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Abstract
We propose an affine term structure model that allows for tenor-dependence of yield curves
and thus for different risk categories in interbank rates, an important feature of post-crisis
interest rate markets. The model has a Nelson–Siegel factor loading structure and thus eco-
nomically well interpretable parameters. We show that the model is tractable in terms of
estimation and provides good in-sample fit and out-of-sample forecasting performance. The
proposed model is arbitrage-free across maturities and tenors, and thus perfectly suited for
risk management and pricing purposes. We apply our framework to the pricing of caplets in
order to illustrate its practical applicability and its suitability for stress testing.

Keywords Affine processes · Dynamic factor model · Multiple term structures ·
Nelson–Siegel curve

JEL Classification E43 · G12 · G17

1 Introduction

The global financial crisis of 2007/2008 has triggered some structural changes in interest rate
markets that invalidated the classical notion of a single yield curve. In particular, in post-crisis
interest rate markets, yields vary not only with respect to maturity but depend also on the
length of the tenor structure of the interest rate derivative from which they are calculated.
Thus, nowadays interest rate markets are characterized by multiple (tenor dependent) term
structures that reflect different risk categories. This has important implications for pricing,
portfolio allocation, risk management and monetary policy.

In this paper, we construct an affine term structure model that (1) allows for tenor-
dependent yield curves, (2) is free of arbitrage across maturities and tenors, (3) is
computationally tractable with (4) economically interpretable parameters, and (5) provides
superior in-sample fit and out-of-sample forecasting performance within the Nelson–Siegel
class of models. The model is suitable also for negative interest rate environments and allows
for semi-closed pricing formulas for various interest rate derivatives.
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Our paper relates to a large literature on term structure models. The models introduced
in [28,30] are heavily used by various central banks to fit daily yield curves (see e.g. [1,9]).
They are flexible enough to describe various different shapes of interest rate term structures
and the dynamic extension of the Nelson–Siegel model introduced in [6] has been shown
to be highly tractable and at the same time provides accurate forecasting results. While the
Nelson–Siegel parameters (as well as the Svensson parameters) have convenient economic
interpretations as level, slope and curvature factors, the model is not arbitrage-free and hence
not suitable for pricing purposes and of limited use for riskmanagement. Affine arbitrage-free
term-structure models have been introduced e.g. in [5,8] in the single curve setting. However,
as shown in [7] the canonical affine models typically provide poor forecasting performance.
This shortcoming is overcome in [2] who introduce an arbitrage-free affine specification of
the Nelson–Siegel model in the single curve setting.

The financial crisis of 2007/2008, however, has invalidated the classical notion of a single
yield curve. Reference [20] points out the importance of taking different risk categories
in interbank rates into account. In the past years, affine short rate models in the multiple
curve setting have been introduced in [14,16,19,25–27] among others. Affine Libor models
for tenor dependent yields have been developed in [17,18]. Reference [4] provides a very
general framework to model multiple yield curves through affine processes which comprises
short rate models, Libor market models and Heath–Jarrow–Morton (HJM) models of tenor
dependent yield curves. In particular, their approach relies on a general numéraire process
and the modelling of multiplicative spreads between tenor dependent interbank rates and
Overnight Indexed Swap (OIS) rates as first suggested in [3].

Our approach builds on the idea developed in [2] and combines it with the general affine
model introduced in [4] in order to develop an affine arbitrage-free multiple curve version
of the Nelson–Siegel model. The proposed model inherits advantages from both the affine
models aswell as the parsimoniousNelson–Siegel class ofmodels: it can be estimated through
standard techniques (Kalman filter) and presents good in- and out-of-sample performances.
Since it is free of arbitrage across maturities and tenors and has parameters with a sound
economic interpretation, the model is well suited for derivative pricing and tailor-made for
scenario generation, stress testing and other risk management purposes. We illustrate this by
applying our model to the pricing of caplets and by analysing the impact of level, slope and
curvature shifts in the discount curve and the multiplicative log spreads on the caplet price.

The remainder of the paper is structured as follows. In Sect. 2 we specify the financial
market setting of our model. Section 3 summarizes the general affine multiple curve model
introduced in [4] adapted to ourmarket setting. The specification of the arbitrage-freemultiple
curve Nelson–Siegel model is then derived in Sect. 4. Estimation and forecasting results are
provided in Sect. 5 while Sect. 6 discusses the pricing of interest rate derivatives in the
proposed model. Section 7 concludes.

2 Financial market instruments

We consider a financial market in which Xibor rates are quoted for a finite and generic set of
tenorsD = {δ1, . . . , δm}with δ1 < · · · < δm for somem ∈ N and we denote by Lk

t (t, t+δk)

the (spot) Xibor rate prevailing at time t for the time interval [t, t + δk]. The tenor δk is
typically equal to 1 week (1W) or several months (1M, 2M, 3M, 6M, or 12M). We assume
that forward rate agreements with Xibor rates of different tenors as reference rate are traded
in the market.
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Definition 1 A forward rate agreement (FRA) with tenor δk , settlement date T and strike K ,
is a contract stating that the fixed interest rate K will apply to a certain nominal value N ,
which we assume to be normalized to one, over the specified future period [T , T + δk]. The
payoff at maturity T + δk is then given by

δk(L
k
T (T , T + δk) − K ).

The interest rate K which ensures that the FRA for period [T , T + δk] has value zero at
time t is referred to as FRA rate and will be denoted by Lk

t (T , T + δk) in the sequel.

In addition, we assume that overnight indexed swaps are traded in the market. The EONIA
rate is the reference rate for overnight borrowing in the interbank market in the Eurozone
and represents the underlying of overnight indexed swaps in the Eurozone.

Definition 2 An overnight indexed swap (OIS) is a contract where an investor agrees to pay
a predetermined fixed rate K on a notional N at some predetermined equidistant future dates
{T0, . . . , Tn} with tenor δ = Ti − Ti−1 to the other party. In return, the investor receives
interest rate payments at a floating interest rate on the same notional principal. The floating
rate in an OIS is indexed to an overnight rate (such as the EONIA in the Eurozone) and
is given by simply compounding the consecutive overnight rates between the dates Ti and
Ti + δ. In the following, we again normalize the notional N to one. The fixed rate K such
that the OIS contract for the time period [T0, Tn] has zero value at time t ≤ T0 is called the
time t forward swap rate and will be denoted by KOIS

t (T0, Tn).

Applying appropriate bootstrapping techniques (see e.g. [15]) to the quoted OIS forward
swap rates, we can extract the term structure T �→ Pd(t, T ) of OIS zero-coupon bond prices
Pd(t, T ) at time t and we define the simple compounded OIS spot rate at time t for the time
period [t, t + δ] as

Ld
t (t, t + δ) := 1

δ

(
1

Pd(t, t + δ)
− 1

)
.

From the bootstrapped OIS zero-coupon bond prices, we can extract the simple com-
pounded forward OIS rate Ld

t (T , T + δ) at time t for the time period [T , T + δ] which is
defined via

1 + δLd
t (T , T + δ) := Pd(t, T )

Pd(t, T + δ)
.

The OIS rates will be considered as risk-free. This is motivated by the wide dissemination
of collateral agreements to reduce the counterparty risk associated with OTC-traded deriva-
tives.1 Collateralisation is based on discounting at an overnight rate and reflects a funding
and hedging mechanism. As a consequence, prices of OTC-traded derivatives quoted in the
interbank market can be considered free of credit and liquidity risk.

We then have the following definition of a multiple curve financial market (compare
[4,13]).

Definition 3 For a fixed time horizon T < ∞ we consider a financial market consisting of
the following basic traded assets

1. OIS zero-coupon bonds for all maturities T ∈ [0,T], and
2. FRA contracts for all maturities T ∈ [0,T] and for all tenors δ1, . . . , δm .

