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Abstract
We introduce the conditional restricted Boltzmann machine as method to analyze 
brand-level market basket data of individual households. The conditional restricted 
Boltzmann machine includes marketing variables and household attributes as inde-
pendent variables. To our knowledge this is the first study comparing the conditional 
restricted Boltzmann machine to homogeneous and heterogeneous multivariate 
logit models for brand-level market basket data across several product categories. 
We explain how to estimate the conditional restricted Boltzmann machine start-
ing from a restricted Boltzmann machine without independent variables. The con-
ditional restricted Boltzmann machine turns out to excel all the other investigated 
models in terms of log pseudo-likelihood for holdout data. We interpret the selected 
conditional restricted Boltzmann machine based on coefficients linking purchases 
to hidden variables, interdependences between brand pairs as well as own and cross 
effects of marketing variables. The conditional restricted Boltzmann machine indi-
cates pairwise relationships between brands that are more varied than those of the 
multivariate logit model are. Based on the pairwise interdependences inferred from 
the restricted Boltzmann machine we determine the competitive structure of brands 
by means of cluster analysis. Using counterfactual simulations, we investigate what 
three different models (independent logit, heterogeneous multivariate logit, condi-
tional restricted Boltzmann machine) imply with respect to the retailer’s revenue if 
each brand is put on display. Finally, we mention possibilities for further research, 
such as applying the conditional restricted Boltzmann machine to other areas in 
marketing or retailing.

Keywords  Marketing · Retailing · Market basket analysis · machine Learning · 
Restricted Boltzmann machine · Multivariate logit model
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1  Introduction

Managers and scientists alike use a wide range of methods to analyze market bas-
ket data. One group of methods is based on association rules (Agrawal and Srikant 
1994; Hahsler et al. 2006). Another group consists of econometric models like the 
multivariate logit (Russell and Petersen 2000; Boztuğ and Reutterer 2008) or the 
multivariate probit model (Manchanda et al. 1999; Hruschka 2017). These econo-
metric models typically include independent variables, e.g., marketing variables or 
household attributes, which may affect purchases. In contrast to multinomial choice 
models both the multivariate logit (MVL) and the multivariate probit (MVP) model 
allow pick-any choices, i.e., they consider that households may purchase multiple 
products at the same occasion.

Table 1 also provides an overview of several studies applying machine learn-
ing methods to market basket analysis.1. The restricted Boltzmann machine 
(RBM) is a machine learning method frequently used to solve pattern recognition 
problems, e.g., recognition of handwritten digits or classification of documents 
(Hinton and Salakhutdinov 2006). The RBM excludes independent variables. To 

Table 1   Comparison to related studies

Abbreviations: BF binary factor analysis, CRBM conditional restricted Boltzmann machine, CTM cor-
related topic model, EFE exponential family embeddings, HPF hierarchical Poisson factorization, LDA 
latent Dirichlet allocation, MDM mixture of Dirichlet multinomials, MNL multinomial logit, MVL mul-
tivariate logit, MVP multivariate probit, SM structural model, ca customer attributes, mv marketing vari-
ables

Paper Models Alternatives Independ-
ent vari-
ables

Latent 
Hetero-
geneity

Aurier and Mejia (2014) MVL 1 category, 4 brands mv Yes
Dubé (2004) SM 1 category, 26 brands ca, mv Yes
Hruschka (2014) MVL, RBM 60 categories no No
Hruschka (2021) BF, LDA, CTM, RBM 169 categories No Yes
Jacobs et al. (2016) MDM, LDA 394 brands in different 

categories
ca Yes

Kim et al. (2002) SM 1 category, 1 brand, 5 flavors mv Yes
Kwak et al. (2015) MNL, MVL 1 category, 2 brands, 6 

flavors
mv Yes

Ruiz et al. (2020) EFE, HPF, SHOPPER 374 categories mv Yes
Xia et al. (2019) MVP, CRBM 100 categories ca, mv Yes
This paper MVL, CRBM 10 categories, 42 brands ca, mv Yes

1  We thank one anonymous reviewer for drawing our attention to several references contained in this 
table.
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our knowledge the first application to market basket analysis is Hruschka (2014) 
using data on 60 product categories and selecting a RBM with four hidden vari-
ables. This RBM outperforms a MVL model with category constants and pair-
wise interactions between categories on a holdout data set. In a later publication 
of the same author a RBM with three hidden variables turns out to be superior to 
topic models and binary factor analysis on another market basket data set of 169 
grocery categories (Hruschka 2021).

This performance record of the RBM suggests the investigation of the con-
ditional Boltzmann machine (CRBM) that extends the RBM by adding a set of 
independent variables. Because of the inclusion of independent variables, the 
CRBM becomes similar to the MVL or MVP models used in market basket anal-
ysis. Very recently, Xia et al. (2019) apply the CRBM to market baskets. These 
authors refer to the study of Hruschka (2014) already mentioned, analyze data 
at the category level and compare the CRBM to the MVP model. Contrary to 
Xia et  al. (2019) and in line with Hruschka (2014) we compare the CRBM to 
the MVL model. We take a more detailed perspective by looking at purchases at 
the brand level instead of the more aggregate category level. In this regard, our 
papers differs from Xia et al. (2019) and from the majority of studies analyzing 
market basket data.

Jacobs et al. (2016) apply latent Dirichlet allocation (LDA) which they extend to 
include customer attributes as independent variables. This way these authors reduce 
394 categories of chemists’ products offered by a Dutch online retailer to 13 topics. 
They compare LDA to a mixture of Dirichlet multinomials (MDM) without inde-
pendent variables. LDA and MDM attain comparable predictive performance.

Ruiz et  al. (2020) develop a probabilistic model which they call SHOPPER 
whose core is a sequential choice model for each item contained in a basket condi-
tional on all previous chosen items. This sequential choice model has a multinomial 
logit form. Besides a constant term and a latent factor, any item not chosen so far 
SHOPPER encompasses factors to reproduce both interactions and attributes of the 
previously chosen items. The model also comprises several factored latent variables. 
Each of these factored latent variables consists of two components. One component 
is related to items, the other component is related to shopper preferences, seasonal 
effects, and price sensitivities, respectively. As market basket data usually lack the 
information on choice sequences, Ruiz et al. (2020) extend the basic model to con-
sider all possible market baskets. In their empirical application Ruiz et al. (2020) use 
100 latent variables related to item attributes, item interactions and shopper prefer-
ences. In addition, these authors choose ten latent variables for seasonal effects and 
price sensitivities.

