figures include interquartile ranges for the
one- and two-riskmodel cases as shaded areas. We also report the mean differences
between the settings for all variables visualized in these figures in Table 4. Two-sided
t-tests were performed to make sure that the differences are significant.23

As shown in Fig. 7, the setting with one risk model typically results in more risks
left without insurance coverage. Since the number of insurable risks is held constant,
if fewer contracts are issued, there are more risks that cannot be insured because
no insurance firm is willing to insure them. Insurance firms find it more difficult to
diversify their portfolio with only one riskmodel hence they aremore reluctant to issue
more contracts. For instance, diversity with four risk models decreases the number of
non-insured risks by 50% on average compared to the homogeneity setting with only
one risk model (Table 4).

The market is more competitive with a higher diversity of risk models: Fig. 8 shows
that the number of insurance firms is increased from an average of 54 firms to around
66 when more models are used, an increase of more than 20% (Table 4). Surprisingly,
there is very little change in the number of reinsurers. As shown in Fig. 9, this also

distributions, individual realizations might dominate the ensemble and bias the comparison if not present
in the other three ensembles for the other risk model diversity settings.
23 It should be noted that the large sample size of 1.12 million observations per setting causes even small
differences to be highly significant.
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Fig. 8 Number of operational insurance firms. See caption for Fig. 7

Fig. 9 Amount of excess capital (beyond the capital required to cover currently underwritten contacts). This
provides a measure of of the capacity to write additional business. See caption for Fig. 7
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Fig. 10 Insurance premiums. See caption for Fig. 7

Table 4 Mean difference for the time series with ν = 2, 3, 4 risk models compared to the time series with
risk model homogeneity (ν = 1) in the standard setting

Mean difference between
settings with 1 risk model and…

Variable 2 risk models (%) 3 risk models (%) 4 risk models (%)

Operational insurers 17.67 22.04 21.42

Operational reinsurers − 2.60 − 3.33 − 3.43

Excess capital (insurance) 36.27 48.29 54.57

Excess capital (reinsurance) 19.72 48.67 75.75

Premium 0.18 0.58 0.89

Reinsurance premium − 0.47 − 1.08 − 1.64

Non-insured risks − 25.20 − 39.74 − 49.51

Non-reinsured perils 14.64 12.97 6.11

A t-test to confirm that the difference is significant with p-values down to less than 10−6 for every case

results in a reduction in the amount of available capital24 for both insurance and
reinsurance firms. Here the change is more dramatic: For insurance companies, the
available capital when there are four risk models is about 55% higher than it is with
one risk model. For reinsurance companies, available capital it is almost 76% higher
(Table 4). This indicates that risk buffers are higher; companies are able to absorb
more catastrophic loses with more model diversity.

24 Available capital is the capital that is not tied up covering existing contracts, essentially the capacity to
write additional business.
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Fig. 11 Comparison of insurance cycleswith identical risk events in different risk model diversity settings.
The insurance cycle seems to be longer in the case of one risk model. The volatility/capital ratio is similar
in all cases

Finally, Fig. 10 shows that for insurance firms the risk premiums are lower with one
risk model than they are for four risk models, though here the difference is small (less
than 1%). Surprisingly, this effect is reversed for reinsurance firms,25 though again,
the difference is similarly small. The premium for reinsurance firms in the case of the
setting with four risk models is around 1.6% cheaper than the setting with only one
risk model.

Figure 11 shows how the insurance cycle is affected by this in a simulation with
the same schedule of catastrophes and random seed for all four risk model diversity
settings. The premium tends to be lower when more risk models are available. We also
find that the volatility/capital ratio is similar in all cases. The insurance cycle seems
to be longer in the case of one risk model.

Bankruptcies are a key measure of systemic risk. To study how the number of
risk models affects this, we compile statistics about the size of bankruptcy cascades,
which we measure as the share of bankrupt firms Bt = bt/ ft . Here, bt is the number
of bankrupt firms at time t and ft the total number of firms at time t). Both numbers
include both insurance and reinsurance firms. We study the distribution of these vari-
ables across all replications and the entire history of each replication of every setting
of the simulation. Figure 12 shows the distributions of sizes of bankruptcy cascades.26

The total number of bankruptcy events shown in Fig. 12 does not differ very much
between the four risk model diversity settings. However, the number of very large
events is very different. For the one risk model case (uppermost panel, red), the body
of the distribution extends continuously up to more than a third of the sector (0.35)
while in the four risk model case (lowermost panel) only some scattered outliers
beyond 0.27 are observed across all 160,000 time steps from all 400 replications. As
shown in Table 6, roughly 4200 firms default with one risk model, whereas there are
only about 1500 firms defaulting with four risk models.