1 Collateral agreements for OTC-traded derivatives have been suggested in the credit support annex (CSA)
to the International Swaps and Derivatives Association master agreement. Compare [21,22] for reference.
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The risk-free term structure can be derived from the OIS bonds. The tenor-dependent
(risky) yield curves reflect different levels of credit and liquidity risk in the interbank market
and can be extracted from quoted FRA and swap rates of corresponding tenors. Since the
fair swap rate Skt at time t ≤ T1 of a swap with tenor δk and cashflow dates T1, . . . , Tn can
be represented through the relation

Skt =
∑n

j=1 L
k
t (Tj−1, Tj−1 + δk)∑n
j=1 δk Pd(t, Tj )

+ K

as a function of FRA rates for some fixed strike rate K ∈ R and tenor length δk , it suffices to
assume that FRA contracts for all maturities and tenors are traded in the market.

3 Continuous-time affinemodel for tenor-dependent term structures

Next, we set up the continuous time affine model for multiple yield curves. Therefore, we
first fix the dynamics of the risk-free short rate. Afterwards, we specify the dynamics of the
spreads between tenor-dependent (risky) yields and the risk-free yields in order to obtain the
risky term structures.

In the first step, we follow the classical approach of [8] in modelling the term structure
of risk-free interest rates as an affine function of underlying latent factors. We suppose that
prices are discounted at the OIS rate, i.e., the numéraire B = (Bt )0≤t≤T is given by the OIS
bank account

Bt = exp

(∫ t

0
rds ds

)
,

for t ∈ [0,T], where rdt denotes the overnight short rate at time t . Further, we denote by Q

the associated (spot) martingale measure such that prices of traded assets can be calculated
as conditional expectations of B-discounted payoffs under Q. We consider the probability
space (�,F ,Q) with filtration (Ft )t≥0 generated by a standard Brownian motion (Wt )t≥0

on R
n under Q. We model the short-rate rd as an affine function of a state variable Xt that

follows an affine process2 on some open subset M ⊂ R
n . More specifically, we assume that

Xt satisfies the stochastic differential equation

dXt = K (t)[θ(t) − Xt ]dt + �(t)D(Xt , t)dWt

underQ, where θ : [0, T ] → R
n and K : [0, T ] → R

n×n are bounded, continuous functions.
Moreover, the matrix � : [0, T ] → R

n×n is assumed to be a bounded, continuous function
and D : Rn × [0, T ] → R

n×n has diagonal structure,

D(Xt , t) = diag

(√
γ 1(t) + ϑ1

1 (t)X1
t + · · · + ϑ1

n (t)Xn
t , . . . ,

√
γ n(t) + ϑn

1 (t)X1
t + · · · + ϑn

n (t)Xn
t

)

for γ = (γ 1, . . . , γ n) : [0, T ] → R
n and ϑ = (ϑ

j
i )i, j=1,...,n : [0, T ] → R

n×n bounded
and continuous functions. We assume that the overnight (discount) short rate (rdt )t≥0 is an
affine function of the state variable, i.e.,

rdt = ρd
0 (t) + (ρd

1 )	Xt ,

2 That is, a time-homogeneous Markov process whose characteristic function E
Q[e〈u,Xt 〉] =

eφ̃(t,u)+ψ̃(t,u)	X0 is exponentially affine in the initial state X0.

123



Mathematics and Financial Economics (2022) 16:239–266 243

for a bounded and continuous function ρd
0 : [0,T] → R and a vector ρd

1 ∈ R
n .

In the second step, in order to introduce tenor-dependent term structures, we follow [4]
and model the multiplicative spot spreads

Sk(t, t) := 1 + δk Lk
t (t, t + δk)

1 + δk Ld
t (t, t + δk)

= (1 + δk L
k
t (t, t + δk))P

d(t, t + δk)

between Xibor rates and simple compounded OIS spot rates for each tenor k as exponentially
affine in Xt . Therefore, we assume that

log Sk(t, t) = ρk
0 (t) + (ρk

1 )
	Xt

for a bounded and continuous function ρk
0 : [0,T] → R and a vector ρk

1 ∈ R
n . Note that the

spot spreads can be directly calculated from the quoted Xibor and OIS rates. Moreover, we
define the multiplicative forward spreads Sk(t, T ) for 0 ≤ t ≤ T ≤ T and tenor k by

Sk(t, T ) := 1 + δk Lk
t (T , T + δk)

1 + δk Ld
t (T , T + δk)

= (1 + δk L
k
t (T , T + δk))

Pd(t, T + δk)

Pd(t, T )
. (1)

The T -forward measure equivalent to the pricing measure Q is defined via the Radon-
Nikodym derivative

dQT

dQ

∣∣∣
F t

= Pd(t, T )

Pd(0, T ) · Bt

with Pd(t, T ) = E
Q[Bt/BT |Ft ] the time t price of a discount (OIS) bond with maturity T .

As shown in [4, Prop. 2.5], the fair FRA rate for tenor δk can then be expressed as conditional
expectation of the (spot) Xibor rate of tenor δk , i.e.,

Lk
t (T , T + δk) = E

QT+δk [Lk
T (T , T + δk)|Ft ],

for all 0 ≤ t ≤ T ≤ T. Similarly, the multiplicative (forward) spread satisfies

Sk(t, T ) = E
QT [Sk(T , T )|Ft ],

for all 0 ≤ t ≤ T ≤ T. It can be shown that X generates exponentially affine discount bond
prices Pd(t, T ) and forward spreads Sk(t, T ). More explicitly, by applying Prop. 3.16 in [4],
the discount bond prices and forward multiplicative spreads for tenor k are given by

Pd (t, T ) = E
Q

[
exp

(
−
∫ T

t
rdu du

)
|Ft

]
= E

Q

[
exp

(
−
∫ T

t
ρd
0 (u)du −

∫ T

t
(ρd

1 )	Xudu

)
|Ft

]

= exp
(
A d (t, T ) + Bd (T − t)	Xt

)
(2)

Sk(t, T ) = E
QT
[
Sk(T , T )|Ft

]
= E

Q

[
Sk(T , T )

dQT

dQ

∣∣∣
F t

]
/

(
dQT

dQ

∣∣∣
F t

)

= Bt

Pd (t, T )
E
Q

[
Sk(T , T )

Pd (T , T )

BT
|Ft

]

= 1

Pd (t, T )
E
Q

[
exp

(
ρk
0 (T ) + (ρk

1 )
	XT −

∫ T

t
ρd
0 (u)du −

∫ T

t
(ρd

1 )	Xudu

)
|Ft

]

= exp
(
A k(t, T ) + Bk(T − t)	Xt

)
(3)

for all 0 ≤ t ≤ T ≤ T and all k = 1, . . . ,m, where
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A d(t, T ) = −
∫ T

t
ρd
0 (u)du + φ(T − t, 0,−ρd

1 )

Bd(T − t) = ψ(T − t, 0,−ρd
1 )

A k(t, T ) = ρk
0 (T ) + φ(T − t, ρk

1 ,−ρd
1 ) − φ(T − t, 0,−ρd

1 )

Bk(T − t) = ψ(T − t, ρk
1 ,−ρd

1 ) − ψ(T − t, 0,−ρd
1 ),

with φ and ψ denoting the characteristic exponents of the process Y = (X ,
∫ ·
0 Xsds), which

are given as solutions to the system of ordinary differential equations (ODEs)

d
dt φ(T − t, u, v) = −ψ(T − t, u, v)	K (t)θ(t)

− 1
2

∑n
j=1

(
�	(t)ψ(T − t, u, v)ψ(T − t, u, v)	�(t)

)
j j γ

j (t)
d
dt ψ(T − t, u, v) = K (t)	ψ(T − t, u, v)

− 1
2

∑n
j=1

(
�	(t)ψ(T − t, u, v)ψ(T − t, u, v)	�(t)

)
j j ϑ

j (t) − v

(4)
with boundary conditions φ(0, u, v) = 0 and ψ(0, u, v) = u. We refer to “Appendix A” for
the derivation of these ODEs.