Using market baskets from a large grocery store for 374 categories Ruiz et  al. 
(2020) compare their model to hierarchical Poisson factorization (HPF) focusing on 
user preferences and to exponential family embeddings (EFE) focusing on item-to-
item interactions. SHOPPER outperforms these related, but less complex models 
in terms of predicting item probability conditioned on the other observed items of 
a basket. The complexity of SHOPPER becomes apparent by the huge number of 
parameters for the latent variables (more than 400,000). For HPF and EFE the num-
ber of such parameters amounts to 358,000 and 74,800, respectively.
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The few publications dealing with multiple purchases of brands or varieties of 
brands as a rule investigate one product category only (please also see Table  1). 
Dubé (2004) mentions that multiple purchases of brands belonging to the same cate-
gory may be explained by variety seeking, uncertainty on their future tastes, or taste 
differences of household members. This author develops a structural model that gen-
eralizes the typical multinomial choice model by a latent variable, the integer num-
ber of consumption occasions. Each of these consumption occasions has its own set 
of corresponding preferences. Dubé (2004) analyzes 26 carbonated soft drink brands 
by this structural model. Aurier and Mejia (2014) provide evidence for multiple pur-
chases of four chocolate brands and apply a MVL model at the brand level.

Kim et al. (2002) investigate purchases of five flavors of one yogurt brand. These 
authors develop a structural model based on an additive utility specification that 
generalizes the usual linear form. For this specification, utility maximization may 
lead to interior solution with more than one flavor chosen. Kwak et al. (2015) look 
at purchases of the yogurt category and combine a multinomial logit model for two 
brands with a MVL model. The later considers pick-any choices of six flavors of 
the chosen brand. Note that the total model of Kwak et  al. (2015) excludes joint 
purchases of brands and works satisfactorily as long as their frequency is very low 
or zero.

We contribute over these publications dealing with brand purchases by consider-
ing several categories and allowing for pick-any choices at the brand level. A more 
restricted approach would account for pick-any choices at the category level only 
and assume that a household selects a single brand from each category by using 
multinomial choice models. This way one would ignore that especially in food cat-
egories a considerable percentage of households purchase multiple brands.

We measure pairwise interdependence by the purchase probability change 
of brand j′ ≠ j associated to a marginal increase of the probability of brand j. To 
compare these two models, we compute probabilities based on both an estimated 
MVL model and an estimated CRBM. We define two brands to be purchase com-
plements if the probability change is positive and to be purchase substitutes if the 
probability change is negative. This definition is equivalent to the one put forward 
by Betancourt and Gautschi (1990), who consider two products as purchase comple-
ments (purchase substitutes) if they are purchased jointly more (less) frequently than 
expected under stochastic independence. Pairwise interdependences may be asym-
metric, i.e., the probability change of brand j′ ≠ j due to a marginal increase of the 
probability of brand j may differ from the probability change of brand j due to a mar-
ginal increase of the probability of brand j.

Both the CRBM and the MVL model allow that two brands of the same category 
may be purchase substitutes or purchase complements. In this regard, these models 
are more flexible than multinomial choice models that are restricted to substitutive 
relations between two brands. One brand may also be interdependent with brands of 
another category and these interdependences may vary across brands of the other 
category. Econometric models on the category level restrict two categories to be 
either purchase complements or purchase substitutes.

We present homogeneous MVL models, their finite mixture extension and the 
CRBM in the next section. Then we explain the basic estimation approach for these 
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models. The empirical part of our paper characterizes the analyzed data set, com-
pares performance of several models on holdout data and interprets the best per-
forming MVL model and CRBM. In the concluding section, we discuss managerial 
implications. A cluster analysis of pairwise interdependences shows the competitive 
structure of brands. We determine the effects of brand-specific marketing decisions 
on the retailer’s revenue for three selected models by means of counterfactual simu-
lations. Finally, we also hint at possibilities for further research.

2 � Investigated models

In this section we present homogeneous MVL models, their finite mixture exten-
sions and the CRBM. J column vector y denotes a market basket and consists of 
binary purchases. If product j is purchased the respective element yj equals one. If 
product j is not purchased yj equals zero. Vector x consists of independent variables. 
We omit basket and household indices for the sake of simplicity.

2.1 � Homogeneous multivariate logit models

In a homogeneous MVL model each coefficient is constant across households. The 
probability P(y|x) of one market basket y conditional on independent variables x is 
proportional to:

Coefficients contained in (J,  J) matrix V measure pairwise interactions between 
products. As a pairwise interaction of a product with itself does not make sense, 
all diagonal elements of V are zero. Off-diagonal elements are symmetric, i.e., 
Vj1,j2 = Vj2,j1 . Column vector � consists of J constants. The (L, J) matrix � holds the 
effect of L independent variables on product purchases. Russell and Petersen (2000) 
apply the homogeneous MVL model to market basket data at the product category 
level building upon earlier publications in statistics (Cox 1972; Besag 1974).

For the MVL model we can write the purchase probability of product j condi-
tional on purchases of the other products collected in vector y−j as follows:

�(Z) denotes the binomial logistic function 1∕(1 + exp(−Z)).
By setting all coefficients in V equal to zero we obtain the independent logit 

model that excludes interactions between products.
Following the suggestion of an anonymous reviewer, we investigate in addition 

another version of the MVL model by replacing the pairwise interactions between 
products in expression (1) by interactions between products and product categories. 
As the number of categories is lower than the number of products, the resulting 

(1)exp(yT� + xT� y + 1∕2 yTVy)

(2)P(yj = 1|y−j) =�
(
�j + �.jx +

∑
l≠j

Vj,l yl

)
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version is more parsimonious. Now the probability P(y|x) of one market basket y 
conditional on independent variables x is proportional to:

The binary column vector ycat consists of C elements. Its c-th element ycat
c

 equals 
one, if the market basket contains at least one product which belongs to category c. 
The (J, C) coefficient matrix Vcat measures the interactions between products and 
categories. This version of the MVL model allows only interactions between any 
product and other categories. Consequently, an element Vcat

j,c
 is set to zero if product j 

belongs to category c.
We can write the purchase probability of product j conditional on purchases of 

other categories collected in vector yc
−indj

 as follows:

indj denotes the index of the category to which product j belongs. The sum in expres-
sion (4) runs over all product categories to which product j does not belong, whereas 
the analogous sum in expression (2) runs across all products different from product 
j.

2.2 � Finite mixture multivariate logit models

We also investigate finite mixtures of the MVL models (FM-MVL) in addition to 
their basic homogeneous versions presented in section 2.1. Because of the compu-
tational complexity caused by the high number of alternatives we do not consider 
MVL models with continuous heterogeneity in contrast to the models in Gentzkow 
(2007)) or Richards et al. (2018), which encompass no more than four alternatives.

Coefficients of the FM-MVL models differ between household segments. The 
purchase probability of product j conditional on purchases of the other products col-
lected in vector y−j is a linear combination of segment-specific conditional probabil-
ity functions for pairwise interactions and interactions between products and catego-
ries, respectively:

S denotes the number of segments, �s the relative size of segment s.