25 This is influenced by the amount of capital available in these sectors and ultimately by risk models and
by firm entry and exit as defined in Sect. 4.3
26 To account for indirect effects, a bankruptcy cascade is here defined as series of defaulting firms in
successive time steps without intermediating time steps in which no bankruptcies occur.
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Fig. 12 Histogram of the total sizes of bankruptcy events, measured as the fraction of firms B that fail
during each event. ensemble of 400 replications of simulations of 4000 time steps with margin of safety
μ = 2. The y-axis is in log scale

Fig. 13 Histogram of the number of non-recovered claims Ct in each bankruptcy cascade, where Ct is
defined on each time step t . See caption for Fig. 12
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The linearity of these histograms on semi-log scale suggests that exponentials pro-
vide a crude fit to the body of these distributions. As an alternate measure of systemic
risk we fit exponentials to each distribution27 to measure the slope λ̂ with which the
distribution decays in these semi-log plots. Lower values indicate higher risk of very
large events. As shown in as shown in Table 6, we find that the slope for the distri-
bution of sizes of bankruptcy cascades B is steeper for settings with more diversity,
changing from λ̂ν=1 = 33.99 ± 0.07 with one risk model to λ̂ν=4 = 42.99 ± 0.1
with four risk models.28 This finding is robust and holds throughout four different
series of simulations (each with all four risk model diversity settings) reported in the
table: (1) the standard case, (2) a comparative case without reinsurance but all other
settings identical (discussed in Sect. 5.3), (3) a comparative case with lower margin
of safety (μ = 1), and (4) a case with lower margin of safety and without reinsurance
(discussed in Appendix B). More diversity thus leads to significantly fewer events in
specific tail quantiles than comparative settings with less diversity. This is confirmed
by the number of bankruptcy events affecting more than 10% of the insurance and
reinsurance firms as reported in the lower part of Table 6. The difference between the
four risk model diversity settings becomes larger in cases without reinsurance. This is
discussed in more detail in Sect. 5.3 (compare Fig. 14).

We also study the number of non-recovered claims, which yields similar albeit less
pronounced results shown in Fig. 13. This is the number of times that a policy is not
paid due to the default of an insurance company. We measure this in terms of the
number of unpaid claims Ct at each time step.

5.3 Effect of reinsurance

The effect of reinsurance can be observed by running the simulation without rein-
surance firms. The results are reported in Figs. 14 (histogram of sizes of bankruptcy
cascades), 15 (histogram of amounts of non-recovered claims), as well as Figs. 16 and
17 (time series). Mean differences for all variables are reported in Table 5; two-sided
t-tests show that all mean differences are highly significant.

It can be seen that the effect of risk model diversity or homogeneity on bankruptcy
cascades is much stronger in this case. For example, the shapes of the distributions for
the four riskmodel settings aremoremarkedly different in the casewithout reinsurance
(Fig. 14) with the tail becoming shorter for settings with more diversity. With only one
risk model, there were 4385 events in the sample that affected more than 10% of the
insurance firms.With four riskmodels, this reduces to 1229 events, a reduction of 71%
(see Table 6, second column). In the equivalent settings with reinsurance (Fig. 12),
this reduction is only 62% from 4212 to 1561 events. The difference is also clear from
the slope of the fit line of the histograms of bankruptcy sizes in semi-log (that is, the
parameter of the exponential distribution, λ̂): Without reinsurance it changes from

27 The close-to-linear shape of the distributions in the semi-log plots in Figs. 12 and 13 suggests long-tailed
distributions from the exponential family or similar. However, the exponential form must necessarily be
truncated as the observed variable are shares that must be between 0 and 1.
28 The effect is less clear-cut for the amount of unrecovered claims C . For instance, C is lower for the
setting with just one risk model, since the size of the insurance business is smaller, but the expected shortfall
is larger.
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Fig. 14 Histogram of the total sizes of bankruptcy events without reinsurance. See caption for Fig. 12