4 Arbitrage-free dynamic tenor-dependent Nelson–Siegel model

As a special case of the affinemultiple term structuremodel outlined above, we develop in this
section an arbitrage-free tenor-dependent Nelson–Siegel model. For simplicity of notation,
we consider a model for only two term structures here, the discount curve and a risky curve
of tenor k. Therefore, we consider unobservable state variables Xt = (X1

t , . . . , X
6
t ) ∈ R

6

where the first three factors correspond to level, slope and curvature factors of the overnight
(discount) curve, and the remaining variables influence the level, slope and curvature of the
tenor-dependent term structure for tenor k through their impact on the multiplicative spreads.
Following [2] we suppose that the overnight (discount) short rate is of the form

rdt = X1
t + X2

t ,

i.e., rdt is determined by the sum of the level and slope factors for the discount curve and
the parameters ρd

0 ≡ 0 and ρd
1 = (1, 1, 0, 0, 0, 0)	 in the notation of Sect. 3. Further, we

assume that the state variables have the following Q-dynamics

dXt = K [θ − Xt ] dt + � dWt ,

with θ = (θ1, . . . , θ6) and matrix K ∈ R
6×6 of triangular form

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 λd −λd 0
0 0 λd

0 0 0
0 0 λk −λk

0 0 λk

⎞
⎟⎟⎟⎟⎟⎟⎠

for λd , λk > 0. In the following we will denote the upper left 3 × 3 submatrix of K by Kd

and the lower right 3 × 3 submatrix by Kk . Further, suppose that � ∈ R
6×6 has triangular
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form

� =
(

�d 0
0 �k

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11 0 0
σ21 σ22 0 0
σ31 σ32 σ33

σ44 0 0
0 σ54 σ55 0

σ64 σ65 σ66

⎞
⎟⎟⎟⎟⎟⎟⎠

Hence, the first three factors (X1
t , X

2
t , X

3
t ), which influence the discount curve, are inde-

pendent of the last three factors (X4
t , X

5
t , X

6
t ), which affect the tenor spreads, and vice versa.

In analogy to [2] and by application of Eq. (2), we can express the risk-free zero-coupon
bond prices in this model as follows

Pd(t, T ) = E
Q

t

[
exp

(
−
∫ T

t
rdu du

)]
= exp

(
A d(t, T ) + Bd(T − t)Xt

)
,

where we have

d

dt
A d (t, T ) = ρd

0 + d

dt
φ(T − t, 0, −ρd

1 )

= −ψ(T − t, 0, −ρd
1 )	K θ − 1

2

6∑
j=1

(
�	ψ(T − t, 0, −ρd

1 )ψ(T − t, 0, −ρd
1 )	�

)
j j

,

because ρd
0 ≡ 0 and γ j ≡ 1 in this setting, and

d

dt
Bd(T − t) = d

dt
ψ(T − t, 0,−ρd

1 ) = K	ψ(T − t, 0,−ρd
1 ) + ρd

1 ,

as ϑ j ≡ 0 in this setting. The latter equation can be rewritten as

d

dt
ψ(T − t, 0,−ρd

1 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
λd ψ2(T − t, 0,−ρd

1 )

−λd ψ2(T − t, 0,−ρd
1 ) + λd ψ3(T − t, 0,−ρd

1 )

0
λk ψ5(T − t, 0,−ρd

1 )

−λk ψ5(T − t, 0,−ρd
1 ) + λk ψ6(T − t, 0,−ρd

1 )

⎞
⎟⎟⎟⎟⎟⎟⎠

Due to the boundary conditionψ(0, u, v) = u we obtain that the fifth and sixth component
of the vector ψ(T − t, 0,−ρd

1 ) are equal to zero and we have

ψi (T − t, 0,−ρd
1 ) = 0 for i = 4, 5, 6. (5)

Thus, due to the special choice of the matrices K and�, we can rewrite the discount bond
price as

Pd(t, T ) = exp

(
3∑

i=1

ψd
i (t, T ) Xi

t + A d(t, T )

)
,

where the functions ψd(t, T ) = (ψd
1 (t, T ), ψd

2 (t, T ), ψd
3 (t, T )) with ψd

i (t, T ) = ψi (T −
t, 0,−ρd

1 ), for i = 1, 2, 3, are solutions to the system of Riccati equations
⎛
⎝

d
dt ψ

d
1 (t, T )

d
dt ψ

d
2 (t, T )

d
dt ψ

d
3 (t, T )

⎞
⎠ =

⎛
⎝ 1
1
0

⎞
⎠+

⎛
⎝ 0 0 0
0 λd 0
0 −λd λd

⎞
⎠
⎛
⎝ψd

1 (t, T )

ψd
2 (t, T )

ψd
3 (t, T )

⎞
⎠
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and the function A d solves

dA d(t, T )

dt
= −ψd(t, T )	K dθd − 1

2

3∑
i=1

((�d)	ψd(t, T )ψd(t, T )	�d) j, j

where θd = (θd1 , θd2 , θd3 )	. Hence, the discount bond prices are determined solely by the first
three latent factors. The boundary conditions are ψd

1 (T , T ) = ψd
2 (T , T ) = ψd

3 (T , T ) =
A d(T , T ) = 0. Similarly to [2], we obtain that the solutions to the ODEs are equal to the
Nelson–Siegel factor loadings

ψd
1 (t, T ) = −(T − t)

ψd
2 (t, T ) = −1 − e−λd (T−t)

λd

ψd
3 (t, T ) = (T − t)e−λd (T−t) − 1 − e−λd (T−t)

λd

and A d is given by

A d(t, T ) = (Kdθd)2

∫ T

t
ψd
2 (s, T )ds + (Kdθd)3

∫ T

t
ψd
3 (s, T )ds

+1

2

3∑
j=1

∫ T

t
((�d)	ψd(s, T )ψd(s, T )	�d) j, j ds.

Therefore, the risk-free (discount) yields ydt (τ ) at time t for time-to-maturity
τ = T − t > 0 are described by a function of the form

ydt (τ ) = − 1

T − t
log Pd(t, T )

= X1
t + 1 − e−λdτ

λdτ
X2
t +

[
1 − e−λdτ

λdτ
− e−λdτ

]
X3
t − A d(t, t + τ)

τ
(6)

Thus, factor loadings agree with those in the Nelson–Siegel model but there is an addi-
tional "yield-adjustment term" −A d(t, T )/(T − t) which depends on the maturity of the
bond. As has been shown in [2], by taking this additional term into account, the classical
dynamic Nelson–Siegel model developed in [6] can be turned into an arbitrage-free term
structure model. In other words, the yield-adjustment-term ensures absence of arbitrage
across maturities in our model.

