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Abstract
We develop a stochastic optimization model for scheduling a hybrid solar-battery storage
system. Solar power in excess of the promise can be used to charge the battery, while power
short of the promise is met by discharging the battery. We ensure reliable operations by
using a joint chance constraint. Models with a few hundred scenarios are relatively tractable;
for larger models, we demonstrate how a Lagrangian relaxation scheme provides improved
results. To further accelerate the Lagrangian scheme, we embed the progressive hedging
algorithm within the subgradient iterations of the Lagrangian relaxation. We investigate
several enhancements of the progressive hedging algorithm, and find bundling of scenarios
results in the best bounds. Finally, we provide a generalization for how our analysis extends
to a microgrid with multiple batteries and photovoltaic generators.

Keywords Chance constraints · Stochastic optimization · Lagrangian decomposition ·
Progressive hedging · Solar power · Photovoltaic power station · Battery storage · Virtual
power plant · Out of sample validation · Microgrid

1 Introduction

1.1 Motivation

A photovoltaic power station (PPS) is a system consisting of solar panels and inverters to
convert light into electricity. Solar power is uncertain, and, of course, not available for all
hours.Hence, coupling a sufficiently large storage devicewith aPPScan significantly increase
its economic value by shifting energy to times when it is in higher demand, creating a hybrid

B Bismark Singh
bismark.singh@fau.de

1 Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058,
Germany

2 Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058,
Germany

3 Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01041-y&domain=pdf
http://orcid.org/0000-0002-6943-657X


966 Journal of Global Optimization (2021) 80:965–989

energy system; see, e.g., [18] for different combinations of sources forming hybrid energy
systems. Such energy storage systems find frequent applications in modern microgrids [5],
especially as standalone systems in remote islands [31,38,39,69].

Standalone hybrid PPS systems have also been shown to be economically feasible and
viable. Bhuiyan et al. [8] show the economical feasibility of a PPS system in a remote area
of Bangladesh. Similarly, a large scale system of 100MW in the Gobi desert is shown to be
economically feasible [26].Ma et al. [39] study a hybrid wind-solar systemwith storage from
a pumped-hydro system on a remote island in Hong Kong. Zhao et al. [69] study a hybrid
system with wind, solar, diesel and battery storage on an island in China. Buildings can also
be powered efficiently using micro-grids [20,67]. For an introduction to PPS systems and
their characteristics, see, e.g., [43,44].

Due to the uncertainty in the availability of renewables, additional complications arise
when there is a need to ensure highly reliable operations. To mitigate the effect of the
uncertainty in renewables, often two or more sources of energy are coupled, in addition
to the storage system. Solar-wind hybrid systems have been extensively studied—optimal
sizing [65,70], feasibility of operations [7,39], and ensuring reliable operations [9,70]. In
this work, we consider a problem where a standalone PPS, connected to a battery storage,
commits (e.g., in forward energymarkets) to deliver a fixed supply of energy reliably at every
hour. Although, we consider a single battery storage with a single (unified) PPS, the approach
we propose extends to multiple power sources if they interact externally as a single group.
Thus, our system supplies power as a so-called virtual power plant; see, e.g., [33,40]. The
renewable source of power we consider is solar power alone, and we supply power into a self
scheduling day-ahead market. Our aim is to ensure highly reliable operations, despite the
fact that supply decisions are made day-ahead (and, thus, without observing the availability
of the uncertain solar power). Ensuring reliability is the primary purpose, while maximizing
revenues from supplying power is secondary.

The model we propose outputs a day-ahead promise of hourly power, using a forecast of
the hourly day-ahead electricity prices and the hourly day-ahead solar power. We assume
the electricity prices are completely known, and we have a sufficiently large number of solar
power scenarios. A single solar power scenario consists of a vector of 24 values for the
hourly day-ahead solar output; i.e., we assume that once a solar power scenario is realized,
the solar power output for the entire day is known. Although having a dynamic hour-by-hour
forecast of solar power would result in a higher fidelity model, this assumption significantly
simplifies modeling and computations as we describe in Sect. 1.2. Next, at every hour, we
dynamically decide whether to charge the battery (if solar power is excess of our promise) or
discharge the battery (if solar power is short of our promise).We assume the battery cannot be
simultaneously charged and discharged. Similar self-scheduling models have been proposed,
although for different energy systems [14,56].

1.2 Joint chance constraints

To ensure highly reliable operations in the self-scheduling market, we make use of joint
chance constraints (JCCs). The following is an example of a linear joint chance constraint:

P(xi ≥ yi (ξ) + ai (ξ),∀i ∈ I ) ≥ 1 − ε.

Here, ξ is a random variable, x is a vector of decisions of size I ; ai (ξ) is a vector of data,
for each i , that is known only after the realization of ξ ; and, yi (ξ) is a vector of decisions,
for each i , made after observing the realization of ξ . We require the joint probability of
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satisfying the above inequality to be no less than 1−ε, where ε is a predetermined threshold.
Thus, if we “fail” in even a single i , we fail to satisfy the JCC. In this sense, the JCC
represents a very stringent satisfaction criterion. Computationally, optimization models with
JCCs are hard to solve [37], and several tailored decomposition approaches [34,36], as well
as heuristics [6,60], are available for their solution. Theoretically, such optimization models
are known to be NP-hard [37]; further, the feasible region is generally non-convex [47],
with a few exceptions such as [23].

Nonetheless, an optimization model with JCCs is an attractive modeling choice for ensur-
ing reliability of a set of operations. Chance-constrained models find frequent applications,
e.g., power systems [28,62], traffic flow [13,59], portfolio selection [1,32], etc. There exists a
modeling choice with regards to the timing of observing the uncertainty. In the first case, the
entire set of future scenarios is known after making the first-stage decision, x . In the second
case, the uncertainty is revealed periodically and subsequent decisions need to be made in
multiple stages. Such models are known as two-stage and multi-stage stochastic programs,
respectively; see, e.g., [47]. Multi-stage models are computationally harder than two-stage
models. Since optimizing over JCCs already poses a significant challenge, in this tradeoff
between fidelity and computational effort, we use a two-stage model instead of a multi-stage
model. In our model, we make a first-stage decision of 24 hourly day-ahead power promises.
Then, we observe the previously uncertain solar power output and make all the second-stage
decisions of charging/discharging the battery. We use a highly reliable regime of operations
(ε ≤ 0.05). Our motivation comes from the fact that failure to satisfy the promise could lead
to curtailment of future contracts with the supplier, and thus ensuring reliability is valued
more than increasing profit. We describe our model in greater detail in Sect. 2.