Fig. 15 Histogram of the number of non-recovered claims Ct at each time step when reinsurance is used.
See caption for Fig. 12
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Fig. 16 Number of operational firms and number of insured risk without reinsurance. See caption for Fig. 7

Fig. 17 Insurance premiums without reinsurance. See caption for Fig. 7
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Table 5 Mean difference for the time series with ν = 2, 3, 4 risk models compared to the time series with
risk model homogeneity (ν = 1) in a setting without reinsurance

Mean difference between
settings with 1 risk model
and…

Variable 2 risk models (%) 3 risk models (%) 4 risk models (%)

Operational insurers 35.38 57.29 72.88

Excess capital (insurance) 42.76 62.67 92.41

Premium − 2.20 − 3.18 − 3.52

Non-insured risks − 38.25 − 61.06 − 73.88

A t-test confirms that the difference is significant with p-values down to less than 10−6 for every case

λ̂ν=1 = 36.81 to λ̂ν=4 = 58.78, a change of 60%, with reinsurance only 26% from
λ̂ν=1 = 33.99 to λ̂ν=4 = 42.99 (see Table 6, first and second column).

While reinsurance adds a second contagion channel to systemic risk due to the
counterparty exposure from reinsurance contracts, it partially alleviates the systemic
effects of risk model homogeneity. Therefore, the number of large bankruptcy events
(more than 10% of firms affected) is up to 20% higher with reinsurance. This can be
seen in the first and second column in Table 6. It holds for all settings with at least
two risk models. In the setting with risk model homogeneity (only one risk model)
this is reversed and the number of large bankruptcy events is larger without than
with reinsurance. The increased effect of risk model homogeneity with reinsurance
discussed in the previous paragraph is in this setting stronger than the counterparty
exposure effect.

The stronger effects of risk model homogeneity are also visible in the time series
shown in Figs. 16 and 17 (compared to Figs. 8, 7, and 10): The ensemble means
for the different risk model diversity settings lie further apart: With reinsurance, risk
model diversity can increase the number of active insurers from about 50 to about 65
(Fig. 8) and reduce the number of uninsured risks from about 6000 to half that (Fig. 7).
Without reinsurance, risk model diversity can increase the number of active insurers
from about 70 to about 120 and reduce the number of uninsured risks from about
8000 to about 2000 (Fig. 16). With reinsurance, risk model diversity seemed to lead
to higher insurance premiums but lower reinsurance premiums. Without reinsurance,
the insurance premiums tend to decrease with risk model diversity and thus follow
the behavior shown by reinsurance premiums above. Moreover, while the ensemble
interquartile ranges overlap for each of these variables with reinsurance, this overlap
is not present without reinsurance, except in the premium prices, and there the overlap
is small.

It should be noted, however, that the numbers of uninsured risks are higher without
than with reinsurance for almost all risk model diversity settings. This emphasizes that
reinsurance does have a productive and important role in the insurance system beyond
rearranging the patterns of systemic risk of modeling.
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Table 6 Downward slopes λ̂ of the distributions of the sizes of bankruptcy cascades (B), obtained from
exponential fit and numbers of events in the right tail beyond 10% of all firms bankrupt

Parameter settings

Margin of safety μ = 2 μ = 2 μ = 1 μ = 1

Reinsurance Yes No Yes No

Figure 12 14 19 20

Slope λ̂ for sizes of bankruptcy cascades (B)

One risk model 33.99 ± 0.07 36.81 ± 0.08 18.86 ± 0.04 17.04 ± 0.04

Two risk models 38.21 ± 0.08 46.85 ± 0.10 20.18 ± 0.04 20.77 ± 0.06

Three risk models 41.04 ± 0.09 53.31 ± 0.12 21.15 ± 0.05 23.54 ± 0.07

Four risk models 42.99 ± 0.10 58.78 ± 0.13 21.76 ± 0.05 25.74 ± 0.08

Number of events with > 10% of firms defaulting

One risk model 4212 4385 22486 21928

Two risk models 3013 2453 16137 12699

Three risk models 1981 1686 12419 7952

Four risk models 1561 1229 10323 5441

Fig. 18 Ensemble of empirical complementary cumulative distribution functions (cCDFs) of the distribution
of insurance firm sizes in terms of capital after 1000 time steps in an ensemble of 70 replications of
simulations with margin of safety μ = 2. The median is shown as solid line, the mean as dashed line, the
interquartile range as shaded area. Mean, median, and interquartile range are with respect to the ensemble
of cCDFs, i.e., evaluated in x-axis direction
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Table 7 Mean skewness Skew = 1
M