Next, we turn to the term structure of interest rates for tenor k. Therefore, we assume that
the multiplicative spot spread for tenor k is of the form

log Sk(t, t) = X4
t + X5

t ,

i.e. ρk
0 = 0 and ρk

1 = (0, 0, 0, 1, 1, 0)	 in the notation of Sect. 3. We obtain from Eq. (3)
that the tenor-dependent multiplicative forward spreads satisfy

Sk(t, T ) = exp
(
A k(t, T ) + Bk(T − t)Xt

)

with
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d

dt
A k(t, T ) = d

dt
φ(T − t, ρk

1 ,−ρd
1 ) − d

dt
φ(T − t, 0,−ρd

1 )

= −ψ(T − t, ρk
1 ,−ρd

1 )	K θ − 1

2

6∑
j=1

(
�	ψ(T − t, ρk

1 ,−ρd
1 )ψ(T − t, ρk

1 ,−ρd
1 )	�

)
j j

+ψ(T − t, 0,−ρd
1 )	K θ + 1

2

6∑
j=1

(
�	ψ(T − t, 0,−ρd

1 )ψ(T − t, 0,−ρd
1 )	�

)
j j

since ρk
0 ≡ 0 and γ j ≡ 1 in this setting. Moreover, we have

d

dt
Bk(T − t) = d

dt
ψ(T − t, ρk

1 ,−ρd
1 ) − d

dt
ψ(T − t, 0,−ρd

1 )

= K	ψ(T − t, ρk
1 ,−ρd

1 ) + ρd
1 − K	ψ(T − t, 0,−ρd

1 ) − ρd
1

as ϑ j ≡ 0. The latter equation implies that

d

dt
Bk(T − t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

λk ψ5(T − t, ρk
1 ,−ρd

1 )

−λk ψ5(T − t, ρk
1 ,−ρd

1 ) + λk ψ6(T − t, ρk
1 ,−ρd

1 )

⎞
⎟⎟⎟⎟⎟⎟⎠

where we use the fact that ψi (T − t, 0,−ρd
1 ) = 0 for i = 4, 5, 6 (compare Eq. (5)) and the

fact that we have ψi (T − t, ρk
1 ,−ρd

1 ) = ψi (T − t, 0,−ρd
1 ) for the first three components

i = 1, 2, 3, as implied by the boundary condition ψ(0, u, v) = u for
u = ρk

1 = (0, 0, 0, 1, 1, 0)	. Hence, we can express the multiplicative forward spreads
as

Sk(t, T ) = exp

(
3∑

i=1

ψk
i (t, T )X3+i

t + A k(t, T )

)
(7)

where the functions ψk(t, T ) = (ψk
1 (t, T ), ψk

2 (t, T ), ψk
3 (t, T )) with ψk

i (t, T ) = ψ3+i (T −
t, ρk

1 ,−ρd
1 ) for i = 1, 2, 3, are solutions to the system of Riccati equations

⎛
⎝

d
dt ψ

k
1 (t, T )

d
dt ψ

k
2 (t, T )

d
dt ψ

k
3 (t, T )

⎞
⎠ =

⎛
⎝ 0 0 0
0 λk 0
0 −λk λk

⎞
⎠
⎛
⎝ψk

1 (t, T )

ψk
2 (t, T )

ψk
3 (t, T )

⎞
⎠

and the function A k solves

dA k(t, T )

dt
= −ψk(t, T )	Kkθk − 1

2

3∑
i=1

((�k)	ψk(t, T )ψk(t, T )	�k) j, j

where θk = (θ4, θ5, θ6)
	. Hence, the multiplicative forward spreads are solely determined

by the last three latent factors. The boundary conditions are given by ψk(T , T ) = (1, 1, 0)
and A k(T , T ) = 0. The solution of this system of equations is given by

ψk
1 (t, T ) = 1

ψk
2 (t, T ) = e−λk (T−t)

ψk
3 (t, T ) = (T − t)λke

−λk (T−t)
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and

A k(t, T ) = (Kkθk)2
∫ T
t ψk

2 (s, T )ds + (Kkθk)3
∫ T
t ψk

3 (s, T )ds

+ 1
2

∑3
j=1

∫ T
t ((�k)	ψk(s, T )ψk(s, T )	�k) j, j ds.

Thus, the bond prices and multiplicative spreads are both exponentially affine in Xt with
coefficients that have a similar structure as the Nelson–Siegel factor loadings. We now con-
sider the risky (tenor-dependent) term structure for tenor k. The one-period continuously
compounded yields ykt (t + δk) can be calculated from the simple compounded spot Xibor
rates as follows

ykt (t + δk) = 1
δk
log
(
1 + δk Lk

t (t, t + δk)
)

= 1
δk
log
(

Sk (t,t)
Pd (t,t+δk )

)
= 1

δk
log Sk(t, t)) − 1

δk
log Pd(t, t + δk) = ydt (t + δk) + 1

δk
log Sk(t, t)),

where we used relation (1). The multi-period yields ykt (τ ) at time t for tenor k and time-to-
maturity τ = T − t = Nδk for some N ∈ N, are obtained as follows

ykt (τ ) = − 1
τ
log
(∏N−1

n=0

(
1 + δk Lk

t (t + nδk, t + (n + 1)δk)
)−1
)

= − 1
τ
log
(∏N−1

n=0

(
Pd (t,t+(n+1)δk )

Sk (t,t+nδk )Pd (t,t+nδk )

))
= ydt (τ ) + 1

τ

∑N−1
n=0 log Sk(t, t + nδk),

where we again applied relation (1). Since the discount yields are affine in Xt (compare Eq.
(6)) and the multiplicative forward spreads are exponentially affine in Xt (compare Eq. (7)),
we obtain that the tenor-dependent yields are also affine in Xt . Moreover, we observe that
the tenor-dependent term structure is also of Nelson–Siegel shape due to the special structure
of the discount short rate and the multiplicative spot spreads. As the multiplicative spreads
are usually greater than one in the post crisis period, the level, slope and curvature factors
for the spreads lead to a positive shift of the overnight (discount) curve so that the risky
term structures are strictly larger than the discount curve. The termsA k(t, t + nδk)/τ in the
expression for the tenor-dependent yields represent “tenor-adjustment terms” which ensure
absence of arbitrage across tenors.

5 Numerical results

In this section we illustrate the numerical performances of the proposed model by fitting
it to real data. We start by illustrating how the historical time series of yields and tenor
dependentmultiplicative spreads are built, thenwe show in-sample and out-of-sample perfor-
mances in termsof estimation and forecasting.Computations are done usingMatlab®(Version
R2019b) in Microsoft Windows 10®running on a machine equipped with Intel(R) Core(TM)
i7-9750HQ CPU @2.60GHz and 16 GB of RAM.

5.1 Data

Our data set consists of daily bootstrapped discount and three month yield curves for maturi-
ties up to 10 years. More specifically, we use European market data provided by Bloomberg
for the time period from September 2nd, 2005, until May 22nd, 2018. We bootstrap the
discount curves from Overnight Indexed Swap (OIS) rates indexed to the EONIA rate with
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maturities ranging from one week up to 10 years. Further, we construct the risky 3 month
yield curves from market quotes of deposit rates for 3 month maturity and swap rates with
maturities between 6 months and 10 years. All yields have been bootstrapped following the
procedure in [15]. In total we consider 3316 observations for yields andmultiplicative spreads
of 3 months tenor. From the constructed yield curves we only consider the interest rates with
maturities τ ∈ {0.25, 0.5, 1, 3, 5, 7, 10} (expressed in years) in the in-sample estimation and
out-of-sample forecasting. These have been directly bootstrapped frommarket data and hence
do not allow for any arbitrage opportunities that might arise due to interpolation methods.
Including interest rates of further maturities has only a minor impact on the results.