2 Mathematical modeling

2.1 Notation

Indices and Sets:
t ∈ T Set of hours; {1, 2, . . . , |T |}
ω ∈ Ω Set of scenarios; {ω1, ω2, . . . , ω|Ω|}

Parameters: First Stage
η Efficiency of battery, 0 < η < 1
X Maximum energy that can be stored in the battery [kWh]
X Minimum energy that must remain in the battery [kWh]
Rt Marginal revenue earned at hour t [$/kWh]
Cc Operational cost of charging the battery [$/kWh]
Cd Operational cost of discharging the battery [$/kWh]
P Maximum charging rate of battery [kW]
Q Maximum discharging rate of battery [kW]
Δ Time step [h]

Parameters: Second Stage
sω
t Solar power available at hour t under scenario ω [kW]
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Decision Variables: First Stage
yt Power promised to deliver at hour t [kW]

Decision Variables: Second Stage
pω
t Power charged to battery during hour t in scenario ω [kW]

qω
t Power discharged from battery during hour t in scenario ω [kW]
xω
t Energy stored in battery at hour t in scenario ω [kWh]

wω
t Binary variable; 1 if battery is charging at hour t , or 0 if discharging

2.2 Optimizationmodel

max
∑

t∈T
RtΔyt − E[CcΔpω

t + CdΔqω
t ] (1a)

s.t. P
(
yt ≤ sω

t + qω
t − pω

t ,∀t ∈ T
) ≥ 1 − ε (1b)

xω
t+1 = xω

t + ηΔpω
t − 1

η
Δqω

t , ∀t = 1, 2, . . . |T | − 1,∀ω ∈ Ω (1c)

pω
t ≤ Pwω

t , ∀t ∈ T ,∀ω ∈ Ω (1d)

qω
t ≤ Q(1 − wω

t ), ∀t ∈ T ,∀ω ∈ Ω (1e)

X ≤ xω
t ≤ X , ∀t ∈ T ,∀ω ∈ Ω (1f)

wω
t ∈ {0, 1}, ∀t ∈ T ,∀ω ∈ Ω (1g)

yt , p
ω
t , qω

t ≥ 0 ∀t ∈ T ,∀ω ∈ Ω. (1h)

Boundary condition: xω
1 = x0,∀ω ∈ Ω .

The objective function in (1a) aims to maximize profit; i.e., revenue from the promise
minus the expected cost of operating (charging or discharging) the battery. A more sophis-
ticated model could include piecewise linear or quadratic costs; see, e.g., [12,63]. The JCC
in Eq. (1b) requires that the joint probability of meeting the promised energy to sell, by the
available solar power (via sω) and discharging the battery (via qω), for the entire time horizon
meets a threshold; excess solar energy can be used to charge the battery (via pω). If the solar
power exceeds the need,wemight need to curtail it. However, in this articlewe do not penalize
this curtailment, and hence Eq. (1b) is expressed as an inequality. Here, ε is a positive quantity
just greater than zero, such as 0.05. Constraint (1c) relates the energy stored by the battery
in a subsequent hour with the previous hour; here, the quantity ηΔpω

t − 1
η
Δqω

t is the energy
charged or discharged by the battery during hour t . Constraints (1d), (1e) and (1g) ensure that
both pω

t and qω
t cannot be simultaneously positive. Further, since η < 1, a fraction of energy

is lost while both charging and discharging; i.e., we consumemore than 100%while charging
and supply less than 100%while discharging. Constraint (1f) ensures the minimum andmax-
imum amount of energy stored in the battery, and thus Eq. (1d)–(1h) restrict the amount the
battery can be charged or discharged. Lower bounds on x are typically included for electric
batteries to maintain long and healthy lifetimes; see, e.g., [40]. Constraints (1g)–(1h) ensure
the binary and non-negativity restrictions on the relevant decision variables.

One potential criticism of optimization models with JCCs, such as model (1), is that
violations can be large for the 100·ε percent of failed scenarios in Eq. (1b). Although, Eq. (1b)
restricts the number of violations to be a few, there is nothing in model (1) that restricts the
magnitude of these violations. This well-known drawback is an artifact of chance-constrained
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programming in general, and is also reflected in our model. Several methods exist to bound
the violations. We direct interested readers to [50] and [64] for two remedies using risk
measures and envelope constraints, respectively. However, models that only penalize energy
violations (or, do not employ chance constraints) can yield solutions that violate the promise
with large frequency when it is economically advantageous. Our aim is to decide whether it
is feasible to couple a solar plant with an appropriately sized battery unit, and whether this
coupling would enable the hybrid unit to participate in the day-ahead market.

Now, consider the following optimization model in which we drop the binary variable
wω
t :

max
∑

t∈T
RtΔyt − E[CcΔpω

t + CdΔqω
t ] (2a)

s.t. P
(
yt ≤ sω

t + qω
t − pω

t ,∀t ∈ T
) ≥ 1 − ε (2b)

xω
t+1 = xω

t + ηΔpω
t − 1

η
Δqω

t , ∀t = 1, 2, . . . |T | − 1,∀ω ∈ Ω (2c)

pω
t ≤ P, ∀t ∈ T ,∀ω ∈ Ω (2d)

qω
t ≤ Q, ∀t ∈ T ,∀ω ∈ Ω (2e)

X ≤ xω
t ≤ X , ∀t ∈ T ,∀ω ∈ Ω (2f)

yt , p
ω
t , qω

t ≥ 0 ∀t ∈ T ,∀ω ∈ Ω. (2g)

Proposition 1 In an optimal solution tomodel (2), both pω
t and qω

t cannot be positive together
for any t ∈ T , ω ∈ Ω .

Proof Assume an optimal solution of model (2) is given by y∗ = [yt ]t=1,2,...,|T |, p∗ =
[pt ]ωt=1,2,...,|T |, q∗ = [qt ]ωt=1,2,...,|T |, x∗ = [xt ]ωt=1,2,...,|T |,∀ω ∈ Ω . Assume that pω

t and qω
t

are positive, for some t ∈ T , ω ∈ Ω . We show that this solution cannot be optimal by proving
a better solution (one that gives a larger objective function value) always exists.

First, assume that η2 pω
t > qω

t , for this t and ω pair. Then, consider a new solution
p′
t
ω ← pω

t − 1
η2
qω
t , q ′

t
ω ← 0, x ′

t
ω ← xω

t , y′
t ← yt . We observe that this solution is feasible

to model (2); further, it results in a strictly larger objective function than that by the optimal
solution. This is a contradiction.

Next, assume that η2 pω
t ≤ qω

t , for this t and ω pair. Again, consider a new solution
p′
t
ω ← 0, q ′

t
ω ← qω

t − η2 pω
t , x ′

t
ω ← xω

t , y′
t ← yt . This solution is feasible to model (2),

and results in a strictly larger objective function than that by the optimal solution. This is a
contradiction.

Thus, in any optimal solution to model (2), for any t and ω at most one of pω
t or qω

t is
positive. 	


Proposition 1 offers the advantage that there are no binary w = [wt ]ωt=1,2,...,|T | variables
in the second-stage. Although, a reformulation of constraint (1b) would still entail second-
stage binaries (see, Eq. (3)), the reformulation in model (2) could save computational effort
by reducing |T ||Ω| binary variables. There is some evidence, however, that having additional
binary variables can actually speed up the computations by offering mixed-integer program
(MIP) solvers additional variables to branch and cut on; see, e.g. [41,56]. However, we choose
the reformulation without the binary w variables as it lends itself better to the heuristics we
describe in the later sections of this article. We reformulate the probabilistic constraint in
Eq. (2b) using a big-M approach as follows:
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yt − qω
t + pω

t ≤ sω
t + Mω

t z
ω, ∀t ∈ T , ω ∈ Ω (3a)

∑

ω∈Ω

zω ≤ �Nε� (3b)

zω ∈ {0, 1}, ∀ω ∈ Ω. (3c)

Here, �·� rounds its argument down to the nearest integer. Henceforth, we use model (2) with
Eq. (2b) reformulated as Eq. (3) as our proposed model. Below, we provide a sufficiently
large value for the big-M of Eq. (3).

Proposition 2 The following inequality is a valid inequality formodel (2): yt ≤ min{Q, η(X−
X)} + sω(�Nε�+1,t)

t ,∀t ∈ T , where sω(l,t)
t denotes the lth largest solar power value at time t.