∑M
i=1 Skew(Xi ) of empirical distributions of insurance firm sizes Xi

in terms of capital after 1000 time steps in an ensemble of M = 70 replications of simulations with margin
of safety μ = 2 corresponding to Fig. 18

Setting Mean skewness SD Mean 95% CIs 2.5−97.5% quantiles

1 riskmodel 1.583 0.613 [0.881, 2.550] [0.627, 3.068]
2 riskmodels 1.412 0.833 [0.770, 2.215] [0.463, 3.567]
3 riskmodels 1.427 0.722 [0.839, 2.260] [0.546, 3.184]
4 riskmodels 1.565 0.705 [0.893, 2.467] [0.484, 3.244]
Additional columns show the standard deviation sd(Skew), the means of the upper and lower 95% confi-
dence intervals Skew(Xi ),

1
M

∑M
i=1 CIlower(Skew(Xi )) and

1
M

∑M
i=1 CIupper(Skew(Xi )), as well as the

2.5% and 97.5% quantiles of the skewnesses in the ensemble, Quantile2.5%(Skew(Xi )|i = 1, . . . , M) and
Quantile97.5%(Skew(Xi )|i = 1, . . . , M)

5.4 Reproducing the emergence of asymmetric firm-size distributions

Figure 18 shows the complementary cumulative distribution function of the distribu-
tion of insurance firm sizes in terms of capital after 1000 time steps with dispersion in
an ensemble run for one parameter setting. Table 7 shows themean skewand associated
confidence measures. The number of firms ranges up to several hundred per replica-
tion. Distributions with a long tail emerge consistently across all risk model diversity
settings. The skew is always positive and greater than one, indicating highly right-
skewed distributions. This is insensitive to parameters (e.g., μ, presence or absence
or reinsurance, etc.) and may also appear for reinsurance firms, although that is not
significant because of the smaller number of reinsurance firms (see Appendix B).
This corresponds nicely with established empirical facts about firm size distributions,
which are found to be long tailed although the findings on the concrete functional
form diverge;29 lognormal, exponential, or power law shapes have been proposed.
This fact can be confirmed for the insurance sector, but the number of firms, both in
the simulation replications in our study and in empirical data sets on insurance firms,
is not large enough to fit concrete functional forms with sufficient confidence.

6 Conclusion

Solvency II, the EU insurance regulation framework, came into effect in January 2016.
It constitutes a major step for insurance regulation in terms of liquidity, capital, and
transparency requirements, making it possible to address microprudential aspects as
well as potentially systemic risk from counterparty exposure. It also includes provi-
sions for usage and design of risk models. But whether we understand the systemic
level of the insurance and reinsurance business sufficiently well to confidently design
regulatorymeasures for a resilient insurance sectors is still an open question. No schol-
arly consensus has as yet emerged about what drives the insurance cycle. It remains

29 The empirical distribution is even more heavy-tailed than the ones typically emerging in the model,
perhaps because of additional effects from the behavior of financial markets, etc. in reality.
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Table 8 Standard parameter setting of the simulation