5.2 Yield curve fitting

In Sect. 4, we introduced an affine term structure model which is free of arbitrages across
tenors and maturities and takes into account correlations between factors. We will refer to
this model as correlated arbitrage-free multiple curve Nelson Siegel (AFMCNS) model. We
provide a state-space formulation of the AFMCNS model and describe the Kalman filter
estimation of the model in “Appendix B”. Parameters can then be estimated by maximiz-
ing numerically the log-likelihood function in (14), for which we use the built-in Matlab®

function fmincon.
To evaluate themodel’s in- and out-of-sample performances,we consider three sub-models

which are closely related to the correlated AFMCNS model for comparison. The first is the
independent AFMCNS model, which is equivalent to the correlated one with the obvious
exception that the off-diagonal elements in the matrices KP and � are equal to 0. The
estimation results for the correlated as well as for the independent version of the AFMCNS
model are presented below. Second, by forcing the yield and tenor adjustment terms to be
equal to 0, we obtain a dynamic Nelson–Siegel model which is not arbitrage-free but adapted
for a multiple-curve setting. We refer to this model as MC-DNS model. It can be written in
state-space form as

Xt = (I − A)μ + AXt−1 + ηt

yt = BXt + εt (8)

where Xt = {X1
t , X

2
t , X

3
t , X

4
t , X

5
t , X

6
t }, yt = {ydt (τn), log Skt (τn)}7n=1, B is the matrix of

the Nelson–Siegel factor loading coefficients, and A is a diagonal matrix in the independent
MC-DNS and a full matrix in the correlated MC-DNS. Finally,(

ηt
εt

)
∼ N

[(
0
0

)
,

(
Q 0
0 H

)]
, (9)

where H is a diagonal matrix and Q = qq ′ is a diagonal matrix in the independent MC-DNS
and a full matrix in the correlated MC-DNS. The Kalman filter for the MC-DNS model is
set up following [2, Section 4.1]. Estimation results for the MC-DNS model are reported in
Table 1.

5.2.1 AFMCNSmodel estimation

Table 2 shows the estimation results for the AFMCNS model. For the one-day conditional
mean-reversion matrix exp

(−KP/252
)
the elements on the main diagonal are similar in the

independent and correlated case, with factors related to the discount yields more persistent
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Fig. 1 Yield and tenor adjustments (in basis points) in the independent and correlated AFMCNS models

than those related to the log-spreads. Off-diagonal elements appear non negligible, especially
for those elements corresponding to {Xi

t }6i=4 for whichwe find a lot of values higher than 0.01
in absolute value. Concerning the long-run mean θP there is not much difference between the
two models. However, the values are shifted when compared to μ (in the MC-DNS) which
can be explained by the fact that we are adding the adjustment term. In fact, the yield and tenor
adjustment terms are negative for all maturities and decreasing in maturity (compare Fig. 1).
Since we subtract the adjustment terms in the measurement equation, the mean level in the
AFMCNS model is smaller than in the MC-DNS model. Moreover, the tenor adjustment
term is much smaller in size compared to the yield adjustment term (roughly by a factor 0.1)
which explains why the mean level of the log spreads is less affected than the mean level of
the discount yields.

When converting the volatility matrix � into a one-day conditional covariance matrix3

Q =
∫ 1/252

0
exp

(
−KPs

)
��′ exp

(
−(KP)′s

)
ds,

we obtain:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

9.67E–08 0 0 0 0 0
0 1.80E–07 0 0 0 0
0 0 1.49E–06 0 0 0
0 0 0 1.07E–08 0 0
0 0 0 0 1.13E–08 0
0 0 0 0 0 1.72E–07

⎤
⎥⎥⎥⎥⎥⎥⎦

3 The small magnitude of the components of Q is explained by the fact that we are using daily data. Those
numbers are consistent with [2, Eq. 12 and 13] which use monthly data.

123



Mathematics and Financial Economics (2022) 16:239–266 253

in case of independence and

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

4.09E–07 −4.26E–07 −6.67E–07 0 0 0
−4.26E–07 4.74E–07 6.68E–07 0 0 0
−6.67E–07 6.68E–07 2.60E–06 0 0 0

0 0 0 1.45E–10 2.36E–10 −1.96E–09
0 0 0 2.36E–10 2.62E–09 −5.58E–09
0 0 0 −1.96E–09 −5.58E–09 3.81E–08

⎤
⎥⎥⎥⎥⎥⎥⎦

in the correlated case. We find that factors related to the discount yields are more volatile
than those related to the log-spreads. This is comparable in case of the MC-DNS model.4

From the covariance estimates, we calculate correlation coefficients between factors⎡
⎢⎢⎢⎢⎢⎢⎣

1 −0.9665 −0.6458 0 0 0
−0.9665 1 0.6007 0 0 0
−0.6458 0.6007 1 0 0 0

0 0 0 1 0.3817 −0.8350
0 0 0 0.38173 1 −0.5572
0 0 0 −0.8350 −0.5572 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and find that correlations are not negligible. E.g. there is a very strong negative correlation
of -0.9665 (resp. -0.8350) between X1 and X2 (resp. between X4 and X6). This indicates
that for the discount yields level shifts often go along with slope changes while for the log
spreads level shifts mostly go along with curvature changes.

When comparing the log-likelihood values reported in the caption of Table 2, it is evident
that the correlated version of the AFMCNS model performs better in-sample than the inde-
pendent specification. This is not only due to the higher number of parameters, as largely
confirmed by the likelihood ratio (LR) test for which we obtain a very high LR of 10755.21,
but this is also confirmed by the results in Table 3, where root mean squared errors (RMSEs)
are consistently smaller in the correlated case than in the independent factor case. RMSEs
and mean errors (ME) displayed in Table 3 are computed from the differences between the
historical yields and model estimated yields. Figure 2 shows a plot of these time series.
This figure also appreciates the ability of the proposed model to replicate the time series
of observed yields. Further, comparing the log-likelihood ratios of the MC-DNS and the
AFMCNS models (reported in the captions of Tables 1 and 2) confirms superiority of the
AFMCNS model. This is also confirmed by the smaller RMSEs in Table 3.

5.3 Forecasting

We evaluate the forecasting performance of our proposed model by comparing six- and
twelve-months ahead forecasts of discount and tenor dependent yields with its non-arbitrage
free counterpart. For convenience of exposition, we denote yt := {ydt (τn), ykt (τn)}7n=1. Fore-
casting yields in the AFMCNS model consists of two steps:

(1) Estimate model parameters over the sample period ending at time T as in Sect. 5.2.
(2) Compute optimal h months ahead forecasts as

yAFT+h =
(
EP

T [X1
T+h] + 1−e−λd τ

λd
EP

T [X2
T+h] +

(
1−e−λd τ

λd
− e−λd τ

)
E[X3

T+h]
E[X4

T+h] + e−λkτ EP

T [X5
T+h] + τλke−λkτ EP

T [X6
T+h]

)
−
(

A d (τ )
τ−A k(τ )

)

(10)

4 Results are available upon request.

123



254 Mathematics and Financial Economics (2022) 16:239–266

Table 3 Summary statistics for in-sample model fit

DNS-Indep DNS-Corr AFNS-Indep AFNS-Corr

τ ME RMSE ME RMSE ME RMSE ME RMSE

yd 0.25 −2.72 5.96 0.00 0.16 2.78 5.62 0.63 1.58

0.5 −1.75 2.83 −0.05 0.81 7.43 9.68 −0.71 3.86

1 2.81 4.89 −0.76 5.56 −4.53 7.23 −4.23 7.02

3 −3.17 5.56 −1.78 3.67 −2.23 5.59 0.59 0.37

5 3.45 6.11 0.83 1.82 −2.34 3.41 −1.32 1.19

7 5.44 8.24 −0.72 4.69 2.75 5.22 −0.88 5.34

10 −4.65 7.13 −4.22 6.90 −3.03 5.40 −1.49 3.53

Average −0.08 5.82 −0.96 3.37 0.12 6.02 −1.06 3.27

yk 0.25 −1.16 5.55 0.00 0.33 1.16 5.45 0.36 2.57

0.5 −0.49 2.43 0.00 0.01 3.42 7.95 −0.09 3.10

1 3.36 5.66 −0.25 5.50 −3.68 5.33 −3.02 4.35

3 −1.93 3.06 −1.13 2.16 −1.04 5.40 0.02 0.49

5 1.04 5.33 0.22 1.57 −0.48 2.50 0.00 0.01

7 3.33 8.09 −0.32 3.70 3.45 5.86 0.26 4.87

10 −2.95 4.83 −2.77 4.31 −1.95 3.32 −0.91 2.51

Average 0.17 4.99 −0.61 2.51 0.13 5.11 −0.48 2.56

Total average 5.41 2.94 5.57 2.91

Mean errors (ME) and root mean squared errors (RMSEs) are reported in basis points
Maturities are in years
Values in bold indicate the best performance, values in italic denote the worst performance

where EP

T [XT+h] = (I − exp
(−KPh)