(3)exp(yT� + xT� y + yTVcatycat)

(4)P(yj = 1�yc
−indj

) =�

⎛
⎜⎜⎝
�j + �.jx +

�
c≠indj

Vcat
j,c

ycat
c

⎞
⎟⎟⎠

(5)P(yj = 1|y−j) =
S∑

s=1

�s �

(
�sj + �s.jx +

∑
l≠j

Vsj,l yl

)

(6)P(yj = 1�y−j) =
S�

s=1

�s �

⎛⎜⎜⎝
�sj + �s.jx +

�
c≠indj

Vcat
sj,c

ycat
c

⎞⎟⎟⎠
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2.3 � Conditional restricted Boltzmann machine

For the CRBM the probability P(y|x) of one market basket y conditional on inde-
pendent variables x is proportional to (Mnih et al. 2011):

K binary hidden variables contained in a vector h affect purchases by means of coef-
ficients in a (J, K) matrix W linking each hidden variable to purchases of each prod-
uct. The CRBM differs from the MVL model by the way it deals with product inter-
dependences. The MVL models investigated consider pairwise coefficients either 
between products or between categories and products, whereas the CRBM looks 
at relations between products and hidden variables. Column vectors � and � hold J 
constants for products and K constants for hidden variables, respectively. W.k denotes 
column k of matrix W. The CRBM is homogeneous, i.e., each coefficient is constant 
across households.

Li et al. (2015) use specification (7) to analyze image and video data with inde-
pendent variables which directly affect binary dependent variables just like in the 
MVL model. In a more general specification independent variables may also directly 
affect hidden variable. Such a specification does not lead to a better performance for 
our data in spite of its greater complexity. Therefore we only discuss specification 
(7) in the following. Note that it allows indirect effects of independent variables on 
hidden variables due to their direct effect on purchases, which on their part influence 
hidden variables. This mechanism can be seen from the expressions for the con-
ditional probabilities of purchases given hidden variables and for hidden variables 
given purchases (Li et al. 2015):

If we do not allow effects of independent variables by setting all elements of � equal 
to zero, we obtain the RBM which is defined as joint Boltzmann distribution of hid-
den and observed variables (purchases). The RBM was introduced by Smolensky 
(1986) and consists of one layer of observed variables and one layer of binary hid-
den variables. The RBM is called restricted because variables of the same layer are 
not connected.

Let us mention several characteristics that the CRBM shares with the RBM. The 
probability of a market basket is proportional to the product of the probabilities that 
it would be generated by each of the hidden variables acting alone. If a hidden vari-
able is zero, its separable probability distribution for each product is determined by 
its constants in � only. But if a hidden variable is one, this distribution also depends 
on the coefficients linking the hidden variable to each product (Hinton 2002).

(7)exp(yT� + xT� y + �Th + yTWh)

(8)P(yj = 1|h) =�
(
�j + �.jx +

K∑
k=1

Wjk hk

)

(9)P(hk = 1|y) =�
(
�k +

J∑
j=1

Wjkyj

)
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In a RBM distributions each specific to a hidden variable are multiplied first. The 
product of these distributions is normalized in the next step. This way sharp distri-
butions may be detected. Mixture models on the other hand determine convex com-
binations of distributions that are normalized beforehand. For high dimensional data 
the mixture model approach may lead to problems, as the final distribution cannot 
be sharper than the distributions of the individual hidden variables each of which is 
adapted to all observed variables (Hinton 2002).

The hidden variables of a RBM produce K different partitions of the input space 
which define 2K possible regions (Bengio 2009). Therefore the RBM is capable to 
create exponentially many inference regions based on only a polynomial number 
of parameters. This property differentiates RBMs from mixture models (Montúfar 
2016).

Le Roux and Bengio (2007) prove that the RBM can approximate any discrete 
distribution given a sufficient number of hidden variables. Therefore in contrast to 
the MVL model specified in expression (1) the RBM is not restricted to pairwise 
interactions, but is capable to reproduce higher order interactions as well.

3 � Estimation

Maximum likelihood estimation of the MVL model requires computation of the so-
called normalization constant in every iteration that is obtained by summing over all 
possible market baskets. We exclude the null basket which contains no purchases 
(for which all purchase indicators yj equal zero) in accordance with previous related 
publications (Russell and Petersen 2000; Dubé 2004; Boztuğ and Reutterer 2008; 
Kwak et al. 2015). This way we model purchases conditional on the purchase of at 
least one product. Therefore, the number of possible market baskets is 2J − 1.

Only when we divide expression (1) by the normalization constant a proper prob-
ability results. For 42 products we would have to deal with more than 4.39 × 1012 
possible market baskets. Because of the impracticality of this approach, we resort 
to maximum pseudo-likelihood (MPL) estimation. In a simulation study Bel et al. 
(2018) compare MPL to maximum likelihood estimation for a maximum number 
of 12 alternatives. These authors conclude that MPL estimation leads to negligible 
efficiency losses only.

Recently Kosyakova et al. (2020) have proposed an alternative estimation method 
for MVL models. This Markov chain Monte Carlo method avoids evaluation of the 
normalization constant.2 Kosyakova et al. (2020) analyze menu-based choice experi-
ments by the MVL model. In their empirical study, respondents are exposed to 
twelve menus. Each menu consists of the same thirteen products, but with different 
prices. Respondents are free to choose either none of or any combination of these 
products.

2  We thank one anonymous reviewer for making us aware of this work.
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We decide to use MPL estimation, as it is feasible for a higher number of alternatives 
(products). Moreover, we can compute pseudo-likelihoods for RBMs and CRBMs, 
which makes comparison to MVL models possible.

The pseudo-probability P̃j for product j is defined as probability of yj conditional on 
the observed basket y−j , i.e., basket y without product j:

MPL estimation is feasible, because the normalization constant drops out in expres-
sion (10). The basket ỹ(−j) corresponds to the observed basket y except for product j, 
whose purchase indicator is flipped, i.e., ỹ(j)j = 1 − yj.

For both the homogeneous and the finite mixture MVL models with pairwise inter-
actions the pseudo-probability Pj for product j in basket y is given by:

For the MVL model with interactions between product and categories we obtain 
instead:

For the CRBM we can write the pseudo-probability P̃j by means of the so-called 
free energy F(y, x) (Mnih et al. 2011):

For all investigated models the log pseudo-likelihood LPL of basket y is obtained by 
summing the logs of pseudo-probabilities across all products

Estimation of the homogeneous MVL model is straightforward as its pseudo-likeli-
hood function has only one local maximum. By contrast, for the FM-MVL model as 
well as for the CRBM this function may have multiple local optima. That is why we 
randomly start estimation ten times both for a FM-MVL model or a CRBM (please 
see Appendices A, B and C for more details).

