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Abstract
Variations of dedicated process conditions (such as workpiece and tool properties) yield different process state evolutions,
which are reflected by different time series of the observable quantities (process curves). A novel method is presented, which
firstly allows to extract the statistical influence of these conditions on the process curves and its representation via generative
models, and secondly represents their influence on the ensemble of curves by transformations of the representation space. A
latent variable space is derived from sampled process data, which represents the curves with only few features. Generative
models are formed based on conditional propability functions estimated in this space. Furthermore, the influence of conditions
on the ensemble of process curves is represented by estimated transformations of the feature space, which map the process
curve densities with different conditions on each other. The latent space is formed via Multi-Task-Learning of an auto-
encoder and condition-detectors. The latter classifies the latent space representations of the process curves into the considered
conditions. The Bayes framework and theMulti-task Learningmodels are used to obtain the process curve probabilty densities
from the latent space densities. The methods are shown to reveal and represent the influence of combinations of workpiece
and tool properties on resistance spot welding process curves.

Keywords Process modeling · Convolutional Neural Networks · Generative models · Multi-task learning · Low-dimensional
process representations · Hyper-models · Machine learning

Introduction

A generic tool is proposed and devloped to automatically
model manufacturing processes from time-series data of
observable process quanities (process curves), especially to
reveal how the process curves are shaped by process con-
ditions such as tool properties or processed materials. The
proposed method models the underlying conditional gener-
ative process producing the process curves. The tool can be
used quite universally in intelligent process control or intel-
ligent quality assessment, where process curves are the lead
quantity such as in Model Predictive Control or where qual-
ity is measured as the deviation from an ideal curve. Such
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process control and quality assurance approaches can be
automatically adapted to varying process conditions by just
transforming the underlying process curves accordingly. This
is enabled by the proposed machine learning methods, which
reveal and generalize the dependencies of process curves
on material and tool properties, and other conditions. This
knowledge can also be used to understand the impact of vary-
ing conditions on the processes. The focus of this work is the
development of such dedicated machine learning modelling
methods from data and to show how they are applied to a real
world process using the resistance spot welding process as a
practical example.

A process is composed of a sequence of process states.
Manufacturing processes change the state of a workpiece
and terminate in a final state, in which the workpiece should
have the desired properties. Dynamical equations exist for
most physical and technical processes to model the time evo-
lution of the process state s, depending on the initial process
s0 state (e.g. input material), on the process driving forces
u and on the physical process boundary conditions b. The
quantities occurring in the basic dynamical equations are
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usually not completely available. Instead of the precise ini-
tial state only some properties i of the process input (e.g.
Material type and geometry) are known. Also instead of the
boundary conditions only machine characteristics M (such
as tool type) are available in real processes and the process
control adjusts only rough control parameters p instead of
controlling directly the precise forces driving the process.
The input properties and the machine characteristics rep-
resent the accessible fixed conditions governing a process,
but are ambiguous with respect to the real process bound-
ary conditions. This may lead to different process evolutions
and outcomes under the same conditions. The outcomes are
represented by some quality measures q. The values of the
process state variables are usually not directly measurable,
but are only represented by a corresponding time series of
measurements m(ti ), the process curve, represented by the
vector of sampled values z = [m(t0), . . . ,m(tN )]T. An
emprical surrogate process model has therefore to be used in
place of the precise dynamical model, relating the available
condition quantities c with the state evolution represented
by the process curve. The measured process curve correlates
with the state evolution, but the exact mapping of the mea-
surements to state variables is very frequently theoretically
unknown or ambiguous. The process variables of a suffi-
ciently restricted process sub-domain might populate only a
suffienctly small sub-space for which a bi-jective mapping
between state variables and process curves exists. In this case
any representative sub-space of the process curves is also
representative of the original process. The restriction of the
process sub-domain is expressed by limited and small range
of conditions.

Small sub-spaces are convenient for studying the impact
of the conditions on the process curves and the relation of
the curves with the process outcome. The impact can be
captured statistically by modeling the condition-dependent
conditional probability density of the process curves. The
impact can be represented alternatively by a transformation
between the densities with different conditions.

The paper proposes amethod to find awell-suited process-
curve sub-space representation (with so-called “features” or
“latent variables”), which enables the approximate recon-
struction of the original process curve, but also uses the most
condition-sensitive features of the process curves. The result-
ing salient shape features minimize the reconstruction error
of the process curves and also maximize the correlation with
the conditions of the process. Every single process execution
is represented by a point in the feature space. These feature
points are then spread along dedicated directions according
to the variation of corresponding condition values. Such a
kind of a feature space is therefore optimally suited to model
the influence of conditions and of the achieved quality on the
process curves, thus relating all quantities of interest.

Our approach generates a feature space with sufficiently
low dimensionality so that the probability density function
can be estimated from feasible quantities of process curve
samples. This density is used to infer the class conditional
density via Bayes from the priors estimated by condition-
classifiers using the features. This density is a generative
model of the process under the considered condition and
reveals its effect on the ensemble of process curves.

The effect of a change of conditions on the ensembles is
found by estimating the latent space transformation, which
maps the corresponding densities on each other. Generative
models of all quantities of interest, which are derived from
process curves (such as product quality or control strategy)
can then be transferred to a different conditionwithout setting
up an explicit model for this condition.

The main benefit is a tremendous reduction of the num-
ber of experiments required to setup explicit models for the
distributions of quantities of interest for each and every con-
dition. It is only necessary to determine the dependency of
such a quantity on process curves for one single condition.
This model can be re-used for a new condition by transform-
ing the underlying process curve distributions under the new
condition to the original distribution and applying the model
to it. This will deliver the distribution of the quantity under
the new condition. From an experimental point of view, it is
then sufficient to measure just the process curves only under
the new condition (to determine the transformation between
the new and the original process curve distributions), but not
the quantity of interest itself. In resistance spot welding for
instance, the quality is represented by the welding spot diam-
eter, which is measured by destroying the joints in the lab,
while the process curves are captured automatically on-line.

Our proposed method can also be used in future work
to generate new generative models of process curves under
previously unknown conditions by interpolation between
transformation models if the dependency of the transfor-
mation model parameters on the condition values can be
quantitfied. This generalization of the condition-dependency
of the generative models is a kind of zero-shot learning
(Larochelle et al. 2008; Socher et al. 2013) or hyper-
modelling (Link et al. 2016; Reis et al. 2017).

Our contributions are the following:

– We create a low-dimensional feature space, where the
representations of process curves under different condi-
tions are spatially separated, through multi-task learning
with Convolutional Neural Networks.

– We construct process-curve-generatingmodels for differ-
ent process conditions by estimating the corresponding
probabilty densities in the low-dimensional latent space
and transforming them to the original curve space by
means of the multi-task-learned decoder.
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– We estimate transformations of the latent features, which
map the densities of different conditions on each other.
The transformations allow the interpolation between the
different conditions and thus condition-dependent mor-
phing between process curve densities.

– We evaluate different neural architectures within our
multi-task learning scheme with process curves from
resistance spot welding. They are compared with a linear
baseline method and among each other. The best archi-
tecture is then used to set up a generator model and to
estimate a condition-dependent feature space transforma-
tion. Results of the the application of the generator and
transformation are finally shown.