)
)θP + exp

(−KPh
)
XT . We are interested in com-

puting 6 and 12 months ahead forecasts which are typically better achieved using monthly
data instead of daily data. Therefore, we split our data set with daily observations in 21
datasets with monthly observations by taking one data point each month. More specifically,
we construct historical time series of yields taking every 21st observation. We do so start-
ing from each day of the first month of the dataset. In this way, we get 21 historical time
series with monthly observations. Then, on each sub-dataset, we estimate the model on a
6 years (72 months) rolling window and forecast yields using Eq. (10). This produces 73
forecasts for each sub-dataset and in total 73 × 21 = 1533 six and twelve months ahead
forecasts. In Table 4 we report the root mean squared forecasting errors (RMSFE) for the
proposed arbitrage free multiple curve Nelson Siegel model (AFMCNS) and for the multiple
curve dynamic Nelson Siegel (MCDNS) model for benchmark comparison. Note that we
only consider here the independent versions of those models. In fact, in unreported tests, we
obtained superior out of sample performances of those models with respect to their correlated
counterparts. This finding is consistent with [2, Table 7]. Results in Table 4 are striking and
show that the AFMCNS is better in forecasting than the MCDNS throughout all the various
yields and maturities with a RMSFE around 40-60% smaller than the benchmark model for
short maturities and 12-40% for higher maturities.
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Table 4 Out-of-sample
forecasting results

6 months 12 months

MCDNS AFMCNS MCDNS AFMCNS

yd (τ1) 45.2447 25.5872 66.1119 35.6187

yd (τ2) 43.3077 25.4037 65.0016 35.9040

yd (τ3) 44.0420 26.7215 66.7115 38.1650

yd (τ4) 56.9866 36.3356 84.7662 53.4556

yd (τ5) 64.5509 43.2467 96.0734 65.3436

yd (τ6) 63.6161 47.1426 96.6505 71.0293

yd (τ7) 57.9311 50.0400 90.1028 73.5512

yk (τ1) 30.3770 11.9630 61.5200 30.0458

yk (τ2) 34.7462 16.3992 65.9578 36.0147

yk (τ3) 41.3085 23.1866 72.6095 42.6233

yk (τ4) 59.1535 36.7901 93.0645 58.9721

yk (τ5) 67.3193 44.4750 103.1823 69.9925

yk (τ6) 65.3142 48.2985 101.8745 74.7712

yk (τ7) 57.5005 50.5924 92.7184 76.1396

Root mean squared forecasting errors (in basis points) for yields and
log-spreads for 7 different maturities τ = {0.25, 0.5, 1, 3, 5, 7, 10}
(expressed in years) of themultiple curve dynamic Nelson–Siegel model
(MCDNS) and the arbitrage-free multiple curve Nelson–Siegel model
(AFMCNS)
Values in bold indicate best predictive performance

6 Derivative pricing

As an application, we illustrate the pricing of derivative instruments under the proposed
AFMCNS model. More specifically, we consider the price at time t of a caplet with notional
N , reset date T , and settlement date T + δk . Its payoff at the settlement date is given by
Nδk(L(T , T + δk) − K )+. Following [4] the time t price of the caplet can be derived in
semi-closed form. Therefore, we first define

Yt ≡ log

(
Sk(t, t)

Pd(t, T + δk)

)
.

Then Eqs. (2) and (3) imply that

Yt = A k(t, t) + Bk(0)	Xt − A d(t, T + δk) − Bd (T + δk − t)	Xt

= ρk
0 (t) + φ(0, ρk

1 ,−ρd
1 ) − φ(0, 0,−ρd

1 ) + (
ψ(0, ρk

1 ,−ρd
1 ) − ψ(0, 0,−ρd

1 )
)	

Xt

+
∫ T+δk

t
ρd
0 (u)du − φ(T + δk − t, 0,−ρd

1 ) − ψ(T + δk − t, 0,−ρd
1 )	Xt

= ρk
0 (t)+

∫ T+δk

t
ρd
0 (u)du−φ(T+δk − t, 0,−ρd

1 )−ψ(T+δk − t, 0,−ρd
1 )	Xt+(ρk

1 )
	Xt

= −φ(T + δk − t, 0,−ρd
1 ) − ψ(T + δk − t, 0,−ρd

1 )	Xt + (ρk
1 )

	Xt

where we used that ρd
0 = ρk

0 ≡ 0 in our Nelson–Siegel setting as well as φ(0, u, v) = 0
and ψ(0, u, v) = u. Then, the modified moment generating function of YT can be calculated
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(using Eq. (2) and ρd
0 = ρk

0 ≡ 0) as

ϕYT (u) ≡ E
Q

[
Pd(T , T + δk)

BT
eiuYT

∣∣∣Ft

]

= E
Q

[
eiu

(−φ(δk ,0,−ρd
1 )−ψ(δk ,0,−ρd

1 )	XT +(ρk
1 )	XT

)
· eφ(δk ,0,−ρd

1 )+ψ(δk ,0,−ρd
1 )	XT

·e− ∫ T0 (ρd
1 )	Xu)du

∣∣∣Ft

]
= e(1−iu)φ(δk ,0,−ρd

1 ) · EQ

[
e(1−iu)ψ(δk ,0,−ρd

1 )	XT +iu(ρk
1 )	XT · e− ∫ Tt (ρd

1 )	Xudu

·e− ∫ t0 (ρd
1 )	Xudu

∣∣∣Ft

]
= e(1−iu)φ(δk ,0,−ρd

1 ) · eφ(T−t,(1−iu)ψ(δk ,0,−ρd
1 )+iuρk

1 ,−ρd
1 )·

eψ(T−t,(1−iu)ψ(δk ,0,−ρd
1 )+iuρk

1 ,−ρd
1 )	Xt · e− ∫ t0 (ρd

1 )	Xudu

with φ(T − t, u, v) and ψ(T − t, u, v) given by the solution to the system of ODEs in Eq.
(4) adapted to our Nelson–Siegel setting, i.e.

d
dt φ(T − t, u, v) = −ψ(T − t, u, v)	K θQ − 1

2

∑6
j=1

(
�	ψ(T − t, u, v)ψ(T − t, u, v)	�

)
j j

d
dt ψ(T − t, u, v) = K	ψ(T − t, u, v) − v

with boundary conditions φ(0, u, v) = 0 and ψ(0, u, v) = u. This ODE system can be
solved analytically and the solution for ψ(T − t, u, v) is given by5

ψ(T − t, u, v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(T − t) + u1
eλd (t−T )(λdu2−v2)+v2

λd−eλd (t−T )
(
λ2du2(t−T )−λd (v2(t−T )+u3)+v2+v3

)+v2+v3
λd

v4(T − t) + u4
eλk (t−T )(λku5−v5)+v5

λk−eλk (t−T )
(
λ2ku5(t−T )−λk (v5(t−T )+u6)+v5+v6

)+v5+v6
λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where vi and ui are i th entries of the vectors u and v.
The price of the caplet can then be expressed as

�(t, T , T + δk, K , N ) = NBtδk E
Q

[
1

BT+δk

(LT (T , T + δk) − K )+
∣∣∣Ft

]

= N E
Q

[
Bt

BT

(
Sk(T , T ) − (1 + δk K )Pd(T , T + δk)

)+ ∣∣∣Ft

]

= N E
Q

[
Bt

BT
Pd(T , T + δk)

(
eYT − (1 + δk K )

)+ ∣∣∣Ft

]
.