Symbol Variable Value

tmax Number of time steps 4000

μ Margin of safety 2.0

α VaR exceedance probability 0.005

� Dividends as share of profit 0.4

ξ Monthly interest rate 0.001

M Number of replications per setting 400

K I
0 Initial capital (insurance firms) 80,000

K R
0 Initial capital (reinsurance firms) 2,000,000

fi,0 Initial number of insurance firms 20

fr ,0 Initial number of reinsurance firms 4

ηi,0 Insurance firm market entry rate 0.3

ηr ,0 Reinsurance firm market entry rate 0.05

γi Capital employment threshold for insurance firm exit 0.6

τi Time limit for insurance firm exit 24

γr Capital employment threshold for reinsurance firm exit 0.4

τr Time limit for reinsurance firm exit 48

λ Average frequency of perils (per peril region) 0.03

σ Tail exponent of damage distribution −2

n Number of peril regions 4

H Number of risks 20,000

ζ Risk model inaccuracy 2

MinL Lower premium limit factor 70%

MaxL Upper premium limit factor 135%

si Insurance premium sensitivity parameter 1.29 × 10−9

sr Reinsurance premium sensitivity parameter 1.55 × 10−9

ϑ Risk exposure balance requirement parameter 0.1

unclear what effect new financial market vehicles like CAT bonds will have on the
industry compared to traditional reinsurance. The investigation of systemic risk in
insurance is a new and unexplored field.

In the present paper we present an agent-based model of the insurance sector to
help address these questions. The model includes reinsurance and a number of other
aspects. It reproduces a variety of stylized facts, ranging from the insurance cycle to
the firm size distribution to the importance of reinsurance. It also allows investigating
the roles of various elements of the insurance system and themechanisms behind some
of its characteristics.

We have demonstrated the capabilities of the model to reproduce said stylized facts
and used it to show the existence and the properties of systemic risk of modeling in
insurance systems. To do so, we considered ensemble runs with the same environment,
the same parameters, and the same profile of risk events but different numbers of (one,
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two, three, and four) risk models of identical quality employed by the insurance and
reinsurance firms in the simulations. We found that settings with greater diversity tend
to experience less severe bankruptcy cascades, especially in cases with a low margin
of safety and in counterfactual cases without reinsurance.

We found that settings with risk model diversity not only succeeded in partially
offsetting the risk of large bankruptcy cascades, but also tended to lead to an insurance–
reinsurance sector with greater penetration (higher share of risks underwritten), more
active firms, and more available capital for additional endeavors on the part of the
insurance firms. However, we found that the benefits differed between the insurance
and the reinsurance part of the business; doubtlessly, different parameters can lead
to a reallocation of assets between these sectors. Reinsurance tends to mitigate the
strength of the systemic risk effect of risk model homogeneity but can exacerbate it
in some cases by adding an additional contagion channel (reinsurance counterparty
exposure).

It should be noted that the results reported here represent an entirely hypotheti-
cal world that was only calibrated in terms of accurate functioning of the interaction
mechanisms and credible settings of the environmental parameters, such as the distri-
butions of perils, the interest rate, and the rate of market entry. Running simulations
that are calibrated to empirical data of real insurance–reinsurance markets are highly
desirable, but will require high-quality data as well as significant efforts in model
calibration,30 and are left for future research.
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Fig. 19 Density (histogram) of the total sizes of bankruptcy events (share of exiting firms B) in an ensemble
of 400 replications of simulations of 4000 time steps with margin of safety μ = 1. The y-axis is in log scale

A Standard parameter setting

Note on stock-flow consistency

As the model does not have a macro-economic perspective, stock-flow consistency
requirements in the standard sense do not apply. However, the simulation model does
not allow anything to appear from nothing or disappear into nothing. The rest of the
economy is represented as a separate quasi-agent that handles all payments into or out
of the insurance and reinsurance sector and is endowed with a very large but finite
amount of capital. This is initialized at the beginning of the simulation and updated at
every simulation step. In practice, dividend payments and claim payments to insurance
customers are made to this agent while premiums from insurance customers are paid
by this agent. This allows us, among other things, to keep track of the payment balance
between the insurance sector and the rest of the economy.