Proof We first seek an upper bound on the quantity qω
t − pω

t . If q
ω
t = 0, a valid upper bound

on this quantity is 0. If pω
t = 0, a valid upper bound on this quantity is min{Q, η(X −

X)}; this is obtained from Eqs. (2c), (2e) and (2f). Thus, from Proposition 1, qω
t − pω

t ≤
min{Q, η(X − X)},∀t ∈ T , ω ∈ Ω . Now, the proof replicates that of Proposition 5.2.1
of [55]. By constraint (3b) effectively at most �Nε� of the zω variables can take a value of 1;
i.e., for every t at most �Nε� of the scenarios can be removed. Thus, the proposed inequality
is valid.

Corollary 1 FromProposition 2, we have Mω
t ≥ min{Q, η(X−X)}+sω(�Nε�+1,t)

t −sω
t ,∀t ∈

T , ω ∈ Ω .

We denote the upper bound, obtained from Proposition 2, on the y variables as ymax
t =

min{Q, η(X − X)}+ sω(�Nε�+1,t)
t ,∀t ∈ T . And, in our computational experiments of Sect. 6

we use the tightest big-M given from Corollary 1, namely Mω
t = ymax

t −sω
t ,∀t ∈ T , ω ∈ Ω .

Despite this, as we show later in this article, model (2) is computationally challenging for
relatively larger values of ε (such as 0.05) or, for a large number of scenarios. Model (2) is
a classic two-stage joint chance-constrained stochastic program with recourse. The second
stage has integer restrictions (the variable z is binary) as well, which makes it even more
challenging [2]. To this end, we investigate a Lagrangian relaxation scheme as well as a
heuristic, in addition to the traditional approach with the big-M constraints.

3 A Lagrangian dual procedure

First,wenote that constraint (3b) links the scenarios together. Thismotivates a straightforward
Lagrangian relaxation of model (2). Lagrangian relaxation schemes have been studied before
in various settings; see, e.g., individual chance constraints for unit commitment [42], relaxing
non-anticipativity constraints [3], and coupling scenario decomposition with Lagrangian
decomposition [60].

The Lagrangian dual for a given value of λ ≥ 0 for model (2), obtained by dualizing the
constraint (3b), is the following:

L(λ) = max
∑

t∈T

(
RtΔyt − E[CcΔpω

t + CdΔqω
t ]

)
+ λ

(
�Nε� −

∑

ω∈Ω

zω
)

s.t. (2c) − (2g), (3a), (3c). (4)

To solve model (4), we use the well-known subgradient method [45,54], with the step-
size update rule from [21]. Algorithm 1 summarizes this scheme; we need a lower bound
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Algorithm 1 Lagrangian Relaxation of model (2). We use M = 10, time = 2400 seconds,
ψ = 0.001.
Input: M , LB, time, θ , ψ .
1: Solve LP relaxation of model (2), set UB to optimal objective value of LP, set λ to the optimal dual of

constraint (3b).
2: while iter ≤ M do
3: Solve model (4), obtain optimal zω , UB ← min{UB, L(λ)}.
4: γ ← �Nε� − ∑

ω∈Ω zω and κ ← θ
(UB−LB)

γ 2 .

5: if γ > 0, then λ ← λ − min{κ, λ
γ }γ .

6: if γ < 0, then λ ← λ − κγ .
7: if no improvement in two iterations, θ ← θ

2 .

8: if UB−LB
UB ≤ ψ or time ≥ time, ST OP .

9: iter ← iter+1, update time to the cumulative wall-clock time.
10: end while

for model (2) for the step-size update rule in Step 4. In principle, this lower bound can
be computed using any feasible solution; setting �Nε� of the z variables to 1, and the rest
to 0, provides a feasible solution. However, since the termination criteria of the Lagrangian
relaxation procedure depends on this lower bound, good feasible solution values (those giving
a larger value of the objective function) assist in convergence.

Lower Bounding Heuristic: To this end, we obtain a feasible solution using the following
simple procedure described in [3]. We first solve model (2) separately for each ω with the
corresponding zω ← 0; i.e., a total of |Ω| problems. We rank the corresponding objective
function values from the lowest to the highest and choose the first �Nε� (i.e., the worst
performing scenarios) of these to set zω ← 1. Then, with �Nε� of the z values fixed to 1, we
solve model (2), to obtain a valid lower bound (LB) to the problem.

For an initial upper bound to the Lagrangian relaxation procedure, we use the linear pro-
gramming (LP) relaxation of model (2). In the following proposition, we show that model (4)
is never infeasible.

Proposition 3 The feasible region of model (4) is non-empty.

Proof Set pω
t ← 0, qω

t ← 0, xω
t ← x0, zω ← 1, yt ← 0,∀t ∈ T ,∀ω ∈ Ω . Clearly, this

choice of pω
t , qω

t , xω
t , zω, yt is feasible to model (4) for all t ∈ T , ω ∈ Ω .

4 A progressive hedging heuristic for the Lagrangian dual

The progressive hedging (PH) algorithm can be used to solve stochastic programs that
have easy-to-solve individual scenario problems [48]. While PH cannot be directly applied
to model (2) due to the interlinking of the scenarios via constraint (3b), the relaxed model (4)
lends itself perfectly to the decomposition structure required for PH. In this section, we lever-
age this idea to develop computationally cheap heuristics for the Lagrangian dual. First, we
convert our maximization problems to a minimization by reversing the signs on the objective
coefficients (R,Cc,Cd ), since most of the existing literature on PH considers minimiza-
tion [16,60,61]. Then, model (5) is the PH sub-problem; we summarize the PH heuristic in
Algorithm 2.
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Algorithm 2 Progressive Hedging Algorithm for model (4). We use κ = 0.001, ρt = 1.

Input: ρt , κ , i ter , λ.
1: Solve model (5), ∀ω ∈ Ω , with u ← 0, ρ ← 0, obtain optimal yω

t . Set PHUB ← ∑
ω∈Ω PHω .

2: yt ← ∑
ω∈Ω yω

t /|Ω|, and uω
t ← ρt (yω

t − yt ).
3: while iter ≤ i ter do
4: Solve model (5), ∀ω ∈ Ω , obtain optimal yω

t .
5: yt ← ∑

ω∈Ω yω
t /|Ω|, and uω

t ← uω
t + ρt (yω

t − yt ).
6: Solve model (5) without the quadratic term in objective, ∀ω ∈ Ω , set PHUB ←

min{PHUB ,
∑

ω∈Ω PHω}.
7: if

∑
ω∈Ω

√∑
t∈T (yt − yω

t )2 ≤ κ , ST OP; else iter ← iter+1.
8: end while
9: Solve model (4) with yt ← yt , obtain optimal zω .
Output: zω,UB ← PHUB .

PHω = −min
∑

t∈T

(
− RtΔyt − [−CcΔpω

t − CdΔqω
t ]

)
− λ

(�Nε�
|Ω| − zω

)

+
∑

t∈T
uω
t yt + 0.5

∑

t∈T
ρt (yt − yt )

2

s.t. (2c) − (2g), (3a), (3c). (5a)

Here, uω
t is the scenario-dependent weight, yt is the scenario-averaged value for yt , and

PHω is the optimal value of each sub-problem. Solving the LR dual approximately via the
PH algorithm offers several advantages and disadvantages compared to the naive solution
method. We discuss some of these in Sect. 6.5.