Using the above modified moment generating function, we thus obtain (compare [4],
Proposition 4.2)

�(t, T , T + δk, K , N )

= NBt

(
1

2
ϕYT (−i) + 1

π

∫ ∞

0
Re

(
exp (−iu log(1 + δk K ))

ϕYT (u − i)

−u(u − i)

)
du

)
(11)

5 φ(T − t, u, v) has been computed with Mathematica®, code snippets are available upon requests.
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where

ϕYT (u) = exp
(
(1 − iu)φ(δk, 0,−ρd

1 ) + φ(T − t, (1 − iu)ψ(δk, 0,−ρd
1 ) + iuρk

1 ,−ρd
1 )
)

×

exp

(
ψ
(
T − t, (1 − iu)ψ(δk, 0,−ρd

1 ) + iuρk
1 ,−ρd

1

)	
Xt −

(
ρd
1

)	 ∫ t

0
Xsds

)

This illustrates the applicability of our model to the pricing of caplets, which also holds
in a negative interest rate environment. To further confirm the practical relevance of the
model for derivative pricing we propose a simple calibration exercise. We build a surface
of caplet prices on 15 Sep 2016 using discount bond values and cap implied volatilities,
following the procedure outlined in [10]. We end up with market caplet prices for nT = 15
maturities T = {2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5} years and nK = 5
strikes K = {−0.005,−0.0013, 0.0025, 0.01, 0.02}. Then, we calibrate the proposed model
by solving numerically the following minimization problem:

min
�

1

nT nK

nk∑
k=1

nT∑
t=1

|�(Kk, Tt )
mkt − �(0, Tt , Tt + δk, Kk, 1,�)|

where � is the model parameters vector, �mkt is the market caplet prices surface
and �(�) is the model caplet prices surface (where we have put in evidence the
dependence on the model parameters) computed as in (11). Let us consider for this
numerical illustration the independent version of the AFMCNS model. We obtain the
following estimates for the model parameters: λd = 0.3540, λk = 0.4680, X0 =
{0.0121,−0.0237,−0.0212, 0.0003,−0.0004, 0.0004} and

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0016 0 0 0 0 0
0 0.0201 0 0 0 0
0 0 0.0156 0 0 0
0 0 0 0.0026 0 0
0 0 0 0 0.0021 0
0 0 0 0 0 0.0031

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Figure 3 shows the final calibration output. We find that the model is able to replicate
correctly observed caplet prices with a mean absolute error (MAE) around 1.10E-04 (and
squared pricing error of order 10−7).

The pricing of swaptions in our framework can in principle be done by adapting the
results in [4, Section 4.2] to the proposed AFMCNS model along the same lines to what
has been done in the case of caplets. It should be pointed out, however, that the pricing
problem is more delicate since the semi-closed formulas in the mentioned paper rely on an
approximation of the exercise boundary by an event which is defined in terms of an affine
function of the driving process. Finally, for what concerns derivative instruments with more
involved payoff structure, we remark that, since Xt evolves according to a multi-dimensional
Gaussian Ornstein-Uhlenbeck process, which can be simulated efficiently using for example
the Euler scheme or, alternatively, the state transition Eq. (13), interest rate derivatives can
be efficiently priced under the proposed model via Monte Carlo simulation. Other analytical
or semi-closed pricing formulas for interest rate derivatives in the multiple curve setting are
derived e.g. in [12] using continuous-state branching processes with immigration as driving
processes or in [11] using time-inhomogeneous Lévy processes to model forward swap rates.

As the proposed model has a Nelson–Siegel factor loading structure, the latent variables
have convenient economic interpretations as level, slope and curvature factors. Due to this
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Fig. 4 Price of the Caplets computed from (11) for varying {Xi
t }6i=1. Model parameters as in Table

2 (independent case) except θQ which we set equal to 0 in agreement with [2], with Xt =
{0.0233;−0.0271;−0.0277; 0.0002;−0.0003; 0.0005}. Contract parameters: N = 1000, t = 0, T = 1,
δk = 3/12, K = 0.0025

feature and the fact that the model is free of arbitrage, our approach is tailor-made for risk
management purposes. In the sequel, we illustrate such an application by studying the price
of the caplet for varying initial state variables (X1

t , . . . , X
6
t ). Results reported in Fig. 4 show

that the caplet price is most severely affected by shifts in the level X1
t of the discount curve,

followed by slope changes X2
t , and finally by curvature shifts X3

t . Corresponding changes
in X4

t , X
5
t , and X6

t representing shifts in level, slope and curvature of the multiplicative log
spreads have a smaller but non-negligible impact on the caplet price. This is particularly
interesting when considering the fact that during the global financial crisis, spreads between
interbank rates and overnight (discount) rates increased from less than 10bps to levels up to
250bps at the peak of the crisis. In thisway, our proposed approach has important implications
for risk management as economically meaningful stress scenarios can be easily simulated
and due to absence of arbitrage can be used for calculating portfolio values under adverse
market situations.

7 Conclusions

In this paper, we proposed an arbitrage-free affine term structure model for multiple yield
curves that has a Nelson–Siegel factor loading structure. Our numerical results document
superior in-sample and out-of-sample performance of our approachwithin the Nelson–Siegel
class of models. Due to the sound economic interpretation of the latent variables of our model
and the absence of arbitrage, the setting is very well suited for risk management purposes. In
particular, it allows to study the sensitivity of a portfolio of interest rate related products with
respect to level, slope and curvature shocks to the risk-free yield curve and/or to the tenor
spreads. We illustrated this by applying the proposed model to the pricing of caplets. Since
the valuation of various interest rate derivatives relies on forward looking interest rates, such
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as LIBOR, and hence on potential spread adjustments to overnight rates, we believe that our
results remain relevant also beyond a discontinuation of LIBOR after 2021.
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ADerivation of characteristic exponents of Y

To derive explicit expressions for the characteristic exponents φ and ψ of the process Y =
(X ,

∫ ·
0 Xsds), we first calculate the characteristic exponents of the process X starting in X0.

Therefore, suppose that

E

[
euXt

]
= eφ̃(t,u)+ψ̃(t,u)	X0 (12)

for functions φ̃(t, u) and ψ̃(t, u). Define the process

Mt := f (t, Xt ) = exp(φ̃(T − t, u) + ψ̃(T − t, u)	Xt )

with φ̃(0, u) = 0 and ψ̃(0, u) = u. Then

MT = exp(φ̃(0, u) + ψ̃(0, u)	XT ) = e〈u,XT 〉

and

E[e〈u,XT 〉] = E[MT ] = M0

if M is a martingale. In that case, we then obtain

E[e〈u,XT 〉] = eφ̃(T ,u)+ψ̃(T ,u)	X0

and (12) indeed gives the correct characteristic function. Thus, we need to prove that f (t, Xt )

is a martingale. Denoting the time derivative by ′ and applying Itô’s formula to f (t, Xt ), we
obtain
d f (t,Xt )
f (t,Xt )

= −
(
φ̃′(T − t, u) + ψ̃ ′(T − t, u)	Xt

)
dt + ψ̃(T − t, u)	dXt

+ 1
2

∑n
j=1

(
�	(t)ψ̃(T − t, u)ψ̃	(T − t, u)�(t)

)
j j

(ϑ j (t)	Xt + γ j (t))dt .
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Hence, f (t, Xt ) is a local martingale if

φ̃′(T − t, u) + ψ̃ ′(T − t, u)	Xt = ψ̃(T − t, u)	K (t) [θ(t) − Xt ]

+1

2

n∑
j=1

(
�	(t)ψ̃(T − t, u)ψ̃	(T − t, u)�(t)

)
j j

(ϑ j (t)	Xt + γ j (t)),

i.e. if we have

d
dt φ̃(T − t, u) = −ψ̃(T − t, u)	K (t)θ(t)− 1

2

∑n
j=1

(
�(t)	ψ̃(T−t, u)ψ̃(T−t, u)	�(t)

)
j j

γ j (t)

d
dt ψ̃(T−t, u) = K (t)	ψ̃(T−t, u)− 1

2

∑n
j=1

(
�(t)	ψ̃(T−t, u)ψ̃(T−t, u)	�(t)

)
j j

ϑ j (t)	

with boundary conditions φ̃(0, u) = 0 and ψ̃(0, u) = u. We define the functional character-
istics (F̃, R̃) of X via

d
dt φ̃(t, u) = F̃(ψ̃(t, u)), φ̃(0, u) = 0,

d
dt ψ̃(t, u) = R̃(ψ̃(t, u)), ψ̃(0, u) = u.