The paper is organized as follows: “Related work” sec-
tion discusses the related work where the necessity of a new
method to deliver a feature space with the required prop-
erties is revealed. The Bayesian construction of a process
curve generator model and the representation of condition-
dependent density transformations via a latent feature space
representation are proposed in “Usage of condition-sensitive
latent space process representations” section. In “Method
for the determination of the latent feature space” section, a
method for generating condition-sensitive, low-dimensional
process representations is presented. The approach is instan-
tiated for resistance spot welding processes in “Concept
instantiations for resistance spot welding processes” sec-
tion and finally evaluated with dedicated such processes
in “Evaluation of different latent-space feature extractors
for resistance spot welding process curves” section. A con-
clusion is drawn and an outlook given in “Latent-space
representation and conditional generative and transformation
models of resistance spot welding process curves” section.

Related work

To our best knowledge there exist so far no approaches to
extract condition sensitive generative models for process
curves, as we are seeking for. There exist already machine
learning approaches of time series generativemodels in other
domains, but which are based on methods, which are quite
data-intensive or where condition-dependency is hard to ana-
lyze, as discussed in “Time-series analysis of process data”
section. Then we consider methods in the existing work to
be used in a new approach, by which such drawbacks could
be avoided. By reducing the representation space of pro-
cess curves to a low dimensionality, the process curve space
can be covered by smaller samples and the data efficiency
be increased. As a positive side effect, visualization of the
condition dependencies is possible as well. The dimension
reduction methods are discussed in “Dimension reduction”
section. Variational and Conditional Variational Autoen-

Table 1 Summary of notation

Notation Description

Variables

s Process state

s0 Initial process state

sest State, estimated from measurements

u External process driving forces

b Physical process boundary conditions

i Properties of the process input

M Machine characteristics

p Control parameters

c Process conditions

c′, c′′ Process condition instances

q Quality measures

m(ti ) Measured values of observables at time ti

z Process curve z = [m(t0), . . . ,m(tN )]T
x Latent features

Functions

h(z) Transformation of the representation space of
the process curves

fe(z) Encoder function

fd(x) Decoder function

fq(x) Estimator function

fc(x) Classifier function

coders arrange the representation space of process curves
such that represenations under the same conditions form
clusters and can be interpreted w.r.t. the conditions. The
corresponding related work is dicussed in “Variational and
conditional variational autoencoders (VAEs and CVAEs)”
section. Finallywe summarize all this relatedwork in relation
to our specific task in “Summary of related work” section.

Time-series analysis of process data

Process data are by nature sequential and are captured as
time series. Suitable representation methods and process
models are not only important in manufacturing, but for
processes in general such as weather, finance, speech and
so on. Thus distance-based methods with a predefined dis-
tance measure such as Dynamic Time Warping (DTW) and
Hidden-Markov-Models (HMM) operate directly with the
data to either find similarities with given model templates
(DTW) (Keogh and Ratanamahatana 2005) or to find a most
probable state sequence as a cause of an observed time series
(Ghahramani and Jordan 1997). The combination of DTW
and the k-nearest-neighbor classifier allows to recognize
time-series patterns (Rakthanmanon et al. 2012). In con-
trast, feature-based methods extract features that represent
the pattern of the time series. Methods include, for example,
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quantizing the features to form a bag-of-words (Lin et al.
2007), or extracting features of different scales to form a bag-
of-features (Baydogan et al. 2013). However, these methods
require very elaborate manual feature engineering based on
expert knowledge.

The use of neural networks for time-series classification,
especially by deep structures, allows to automatically find
appropriate features, represented by the outputs of dedicated
hidden layers. In Wang et al. (2017) the classification of
time series using deep neural networks is investigated, based
on the UCR Time Series Classification Archive (Chen et al.
2015) from different application domains, such as ECG, Nat-
ural Language Processing and so on. Convolutional Neural
Networks with filter size decreasing from the input layer are
applied in Dai et al. (2017) to time series, which represent
acoustic signals by raw waveform data. These deep CNNs
are used to generate features of the waveform input data for
subsequent classification and serve to replace manual feature
engineering, for end-to-end learning of the classification task.
The input data are sequences with a vector of length 32,000
from which a lower number of features is extracted, which
allow sufficient classification quality.

Recurrent Neural Networks (RNNs), namely Long-Short-
Term-Memory (LSTM) networks have been established in
modelling generators of (time) sequences of data (Graves
2013). An LSTM can generate process curves from initial
values and a distribution of curves from adding noise to the
initial and intermediate states. The models are directly rep-
resented by the weight values of the LSTMs, which form the
representation space of the models. RNNs are enrolled into
a finite number of time steps, where the weight values deter-
mine the dynamical behavior in the corresponding interval.
If important temporal relations extend beyond this interval,
the dynamics is not fully captured and generated sequences
are not valid.

Only few machine learning approaches exist, which learn
generative models of time series. In Yoon et al. (2019) the
joint probability of time series and conditions is learned in the
proposed framework. It consists of networks for embedding
and recovery (auto-encoding) of the time series data, and a
generator (operating on the latent space) and a discriminator
for the sequences (GAN architecture, see Goodfellow et al.
2014). This requires the learning of the joint probabilities
of the occurence of time series and conditions simultane-
ously. The sampling of the condition-time series product
space requires a huge amount of data, which are rarely acces-
sible with process data. Another time series geneartivemodel
approach is presented in Esteban et al. (2017), which also
uses a GAN architecture in combination with a Recurrent
Network. These RNNs are conditioned on auxiliary infor-
mation. The latent space in this approach only represents the
evidence (unconditionedprobability density), fromwhich the
LSTM recurrent network generates conditioned time series

by using extra inputs representing the conditions. The goal
was to generate training data for medical staff in ICUs. The
condition-unspecific latent space does not allow to morph
between generators under different conditions. The transfer
of the learned knowledge to new conditions is therefore not
possible.

Dimension reduction

Nonlinear dimension reduction methods are trying to rep-
resent data in a lower dimensional space, while preserving
either the topology (TP) of the data (in mathematical sense),
or the geometry (GP) reflected by the distance or angle
between data. TP methods are Self-OrganizingMaps (Koho-
nen et al. 2001), Locally-linear Embedding (Roweis and
Saul 2000) und Laplacian Eigenmaps (Belkin and Niyogi
2001), whileMultidimensional Scaling (Cox and Cox 2008),
Kernel-PCA (Schölkopf et al. 1997) und Isomap (Tenenbaum
et al. 2000) belong to the GP class. All the aforementioned
methods assume that the data reside on a single manyfold
in a subspace of the original data space. If the data populate
multiple manifolds (eventually in different dimensions and
possibly overlapping and intersecting),multi-manifold learn-
ing is required, such as K-Manifolds (Souvenir and Pless
2005) or DC-Isomap (Gao and Liang 2013), which decom-
pose the manifold into intersecting-only and separated-only
sub-manifolds respectively. All of these methods tend to find
features, which optimally fulfil the method-specific criteria,
but wich are not necessarily un-correlated or do not allow
back-projection into the original space. Kernel versions of
the Partial Least Squares (PLS) method allow the extrac-
tion of non-linear features and also maximize the correlation
with some regression output variables (Rosipal and Trejo
2002). Kernel-PLS as a regression method would be able to
create a latent space reflecting the influence of continuous
quantities, but can not treat conditions with discrete values.
Principal Function Approximators (PFAs) (Senn 2013) are
especially constructed to realize a simultanouos invertable,
non-linear dimensionality reduction of state variables and a
regression of the extracted features with observables, which
extends the linear methods of Partial Least Squares Regres-
sion (Vinzi et al. 2010) and Principal Component Regression
(Merz and Pazzani 1999). Other than with (Kernel-)PLS,
which builds upon variance, PFA features are formed by
the bottleneck layer of an auto-encoder-like Artificial Neu-
ral Network and are not ordered according to relevance.
The property of relevance-ordering is incorporated in Fis-
cher et al. (2015) in neural auto-encoding via a hierarchy of
single-neuron-bottleneck neural networks (HSB-NN), where
each auto-encoder in the hierarchy represents the reconstruc-
tion residuum of its precedessor, and can also be trained to
maximize the correlation with observables. As being regres-
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sors like Kernel-PLS, these methods cannot treat processes
with discrete-valued conditions.