(10)P̃j ≡
P(y|y−j)

P(y|y−j) + P(ỹ(j))|y−j)

(11)P̃j = P(yj = 1|y−j)Yj + (1 − P(yj = 1|y−j))1−Yj

(12)P̃j = P(yj = 1|yc
−indj

)Yj + (1 − P(yj = 1|yc
−indj

))1−Yj

(13)

P̃j =
exp(−F(y, x))

exp(−F(y, x)) + exp(−F(ỹ(j), x))

with F(y, x) = −

[
yT𝛼 + xT𝛽y +

K∑
k=1

log(1 + exp(𝛾k + yTW.k))

]

(14)LPL =

J∑
j=1

log(P̃j)
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4 � Empirical study

4.1 � Data

We analyze joint purchases, marketing variables and household attributes which 
originate from the academic household panel data set provided by SymphonyIRI 
Group (Bronnenberg et al. 2008). Specifically we consider purchases of brands in 
ten (sub-) categories made by households in two stores located in Eau Claire, Wis-
consin, spanning the whole 2011 calendar year. We also compute yearly revenue 

Table 2   Descriptive statistics (1)

Brand Mean shares

Market Relative Mean Standard 
deviation

Price

Share Frequency Price Price Feature Display Reduction

Softdrinks: Low calorie (Share 57.31 %, Multiple brands purchases 13.89 % )
Coca Cola 48.05 0.152 3.695 0.456 0.064 0.022 0.149
Pepsi 36.30 0.111 5.166 0.547 0.405 0.452 0.609
Dr Pepper 15.03 0.069 5.434 0.607 0.291 0.302 0.482
Other brands 0.62 0.005 5.870 0.557 0.058 0.242 0.355
Softdrinks: Regular (Share 41.24 %, Multiple Brands Purchases 16.47 %)
Coca Cola 39.38 0.010 4.925 0.313 0.042 0.039 0.077
Pepsi 37.00 0.088 5.211 0.528 0.397 0.464 0.606
Dr Pepper 20.53 0.071 5.433 0.598 0.290 0.329 0.482
Other brands 3.09 0.017 6.041 0.536 0.074 0.235 0.356
Coffee: Ground (Share 67.61 %, Multiple Brands Purchases 2.04 %)
Smucker 46.90 0.029 9.966 1.368 0.054 0.274 0.238
Zanetti 15.21 0.009 5.780 0.630 0.067 0.114 0.309
Kraft 13.38 0.007 5.333 1.426 0.076 0.128 0.366
Other brands 24.51 0.022 5.237 0.993 0.070 0.073 0.370
Coffee: Whole Beans (Share 15.02 %, Multiple Brands Purchases 1.56 %)
Regency 46.26 0.007 9.328 1.062 0.000 0.024 0.061
Tata Tea 25.02 0.003 9.135 0.977 0.000 0.212 0.339
Other brands 28.72 0.004 7.967 0.657 0.0000 0.0000 0.104
Milk: Regular (Share 78.85 %, Multiple Brands Purchases 2.53%)
Private label 40.59 0.229 0.933 0.089 0.011 0.000 0.071
Hood 32.40 0.198 0.390 0.060 0.034 0.000 0.139
Dean 24.79 0.141 0.558 0.190 0.023 0.000 0.081
Other brands 2.22 0.008 0.451 0.056 0.032 0.015 0.127
Milk: Flavored (Share 18.19 %, Multiple Brands Purchases 1.25 %)
Hood 53.37 0.117 1.769 0.300 0.032 0.045 0.098
Dean 44.72 0.091 0.581 0.169 0.036 0.118 0.367
Other brands 1.91 0.004 0.507 0.083 0.062 0.116 0.325
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shares of sub-categories as well as yearly revenue market shares of brands in these 
two stores.

The product categories considered are soft drinks, coffee, milk, hot dog, spaghetti 
sauce, and soup. In the panel data set the categories soft drinks, coffee, milk, and 
soup are further divided into sub-categories. We investigate only sub-categories 
whose yearly revenue share with respect to their category amounts to at least 15 
% (see Tables 2 and 3). This criterion leads to the sub-categories low calorie soft 
drinks, regular soft drinks, ground coffee, whole beans coffee, regular milk, flavored 
milk, condensed wet soup, and RTS wet soup. In the following, we no longer dis-
tinguish between categories and sub-categories, but simply talk about categories. 
These ten categories are low calorie soft drinks, regular soft drinks, ground coffee, 
whole beans coffee, regular milk, flavored milk, hot dog, spaghetti sauce, condensed 
wet soup, and RTS wet soup.

Table 3   Descriptive statistics (2)

Brand Mean shares

Market Relative Mean Standard deviation Price

Share Frequency Price Price Feature Display Reduction

Hotdog (Share 100.00%, Multiple brands purchases 2.16%)
Kraft 44.14 0.040 3.476 0.390 0.023 0.063 0.211
Buddig 12.45 0.007 2.999 0.424 0.066 0.112 0.328
Cher-Make 11.83 0.008 4.053 0.420 0.012 0.064 0.163
SaraLee 9.65 0.009 3.519 0.296 0.105 0.227 0.454
Other brands 21.93 0.028 3.436 0.451 0.064 0.047 0.293
Spaghetti sauce (share 100.00 %, Multiple brands purchases 3.18 %)
Campbell 29.76 0.030 1.798 1.789 0.000 0.012 0.142
Unilever 24.00 0.023 1.493 0.162 0.049 0.186 0.308
Conagra 15.86 0.022 1.508 0.138 0.043 0.262 0.330
Heinz 8.73 0.007 0.782 0.010 0.096 0.214 0.370
Lidestri 7.81 0.010 2.246 0.219 0.010 0.023 0.204
Private label 5.65 0.008 1.209 0.259 0.066 0.106 0.312
Newmans 4.09 0.008 1.157 0.166 0.012 0.071 0.275
Other Brands 4.10 0.003 2.012 0.089 0.0000 0.0000 0.165
Soup: Condensed Wet (Share 41.12 %, Multiple brands purchases 5.51 %)
Campbell 61.56 0.082 2.384 7.061 0.010 0.030 0.169
Private label 37.11 0.058 2.166 2.210 0.046 0.0554 0.18
Other brands 1.33 0.0013 2.074 3.9745 0.086 0.222 0.427
Soup: RTS Wet (Share 30.65 %, Multiple brands purchases 4.65 %)
General mills 38.43 0.022 2.522 0.380 0.009 0.067 0.159
Campbell 36.39 0.023 2.580 3.871 0.023 0.052 0.293
Conagra 21.78 0.013 2.173 1.813 0.042 0.079 0.224
Other brands 3.40 0.002 2.552 3.550 0.074 0.080 0.286



1128	 H. Hruschka 

1 3

We remove households who in 2011 did not made a purchase in any of the cat-
egories mentioned. We explicitly consider brands in a category with higher revenue 
market shares. We aggregate the remaining brands of a category calling them "Other 
Brands". Including "Other Brands" we arrive at a total of 42 brands. Tables 2 and 
3 show revenue market shares of these brands. These tables also give the percent-
age of purchases of multiple brands for each category. Multiple brand purchases are 
very frequent for the two soft drink categories and are quite remarkable for two soup 
categories.

Each purchase of a household is represented by a binary purchase vector with 42 
elements. An element equal to one indicates a purchase of the respective brand. Bas-
ket size, i.e., the number of brands purchased, has an average of 1.88 with a standard 
deviation of 1.12. The data set we analyze comprises 33,622 purchases made by 
1,805 households. Therefore we have on average 18.63 observations per household. 
21.22 %, 49.7 % and 11.97 % of households consist of one, two and three persons, 
respectively. 29.00 %, 34.24 % and 36.76 % of these households have a low, medium 
and high income, respectively.

Tables 2 and 3 also contain relative purchase frequencies of brands and averages 
of marketing variables across purchases. Marketing variables comprise price, fea-
ture, display, and price reduction. Marketing variables are computed as averages of 
the different UPCs of a brand weighted by annual dollar sales. Price in dollars refers 
to the standard package of the category. The other marketing variables are given as 
shares. 