In the presence of discrete decision variables (as is the case with our model), the PH
algorithm can only be used as a heuristic as its convergence is not guaranteed [35,61]. Since
we are interested in solving the Lagrangian dual, to obtain an upper bound to the true problem
given bymodel (2), any upper bound to the Lagrangian dual is also an upper bound to the true
problem. Consider Fig. 1; here, LB is the lower bound obtained via the heuristic procedure
described in Sect. 3, z∗ is the true optimal value of model (2), and LD is the optimal value
of model (4). Since convergence of the PH algorithm is not guaranteed, if we solve the
Lagrangian dual (LD) via the PH algorithm, the PH optimal objective function value could
be larger or smaller than LD.

If the PH algorithm results in a bound larger than LD at any subgradient iteration of
Algorithm 1, then the bound is still a valid upper bound to z∗. However, if the PH algorithm
results in a bound smaller than LD at any subgradient iteration of Algorithm 1, then the
bound could also be smaller than z∗ (or, even smaller than LB). To prevent this case, we
seek valid (i.e., guaranteed to be larger than LD) upper bounds to LD via the PH algorithm
(which may or may not be optimal to PH). Such bounds can be obtained by solving model (5)
without the quadratic term in the objective using the procedure described in [16]. This bound
is represented in Fig. 1 by PHUB , and is computed in Algorithm 2 in Steps 1 and 6.

5 Data sources

For the computational experiments in this article, we use η = 0.9 [29], and values of Rt

from the Electric Reliability Council of Texas (ERCOT) for the year 2012 [15,56]. Table 1
presents the hourlymarginal selling prices. Further, we use X = 960kWh, with a 2V/1000Ah
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Fig. 1 Bounds for model (2). An arrow from a source node to a sink node indicates the optimal value of the
source node is smaller than the sink node. Here, z∗ is the true optimal value, LB is the lower bound from a
heuristic, LD is the optimal value of the Lagrangian dual, PHUB is an upper bound for the Lagrangian dual
obtained via PH, and z∗ and z∗ are the upper and lower bounds for z∗ if solved sub-optimally. An optimality

gap of β between an upper bound U and a lower bound L indicates β = U−L
U . The optimal PH value is not

shown and could be larger or smaller than z∗

Table 1 Marginal revenue, Rt ,
earned by selling energy at hour
t [15,56]

Hour Selling price ($/kWh) Hour Selling price ($/kWh)

0:00 0.0189 12:00 0.0250

1:00 0.0172 13:00 0.0261

2:00 0.0155 14:00 0.0285

3:00 0.0148 15:00 0.0353

4:00 0.0146 16:00 0.0531

5:00 0.0151 17:00 0.0671

6:00 0.0173 18:00 0.0438

7:00 0.0219 19:00 0.0333

8:00 0.0227 20:00 0.0287

9:00 0.0226 21:00 0.0268

10:00 0.0235 22:00 0.0240

11:00 0.0242 23:00 0.0211

rating, from the system with 480 lead-acid batteries described in [68]. To compute the cost
of charging or discharging the battery, we again use the formula given by [68]: 390αQI ,
where α is an effective weighting factor, I is the initial investment cost to purchase the
battery, and 390Q is an approximation for the total Ah throughput of the battery [27]. For
the system in [68], a X kWh sized battery is equivalent to 2000

960 X Ah rating. We assume
α = 0.5, and use a lead-acid battery cost of $200/kWh from [52]. An approximately similiar
battery cost is available from [46]. Then, Cc = Cd = $0.0256/kWh. Further, we assume
X = 0.2X , P = Q = 0.5X , and the battery is 50% charged initially (i.e., x0 = 0.5X ).

To generate solar power scenarios, we take hourly year-long historical solar power output
from a site described in [19]. We use ARMA(p, q) models for the fourteen hours with
sunlight, [06:00-20:00). For each hour, we verify the stationarity of the time series and test
a number of ARMA(p, q) models to find the best. For details on the forecasting method we
used, see [57]. Then, using Monte Carlo sampling from the best ARMA models for each
hour, we create a set of hourly scenarios. Figure 2 plots a sampling of 300 scenarios, as well
as the hourly medians and the ten percent quantile.
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Fig. 2 300 hourly scenarios (unscaled) for solar power generated using the scheme described in [57]. The
solid black line is the median hourly value, and the dashed black line is the 10 percentile solar power value

6 Computational experiments

6.1 Computational setup

All tests in this article are carried out with GAMS 25.1.2 using CPLEX 12.8 [49] on an Intel
Core i7 2.8 GHz processor with 16 GB of memory.We attempt to solve the original model (2)
to a MIP gap of 0.1%, with a maximum time limit of 40 min. For the rest of the experiments
in this article, we also consider an optimality gap of 0.1%; i.e., if the relative gap between the
best upper and lower bounds is less than or equal to 0.1% we consider the problem solved.
We use multiple sets of scenarios—the smallest instance with 150 scenarios and the largest
instance with 1200 scenarios—with two reliability regimes having ε = 0.01, 0.05.

6.2 Analysis of naive solutionmethod

In Table 2 we present our first results obtained by solvingmodel (2) naively. The “z∗” column
denotes the 24-h profit obtained in dollars; if the problem is not solved to the optimal tolerance,
we present the best feasible solution. The ε = 0.01 instance is relatively easier (smaller
computation time) than the ε = 0.05 instance due to the fewer number of combinatorics
involved, and possibly due to a smaller value of the big-M via Corollary 1; the problem can
be solved to the optimal tolerance for all instances except |Ω| = 1200. The gaps increase
consistently when |Ω| increases; beyond 600 scenarios the ε = 0.05 case cannot be solved
to the optimal tolerance.
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Table 2 Computational results
for model (2). We use a
maximum time limit of 2400
seconds and a MIP gap of 0.1%.
Entries with a “-” indicate that
the problem is solved to the
required gap within the time
limit; i.e., z∗ = z∗ = z∗. For
details, see Sect. 6.2 and Fig. 1

|Ω| ε z∗ Gap Time

150 0.05 280.90 – 30

0.01 273.01 – 2

300 0.05 283.79 – 870

0.01 278.49 – 29

450 0.05 283.73 – 1932

0.01 278.93 – 96

600 0.05 280.65 6.7% 2400

0.01 277.58 234

900 0.05 278.66 7.6% 2400

0.01 276.83 − 1341

1200 0.05 271.76 9.5% 2400

0.01 270.95 4.6% 2400

6.2.1 Analysis: solution profile

Next, we provide a profile of an optimal solution. We choose the ε = 0.05, |Ω| = 300
instance; i.e., the third row of Table 2. To this end, we first solve the instance to a MIP gap
of 0%, with an indefinite time limit. The optimal profit for the 24 hour horizon is $283.79;
i.e., the value reported in Table 2 is indeed optimal to a MIP gap of 0%. The selling price,
Rt , exceeds the operational cost of the battery, Cc = Cd , for the nine hours [13:00–22:00),
see Table 1. Solar power is non-zero, for at least one scenario, only for the fourteen hours
[6:00–19:00), see Fig. 2. We provide the characteristics of the optimal solution in Table 3.

No power is promised during the seven night hours from midnight to the hour 6:00AM
(i.e., until 6:59AM) and the three evening hours from 20:00 to the hour 22:00 (i.e., until
22:59PM). This is because the cost of operating the battery is higher than the reward for the
seven night hours, and further there is no solar power available in these hours. In the three
evening hours, although the cost of operation is (slightly) less than the reward, the model
still chooses to not make a promise. This is because there is no solar power, and the model
prefers to completely drain the battery to its lower limit in the last hour. Most of the hours
meet the energy promise largely through the solar power, which is dictated by the economics
of model (2). However, there is a good synergy between the charging and discharging times
of the battery; i.e., (i) the promise made does not rely entirely on the solar power, and (ii) for
the same hour the model chooses to charge or discharge based on the observed solar power
scenario. An extreme example is the hour 17:00–17:59. In this hour, the battery is discharged
(on average) to over 80% of its discharge limit to increase profit—solar power is decreasing
beyond this hour, and this hour has the largest marginal profit (Rt − Cc).