Variational and conditional variational
autoencoders (VAEs and CVAEs)

The dimension reduction methods discussed above do not
yield latent space representations, which show separate dis-
tributions for different discrete conditions, because this is
not enforced by the learning objective. Variational Autoen-
coders adress this problem by representing similar objects as
being generated by a dedicated normal distribution (chrac-
terized by a dedicated centroid and diagonal covariance
matrix) in a latent space with chosen (low) dimensionality.
Objects that form different similar groups are represented
by multiplie normal distributions. The distributions are
forced to be narrow and close to each other by includ-
ing the Kullback-Leibler divergence in the cost function.
The optimization eventually results in distinct normal dis-
tributions with different semantics (conditions in our case),
which is found from the latent space representation of
the condition-labelled sample data. Frequently, the distinct
normal distributions are labelled accordingly, and linear
interpolation in the latent space between the centroids of the
distributions is used to generate objects (by the decoder),
which are semantically interpolated (Hou et al. 2016). This
is only possible, if the similarities between the objects in
the original space reflects the semantics, because no other
information than the structure of data itself is used for the
training of VAEs. Neither the objective function used for
training the VAEs nor the generic VAE structure enforce
the capability to semantically interpolate in the latent space
(Berthelot et al. 2019).

The problem of forcing VAEs to generate semanti-
cally conditioned object representations is addressed by
the method of Conditional Variational Autoencoders (Sohn
et al. 2015). The CVAEs enhance the object data by
including the class memberships of the objects in their
original description. This is achieved by representing the
class-membership as a one-hot condition vector and con-
catenating this vector with the objects original data vector.
In the resulting extended representation space the patterns
of each class are represented in their own sub-space. Reg-
ular VAEs (structure and loss function) are then applied
in this extended representation space to finally create the
CVAEs. The resulting class-conditional densities in the latent
space allow generating class-conditional object representa-
tions (by switching between the classes), but the densities
are not spatially separated in the latent space. Therefore it
is not possible to interpolate between classes in the latent
space.

Summary of related work

The problems of data-driven representation of the con-
dition-dependency of processes and finding process solu-
tions for previously unseen conditions is generically tackled
by Hyper-Models and zero-shot learning. A representation
space is required for this purpose, where the process curve
representations are arranged according to the conditions, and
which has low dimensionality. To our knowledge, there is no
data-driven approach so far to create such a representation
for discrete- and continuous-valued conditions:

Dimension reduction of data is a well investigated scien-
tific domain with a variety of methods for different goals,
also embeddings, which allow the reconstruction of the data
in the original space. Most of them yield a low-dimensional
feature space, which represents the distribution of data well,
but does not necessarily arrange the data points with respect
to variations of the conditions, which influence the data. The
latter property is incorporated by the Kernel-PLS methods
and the PFAs and HSB-NN. PFAs and HSB-NN can be inter-
preted as following the idea of multi-task Neural Network
training for the tasks of input pattern reconstruction (auto-
encoding) and mapping on measurable observables. Replac-
ing the observables by conditions would create a condition-
sensitive feature space, but only for continuous-valued
conditions.

VAEs are used to interpolate linearily between discrete-
valued conditions, which is only possible, when the data
in original representation space are already well arranged.
CVAEs explicitely incorporate the conditions but in a way,
which prevents semantic interpolation in the feature space.

Time-series analysis in the sense of extracting class
information or predicting continuous quantities is a well
established, but still very active scientific field. Recent
approaches apply new methods, such as deep Convolutional
Neural Networks (d-CNN) to enable end-to-end learning,
thus avoiding feature engineering efforts. D-CNN have been
very successful in image analysis, while applications to sig-
nals are still rare. No approach has been found, which uses
d-CNN to extract features, which are also forced to allow
reconstruction and bear information about conditions via
multi-task learning at the same time.RNNs are frequently use
in time-series analysis, but their capabilities seem to be too
limited to capture long-range temporal relations in process
curves.

The combination of GAN and RNN enables generative
time-series models. Corresponding such approaches use a
latent space representation for the distribution of time-series.
We follow the idea of using a latent space, but employ a
method, which forces a conditional structure of the latent
space distributions and uses a decoder to generate conditional
time-series.
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Usage of condition-sensitive latent space
process representations

Semantic process curve transformation and
hyper-modelling

The generation of process curves z is subject to a stochastic
process. The curve probability density p(z|p, c) represents
the curve-generating stochastic process and is determined by
the parameters p (controlling the forces on the process; usu-
ally adjusted by the process machine) and the conditions c
simultaneously. Inmany practical cases the knowledge of the
general influence of the conditions on the generatormodels of
process curves is required, regardless of the chosen machine
parameters p. The condition influence is represented by the
law of the transformation of the generator models (densities)
according to a change in the condition values. The machine
parameters are then considered as stochastic variables and
the process curve densities are solely governed by the con-
ditions: p(z|c). The process curve densities p(z|c′) with a
certain condition c′ are transformed into a density with new
condition c′′ via p(z|c′′) = f (p(z|c′), c′′). We call this a
semantic transformation of process curve densities. An appli-
cation example is how the density of process curves of a
reference process (determined in the laboratory) transforms
into a new density, when the process is executed under dif-
ferent operating conditions than in the lab.

The density transformation can be expressed as a trans-
formation h of the representation space of the process curves
by z∗ = h(z), such that p∗(z∗|p, c′) = p(z|p, c′′). Such
transformtion models h(z) are estimated in “Latent-space
representation and conditional generative and transformation
models of resistance spot welding process curves” section
in the latent space of the process curves. If instances of
the transformation models between densities under different
conditions are generalized into a general transformation ẑ =
ĥ(z, ĉ) of a reference density with a condition-representing
quantity ĉ as a parameter, a hyper-model of the process is
generated.

Derivation of class-conditional density functions
and generator models

Instead of training a generative model by means of a genera-
tor and a discriminator combined as opponents in a GAN,
Bayesian inference can be used, if the proposed learning
structure is implemented. The advantage of the Bayesian
approach is the resulting explicit density function. This can
be achieved by an encoder-generated data representation in
a latent feature space and a multi-task processing scheme of
the encoded data. The multi-task processing scheme must
consist at least of a decoder and one or several classifiers or

estimators, all of them attached to the encoder network. Such
an architecture is depicted for process curves in Fig. 1.