4.2 � Estimation results and runtimes

Brand specific marketing variables are defined as difference to the average of the 
other brands of the category. Average marketing variables equal arithmetic means 
across all brands of the category. Household attributes consist of household size 
(number of persons) and two binary dummy variables for medium and high income, 
respectively. Models with independent variables may include the following direct 
effects:

–	 brand-specific marketing variables on purchases of the respective brand;
–	 average marketing variables on purchases of each brand of the respective cat-

egory;
–	 household attributes on purchases of each of the 42 brands.

Accordingly, every element of matrix � that contains the effect of a brand-specific 
marketing variable on other brands or the effect of an average marketing variable on 
brands of other categories is set to zero and not estimated.

Let H, M, J, C, S, and K denote the number of household attributes, the num-
ber of marketing variables, the number of brands, the number of product cat-
egories, the number of segments, and the number of hidden variables, respec-
tively. The number of independent variable coefficients L equals J(H +M) . If 
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average marketing variables are included as well L equals J(H + 2M) . Table  4 
shows expressions for the number of parameters for different models. RBM 
(CRBM) have a lower number of parameters than the homogeneous MVL 
model (S=1) with interactions among brand pairs (and independent variables) if 
K < J(J − 1)∕(2(J + 1)) . For 42 brands a lower number of parameters results for 
the RBM (CRBM) if the number of hidden variables is not greater than 20.

We randomly form two groups with about 2/3 of the households in the first 
group. We use data (estimation data) of the first group to estimate models. Data 
of the second group (holdout data) serve to evaluate models whose coefficients 
are estimated on data from the first group. We measure performance of models by 
their LPL value for the holdout data. Table 5 summarizes the evaluation by show-
ing only the best performing model in each row. In terms of holdout LPL values

–	 the homogeneous (= one segment) MVL model without both interactions and 
independent variables is better than FM-MVL models which exclude both 
interactions and independent variables having at least two segments.

–	 the FM-MVL model for two segments with interactions between brand pairs 
and no independent variables is better than the FM-MVL models with interac-
tions and no independent variables but a different number of segments.

–	 the homogeneous FM-MVL model without interactions which includes inde-
pendent variables is better than FM-MVL models without interactions and 
including independent variables having at least two segments

–	 the homogeneous FM-MVL model with interactions between categories and 
brands that includes independent variables is better than FM-MVL models 
without interactions and including independent variables having at least two 
segments.

–	 the FM-MVL model with interactions between brand pairs, the independent 
variables household attributes, price reductions, features, and displays and 
three segments is better than FM-MVL models with interactions between 
brand pairs with the same independent variables, but a different number of 

Table 4   Number of model parameters

S number of segments, J number of brands, C number of categories,
L number of independent variables, K number of hidden variables

Model Interactions Independent vari-
ables

Number of parameters

FM-MVL No No SJ + S − 1

No Yes S(J + L) + S − 1

Brands and categories yes S(J + JC + L) + S − 1

Brand pairs No S(J + J(J − 1)∕2) + S − 1

Brand pairs Yes S(J + J(J − 1)∕2 + L) + S − 1

RBM Brands and hidden variables No J + K + JK

CRBM Brands and hidden variables Yes J + K + JK + L
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segments as well as FM-MVL models with different independent variables 
and any number of segments.

–	 the RBM with 12 hidden variables is better than any RBM with a lower or 
higher number of hidden variables.

–	 the CRBM with 12 hidden variables and household attributes, price reduc-
tions, features, displays as independent variables is better than any CRBM 
with 12 hidden variables and other independent variables.

Table  5 also shows that the homogeneous MVL model with independent var-
tiables outperforms the analogous independent logit model that excludes 
interactions.

All models with independent variables whose results Table 5 shows include aver-
age marketing variables. The holdout performance of models that ignore average 
marketing variables is without exception inferior to models that include both brand-
specific and average marketing variables. We emphasize that models with price as 
one of the independent variables perform worse compared to models with independ-
ent variables household attributes, price reductions, features, and displays. This 
result indicates that the price reduction variable reproduces households’ responses 
to price changes better than the price variable.

Table  5 contains three MVL models with independent variables. We see that 
pairwise interactions between brands lead to a large improvement after controlling 
for marketing mix and demographics. The model with interactions between catego-
ries and brands, on the other hand, has a much lower number of parameters. Nev-
ertheless, the complexity of this model seems to be too low which can be seen by 
the rather modest increase of its holdout LPL compared to the MVL model without 
interactions. Obviously, too much information is lost by not considering interactions 
between pairs of brands.

Starting with the seminal paper of Guadagni and Little (1983) publications in the 
marketing literature investigating brand choice models often include brand loyalties 
as independent variables. In a similar manner, we find category loyalties as inde-
pendent variables in market basket models at the category level (see, e.g., Russell 
and Petersen (2000)). We add brand loyalties computed as first order exponentially 
smoothed brand purchases to the two MVL models with independent variables. The 
best performing models extended this way result for a smoothing constant of 0.1, 
meaning that recent brand purchases get a low weight. These models have the same 
number of segments as the related models without brand loyalties. We do not deal 
with these extended models in more detail as they do not lead to higher holdout LPL 
values.

Among all FM-MVL models, the three-segment model with interactions and the 
independent variables household attributes, price reductions, features, and displays 
performs best. Though the LPL of this model for the estimation data is higher than 
the values obtained for RBM and CRBM shown in Table  5, the latter two attain 
higher holdout LPL values. Obviously, the FM-MVL model has a very high num-
ber of parameters and is overly complex. Its high model complexity causes an over-
fitting problem, which becomes apparent by a deterioration of performance for the 
holdout data. Both the RBM and the CRBM benefit from their higher flexibility 
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with respect to interactions in contrast to the FM-MVL model which is restricted to 
pairwise interactions (see expression (1)).

The good performance of the RBM is remarkable, because in contrast to the best 
FM-MVL model it does not include any independent variable. This result shows that 
flexibility with respect to interactions is more important than the inclusion of inde-
pendent variables in the FM-MVL model. However, after dealing with interactions 
in a flexible way, adding independent variables to the RBM to obtain the CRBM 
leads to a further improvement of holdout performance. The CRBM with 12 hidden 
variables and household attributes, price reductions, features, and displays as inde-
pendent variables turns out to be the overall best model with the highest holdout log 
pseudo-likelihood.

Table  6 shows run times of five selected models for the estimation data, the 
homogeneous independent logit model, the homogeneous MVL model with pair-
wise interactions, its finite mixture extension with three segments, the RBM and the 
CRBM both with 12 hidden variables. The homogeneous independent logit model is 
identical to the homogeneous MVL model without interactions. With the exception 
of the RBM these five models include the same set of independent variables (socio-
demographics and marketing variables). The CRBM turns out to be superior to the 
three-segment MVL model with interactions with respect to estimation run time. In 
fact, estimation of the three-segment MVL model is more than three times slower. 
Please note that the run time of CRBM estimation includes its first step, i.e., estimat-
ing the RBM with the same number of hidden variables by contrastive divergence 
(see Appendix C).