We can then apply Theorem 4.10 in [23] to infer the functional characteristics (F, R) of
Y as

F(t, u, v) = F̃(t, u) and R(t, u, v) =
(
R̃(u) + v

0

)
.

Thus, the characteristic exponents φ and ψ of the process Y can be written as

d

dt
φ(T − t, u, v) = −ψ(T − t, u, v)	K (t)θ(t)

−1

2

n∑
j=1

(
�(t)	ψ(T − t, u, v)ψ(T − t, u, v)	�(t)

)
j j

γ j (t)

d

dt
ψ(T − t, u, v) = K (t)	ψ(T − t, u, v)

−1

2

n∑
j=1

(
�(t)	ψ(T − t, u, v)ψ(T − t, u, v)	�(t)

)
j j

ϑ j (t)	 − v

with boundary conditions φ(0, u, v) = 0 and ψ(0, u, v) = u (see also [24], Sec. 3).

B State-space formulation and estimation framework

We fit the parameters of the model under the real-world measure P. The relationship of the
process dynamics between the real-world and the risk-neutral measure are characterised by
Girsanov’s Theorem. In particular we have

dWt = dWP − btdt,

where the risk premium bt (ω) is a predictable process of affine form

bt = b0 + BXt
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with b0 ∈ R
6, B ∈ R

6×6. This specification ensures the affine structure of the state variables
X under P (see [7]). Hence, we are able to choose any vector θP and matrix KP under P and
still ensure the required Q-dynamics of the model.

Following [2], the state transition equation is given by

Xt = (I − exp(−KP�t))θP + exp(−KP�t)Xt−1 + ηt (13)

with Xt = (X1
t , . . . , X

6
t )

	 and the measurement equation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ydt (τ1)

ydt (τ2)
...

ydt (τN )

log Sk(t, t + τ1)

log Sk(t, t + τ2)
...

log Sk(t, t + τN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
≡yt

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1−e−λd τ1

λdτ1

1−e−λd τ1

λdτ1
− e−λdτ1 0 0 0

1 1−e−λd τ2

λdτ2

1−e−λd τ2

λdτ2
− e−λdτ2 0 0 0

...
...

...
...

...
...

1 1−e−λd τN

λdτN

1−e−λd τN

λdτN
− e−λdτN 0 0 0

0 0 0 1 e−λkτ1 τ1λk e−λkτ1

...
...

...
...

...
...

0 0 0 1 e−λkτN τNλke−λkτN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
≡B

⎛
⎜⎜⎜⎜⎜⎜⎝

X1
t

X2
t

X3
t

X4
t

X5
t

X6
t

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A d (τ1)
τ1

−A d (τ2)
τ2
...

−A d (τN )
τN

A k(τ1)

A k(τ2)
...

A k(τN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
≡A

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εdt (τ1)

εdt (τ2)
...

εdt (τN )

εkt (τ1)

εkt (τ2)
...

εkt (τN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the transition and measurement errors are assumed to be orthogonal to the initial state
and

(
ηt
εt

)
∼ N

[(
0
0

)
,

(
Q 0
0 H

)]

with diagonal matrix H and

Q =
∫ �t

0
e−KPs��′e−(KP)′sds.

Following [29], we set the mean level θ = (θ1, . . . , θ6) under Q equal to zero. Therefore
we obtain

A d (t, T )

T − t
= 1

2(T − t)

3∑
j=1

∫ T

t
((�d )	ψd (s, T )ψd (s, T )	�d ) j, j ds
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= d1
(T − t)2

6
+ d2

[ 1

2λ2d
− 1 − e−λd (T−t)

λ3d (T − t)
+ 1 − e−2λd (T−t)

4λ3d (T − t)

]

+ d3
[ 1

2λ2d
+ e−λd (T−t)

λ2d

− (T − t)e−2λd (T−t)

4λd
− 3e−2λd (T−t)

4λ2d

− 2(1 − e−λd (T−t))

λ3d (T − t)
+ 5(1 − e−λd (T−t))

8λ3d (T − t)

]

+ d4
[T − t

2λd
+ e−λd (T−t)

λ2d

− 1 − e−λd (T−t)

λ3d (T − t)

]

+ d5
[3e−λd (T−t)

λ2d

+ T − t

2λd
+ (T − t)e−λd (T−t)

λd
− 3(1 − e−λ(T−t))

λ3d (T − t)

]

+ d6
[ 1

λ2d

+ e−λd (T−t)

λ2d

− e−2λd (T−t)

2λ2d
− 3(1 − e−λd (T−t))

λ3d (T − t)
+ 3(1 − e−2λd (T−t))

4λ3d (T − t)

]

and

A k(t, T )

T − t
= 1

2(T − t)

3∑
j=1

∫ T

t
((�k)	ψk(s, T )ψk(s, T )	�k) j, j ds

= c1
T − t

2
+ c2

1 − e−λk (T−t)

4λk

+ c3
[1 − e−2λk (T−t)

8λk
− λk(T − t)2e−2λk (T−t) + (T − t)e−2λk (T−t)

4

]

+ c4
1 − e−λk (T−t)

λk
+ c5

[1 − e−λk (T−t)

λk
− (T − t)e−λk (T−t)

]

+ c6
[1 − e−2λk (T−t)

4λk
− (T − t)e−2λk (T−t)

2

]

where the coefficients are given by d1 = σ 2
11, d2 = σ 2

21 + σ 2
22, d3 = σ 2

31 + σ 2
32 + σ 2

33, d4 =
σ11σ21, d5 = σ11σ31, d6 = σ21σ31+σ22σ32 and c1 = σ 2

44, c2 = σ 2
54 +σ 2

55, c3 = σ 2
64 +σ 2

65+
σ 2
66, c4 = σ44σ54, c5 = σ44σ64, c6 = σ54σ64 + σ55σ65.
The Kalman filter can be now set up in analogy to [2]. Therefore, the filter is initialised

at the unconditional mean and variance of the state variables under P: X0 = θP and
�0 = ∫∞

0 e−KPs��′e−(KP)′sds. The prediction step is

Xt |t−1 = �t + �t Xt−1

�t |t−1 = �t�t−1�
′
t + Q

where �t = (I − exp
(−KP�t

)
)θP, �t = exp

(−KP�t
)
where �t is the time between

observations, which we set equal to 1/252 (respectively, 1/12) wherever we deal with daily
(monthly) data. Xt is updated at time t via

Xt = Xt |t−1 + �t |t−1B
′F−1

t vt ,

�t = �t |t−1 − �t |t−1B
′F−1

t B�t |t−1,
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where

vt = yt − A − BXt |t−1

Ft = B�t |t−1B
′ + H ,

H = diag
(
σ 2

ε,d(τ1), . . . , σ
2
ε,d(τN ), σ 2

ε,k(τ1), . . . , σ
2
ε,k(τN )

)

The Gaussian log-likelihood is then computed according to:

log l(y1, . . . , yT ) =
T∑
t=1

−N

2
log(2π) − log det(Ft )

2
− 1

2
v′
t F

−1
t vt (14)

where N is the number of observed yields and det(·) denotes the determinant of a square
matrix.
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