The process curves are originally represented byvectors of
sampled observable variable values z ∈ R

N and transformed
by the encoder according to a learned function x = fe(z) to
a latent feature space of vectors x ∈ R

M . The decoder trans-
forms the feature vectors into approximate process curves z̃ ∈
R

N . A soft-max trained classifier can be interpreted to deliver
the estimated posterior probability P̃(ci |x) of having class ci ,
when feature vector x is observed. If the dimensionalityM of
the latent feature space is small enough that the sample gives
a good coverage of the underlying distribution, the probabil-
ity density of the feature vectors x can be estimated as p̃(x).
This can be achieved by transforming all K sampled process
curves (under all conditions) {zk}Kk=1 to the latent feature
space representations {xk}Kk=1 and estimating an appropri-
ate density function (i.e. multi-modal Gaussian). The priors
of the classes can be estimated as P̃(ci ) by the relative fre-
quencies of the class instances. Then the class-conditional
densities p̃(x|ci ) can be estimated via Bayes inference:

p̃x(x|i ) = P̃(ci |x) p̃(x)
P̃(ci )

(1)

The density p̃(x|ci ) can be used to set up a generative
model of instance of x, when the cumulative distribution
function calculated from P̃(x|ci ) is used to map an i.u.d.
random variable r to get a sample vector xs = P̃−1(r) (Lar-
son and Odoni 1981).

But a generator of process curves z instead of their feature
representations x is desired. By construction we can find a
generator of the approximate process curves z̃ ≈ z using
the decoder, which is represented by the learned function
z̃ = fd(x), which transforms feature representations to the
original process curve space.

Fig. 1 Multi-task processing scheme with a latent feature space repre-
sentation for deriving generative models and for semantic process curve
transformations modeling
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p̃z̃(z̃|ci ) = p̃x( fd(x)|ci )
∣
∣
∣
∣

dx
d fd(x)

∣
∣
∣
∣

(2)

Using the auto-encoder property, we can approximate

dx
d fd(x)

= dx
d z̃

≈ dx
dz

= d fe(z)
dz

(3)

And insert (3) into (2) to finally get

p̃z̃(z̃|ci ) = p̃x( fd(x)|ci )
∣
∣
∣
∣

d fe(z)
dz

∣
∣
∣
∣

(4)

The estimated and approximated density p̃z̃(z̃|ci ) is a gen-
erator model of process curves. This can be used to study
the general influence of a process condition on the process
curves. The influence of a continuous-valued condition or
outcome can be revealed from data in a similar way only if
the condition is discretized in intervals and a classifier for the
condition-value intervals is used to find the present condition
range.

The continuous condition estimator as shown in Fig. 1 can
be used to derive the distribution of the continuous-valued
condition c or outcome q, which is related with the distribu-
tion of process curves of a discrete condition (Eq. 1), which
is derived by Bayesian inference as described above. For
the example of resistance spot welding, this might be the
distribution of the quality measure “welding spot diameter”
(continuous condition) of different welding guns and metal
sheet combinations (discrete conditions).

With the estimator for a single quantity q represented by
q = fq(x) , the distribution of q can be found by

p̃q(q|ci ) = p̃x(fq(x)|ci )
∣
∣
∣
∣

dx
d fq(x)

∣
∣
∣
∣

(5)

With the method presented so far the statistical properties
of the process under different conditions can be modeled
and the influence of such conditions be studied in terms of
moments of the modelled distributions.

The resulting density functions under different conditions
canbeused aswell to estimate transformation functions of the
latent space (and thereby of the curve representation space),
which transform the densities from one into the other, as
discussed in the previous section.

Method for the determination of the latent
feature space

Multi-task learning objective function

The proposed approach shown in Fig. 1 automatically derives
features, which allow the optimal reconstruction of process

curves and also capture maximum information about process
conditions. The features can therefor represent the process
curve deformation caused by different process conditions.
Also the effect of different process outcomes on the shape of
the process curves is represented by the features.

The encoder transformation of the data into the feature
space is learned via multi-task learning together with the
involvedmodels of the decoder, classifier and estimator tasks,
whichprocess the data in the feature space.Eachof theNeural
Network mapping functions of Fig. 1 is parametrized by its
weight values, which forms the parameter vector λ: With
the encoder output x = fe(z, λe) we get the latent space
representation of z. Using the latent space representation as
input we get the outputs of the total multi-task network:

z̃ = fd(x,λd) = fd( fe(z,λe),λd),

c = fc(x,λc) = fc( fe(z,λe),λc),

q = fq(x,λq) = fq( fe(z,λe),λq)

(6)

The parameters of all networks are simultaneously opti-
mized, which means, that for the combined parameter vector
λall = [λe,λd,λc,λq]T the optimum λ∗

all is seeked for all
process K curve samples zi to deliver the corresponding ci
and qi values and to reproduce zi as good as possible, which
is expressed by the search for the minimum of a loss function
for the training sample set {zi , ci , qi }Ki=1:

λ∗
all = argminλall J (λall); J (λall) =

K
∑

i=1

Ji (λall) (7)

The loss function is composed of the weighted loss terms
of all tasks, where γd is the weight of the decoder loss, γc
the weight of the condition classifier loss and γq the weight
of the outcome estimator loss.

Ji = γd Jid + γc Jic + γq Jiq (8)

The reconstruction loss of the decoder is the L2 norm of
the difference:

Jid = (zi − fd( fe(zi ,λe),λd))
2 (9)

The classifier loss is chosen as soft-max cross entropy �:

Jic = �(ci , fc( fe(zi ,λe),λc)) (10)

The esitmator loss is again the L2 norm of the difference:

Jiq = (qi − fq( fe(zi ,λe),λq))
2 (11)
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An optimizer is seeking the optimal set of all parameters
λ∗
all:

[λ∗
e ,λ

∗
d,λ

∗
c ,λ

∗
q] = argminλall

K
∑

i=1

γd(zi − fd( fe(zi ,λe),λd))
2

+ γc�(ci , fc( fe(zi ,λe),λc))

+ γq(qi − fq( fe(zi ,λe),λq))
2

(12)

The optimization also comprises and yields the optimal
parameters of the process curve feature space transformation
λ∗
e , giving x = fe(z,λ∗

e).

General solution architecture

The optimization of the multi-task objective function (12)
yields a low dimensional representation space with features,
which are sensitive to the process conditions. Chosing a low-
dimensional feature space forces the generalization of the
features and lends itself to visualization. The proposedmulti-
task learning scheme of Fig. 1 allows to reveal and describe
the influence of conditions/outcomes on the process curves
by means of feature space analysis. These components are:

– The encoder, which transforms the process curves to their
low-dimensional feature space representations and there-
fore enables the probability density estimation,

– The condition classifiers to estimate the condition prob-
ability posteriors depending on the latent-space features,

– The estimators to incorporate the relation between latent-
space features and process outcomes, and

– The decoder to allow the reconstruction of class-conditio-
ned curve probability densities.

The transformation models of all these components are
determined from adapting the corresponding model param-
eters with a sample data set of sampled process curves. The
curves are sampled bymeasuring the observables during pro-
cess executions under different conditions. A representative
sample requires that the condition space is sampled with suf-
ficient density. After each process execution, the respective
process outcomes are measured.

The multi-task objective function is optimized with these
sample data. The optimization corresponds to the application
of a machine learning methodology called “Multi-Task-
Learning” (MTL) (Caruana 1997). It has a common feature
extraction and multiple, subsequent task processing net-
works, each for a different task (see Fig. 2). MTL is a method
to train a single, composed neural network for the simul-
taneous solution of different tasks. In the layers above the
bottleneck they have common structures which are reused.