4.3 � Interpretation of the conditional restricted Boltzmann machine

In the following, we take three different routes to interpret the selected CRBM with 
12 hidden variables. Firstly, we look at Wjk coefficients which link purchases of any 
brand j to hidden variable k (see expression (8)). Secondly, we regard interdepend-
ences between brands by means of pairwise marginal probability changes. Thirdly, 
we investigate the effects of brand-specific marketing variables (price reduction, 
feature, display) on purchases of the same brand (own effects) and on purchases of 
other brands (cross effects).

According to expression (9) the conditional probability of a hidden variable k 
depends on the Wjk coefficients. Barplots in Figs. 1 and 2 show the Wjk coefficients 

Table 6   Estimation run times of 
selected models

Model Run time 
(seconds)

Homogeneous independent logit model 199
Homogeneous MVL model with pairwise interactions 351
Three segment MVL model with pairwise interactions 3301
RBM with 12 hidden variables 571
CRBM with 12 hidden variables 880
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for each brand and each hidden variable. Due to high positive coefficients, the con-
ditional probability of hidden variable 1 increases if, e.g., the regular milk brands 
Hood or Dean, the low calorie brands Coca Cola or Dr Pepper, or the regular soft 
drink Dr Pepper are purchased. On the other hand, due to negative coefficients this 
conditional probability gets low if, e.g., private brands of regular milk, spaghetti 
sauce or soup, or any of the Other soft drink brands (both regular and low calorie) 
are purchased.

The conditional probability of hidden variable 2 increases with purchases of, e.g., 
the regular milk brand Dean, the RTS soup brand Conagra, the ground coffee brand 
Smucker, the low calorie soft drink Dr Pepsi, or the spaghetti sauce brand Conagra. 
It decreases with purchases of, e.g., the low calorie brand Dr Pepper, the flavored 
milk brand Dean, the low calorie brand Coca Cola, or the regular soft drink Dr Pep-
per. In the same manner, one can interpret the relationships between brands’ pur-
chases and conditional probabilities of the remaining ten hidden variables.

The Wjk coefficients also hold information about differences between two hidden 
variables. Let us give two examples here. Whereas the probability of hidden variable 
1 increases if the low calorie brand Coca Cola or the low calorie and regular Dr Pep-
per brands are purchased, such purchases on the other hand decrease the probability 
of hidden variable 2. As another example, purchases of the soup brand Campbell 
or the private regular milk brand increase the probability of hidden variable 3, but 
decrease the probability of hidden variable 6.

As second route to interpretation we measure pairwise interdependence by the 
probability change of brand j′ ≠ j associated to a marginal increase of the probabil-
ity of brand j. We also compare probability changes obtained for the CRBM to those 
for the three-segment FM-MVL model.

For the CRBM we determine the purchase probabilities of brands by fixed point 
iterations (Tramel et  al. 2016) over expressions (8) and (9) with estimated coeffi-
cients of the selected CRBM. For the FM-MVL model we generate simulated pur-
chases by iterated Gibbs-sampling from the conditional distribution given by expres-
sion (5). We estimate purchase probabilities of each brand by averaging across 
simulated purchases. Iterations stop if changes of purchase probabilities become 
very small (see Besag (2004) for Gibbs sampling from the conditional distributions).

We set marketing variables to their arithmetic means and use medium income 
and two persons as values of the household attributes. In the first round we com-
pute probabilities p0(j) for all 42 brands. In the second round we set the purchase 
probability of brand j to p0(j) + � with � = 0.005 and hold this purchase prob-
ability constant during iterations. The second round then produces new probabili-
ties p1(l) for each of the other brands l ≠ j . The probability change is computed as 
pc(j, l) = (p1(l) − p0(l))∕�.

As we mentioned in the introduction, positive (negative) probability changes indi-
cate that the two respective brands are purchase complements (purchase substitutes). 
Figure 3 contains heatmaps of the brand interdependences obtained for three-segment 
FM-MVL mode and CRBM. One immediately sees that as a rule the interdependences 
for the CRBM are more varied than those for the FM-MVL model are. According to the 
latter model interdependences focus on soft drink brands and two regular milk brands 
(Private Label and Hood). Let us mention a few examples that the CRBM additionally 
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indicates. Regular Cola and Pepsi are substitutes for several soup and RTS soup brands. 
Two soup brands (Campbell and Private Label) are complements with several spaghetti 
and RTS soup brands brands and substitutive with several soft drink brands

Taking the third route to interpretation we investigate own effects of the marketing 
variables feature, display and price reduction on the same brand as well as their cross 
effects on each of the other brands based on the CRBM. We measure both own effects 
and cross effects as marginal purchase probability changes. Because of clearly inferior 
holdout performances we refrain from presenting own and cross effects of FM-MVL 
models.

Similar to the procedure for pairwise interdependences explained above we 
determine purchase probabilities of brands in two rounds of fixed point iterations 
over expressions (8) and (9). However, in the second round we now set the respec-
tive marketing variable of brand j to its arithmetic mean plus � and obtain new prob-
abilities p1(j� ) for each of the 42 brands. Marginal probability change is computed as 
(p1(j

�

) − p0(j
�

))∕� . This expression provides an own effect, if j� = j , otherwise a cross 
effect.

Figure 4 shows own effects of marketing variables. All significant own effects of 
the three marketing variables are positive, i.e., the increase of the marketing variable is 
accompanied by a probability increase of purchases of the same brand. For all market-
ing variables own effects are high for the private label soup brand, the hot dog brand 
Kraft and the ground coffee brand Smucker. In addition, high own effects of display 
and price reduction turn out for the soup brand Campbell.

Cross effects are much smaller than own effects. This result is similar to Russell 
and Petersen (2000) as well as Song and Chintagunta (2007) who obtain only small 
cross effects for product categories and brands, respectively. Table 7 gives cross effects 
with a minimum absolute value of 0.005 only. We notice that cross effects may assume 
both positive and negative values. The former indicate a probability increase, the later 
a probability decrease due to an increase of the respective marketing variable. Taking 
into account only cross effects of at least 0.005 in absolute size, we obtain the highest 
(positive) cross effect for features of the private soup brand on purchases of the soup 
brand Campbell. Although this effect is low, it is nonetheless remarkable, as it means 
that Campbell benefits from advertising of another brand belonging to the same cat-
egory. According to a more conventional assumption feature advertising is expected 
to hurt other brands of the same category. We obtain the lowest (negative) cross effect 
for displays of the private soup brand on purchases of the regular soft drink brand Dr 
Pepper.

Fig. 1   Wjk coefficients for hidden variables 1–6. Abbreviations: fm avored milk, gc ground coffee, hd hot 
dog, ls low calorie soft drink, PL private label,rm regular milk, rs regular soft drink, s soup, ss spaghetti 
sauce, wc whole beans coffee

▸
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5 � Managerial implications and conclusion

Russell and Petersen (2000) demonstrate that homogeneous category-level MVL 
models with interactions lead to better forecasts of the composition of market bas-
kets than independent binary choice models. Our study confirms that this superiority 
of MVL models persists on the brand level. However, the CRBM shows a better out-
of-sample performance than both heterogeneous and homogeneous MVL models 
which are often used to analyze market basket data. In other words, the CRBM turns 
out to beat MVL models in accomplishing this forecasting task.