Also, we note that excess solar power in the afternoon hours is used to charge the battery.
Hence, we see that the model is successfully using the battery to shift solar power to times
when energy commands a higher price. Finally, as we mentioned before, at the last hour of
23:00–23:59, the battery is completely discharged to its permissible limit. To counter this
end-effect, the model can be run in a rolling-time horizon or a boundary condition could be
imposed; see, e.g., [30].
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Table 3 Profile of the optimal solution for model (2) with ε = 0.05 and |Ω| = 300. The average energy

charged for hour t is
∑

ω∈Ω pω
t|Ω| , the average energy discharged is

∑
ω∈Ω qω

t|Ω| , and the average solar energy

available is
∑

ω∈Ω sωt|Ω| . A blank in the table indicates zero. For details, see Sect. 6.2.1

Hour Promised
energy (kWh)

Average energy
charged (kWh)

Average energy
discharged (kWh)

Average solar energy
available (kWh)

0:00

1:00

2:00

3:00

4:00

5:00

6:00 0.01 0.19

7:00 12.78 0.77 0.57 20.70

8:00 39.26 5.28 2.79 97.76

9:00 620.80 26.89 11.08 725.45

10:00 837.18 60.05 22.53 959.92

11:00 911.42 68.25 17.20 1042.44

12:00 1004.14 64.00 16.99 1147.96

13:00 1077.48 49.11 15.26 1183.66

14:00 946.56 80.69 7.04 1127.01

15:00 913.47 19.66 9.97 986.78

16:00 807.63 2.09 47.01 767.36

17:00 877.07 405.65 457.87

18:00 185.30 0.08 5.73 186.90

19:00 123.15 2.66 123.77

20:00

21:00

22:00

23:00 480.00 480.00

6.2.2 Analysis: storage size

Next, we analyze the impact of the size of the battery storage on the optimal profit. Similar
to Sect. 6.2.1, we choose the ε = 0.05, |Ω| = 300 instance. We recompute the optimal profit
from model (2) by varying the maximum storage capacity of the battery, X , in increments of
10%. Since we set x0 = 0.5X and X = 0.2X in our computational experiments, the lowest
feasible limit of X is 0.5 X corresponding to a 50% decrease. Figure 3 presents the pareto-
optimal curve for the percentage changes in the optimal profit by varying the maximum
storage capacity of the battery. The red dot presents the base case; i.e., a profit of $ 283.79 for
a battery size of X = 960 kWh. There is no change in the optimal profit beyond a size of 1344
kWh; this suggests that for the given parameters of the model a battery of size X = 1344
kWh is sufficiently large.
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Fig. 3 Effect of varying the maximum storage capacity of the battery on the optimal profit

6.2.3 Analysis: quality of the solution

In this section, we perform an out-of-sample validation to analyze the performance of the
optimal power promise. Since model (2) is solved using a given set of scenarios by a so-
called sample average approximation (SAA) of the “true” model, this solution is naturally
sub-optimal or infeasible to a new set of scenarios [4]. Thus, we seek to answer the following
question: to what minimum reliability level can we guarantee a given power promise profile
to safeguard us against new scenarios? Intuitively, we expect this reliability level to be lower
than the chosen 1 − ε level.

To this end, we first independently sample ten batches of 300 scenarios each. We fix the
promised power output to the optimal power output of the base case instance with |Ω| = 300
instance. And, then we find the minimum number of violations required to ensure feasible
operations (i.e., constraints (2c)–(2g)) in each of the ten batches. We construct a 95% con-
fidence interval (CI) around the number of violations using a t-distribution. For the SAA
solved with a 95% reliability regime, the 95% CI of the true reliability is (85.1%, 89.5%).
Analogously for the 99% reliability regime, the 95% CI is (92.9%, 95.4%).

6.3 Analysis of lower bound heuristic

In this section, we briefly analyze the performance of the lower bounding heuristic mentioned
in Sect. 3. Table 4 presents our results. The “LB” values are the lower bounds to model (2),
see also Fig. 1. We solve all the scenario sub-problems using the Gather-Update-Solve-
Scatter extension of GAMS [10]. This scheme is very efficient; 1200 scenario problems plus
the fixed scenario problem can be solved in about 30 seconds. To compute the “Gap”, we
use the best known upper bound—this is available from either the naive solution (Table 2),
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Table 4 Computational results
for lower bounding heuristic. The
“Gap” denotes the optimality gap
of the LB from min{LD, z∗}; see,
Fig. 1 for the notation. For
details, see Sect. 6.3

|Ω| ε LB Gap Time

150 0.05 280.28 0.2% 6

0.01 273.01 – 3

300 0.05 283.33 0.2% 7

0.01 278.17 – 4

450 0.05 273.32 3.7% 7

0.01 276.40 0.9% 7

600 0.05 275.58 5.0% 17

0.01 274.53 1.1% 16

900 0.05 277.79 4.1% 22

0.01 275.69 0.4% 29

1200 0.05 277.05 2.7% 31

0.01 267.98 2.0% 35

or from the Lagrangian relaxation that we present later (Table 5). For example, for the
|Ω| = 1200, ε = 0.05, this upper bound is min{ 271.76

1−0.095 , 284.77}. A “-” in Table 4 indicates
the gap is smaller than the optimality tolerance. Thus, six of the twelve problems have a gap
under 1%, while two are solved to optimality.

6.4 Analysis of the Lagrangian relaxation scheme

In this section, we attempt to solve the Lagrangian relaxation of model (2) given bymodel (4)
using Algorithm 1.We use a maximum of 10 iterations (i.e., M = 10). We use the samemax-
imum time limit (time) and optimality tolerance (ψ) of 2400 seconds and 0.1%, respectively,
as for the results in Table 2. Theoretically, this gap might not be attained even with a larger
time limit as (i) different schemes for obtaining a lower bound give different corresponding
gaps, and (ii) even the tightest upper bound from the Lagrangian procedure might not be
attained as our problem includes binary variables. However, as we show later in this section
our empirical results demonstrate that in some instances an optimality gap smaller than the
naive solution is achieved. We use the LB bound from Sect. 6.3 in Step 4 of Algorithm 1.
Further, we “warm-start” the z variables for the first LR iteration, using the optimal z values
from the LB heuristic. Also, at each subgradient iteration, we warm-start the y variables with
their optimal value from the previous subgradient iteration. In CPLEX, this can be done by
setting the mipstart parameter to 1.

Table 5 presents our results. All 10 subgradient iterations complete in the required time
limit, except for |Ω| = 900, 1200. In our experiments, if ten LR iterations perform within
the time limit, the optimal Lagrangian dual (denoted by “LR”) is typically achieved around
the sixth iteration. The four instances (ε = 0.05, |Ω| = 600, 900, 1200 and ε = 0.01, |Ω| =
1200) that are not solved to optimality in Table 3 all have smaller gaps in Table 5 than
Table 2, suggesting the Lagrangian relaxation is better suited for larger problems. Also note,
that for these four instances, only a few subgradient iterations are completed. This again
lends credence to the observation that good Lagrangian bounds are obtained fairly early in
the iterations.