Fig. 2 Mulitask learning scheme

The layers below the bottleneck represent separate special-
izations for the different tasks.MTL is pursuing the approach
of training all tasks in parallel with each other at the same
time to allow a solution structure for one task to use the infor-
mation of the solution structures for the other tasks. The tasks
are of one of the following categories: (1) classification in the
case of conditions and outcomes of discrete values, (2) esti-
mation in the case of conditions and outcomes of continuous
values and (3) the reconstruction (decoding) of the process
curves to enable the feature extraction via auto-encoding.

Non-linear auto-encoding is usually achieved via bo-
ttleneck Neural Networks (DCNNs in our case), which are
forced to learn to reproduce the input patterns at the output as
precisely as possible with only a few numbers of bottleneck
neurons (see Fig. 2). The activations of the bottleneck neu-
rons are the feature values representing the input, resulting
from the encoding by the preceding layers.

These activations are then used as input to the successive
decoder layers, where the last layer delivers a pattern similar
to the input. The training of the multi-task structure is per-
formed by optimization according to Eq. 12which is realized
byAlgorithm 1 below, where the function execute-task() also
comprises the optimization of the encoder and task-specific
parameters.

Algorithm 1Multi Task Learning
1: for all epoch in epochs do
2: if epoch mod number-of-tasks equals task-number then
3: execute-task()
4: end if
5: end for

Time-convolutional Neural Networks are proposed to be
used for the encoder network because of the advantages of
d-CNN for feature extraction found by Dai et al. (2017)
and because of the fact that process curves can be thought
of a composition of time-localized curve-shape primitives.
Another motivation to propose the use of d-CNN is their
success in image analysis, where they have been able to

123



Journal of Intelligent Manufacturing

significantly improve the results in segmentation, object
detection and classification.

The most common CNN architectures align several con-
volutional layers, including the Relu activation function f(x)
= max(0, x), which are followed by pooling layers. This pat-
tern is repeated until the input data is reduced to a small
representation. In addition, a subsequent processing by fully
connected layers is common. The last fully connected layer
generates the output data. Thus, the generic pattern for such
CNN architectures is defined by:

Input → [[Conv → Relu]*N → Pool?]*M → [Fc →
Relu]*K → Fc

Concept instantiations for resistance spot
welding processes

The proposed concept of the previous chapters is instantiated
to reveal the influence of conditions and outcomes on the pro-
cess curves of resistance spot welding processes. Different
Neural Network topologies are investigated and compared
with each other and with a PCA feature extraction as non-
neural baseline.

For the feature extraction, both, multilayer perceptrons
and convolutional neural networks, are used. The goal is to
fulfil all tasks satisfactorily with only a few features. Two,
three, four and eight features will be use in the evaluation
experiments.

In the context of hyper-parameter optimization of theNeu-
ral Networks, the method grid search is used. Based on the
analysis of the hyper-parameters, the following decisions are
made about the investigated hyper-parameters: The Xavier
method (Glorot and Bengio 2010) is used for weight initial-
ization. The Relu activation function is used due to the best
results in terms of accuracy. The Adam Optimizer (Kingma
and Ba 2014) was found to be most efficient. A descending
size of the feature maps in the encoder network was selected.
Average-Pooling is used for sub-sampling in a Gaussian res-
olution pyramid.

In place of CNN also Fully Connected Neural Networks
(FCNN) are used as encoders. The difference between FCN-
and CNN based features is the locality of the feature prop-
erties in the original curves. CNN are better suited if local
properties are more relevant, otherwise FCN are the better
choice.

Resistance spot welding sample process

Resistance spot welding is used to connect metal compo-
nents. In the present application, the components are steel
sheets. The steel sheets are squeezed locally by the welding
gun electrode tips and form a contact area. The latter is heated
by electric current with simultaneously continued electrode

force until the sheetmaterial startsmelting in the contact area.
When the current is shut off, the material re-solidifies again
and forms a welding spot, which joins the two (or more)
sheets. The resulting welding spot usually has the form of
an ellipsoid and is characterized by its maximum equato-
rial diameter. The basic parameters governing the welding
process are (1) the time, for which current flow and elec-
trode force are maintained (‘welding time’), (2) the level
of the current between the electrodes (‘welding current’)
(3) and the squeezing force exerted on the sheet com-
pound by the electrodes (‘electrode force’). Figures 3 and 4
show the principle resistance spot welding arrangement and
procedure.

The process data consists of samples of the waveforms
(Fig. 5) of electrode voltage (V) and welding current (kA)
measured within a given (varying) welding time. These val-
ues can be used to calculate the power curve (kW) as shown
in Fig. 5.

Fig. 3 Resistance spot welding arrangement

Fig. 4 Resistance spot welding procedure
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(a)

(b)

(c)

Fig. 5 Voltage, current and power curves of a welding process

Specifics of the resistance spot welding evaluation
case

The problem to be solved in the evaluation case is to find
universal features describing all possible welding curves
independently for all specific conditions. These are the weld-
ing gun types (reflecting geometry and type of drive) and steel
sheet combinations (determined by materials, thicknesses
and number of sheets). All these conditions have influence on
the shape of the welding curves, which has to be reflected by
the extracted features. The available experimental data com-
prise almost 4000 power curves with three different welding
guns with different geometry/ drive combinations labeled as
guns ‘1’, ‘2’and ‘3’ and eight steel sheet combinations (SSC)

Table 2 Welding process parameters

Parameter Value

Gun types Gun1, Gun2, Gun3

Material combinations SSC1, SSC2, …, SSC8

Welding time Milliseconds (ms)

Welding current level Kiloamps (kA)

Electrode force Kilonewtons (kN)

of different standard and high-strength steels. The welding
process parameters are summarized in Table 2.

Preprocessing

The following sectiondescribes the preprocessingof the sam-
pled raw data.

The considered power curves are sampled at 1 ms inter-
vals and last for 512 ms, where the power may be cut (be
zero) after shorter periods. The power curves are determined
by the total resistance of the steel sheets plus the resistance
of the welding gun itself, which is constant and irrelevant for
the welding process. Therefore the resistance R0 is measured
during a “weld” without steel sheets and the corresponding
welding gun power contribution subtracted from the calcu-
lated power values of the welding curve. ed via a discrete
Gaussian filter with a standard deviation of 1.7 ms and a
length of the Gaussian window of 6 ms. The curves are stan-
dardized to have zero mean and unit variance.

Instantiated encoder topologies and parameters for
the spot welding application

The MLP topology (see Fig. 6a and Table 3) includes three
fully hidden connected layers that halve the size of the pre-
ceding layer. The result of the third hidden layer is mapped to
the bottleneck size by a fourth hidden layer, the ’bottleneck
layer’. The topology is formulated as a pattern following:

Input → [Fc, Relu] * 4 → Bottleneck
The calculated power curves are subject to measurement

noise and smooth
The layout of the CNN topologies (CNN-VA1, CNN-VA2

and CNN-VB1 in Fig. 6 follows the findings of “Time-series
analysis of process data” section. The first convolutional
layer of each network has a filter kernel size of 25. This allows
the detection of local structures of the power curves. Another
common property is a stride of length one and thereby no
sub-sampling in the convolutional layers. Sub-sampling is
performed instead in the pooling layers with stride of length
two, halfing the pooling layer input. Each convolutional
layer of all topologies contains a Relu activation function to
process the convolution result. In each topology, the convolu-
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Fig. 6 Instantiated encoder topologies with a MLP, b CNN VA1, c
CNN VA2 and d CNN VB1

tional layers and the pooling layers are stackedmultiple times
and their output is vectorized. This high-dimensional vector
is finally processed by a combination of two consecutive fully
connected layers with Relu activation function to produce the
low-dimensional feature vector. The topologies differ in the
number of the convolutional and pooling layers (variant A1,
variant A2) and in their arrangement (variant B1).