B System sensitivity

We study the effect of the margin of safety μ on the system and its interaction with
effects of risk model homogeneity. This effect can be seen in Figs. 19 and 20, where
themargin of safety is reduced toμ = 1 in comparisonwith the standard case ofμ = 2
shown in Figs. 12 and 14. This exacerbates the effect of risk model homogeneity and
the associated systemic risk substantially and makes especially (but not only) cases
with low risk model diversity more volatile.
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Fig. 20 Density (histogram) of the total sizes of bankruptcy events (share of exiting firms B) in an ensemble
of 400 replications of simulations of 4000 time steps without reinsurance and with margin of safety μ = 1.
The y-axis is in log scale

Fig. 21 Ensemble of empirical complementary cumulative distribution functions (cCDFs) of the distribution
of insurance firm sizes in terms of capital after 1000 time steps in an ensemble of 70 replications of
simulations without reinsurance and with margin of safety μ = 2. The median is shown as solid line, the
mean as dashed line, the interquartile range as shaded area. Mean, median, and interquartile range are with
respect to the ensemble of cCDFs, i.e., evaluated in x-axis direction
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Fig. 22 Ensemble of empirical complementary cumulative distribution functions (cCDFs) of the distribution
of reinsurance firm sizes in terms of capital after 1000 time steps in an ensemble of 70 replications of
simulations with margin of safety μ = 2. The median is shown as solid line, the mean as dashed line, the
interquartile range as shaded area. Mean, median, and interquartile range are with respect to the ensemble
of cCDFs, i.e., evaluated in x-axis direction

Table 9 Mean skewness Skew = 1
M

∑M
i=1 Skew(Xi ) of empirical distributions of reinsurance firm sizes

Xi in terms of capital after 1000 time steps in an ensemble of M = 70 replications of simulations with
margin of safety μ = 2 corresponding to Fig. 22

Setting Mean skewness SD Mean 95% CIs 2.5 − 97.5% quantiles

1 riskmodel 0.381 0.624 [−0.597, 1.097] [−0.777, 1.651]
2 riskmodels 0.541 0.676 [−0.399, 1.196] [−0.492, 1.970]
3 riskmodels 0.635 0.709 [−0.403, 1.276] [−0.527, 1.852]
4 riskmodels 0.853 0.676 [−0.224, 1.319] [−0.403, 2.062]
Additional columns show the standard deviation sd(Skew), the means of the upper and lower 95% confi-
dence intervals Skew(Xi ),

1
M

∑M
i=1 CIlower(Skew(Xi )) and

1
M

∑M
i=1 CIupper(Skew(Xi )), as well as the

2.5% and 97.5% quantiles of the skewnesses in the ensemble, Quantile2.5%(Skew(Xi )|i = 1, . . . , M) and
Quantile97.5%(Skew(Xi )|i = 1, . . . , M)

The emergence of asymmetric, long-tailed firm size distributions is preserved under
a number of modifications including changing the margin of safety and switching off
reinsurance (see, Fig. 21 and Table 10). The size distribution of reinsurance firms
follows the same characteristics, albeit subject to more noise since the total number is
smaller (see, Fig. 22 and Table 9).

Sensitivity analyses involving modifications to the interest rate r , the risk model
inaccuracy parameter ζ , the initial ratio of insurance to reinsurance firm capital
ki (0)/kr (0), and the runtime of contracts were conducted with smaller ensembles
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Table 10 Mean skewness Skew = 1
M

∑M
i=1 Skew(Xi ) of empirical distributions of insurance firm sizes

Xi in terms of capital after 1000 time steps in an ensemble of M = 70 replications of simulations without
reinsurance and with margin of safety μ = 2 corresponding to Fig. 21

Setting Mean skewness SD Mean 95% CIs 2.5 − 97.5% quantiles

1 riskmodel 2.523 1.664 [1.454, 3.698] [0.243, 6.221]
2 riskmodels 1.787 1.171 [0.996, 2.596] [0.120, 4.314]
3 riskmodels 1.745 1.108 [1.015, 2.556] [0.306, 4.319]
4 riskmodels 1.753 1.284 [1.161, 2.522] [0.249, 5.864]
Additional columns show the standard deviation sd(Skew), the means of the upper and lower 95% confi-
dence intervals Skew(Xi ),

1
M

∑M
i=1 CIlower(Skew(Xi )) and

1
M

∑M
i=1 CIupper(Skew(Xi )), as well as the

2.5% and 97.5% quantiles of the skewnesses in the ensemble, Quantile2.5%(Skew(Xi )|i = 1, . . . , M) and
Quantile97.5%(Skew(Xi )|i = 1, . . . , M)

and shorter runtimes. The main result of the simulation was robust to the studied mod-
ifications. The smaller ensemble sizes do not support statements about differences in
the quantitative results with reasonable confidence.
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