The optimal solution provided by the Lagrangian relaxation is infeasible to model (2).
Thus, the algorithm is useful only for providing good bounds to model (2), and not for obtain-
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Table 5 Computational results for model (2) using Algorithm 1. “LB” and “LR” refer to lower bound and
Lagrangian relaxation, respectively. The “Gap” column is the relative gap between the LB and LR. We use a
maximum time limit of 2400 seconds (cumulative sum of LP, LB and LR) and a gap of 0.1%. For details, see
Sect. 6.4

|Ω| ε Bounds Performance

LB LR Gap LR Time LR iterations

150 0.05 280.28 284.80 1.6% 56 10

0.01 273.01 273.01 – 8 3

300 0.05 283.33 291.59 2.8% 272 10

0.01 278.17 279.61 0.5% 210 10

450 0.05 273.32 291.09 3.9% 980 10

0.01 276.40 279.14 1.0% 660 10

600 0.05 275.58 290.15 5.0% 1936 10

0.01 274.53 277.98 1.2% 1581 10

900 0.05 277.79 289.68 4.1% 2369 2

0.01 275.69 276.83 0.4% 2362 4

1200 0.05 277.05 284.77 2.7% 2356 3

0.01 267.98 273.37 2.0% 2351 4

ing high quality feasible solutions. At best, the optimal y variables from the last iteration of
Algorithm 1 could be used to warm-start model (2). This aspect of Lagrangian decomposition
techniques is a well-known drawback; researchers have addressed this issue in a number of
ways, see, e.g., [66,71]. A similar issue is encountered in Step 9 of Algorithm 2 as well;
model (4) could be infeasible. However, if yt ≤ min{Q, η(X − X)} + sω(�Nε�+1,t)

t ,∀t ∈ T ,
then it follows from Proposition 3 that model (4) is assuredly feasible.

6.5 Analysis of the progressive hedging heuristic

The performance of the Lagrangian relaxation algorithm in Sect. 6.4 suggests little room for
improving the optimality gaps. In this section, we pursue a different approach, specifically
aimed at achieving fast bounds, albeit of a lower quality. To this end, we also analyze the
advantages and disadvantages of using the PH heuristic presented in Sect. 4 and Algorithm 2.
As we describe in Sect. 4, PH offers theoretical difficulties, however they are often marred
by the algorithm’s practical performance. This makes PH a powerful heuristic for practical
problems; similar trends have been reported earlier [51,61].

6.5.1 Choice of�

Algorithm 2 is known to be sensitive to the choice of the parameter ρ [16,61]; no consensus
seems to exist in the literature for deciding optimal values of ρ. We compare the sensitivity
of our results using three values of ρt , in addition to the ρt = 1 results reported above. In the
first two runs, we use constant ρt values of 0.1 and 10, and in the third run we use a coefficient
specific ρ value described in [61]. This value is ρt = Rt

max{1,∑ω∈Ω(yt−yω
t )/|Ω|} , where the y

values are those obtained in Steps 1 and 2 of Algorithm 2. We observe the following trends:
larger values of ρ result in weaker upper bounds of Step 6 of Algorithm 2, but close the gap
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in Step 7 faster. This is similar to the trend observed in [16]. However, ρt = 0.1 results in
weaker upper bounds than ρt = 1. The variable specific ρ closes the gap fastest, however the
improvements compared to ρt = 10 are minimal. Further, none of the ρ values completely
close the gap; and, ρt = 1 provides the best upper bounds.

6.5.2 Linearization

The quadratic proximal term in the PH objective can be linearized using piece-wise linear
segments. While, there are many sophisticated techniques for this linearization [22,58], we
attempt a basic first-order Taylor expansion. Dropping the t subscript, with L − 1 segments,
we have: y2 ≈ a2 + 2a(y − a), where a = (l−1)ymax

L−1 , l = 1, 2, . . . , L . However, in our
experiments, we observe that to achieve solutions comparable to that of the original mixed-
integer quadratic constrained program (MIQCP), a large value for L — close to 100 — is
needed. Then, the time required to solve the larger MIPs is no significantly different from
that of the MIQCP. The reason for this is as follows.

There is only a single binary variable for each subproblem in Step 6 of Algorithm 2; thus,
each MIP can be solved in at most two LP iterations (by branching on zω = 0 and zω = 1).
When L increases, the time required for an LP solution increases due to the increased number
of constraints in the LP. Poor values of y reported by PH cascade to poor values for z in Step
9 of the algorithm, resulting in poor values for γ , and ultimately poor performance for the
Lagrangian dual. Twopossible suggestions for the interested reader, thatwedonot investigate,
are as follows. First, use a dynamic linearization as described in Veliz et al. [58] that gradually
increments the number of piecewise segments. Second, use a subgradient step-size update
rule that does not depend on γ .

6.5.3 Convergence of algorithm 2: Bundling

The number of PH iterations required for each subgradient iteration, i ter , can be large to
force PH to converge. Although each iteration involves only a single binary variable, this can
make the PH algorithm computationally inefficient. In our computational experiments, PH
does not converge using the criteria in Step 7 of Algorithm 2, even with i ter = 100. As the
number of scenarios grows, the time to solve the MIQCPs in Step 6 grows as well; solving
MIQCPs can be significantly more challenging than solving MIPs. However, nearly always
the best upper bound, PHUB , is obtained in the first iteration itself. To this end, we begin
our discussion by reporting results obtained by setting i ter = 1; i.e., without even entering
the while loop of Algorithm 2. Table 6 reports these results. The PH upper bounds are
on average 10% (and, at most 11.7%) away from the optimal Lagrangian values (the fourth
column of Table 5). For instances that are solved optimally in Table 2, the PHUB values
are on average 10.9% (and, at most 11.7%) away from the true optimal solutions. We obtain
these very quickly, see column “Time” in Table 6; the 1200 scenario instances are solved in
under half a minute.

However, if Step 4 of Algorithm 1 is replaced with Algorithm 2 without the while
loop, the quality of the Lagrangian relaxation scheme deteriorates significantly due to the
cascading effect we describe in Sect. 6.5.2. Again, there is a tradeoff between computational
effort required (a large value for i ter ) versus the quality of the solution (a value close to zero
for γ ). To this end, we investigate the following enhancement in the PH algorithm.

Instead of solving individual scenario sub-problems, we bundle together several scenarios
and solve this “mini-extensive” form problem as our new sub-problem. Bundling scenarios
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Table 6 Computational results
for model (4) using Algorithm 2
with i ter = 1. PHUB refers to
the upper bound obtained using
the progressive hedging
algorithm. See Sect. 4 for details

|Ω| ε PHUB Time

150 0.05 317.24 3

0.01 309.33 3

300 0.05 320.29 5

0.01 311.36 5

450 0.05 319.24 8

0.01 310.32 8

600 0.05 318.60 10

0.01 309.93 10

900 0.05 317.96 5

0.01 308.99 16

1200 0.05 317.37 15

0.01 308.56 23

Table 7 Computational results for model (2) using Algorithm 2 with Algorithm 1 using bundling. Here,
“size” indicates the size of a bundle, “LR” indicates the Lagrangian relaxation bound obtained using the PH
algorithm, “iterations” indicates the number of completed LR iterations, and “Gap” is the relative gap between
the LB column of Table 5 and the “LR”