CNN-VA1 consists of two consecutive blocks composed
of one convolutional and one pooling layer. The result of
the last pooling layer is vectorized and used for further pro-
cessing by the fully-connected network combination. The
formula of CNN-VA1 in pattern notation is:

Input → [Conv, Relu, Pool] * 2 → [Fc, Relu] * 2 →
Bottleneck

The Structure CNN-VA2 has one additional block of
Conv-Relu and Pooling layer and is otherwise like CNN-
VA1. In pattern notation CNN-VA2 is:

Input → [Conv, Relu, Pool] * 3 → [Fc, Relu] * 2 →
Bottleneck

The effect of the additional block is twofold: Higher order
relations between curve features are considered and the size
of the vector layer is halfed due to the additional pooling
layer.

Table 3 Instantiated encoder topologies

Model Layer Layer type Output dim.

MLP 0 Input layer 512 × 1

1 Fc + Relu 256 × 1

2 Fc + Relu 64 × 1

3 Fc + Relu 2, 3, 4, 8 × 1

CNN VA1 0 Input layer 512 × 1

1 Conv 1 × 25 + Relu 512 × 16

2 Avg.-Pool 1 × 2 256 × 16

3 Conv 1 × 7 + Relu 256 × 8

4 Avg.-Pool 1 × 2 128 × 8

5 Vect. 1024 × 1

6 Fc + Relu 512 × 1

7 Fc + Relu 2, 3, 4, 8 × 1

CNN VA2 0 Input layer 512 × 1

1 Conv 1 × 25 + Relu 512 × 16

2 Avg.-Pool 1 × 2 256 × 16

3 Conv 1 × 7 + Relu 256 × 8

4 Avg.-Pool 1 × 2 128 × 8

5 Conv 1 × 7 + Relu 128 × 4

6 Avg.-Pool 1 × 2 64 × 4

7 Vect. 256 × 1

8 Fc + Relu 128 × 1

9 Fc + Relu 2, 3, 4, 8 × 1

CNN VB1 0 Input layer 512 × 1

1 Conv 1 × 25 + Relu 512 × 16

2 Conv 1 × 7 + Relu 512 × 16

3 Avg.-Pool 1 × 2 256 × 16

4 Conv 1 × 7 + Relu 256 × 8

5 Conv 1 × 7 + Relu 256 × 8

6 Avg.-Pool 1 × 2 128 × 8

7 Vect. 1024 × 1

8 Fc + Relu 512 × 1

9 Fc + Relu 2, 3, 4,8 × 1

CNN-VB1 has the same general structure as CNN-VA1,
but with different blocks, which consist of two consecutive
conv layers, followed by one pooling layer. CNN-VB1 is in
pattern notation:

Input→ [Conv, Relu, Conv, Relu, Pool] * 2→ [Fc, Relu]
* 2 → Bottleneck

The final output of the last fully connected (plus Relu)
layer forms the feature vectors in each case. Every architec-
ture is investigated with two, three, four and eight features.

In addition to the investigation of the proposed Neural
Network structures, the linear feature extraction via PCA is
used to create a performance baseline for the comparison.
The number of output components equals two, three, four
and eight, analogous to the feature vector size.
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Feature-space processing networks architecture and
parameters of the spot welding application

The data of the feature vector layer are used as input data for
the feature-vector processing networks.

The processing network structures used for the classi-
fications tasks (the three welding gun types and the eight
steel sheet combinations), for the estimator task (of the
welding spot diameter) and the decoder task (reconstruc-
tion of the input welding curve) are shown in Fig. 7. The
low-dimensional feature-space input is first non-linearily
transformed to a higher-dimensional space to enable the
formation of a non-linear class-separation surface of the clas-
sifier. This is achieved by a fully connected layer with Relu
activation function. This is followed by another such layer,
reducing again the dimensionality to deliver the final features
for the Softmax classification layer, which assign confidence
values between zero and one to the class outputs. The esti-
mator has the same first two processing layers, which feed
a linear final regressor, giving a float output value for the
welding spot diameter. The structure details can be taken
from Fig. 7. The decoder has a typical up-sampling layout by
incresing the dimensionality from the feature vector size up to
the number of sampling values of the process curve by three
fully-connected layers with Relu activation function and a
subsequent linear layer: Feature vector → [Fc+Relu]*3 →
Fc. The number of neurons can be seen in Fig. 7 and Table 4.

Evaluation of different latent-space feature
extractors for resistance spot welding
process curves

The approach presented in “Method for the determination
of the latent feature space” and “Concept instantiations for

Fig. 7 Feature-space processing networks with a classifier welding
gun type, b classifier steel sheet combination, c estimator welding spot
diameter and d decoder

Table 4 Feature-space processing networks

Task Layer Layer type Output dim.

Classifier
welding gun
type

0 Input layer 2, 3, 4, 8 × 1

1 Fc + Relu 20 × 1

2 Fc + Relu 10 × 1

3 Fc + Softma × 3 × 1

Classifier steel
sheet
combination

0 Input layer 2, 3, 4, 8 × 1

1 Fc + Relu 24 × 1

2 Fc + Relu 12 × 1

3 Fc + Softma × 8 × 1

Estimator
welding spot
diameter

0 Input layer 2, 3, 4, 8 × 1

1 Fc + Relu 16 × 1

2 Fc + Relu 8 × 1

3 Fc 1 × 1

Decoder 0 Input layer 2, 3, 4, 8 × 1

1 Fc + Relu 128 × 1

2 Fc + Relu 256 × 1

3 Fc + Relu 512 × 1

4 Fc 512 × 1

resistance spot welding processes” sections is evaluated in
two steps. In the first step, for every task, the encoder block
is connected only to one single processing task to check if
the dimensionality of the feature vector space is in principal
sufficient to bear the required information after training the
corresponding single task. After this has been proven, the full
multi-task learning is performed on the data. The resulting
generalized features are evaluated with all connected feature
processing networks to check, if they still carry the informa-
tion about the conditions. Furthermore, the precision of the
input reconstruction is analyzed for the generalized features.

Evaluationmetrics

In the following the model performance quality measures of
each task are presented.

Classification of theWeldingGunType and theSteel Sheet
Combination: The Softmax layer of the classifier delivers
estimates of the Posterior of the classes. The class label with
maximum Posterior is assigned to the input data. This results
in true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) predictions, which are presented by
the confusion matrix.

The accuracy gives an insight into how many objects are
correctly classified:

Accuracy = T P + T N

FP + FN + T P + T N
(13)

The estimator quality is measured by comparing the esti-
mated diameter dest and the ground truth diameter dreal of
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all K curves in the sample. The measure is the mean squared
difference between prediction and ground truth:

MSE = 1

K

K
∑

i=1

(dreali − desti )
2 (14)

The reconstruction error of the decoder is represented
by the Mean Relative Absolute Deviation (MRAD). The
sampled, measured power curve is represented by preal and
the corresponding, reconstructed power curve by prec. The
MRAD is then the mean of the relative, absolute differences
between the j = 1, . . . , N vector components, averaged over
all K samples.