The higher flexibility of the CRBM on the brand level compared to multi-cat-
egory and multinomial brand-level choice models seems to pay off. In contrast to 
the later models, the CRBM does not prevent the following relationships between 
brands. Using the CRBM we find examples of two brands of the same category that 
are purchase complements (e.g., regular Pepsi with several other soft drink brands). 
Interdependences of one brand with brands of another category vary. We also come 
across the extreme case, that a brand is both a purchase substitute with one brand 
and a purchase complement with another brand of a different category (e.g., regular 
Coca Cola is a purchase complement with flavoured milk brand Hood, but a pur-
chase substitute with flavoured milk brand Dean.) As presented in the previous sec-
tion the CRBM indicates a greater number of higher pairwise relationships between 
brands measured by marginal probability changes.

To obtain a comprehensive insight into the competitive structure we run a 
K-medoids cluster analysis on dissimilarities. We compute dissimilarities between 
any two brands j and l starting with probability changes obtained for the CRBM as 
follows:

Note that expression (16) reverses the sign of probability changes. Therefore sub-
stitutive relations obtain positive signs, complementary relations negative signs. 
Consequently, two brands with strong substitutive relationships get a high similar-
ity value in expression (16) and a low dissimilarity value in expression (15). spcmax 
and spcmin denote the maximum and minimum value of pairwise similarities, respec-
tively. Dissimilarities assume values between zero and one. A value of zero (one) for 
dis(j, l) means that j and l form the most (the least) competitive pair of brands.

Table 8 shows the solution for five clusters. Brands belonging to the same clus-
ter have lower dissimilarities indicating that competition among them is higher than 
competition with brands belonging to another cluster. Other soups and regular milk 
Dean each form a singleton, i.e., competition with any of the other brands is weak 
no matter to which category the latter belongs.

(15)dis(j, l) = 1 − (spc(j, l) − spcmin)∕(spcmax − spcmin)

(16)with spc(j, l) = spc(l, j) = −(pc(l, j) + pc(j, l))∕2

Fig. 2   Wjk coefficients for hidden variables 7–12. Abbreviations: fm avored milk, gc ground coffee, hd 
hot dog, ls low calorie soft drink, PL private label,rm regular milk, rs regular soft drink, s soup, ss spa-
ghetti sauce, wc whole beans coffee

▸
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Fig. 3   Heatmaps of Brand 
Interdependences according 
to the FM-MVL Model and the 
CRBM (bright cells indicate a 
complementary, dark cells a 
substitutive interdependence)
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Brands of the same category are assigned to different clusters. Therefore, com-
petitive relations between several brands of the same category are often weak, 
whereas relations with brands of other categories are strong. Let us look at soft 
drink brands. They belong to three different clusters (2, 3, and 4). For example, 
cluster 3 shows that regular Coca Cola is related to low calorie Pepsi and Other 
regular soft drinks, but only weakly related to any of the remaining five soft drink 
brands. On the other hand, regular Coca Cola has stronger relations with several 
coffee and soup brands.

Fig. 4   Own effects of marketing variables (CRBM). Abbreviations: fm avored milk, gc ground coffee, hd 
hot dog, ls low calorie soft drink, PL private label,rm regular milk, rs regular soft drink, s soup, ss spa-
ghetti sauce, wc whole beans coffee.

Table 7   Cross effects of marketing variables (CRBM)

Contains only cross effects whose absolute value is at least 0.005.
Abbreviations: fm flavored milk, gc ground coffee, hd hot dog, ls low calorie soft drink,
PL private label, rm regular milk, rs regular soft drink, s soup, ss spaghetti sauce,
wc whole beans coffee

Feature
s PL rs Coca Cola -0.008, rs RegPepsi -0.006, gc Smucker 

0.006, fm Dean 0.005, ss Conagra 0.007, s Campbell 
0.011

RTS GeneralMills s Campbell 0.006
RTS Conagra s PL 0.006
Display
gc Smucker s PL 0.005
s Campbell rs RegPepsi -0.007, s PL 0.008, RTS GeneralMills 0.005
s PL ls Pepsi -0.005, ls Dr Pepper -0.007, rs Coca Cola 

-0.015, rs RegPepsi -0.011, rs Dr Pepper -0.009, gc 
Smucker 0.010, fm Dean 0.009, ss Conagra 0.012, 
s Campbell 0.019, RTS GeneralMills 0.007, RTS 
Conagra 0.008

Price Reduction
s Campbell rsoft RegPepsi -0.007, s PL 0.007
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Motivated by a suggestion of one anonymous reviewer we perform counterfactual 
simulations for three models, all including independent variables. These three mod-
els are the independent logit model (i.e., the MVL model without interactions), the 
FM-MVL model with three segments and the CRBM with 12 hidden variables. We 
investigate what putting each brand on display means for the retailer’s revenue if no 
other brand is displayed. We set all feature and price reduction variables to zero. We 
generate 20,000 baskets by drawing from the conditional distribution of purchases. 
For the CRBM we also draw from the conditional distribution of hidden variables. 
To obtain the revenue we multiply the total number of purchases of each brand by its 
average price and sum across brands.

Table 9 gives the mean of the revenues together with their minimum and maxi-
mum values across 42 brands for each of these three models. The mean revenue 
implied by the MVL model is higher than the corresponding value for the independ-
ent logit model. The overall highest sales revenues result for the CRBM. This rank-
ing of sales revenues matches the extent to which the models consider interdepend-
ences. The independent logit model rules out interdependences completely. On the 
other hand, the CRBM is more flexible than the FM-MVL model by also consider-
ing higher order dependences.

Results obtained by means of the CRBM can be used to support cross-selling 
decisions such as cross-selling bundling, cross category promotional programs, cross 
category loyalty programs and cross-category positioning. Of course, independ-
ent brands are not appropriate for cross-selling. Our results show that cross-selling 

Table 8   Competitive clusters (Five cluster K-medoids solution)

Abbreviations: fm flavored milk, gc ground coffee, hd hot dog, ls low calorie soft drink, PL private label,
rm regular milk, rs regular soft drink, s soup, ss spaghetti sauce, wc whole beans coffee

Cluster # Brands

1 s Other
2 ls Coca Cola, ls Dr Pepper, rs RegPepsi, wc Tata Tea, rm PL, rm Hood, fm Hood, hd Cher-

Make, hd Sara Lee, ss Lidestri, ss Other, s Campbell
3 ls Pepsi, rs Coca Cola, rs Other, gc Smucker, gc Kraft, gc Other, wc Regency, wc Other, rm 

Other, fm Dean, fm Other, hd Kraft, hd Buddig, hd Other, ss Unilever, ss Heinz, ss PL, 
RTS General Mills, RTS Campbell, RTS Other

4 ls Other, rs Dr Pepper, gc Zanetti, ss Campbell, ss Conagra, ss Newmans, s PL, RTS Conagra
5 rm Dean

Table 9   Revenues due to display of each of 42 brands

Model Revenue

Minimum Mean Maximum

Independent logit 68,957 69,580 77,588
Finite mixture multivariate logit 64,588 73,336 81,480
Conditional restricted Boltzmann machine 92,726 92,694 93,282
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may encompass brands of the same or related categories if they are purchase com-
plements (e.g., low calorie Pepsi with several other soft drink brands, but not with 
brands of other categories). Brands may also be purchase complements with brands 
of other categories (e.g., various soup brands are purchase complements not only 
with other soup brands, but also with brands of the ground coffee category).