|Ω| ε size = 100 size = 150

LR Gap Time iterations LR Gap Time iterations

150 0.05 289.32 3.1% 79 10 284.80 1.6% 68 10

0.01 280.79 2.8% 115 6 273.01 0.0% 9 3

300 0.05 293.94 3.6% 369 10 293.55 3.5% 251 10

0.01 284.18 2.1% 95 2 281.66 1.2% 242 6

450 0.05 293.39 4.6% 537 10 292.26 4.3% 487 10

0.01 283.43 4.8% 229 2 280.31 3.7% 299 10

600 0.05 292.50 5.8% 576 10 291.47 5.5% 279 10

0.01 282.23 2.7% 203 1 279.30 1.7% 409 10

900 0.05 295.06 5.9% 676 4 292.47 5.0% 870 4

0.01 283.70 2.8% 611 2 281.14 1.9% 613 2

1200 0.05 290.78 4.7% 781 2 289.21 4.2% 896 2

0.01 277.78 3.5% 887 2 277.61 3.5% 747 2

could offer the advantage of speeding convergence of PH, but with increased computational
effort per PH iteration. For details on implementation of bundling in progressive hedging,
see, e.g. [16]. Further, the bounds obtained in Step 6 of Algorithm 2 also extend to the case
with bundling [16]. Finally, we emphasize again that since the PH algorithm is a heuristic
for solving model (4), the bounds obtained would be worse than those obtained using a naive
solution method (Table 5); however, we are interested in the tradeoff between speed and
quality.

Table 7 compares the results of our experiments using two different bundles. We use
Algorithm 1 with Step 3 substituted by Algorithm 2. Further, to see the tradeoff between the
computational time and the value of the optimal solution, we set a maximum time limit of
900 seconds. When the completion of a LR iteration would have resulted in the total time
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Table 8 Comparison of different
upper bounds for model (2). “LP”
denotes the linear programming
relaxation, “LR” denotes the
Lagrangian relaxation of
model (4), and “LR-PH” denotes
the Lagrangian relaxation using
progressive hedging algorithm
with bundling. The “Gap”
columns denote the optimality
gaps from max{z∗, LB}; see,
Fig. 1 for the notation. The
“LR-PH” has a maximum time
limit of 900 seconds. For details,
see Sect. 6

|Ω| ε LP LR LR-PH

Gap Time Gap Time Gap Time

150 0.05 6.6% 1 1.4% 56 1.4% 68

0.01 4.5% 1 − 8 − 9

300 0.05 6.8% 1 2.7% 272 3.3% 251

0.01 4.4% 1 0.4% 210 1.1% 242

450 0.05 6.7% 2 2.5% 980 2.9% 487

0.01 3.8% 2 − 660 0.5% 299

600 0.05 7.5% 3 3.3% 1936 3.7% 279

0.01 4.2% 3 − 1581 0.6% 409

900 0.05 8.0% 9 3.8% 2369 4.7% 870

0.01 4.4% 9 − 2362 1.5% 613

1200 0.05 8.2% 10 2.7% 2356 4.2% 896

0.01 5.9% 9 0.9% 2351 2.4% 747

being greater than a 900 seconds, we do not report it. For example, for the 900 scenario,
ε = 0.01 instance if the third iteration were to complete the total time would be greater
than 900 seconds; thus, we report results only for two iterations. In this sense, our results
are conservative. For the 150 scenario case, there is one bundle of size 100 and one of size
50. For the 450 scenario case, there are four bundles of size 100 and one of size 50. In all of
the 12 instances, the 150 size bundles lead to better (lower) Lagrangian bounds than the 100
size bundles. However, there is no consistent trend in the time required for completion. For
example, the 450 scenario instance with ε = 0.05 took lesser time for the 150 bundle case
than the 100 bundle case; but, the effect is the opposite for the 450 scenario instance with
ε = 0.01.

6.5.4 Summary of bounds

From the preceding discussions, we have two valid upper bounds for model (2) available
from plain LR and LR with PH. A third bound is obtained by solving the LP relaxation of
model (2). We summarize these bounds in Table 8. The “Gap” here is the optimality gap of
the bound from max{z∗,LB}. The LP has a gap of 5.9% on average. From the LR column,
we note that four of the twelve instances are solved to optimality—but this optimality is not
verifiable (see Table 5). Imposing a reduced time limit and solving the LR with the bundled
PH algorithm increases this optimality gap by at most 1.5% (with bundles of 150 scenarios).
This again indicates that the PH algorithm achieves good bounds in fairly early iterations.

7 A generalization for multiple generators

7.1 Notation

Indices and Sets:
t ∈ T Set of hours; {1, 2, . . . , |T |}
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ω ∈ Ω set of scenarios; {ω1, ω2, . . . , ω|Ω|}
s ∈ S Set of batteries
g ∈ G Set of PV generators
b ∈ B Set of buses; bgr ∈ B is the bus connected to the larger grid
l ∈ L Set of branches or lines
s ∈ S(b) Set of batteries at bus b
g ∈ G(b) Set of PV generators at bus b
l ∈ δ+(b) Set of lines to bus b
l ∈ δ−(b) Set of lines from bus b

Parameters: First Stage
ηs Efficiency of battery s, 0 < ηs < 1
Xs Maximum energy that can be stored in battery s [kWh]
Xs Minimum energy that must remain in battery s [kWh]
Rt Marginal revenue earned at hour t [$/kWh]
Cc,s Operational cost of charging battery s [$/kWh]
Cd,s Operational cost of discharging battery s [$/kWh]
Ps Maximum charging rate of battery s [kW]
Qs Maximum discharging rate of battery s [kW]
Lb,t Load at bus b at hour t [kW]
Fl Thermal limit on line l at hour t [kW]
Δ Time step [h]

Parameters: Second Stage
sω
g,t Solar power available at hour t from generator g under scenario ω [kW]

Decision Variables: First Stage
yt Power promised to deliver (or withdraw, if negative) at hour t [kW]

Decision Variables: Second Stage
f ω
l,t Power flow on line l during hour t in scenario ω [kW]
pω
s,t Power charged to battery s during hour t in scenario ω [kW]

qω
s,t Power discharged from battery s during hour t in scenario ω [kW]
xω
s,t Energy stored in battery s at hour t in scenario ω [kWh]

wω
s,t Binary variable; 1 if battery s is charging at hour t and 0 if discharging

uω
t Power served to the grid at hour t in scenario ω [kW]

7.2 Background

In this section, we present a proof-of-concept for a generalization of the models and analy-
sis presented in the preceding sections of this article. To this end, we consider a microgrid
with several photovoltaic units and two storage units. To build our test case, we consider
a single-phase simplification of the IEEE 13-bus feeder [25,53]. We adopt a network flow
approximation tomodel the power flow; this is equivalent to the commonly used “DC approx-
imation” of power flow as the network considered is acyclic or radial, as is common for
distribution systems. While this is a loose approximation [11], our aim is to demonstrate how
the techniques described above can be applied in a different context.
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Fig. 4 The modified IEEE 13-bus feeder with two batteries and five PV units

We modify the IEEE 13-bus feeder system as follows. We place PV units at these five
buses: 652, 680, 675, 611, 634. We assume the solar power available from the PV units at
these buses are, respectively, 1, 2, 3, 4, 5 times 1

5 s
ω
t , where s

ω
t is the solar power data used in

the rest of this article. We also place two storage devices: one at bus 632 and another at bus
671. The interface to the larger grid is at bus 650, which we denote at bgr, and we buy and
sell energy from this bus. Figure 4 gives a topological representation of the modified IEEE
13-bus feeder, with the placements of PV and battery storage devices. Further, we reduce the
three-phase system to a single phase and set the line capacities, Fl , to eight times the values
in the IEEE 13-bus feeder system. The system is infeasible for lower values of the thermal
line limit, and indeed for the computational instances we present in Sect. 7.3 this thermal
limit is almost reached. Further, since this system does not provide load values indexed by
time, we scale the load by computing load factors from [24, Table 3], to achieve a temporal
resolution. Finally, we set Xs to ten times the value in the rest of this article for each storage
device s.