MRAD = 1

K

K
∑

i=1

1

N

N
∑

j=1

|preal j,i − prec j,i |
preal j,i

(15)

Evaluationmethods and training

The neural networks use the power curves as input data,
which are subject to the preprocessing of “Preprocessing”
section. The sample is split in 15% test data and 85% train-
ing data. The sample distributions of the different welding
gun types and steel sheet combinations are stratified in the
data set. In addition, the data for the training is divided into
several batches. After each epoch, the entire training and test
data set is applied to the network to determine the respective
quality measures of “Evaluation metrics” section. Based on
these measures, early-stopping (Prechelt 2012) is applied to
save the best interim result in order to prevent overfitting.
Early stopping should be used almost universally to prevent
overfitting (Goodfellow et al. 2016) in Multilayer Percep-
trons and Convolutional Neural Networks, why it is used in
combination with L2 regularization (Krogh and Hertz 1991)
in this work. The training data is stochastically re-sampled
within each epoch. The training comprises 4000 epochs.

Each network is trained and evaluated ten times with
differently sampled training and test data. From these ten
evaluation results, the mean and the standard deviation are
calculated to show the quality and robustness of the machine
learning results, where a higher standard deviation implies
lower robustness of the topology w.r.t. the data.

Evaluation results with generalized features

The results of all tasks (welding gun classification, steel sheet
combination classification, estimation of the welding spot
diameter, and reconstruction of the welding curve) are shown
for all architectural variants (MLP, CNN VA1, CNN VA2,
CNN VB1, as declared in “Instantiated encoder topologies
and parameters for the spotwelding application” section) and
for PCA feature extraction (as conventional baseline) in the

bottleneck sizes two, three, four and eight. This is followed
by a comparison of the implemented architectures based on
the quality criteria.

The performance (quality and robustness) of the CNN
encoder structures slightly outperform MLP in most cases
and both neural structures are significantly superior to the lin-
ear PCAbaseline. The performance improveswith the size of
the bottleneck layer for CNN, MLP and PCA. This is shown
in Fig. 9, which shows the dependency of the quality metrics
for the tasks of welding gun and steel sheet combination clas-
sifications, of the estimation of thewelding spot diameter and
the reconstruction error of the process curves on the bottle-
neck size N of the topology CNN VA2. The quality metrics
of different topologies, all with the same bottlenck size of
eight are compared in Fig. 8. The different network topolo-
gies show different quality rank order for different tasks. The
decision upon a dedicated topology is determined by the aver-
age over the weighted ranks of all tasks. The rank of a task is
weighted by the relative importance of the respective task. In
this work, no task preference is assumed andweight one used
for all tasks. The resulting average rank values of all topolo-
gies (except the linear PCA) are comparable, while CNN
VA2 shows the slightly best overall performance (includ-
ing robustness), as shown in Figs. 8 and 9. The evaluation
shows that even CNN with bottleneck size as small as three
has smaller, but sufficient representation power. The perfor-
mance of the representative top-ranking CNN VA2 structure
with bottleneck sizes (denoted as bs) eight and three are com-
pared to PCA in the Table 5.

The evaluation results show that a low-dimensional, gen-
eralized feature space can be found via CNN-architectures.
Those features do not only allow a sufficient reconstruction
of the welding curves, but also bear the information on the
process conditions and on the process result. This was proven

(a) (b)

(c) (d)

Fig. 8 Comparison of the results for bottleneck size = 8 of the investi-
gated topologies for the tasks a welding gun classification, b steel sheet
combination (ssc) classification, cwelding spot diameter estimation and
d reconstruction
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(a) (b)

(c) (d)

Fig. 9 Comparison of the results for different bottleneck sizes of the
top-ranking topology CNN VA2 for the tasks a welding gun classifi-
cation, b steel sheet combination (ssc) classification, c welding spot
diameter estimation and d reconstruction

by the classification quality with respect to the process con-
ditions of the welding gun and steel sheet combination and
the estimation quality, all of them based on the generalized
features. The resulting feature space is not only universal
with respect to reconstruction, process conditions and pro-
cess result, but also low-dimensional, as required.

The training of CNN structures with a given bottleck size,
was in some cases switching off some of the bottleneck neu-
rons by constantly setting their outputs to zero. This means
that the feature space dimension was effectively smaller than
the bottleneck size after training. Some CNN structures with
bottleneck size three were setting one bottleneck neuron to
zero, thus creating an only two-dimensional latent space,
which makes them especially well suited for studies includ-
ing visualization. Therefore they are used in the subsequent
chapters despite their lower performance compared to CNN
structures with higher bottleneck sizes.

Latent-space representation and conditional
generative and transformationmodels of
resistance spot welding process curves

First, the welding curve representations are compared in
the latent space, which results from only an auto-encoder,
with a latent-space representation from multi-task learning.
Next the conditional densities are estimated in the multi-
task-learned latent space from the encoded sample curves via
Kernel-density (Rosenblatt 1956) approximation. The den-
sity functions of different conditions (two different welding
guns) are used to estimate a transformation of the latent space
variables,which transforms one density on the other. The rep-

Table 5 Evaluation results Accuracy (%) Standard deviation of accuracy (%)

Welding gun classification

PCA bs = 8 72.27 2.20

CNN VA2 bs = 8 87.14 1.64

CNN VA2 bs = 3 86.51 1.34

Steel sheet combination (ssc) classification

PCA bs = 8 71.62 1.89

CNN VA2 bs = 8 79.36 1.74

CNN VA2 bs = 3 70.86 4.95

Welding spot diameter estimation MSE (mm2) Standard deviation of MSE (mm2)

PCA bs = 8 1.11 0.08

CNN VA2 bs = 8 0.90 0.03

CNN VA2 bs = 3 1.01 0.13

Reconstruction MRAD Standard deviation of MRAD

PCA bs = 8 0.23 0.09

CNN VA2 bs = 8 0.18 0.06

CNN VA2 bs = 3 0.32 0.11

The accuracy is defined in Eq. 13. The measured ground truth of the spot diameter in the sample has a range
between 2.5 and 8 mm and a standard deviation of 0.6 mm
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(a) (b)

(c) (d)

Fig. 10 Comparison of representations in feature spaces learned with
autoencoder-only learning (top row) and with multitask learning (bot-
tom row). Left column: welding gun color labeled sample points (red:

Gun 1, blue: Gun 2). Right column: SSC color labeled sample points
(color code: see legend) (Color figure online)

resentations of individual welding curves from one welding
gun are transformed accordingly to the other gun, then recon-
structed by the decoder and compared to the original curve
belonging to the nearest neighbour representation of the tar-
get gun. We restrict our experimental investigations below to
the case of two welding guns only, because the third weld-
ing gun (which was used in MTL training) has only a low
number of samples, preventing a meaningful estimation of a
conditional density.