The selected CRBM includes the marketing variables feature, display, and price 
reductions. Clearly, own effects on the same brand dominate cross effects, which are 
much lower. As a rule, own effects vary across brands of the same category and are 
more pronounced for one brand of one category.

The excellent holdout performance of the CRBM suggests continuing research in 
two respects. One possibility consists in applying the CRBM to other areas in mar-
keting and retailing. Besides non-food retailing and e-commerce media such areas 
comprise media consumption (Gentzkow 2007; Yang et  al. 2010), subscriptions 
of different (media) services (Schweidel et  al. 2011), and menu choice problems 
(Kosyakova et al. 2020). Developing extensions of the CRBM that are appropriate 
for different dependent variables such as purchase amounts or purchase quantities 
constitutes another option.

A estimation of homogeneous multivariate logit models

We estimate homogeneous multivariate logit models by maximizing the LPL based 
on average gradients across market baskets. To this end we use the BFGS algorithm 
contained in the Optimize module of the Python package SciPy (Virtanen 2020). We 
set initial values of all coefficients to zero.

We show the gradients with respect to the log pseudo-probability log(P̃j) for one 
basket omitting the basket index to keep notation simple. Gradients for the different 
types of coefficients of the MVL model with pairwise interactions are:

Please note that gradients for coefficients � and � look like those for maximum like-
lihood estimation of the binomial logit model (see, e.g., Greene (2003)). To estimate 
the independent logit model we only have to set gradients of interaction coefficients 
constantly to zero.

For the MVL model with interactions between products and categories we obtain:

𝛥 log(P̃j)𝛼j =yj − P(yj|y−j)
𝛥 log(P̃j)𝛽jp =(yj − P(yj|y−j)) xjp
𝛥 log(P̃j)Vjl

=(yj − P(yj|y−j)) yl + (yl − P(yl|y−l)) yj for j ≠ l

𝛥 log(P̃j)𝛼j =yj − P(yj|yc−indj )
𝛥 log(P̃j)𝛽jp =(yj − P(yj|yc−indj )) xjp
𝛥 log(P̃j)Vcat

j,c
=(yj − P(yj|yc−indj )) ycatc

for c ≠ indj
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B estimation of finite mixture multivariate logit models

Our estimation approach is akin to maximizing the classification likelihood 
(McLachlan and Basford 1988; Ngatchou-Wandji and Bulla 2013). We replace 
the intractable likelihood by the pseudo-likelihood. We describe estimation by the 
following pseudo-code:

•	 Randomly assign each of M households to one of S segments to produce 
binary segment memberships ( usm = 1 if household m is assigned to segment 
s)

•	 Repeat

–	 compute relative segment sizes �s =
∑M

m=1
usm∕M

–	 estimate a MVL model for each segment s by the method described in 
Appendix A using all data of households with usm = 1

–	 compute the pseudo-probability P̃sm for each household and each segment-
specific MVL model

–	 assign each houshold to the segment s for which 𝜋sP̃sm is maximal

•	 Until segment assignments do not change

The segment-specific pseudo-probability P̃sm is computed for all baskets of 
household m in following manner:

Im denotes the number of baskets of household m, Ymij a binary purchase indicator 
(set to one if basket i of household m contains product j), P̃smij the pseudo-proba-
bility of product j in basket i of household m according for the MVL model for seg-
ment s. The segment-specific MVL model takes one of three alternative forms, the 
independence logit model, the MVL model with pairwise interactions, and the MVL 
model with interactions between products and categories.

C estimation of the conditional restricted Boltzmann machine

Estimation of a CRBM consists of two steps. In the first step we determine coef-
ficients of a RBM that has the same number of hidden variables as the CRBM 
by contrastive divergence (CD). The objective of CD is related to the Kullback-
Leibler divergence between the data distribution and the model distribution (more 
details on the CD algorithm can be found in Hinton (2002) and Murphy (2012)).

We use the CD algorithm implemented in the Python library NeuPy (Shevchuk 
2019). In each iteration the algorithm performs Gibbs sampling of all hidden var-
iables conditional on observed brand purchases followed by Gibbs sampling of all 

P̃sm =

Im∏
i=1

J∏
j=1

P̃
Ymij

smij
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brand purchases conditional on all hidden variables. Coefficients are updated for 
mini-batches of 100 observations with a learning rate set to 0.1. The estimation 
process runs for 500 epochs, i.e., 500 complete passes over all observations. We 
start CD estimation ten times with different initial random coefficient values and 
finally choose the solution with the highest LPL.

The second step deals with estimating the CRBM proper. The BFGS algorithm 
contained in the Optimize module of the Python package SciPy (Virtanen 2020) 
serves to maximize the LPL based on average gradients across market baskets. Ini-
tial values of coefficients �k and Wjk are taken from best CD solution. Initial values 
of the � coefficients of the CRBM are set to zero.

We now show how gradients for one basket are computed omitting the basket 
index to keep notation simple. The gradient of the log pseudo-probability of product 
j with respect to any parameter � of a CRBM is given by (Marlin et al. 2010):

F�(y, x) = −[yT� + xT�y +
∑K

k=1
log(1 + exp(�k + yTW.k))] is the free energy func-

tion of the CRBM, �F�(y, x) symbolizes its gradient. For each type of coefficient we 
obtain the following expressions for the gradients:

�(Z) denotes the binary logistic function 1∕(1 + exp(−Z)).
In our study the BFGS algorithm with gradients for coefficients � , � and W did 

not improve the LPL of RMBs over its value for the best solution already provided 
by the CD algorithm.
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𝛥 log(P̃j)𝜃 =

J∑
j=1

P(ỹ(j))|y−j)
(
𝛥F𝜃(y, x) − 𝛥F𝜃(ỹ(j), x)

)

with P(ỹ(j))|y−j) = exp(−F𝜃(ỹ(j), x))∕(exp(−F𝜃(y, x)) + exp(−F𝜃(ỹ(j), x)))

𝛥 log(P̃j)𝛼j =P(ỹ(j))|y−j) (2yj − 1)

𝛥 log(P̃j)𝛽jp =P(ỹ(j))|y−j) (2yj − 1) xjp

𝛥 log(P̃j)𝛾k =

J∑
j=1

P(ỹ(j))|y−j)
(
𝜎(𝛾k + yTW.k) − 𝜎(𝛾k + ỹT

(j)
W.k)

)

𝛥 log(P̃j)Wjk
=

J∑
j=1

P(ỹ(j))|y−j)
(
𝜎(𝛾k + yTW.k) yj − 𝜎(𝛾k + ỹT

(j)
W.k) (1 − yj)

)
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