We modify model (1) as follows:

max
∑

t∈T
RtΔyt − E

⎡

⎣
∑

s∈S
(Cc,sΔpω

s,t + Cd,sΔqω
s,t )

⎤

⎦ (6a)

s.t. P
(
yt ≤ uω

t ,∀t ∈ T
) ≥ 1 − ε (6b)

xω
s,t+1 = xω

s,t + ηsΔpω
s,t − 1

ηs
Δqω

s,t , ∀s ∈ S,∀t = 1, 2, . . . |T | − 1,∀ω ∈ Ω (6c)

pω
s,t ≤ Psw

ω
s,t , ∀s ∈ S, ∀t ∈ T , ∀ω ∈ Ω (6d)

qω
s,t ≤ Qs (1 − wω

s,t ), ∀s ∈ S, ∀t ∈ T , ∀ω ∈ Ω (6e)

Xs ≤ xω
s,t ≤ Xs , ∀s ∈ S, ∀t ∈ T , ∀ω ∈ Ω (6f)

wω
s,t ∈ {0, 1}, ∀s ∈ S, ∀t ∈ T , ∀ω ∈ Ω (6g)
∑

l∈δ+(b)

f ω
l,t −

∑

l∈δ−(b)

f ω
l,t +

∑

s∈S(b)

(pω
s,t −qω

s,t )+
∑

g∈G(b)

sωg,t = Lb,t ∀b∈ B\{bgr},∀t ∈T ,∀ω∈Ω (6h)

∑

l∈δ+(bgr)

f ω
l,t −

∑

l∈δ−(bgr)

f ω
l,t = uω

t ∀t ∈ T , ∀ω ∈ Ω (6i)

− Fl ≤ f ω
l,t ≤ Fl ∀l ∈ L, ∀t ∈ T , ∀ω ∈ Ω (6j)

pω
s,t , q

ω
s,t ≥ 0 ∀s ∈ S,∀t ∈ T , ∀ω ∈ Ω. (6k)

Boundary condition: xω
s,1 = x0,∀s ∈ S, ω ∈ Ω .
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Constraint (6b) ensures we meet the promised load (or, withdraw no more than promised)
for the entire time horizonwith probability 1−ε. Constraints (6c)–(6g), (6k) are exactly (1c)–
(1h) except applied to multiple storage devices. Constraint (6h) ensures the load, generation,
and flows are balanced at every bus except the grid-connected bus; constraint (6i) balances
the flow to/from the gird-connected bus and the power to/from the grid uω

t .
Model (6) permits a Lagrangian decomposition analogous to that demonstrated in Sec-

tion 3, as follows.

L(λ) = max
∑

t∈T

(
RtΔyt − E

[
∑

s∈S
(Cc,sΔpω

s,t + Cd,sΔqω
s,t )

] )
+ λ

(�Nε� −
∑

ω∈Ω

zω
)

s.t. (6c) − (6k) (7a)

yt − uω
t ≤ zωMω

t , ∀t ∈ T ,∀ω ∈ Ω (7b)

zω ∈ {0, 1}. ∀ω ∈ Ω. (7c)

Similar to Corollary 1, a sufficiently large value for the big-M for model (6) and model (7)
is given by: Mω

t = maxt∈T ,ω∈Ω uω
t = 2|L|maxl∈L Fl ,∀t ∈ T , ω ∈ Ω . By including

constraint (6g), we disallow simultaneous charging and discharging of the battery. Thus,
unlike model (4), model (7) includes additional binary variables; for details on when this
restriction can be relaxed, see Proposition 1 and [17].

7.3 Computational results

Unlike Sect. 6, an instance of model (6) with |Ω| = 300 and ε = 0.05 is hard to solve. To
demonstrate the generalization of the models we presented earlier, we thus use |Ω| = 150
and ε = 0.05.

Analogous to Table 3, we present the profile of the optimal solution in Table 9. Between
20:00 and 08:59, when solar power is absent or in low quantities, the system buys energy
from the main grid. In this sense, the solution is comparable to that in Sect. 6.2.1 where we
do not complete any transactions between 00:00 and 6:59. Between 09:00 and 20:00, when
solar power is more available, we sell energy to achieve a total profit of $316.22. Since the
data values are different than the ones we used before, the optimal objective function values
are not directly comparable.

As the computational experiments are directly analogous to the ones we presented in detail
in Sect. 6, here we only provide computational results for the hardest instance: |Ω| = 1200
and ε = 0.05. We again compare the computational effort of the naive solution to the
Lagrangian decomposition. The optimal solution for model (6) using the naive solution
method is in the range [245.91, 66,726.55]—a MIP gap of 99.6%—with a new time limit
three times that of the previously employed time limit (i.e., new time limit is 7200 seconds).
This largeMIP gap indicates the significantly larger computational effort required as opposed
to Sect. 6.2. Next, we solve model (7). To this end, we first run the lower bounding heuristic
of Sect. 3; we obtain LB = 247.91. The LP relaxation is 66,973.1. Seven iterations of the
Lagrangian decomposition are completed and we obtain LR= 48,486.7, resulting in a gap of
99.5%. This suggests little benefit for a naive implementation of LRwhenmultiple generators
are present. Future efforts could concentrate on finding smaller values of big-M and tighter
reformulations of model (6).
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Table 9 Energy bought/sold at hour t for model (7) for |Ω| = 150 and ε = 0.05. A positive (negative) value
indicates energy is sold (bought)

Hour Energy bought/sold (kWh) Hour Energy bought/sold (kWh)

0:00 −871.50 12:00 2354.65

1:00 −819.20 13:00 2584.87

2:00 −754.99 14:00 2702.85

3:00 −657.62 15:00 2197.56

4:00 −600.51 16:00 1960.89

5:00 −512.42 17:00 1132.96

6:00 −446.21 18:00 537.52

7:00 −383.02 19:00 131.76

8:00 −74.15 20:00 −195.33

9:00 1532.04 21:00 −132.22

10:00 1421.08 22:00 −983.43

11:00 2273.46 23:00 −931.16

8 Conclusion

We developed a stochastic optimization model to schedule a standalone hybrid system con-
sisting of battery storage with solar power. We used a chance-constrained formulation to
ensure highly reliable operations under the uncertainty of solar power. The model makes
charging/discharging decisions dictated by a mix of economics and the available solar power.
For a few hundred scenarios, the model is relatively tractable benefiting from a strong LP
relaxation. For larger number of scenarios, we demonstrate the applicability of a simple
Lagrangian relaxation procedure. The procedure is remarkably effective, and tightens the
optimality gap when a naive solution method does not. Finally, we present a heuristic, based
on the progressive hedging algorithm, that we couple with the Lagrangian relaxation.We find
significant benefit when scenarios are bundled and solved as one in the progressive hedging
iterations; however, when solved plainly the PH heuristic does not achieve good quality solu-
tions. We conclude with an extension to a larger system with multiple storage devices and
batteries connected to form a microgrid. Future work could examine interconnected updates
of the subgradient algorithm with the progressive hedging algorithm.

The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.
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