Influence of MTL on latent space structure and
densities

Multitask-Learning with auto-encoder, classifier and estima-
tor loss functions has the effect of separating the feature
representations of thewelding curves according to the respec-
tive semantics of the classifiers and estimators. This effect is
shown in Fig. 10, where the distributions of the sample curve
representations are compared in the latent space, resulting

fromMTL and autoencoder-only learning. The improvement
in arranging the representations in semantically separated
areas by MTL is clearly visible for the welding guns (Fig. 10
bottom left) and steel sheet combinations SSC (Fig. 10 bot-
tom right), which are much better separated in theMTL case.
From these samples the corresponding conditional densities
pest (x|cgun, cssc), x ∈ latent space (conditions: class labels
of welding gun type cgun and of steel sheet combination
cssc) can be estimated from the condition-filtered latent-
space sample points using e.g. the Kernel density method.
The resulting two welding-gun conditional densities for the
specific steel sheet combination SSC 8 pest (x|cgun1, cssc8)
and pest (x|cgun2, cssc8) are shown in Fig. 11 with the sam-
ple point clouds, which were used to estimate the densities,
in colour blue and red, respectively. The estimated densi-
ties represent conditional generative model, which allows
the analysis of the effect of the conditions on the densities,
which is studied in the next sub-section.
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(a)

(b)

Fig. 11 Estimated density functions (a) forWeldingGun 1 andWelding
Gun 2, calculated from sample points shown in b. For colors see legend
(Color figure online)

Transformation models of latent space densities with differ-
ent conditions

Density functions can be transformed one into the other by
a transformation of the latent space variables, which rep-
resents the effect of the conditions on the latent space in
the sense, that the stochastic generative process of one con-
dition is transformed in a way that it generates samples,
which obey the same distribution as for the other condi-
tion. In other words: The stochastic generative process under
a certain condition is transformed into a stochastic gener-
ative process under a different condition. Models of such
transformations could be estimated assuming a generic trans-
formation (such as affine transformation) and estimating the
transformation parameter values. Frommultiple suchmodels
(parameter value instances) a model of the dependency of the
parameters on the conditions can be established, represent-
ing a process hyper-model, as introduced in “Introduction”
section. Similar ideas are applied in applications of VAEs
(as discussed in “Variational and conditional variational
autoencoders (VAEs and CVAEs)” section, where -instead of
modelling condition-dependency of the densities- only lin-

ear interpolations between samples are applied directly in the
latent space. The remaining part of the subsection shows the
estimationof the latent-space transformation,whichmaps the
density pest (x|cgun1, cssc8) on density pest (x|cgun2, cssc8) as
an example of this procedure. We use a linear transformation
matrix A of the latent-space coordinates x̃′ = Ax̃ in homo-
geneous coordinates (to also include shift transformations)
x̃ = [x, 1]T andminimze the squared difference loss function
to yield the estimated transformation

A∗ = argminA

[pest (Ax̃|cgun1, cssc8) − pest (x̃|cgun2, cssc8)]2.
(16)

The minimization is performed by equidistantly sampling
the (via Kernel-density) estimated densities in the original
and transformed space and finding the optimal transfor-
mation. The optimization is performed with an ADAM
optimizer (Kingma and Ba 2014). A regularization term is
included in the loss function, which keeps the integral of
the transformed density close to one, taking care of the nor-
malization property also of the transformed density. This
procedure is applied to the two densities as introduced above
to reveal the influence of the welding gun in the case of ssc8.
The two original densities with fixed ssc8 condition and Gun
1 and Gun 2 conditions, estimated from the corresponding
samples, are shown with the overlayed transformed Gun 1
density in Fig. 12. It can be seen that the chosen linear trans-
form is sufficient in this case and the transformed Gun 1
density is in good agreement with the Gun 2 density.

If the transformation is applied directly to the Gun 1 sam-
ple points, we also get a good agreement with the point
cloud of Gun 2 as can be seen in Fig. 13. To see how a
change in process conditions (such as tool types, workpiece
material properties, and so on) changes the evolution of the
process (as reflected by the process curve), we estimate a
process curve transformation depending on the condition
change. The result in Fig. 13 shows that the point cloud of
the measured sample points under condition 1 almost coin-
cides with the tranformed point cloud of the sample points
under condition 2,where each pointwasmapped by the trans-
formation matrix, which was optimized to map the density
function under condition 2 on the density function under con-
dition 1. This nearly coincidence implies that a model for
the transformation between the generating processes under
both conditions was found. Going back to the transformed
densities, all quantities, which can be derived from a den-
sity function can be transformed as well. This could be the
average process curve, which is frequently used in qual-
ity measurements, but also the variance of process curves,
which is frequently used as a bound for process controls.
Any higher-order statistical moment, which has importance
for control or quality assessment can also be derived.
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(a)

(b)

Fig. 12 a Transformed density (green color) from estimated linear
latent space transformation of Gun 1 density (red color). b Contour
plot of transformed densities as shown in a along with Gun 2 density
(blue color) for comparison (Color figure online)

Fig. 13 Result (green) of the feature space transformation on the sample
points of Gun 1 (red), overlayed with Gun 2 sample points (blue) (Color
figure online)

The comparison of the re-constructed curves of two trans-
formed Gun 1 sample points with the reconstruction of its
nearest Gun 2 neighbours in Fig. 14 shows a high similarity.

Additionally, we investigated three further transforma-
tions, exploring the condition space ofwelding guns and steel
sheet combinations of the sample application. The results are
depicted in Figs. 15, 16 and 17 in Appendix A, with (a) the
contour plots of the original densities (red and blue) and
of the transformed density (green), (b) the resulting sample

(a)

(b)

Fig. 14 Reconstructed curves

points (green) after the corresponding feature space transfor-
mation, along with the original sample points, and (c) and
(d) compare the reconstructed curves of two sample points,
the first curve (red) reconstructed from a point drawn from
the original sample under condition 1 and the second curve
(green) reconstructed from the next transformed neighbour
under condition 2 under the previously estimated transfor-
mation between condition 1 and condition 2. It can be seen
that the previous findings for the condition transformation
hold in general true for the sample application.

An in-depth investigation in hyper-modelling, generaliz-
ing the inluence of conditions on the processes, which is
revealed with the above methods, will be subject of future
work.

Conclusion

A method for the extraction of a latent variable space from
process curves bymeans ofCNNs has been developed,which
uses multi-task learning to let the latent space also reflect
dependencies of process conditions. It is built by attaching a
decoder (reconstructing the process curve), a classifier (for
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discrete conditions) and an estimator (for continuous condi-
tions) to the output layer of the encoding CNN. The result
is a latent space at the CNN output (its bottleneck layer),
where the process curves are represented in a way, which is
also sensitive to the conditions. The validity of the concept
was provenwith resistance spotwelding as application exam-
ple. Different CNN and FCNN architectures were explored
and compared. An only three-dimensional latent space was
found, which enables the welding curve reconstruction, the
classification of the welding gun in use and the welded steel
sheet combination, as well as the estimation of the welding
spot diameter independently and with sufficient accuracy. A
comparisonwith a latent spacemadeupof threePCAfeatures
showed the superiority of the non-linear feature extraction
with CNN and FCNN, where using the CNN showed a slight
advantage over using FCNN.

The latent space resulting from the proposed approach
enables the transformation of the stochastic processes (their
probability denisities), which generate the process curves
instances, to other process conditions. This is an important
pre-condition for hyper modeling of the processes, where the
dependencies of the process on varying conditions is cap-
tured and can be used to predict the properties of previously
unseen processes. Investigations of the proposed approach
for hyper modeling will be the subject of future work. As a
by-product, conditions can be easily found from a process
curve, and hidden conditions can be detected.
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Appendix A: Results of further transforma-
tions

See Figs. 15, 16 and 17.

(a)

(b)

(c)

(d)

Fig. 15 Investigated transformation: (Gun1, SSC7) → (Gun2, SSC7)
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(a)

(b)

(c)

(d)

Fig. 16 Investigated transformation: (Gun1, SSC7) → (Gun1, SSC8)

(a)

(b)

(c)

(d)

Fig. 17 Investigated transformation: (Gun2, SSC7) → (Gun2, SSC8)
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