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Abstract
The scheduling of gantry cranes with respect to mutual interference has received considerable attention in recent years. We
consider a subproblem which arises when each crane has a sequence of tasks to be assigned. The problem is concerned with
resolving the interference between two cranes by determining which crane avoids the other in order to let it complete its next
task first. We provide a fairly general problem framework accounting for different crane systems and various side constraints.
We assume a cost function for each task that determines the cost of completing the task at a specific point in time. We then
distinguish between the objectives to minimize both the total cost and the maximum cost among tasks. A general dynamic
programming framework is provided which allows us to solve all problem versions in pseudo-polynomial time. Furthermore,
we show that while the general problem aiming for minimum total cost is binary NP-hard, the general problem aiming for
minimum maximum cost can be solved in polynomial time. Finally, we address two important special cases of the former,
and we show that they can be solved in polynomial time as well.

Keywords Port operations · Container logistics · Gantry crane scheduling · Resolving mutual interference

1 Introduction

Over the past few decades, the automation of seaport con-
tainer terminal equipment has steadily increased. Automated
rail-mounted gantry cranes (RMGs) represent a major suc-
cess story from this period, and they have allowed terminal
designers to increase the number of containers processed and
stored with less cost and fewer space requirements.

Typically, in seaport container terminals, containers are
temporarily stored in blocks, and different types of devices
are available to manage those blocks. Among them, we find
RMGs which span the whole storage block in width and
move on tracks installed alongside the block. As opposed to
straddle carriers and rubber-tired gantry cranes, which are
not automated, RMGs are fixed to a certain block within the
container storage area. As a consequence, they can handle
containers only within the storage area and hence have to
hand over the containers to transport devices or receive con-
tainers from them at the short side of the block.
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We can find one of four different settings of one to three
RMGsmanaging a single block. First, there might be a single
cranemanaging the block. Second, we can have two identical
cranes running on the same pair of rails. Obviously, these
cranes cannot pass each other, and thus one is always located
closer to the seaside and the other closer to the landside.
We refer to cranes in this setting as twin cranes. In a third
scenario, we might find two cranes of different sizes running
on separate pairs of rails. The smaller crane can move below
the larger crane, and thus these cranes can pass each other.
However, the smaller crane can be located below the larger
crane only if the larger crane’s spreader is up. We refer to
cranes in this setting as crossover cranes. Finally, there might
be three cranes, two identical smaller ones and a larger one.
The smaller ones cannot pass each other, but both can pass
the larger one. In this paper, the focus is on settings with two
cranes.

In addition to resolving the technological issues arising
with process automation, sophisticated scheduling tech-
niques are required. While scheduling a single crane might
already be a challenging task (see Gharehgozli et al. (2014)),
the problem becomes much more than just sequencing of
tasks if multiple cranes are considered. First, it must be
determined which crane is to conduct which task. Second,
because the cranes might interfere with each other, the right
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of way must be established. We can imagine a hierarchical
approach on three levels to execute this three-part decision.
First, we determine the assignment of tasks to cranes, then
the task sequences for each crane, and finally the right of
way in the case of interference. The subproblem on the third
level has been considered in Briskorn and Angeloudis (2016)
and Briskorn and Zey (2018). The approaches developed
have proved beneficial as workhorses in more involved opti-
mization approaches, tackling the three decision levels in an
integrated manner in Briskorn and Zey (2020), Nossack et al.
(2018), and Zey et al. (2020). Eilken (2019) generalizes the
approach for twin cranes in Briskorn and Angeloudis (2016)
and employs it to solve a subproblem as well.

Each of the aforementioned approaches aims for a min-
imum makespan schedule. While it is easy to motivate
makespanminimization, there aremany other objective func-
tions that might be interesting. For example, due dates might
be associated with tasks representing containers to be handed
over to trucks, and a reasonable objective would be to min-
imize total tardiness of tasks. In this paper, we investigate
the subproblem on the third level for two cranes and vari-
ous objective functions, and we develop algorithms for the
respective optimization problems. These algorithms could be
employed as subroutines in future research, similarly to those
in Briskorn and Angeloudis (2016) and Eilken (2019).

1.1 Literature overview

There is a huge body of scientific literature on optimization
of container transport in ports. We refer to the survey papers
on port operations in general in Stahlbock and Voß (2008);
Steenken et al. (2004) and Vis and de Koster (2003), and
in particular on seaside operations in Bierwirth and Meisel
(2010, 2015) and Carlo et al. (2015), intermediate storage
in container yards in Carlo et al. (2014a), ground container
transport in ports in Carlo et al. (2014b), and hinterland
railway access in Boysen et al. (2013). It should be noted
that there are similarities between scheduling problems for
cranes and for other devices; see Boysen et al. (2017) for an
overview.

We focus our literature overviewon scheduling approaches
for multiple cranes working on the same container block,
since interference is obviously not an issue for a single crane
operating in a container block. When considering more than
one crane, potential conflicts between the individual crane
schedules must be resolved in order to obtain compatible
schedules. While there exist some approaches for schedul-
ing two (or more) cranes on a storage block, few of them
explicitly address interference.

Dorndorf and Schneider (2010) propose an algorithm that
schedules three cranes working jointly on a block under a
multi-criteria objective. Choe et al. (2007, 2012) and Li et al.
(2009, 2012) examine the problem of scheduling twin cranes

and consider interference. Gharehgozli et al. (2015) pro-
vide a heuristic approach tackling the problem of scheduling
twin cranes when storage and retrieval operations are given
under the objective of minimizing the makespan. Boysen
et al. (2015) tackle the same problem using a decomposi-
tion approach. Briskorn et al. (2016) schedule two identical
cranes with the ability for one crane to hand over a container
to the other by setting it down in an intermediate position.
The setting is restricted such that containers are exchanged
between cranes and other devices only on one side of the
block. Jaehn and Kress (2018) and Kress et al. (2019) extend
the setting to handovers on both sides. Kovalyov et al. (2018)
examine the computational complexity of scheduling twin
cranes under various protocols for assigning tasks to cranes.

Problems on the third level of the three-part decision,
namely determining the right of way in the case of inter-
ference, have mostly been solved heuristically. Only a few
papers have focused on analyzing such problems or solv-
ing them exactly. Since this is the focus of the paper
at hand, we now consider those papers in more detail.
With both an assignment of tasks to cranes and process-
ing sequences being given, Briskorn and Angeloudis (2016)
determine conflict-free schedules with minimum makespan
in strongly polynomial time for two cranes, either twin cranes
or crossover cranes. In order to design a dynamic program-
ming (DP) approach, a geometricalmodel is developedwhich
is transformed into a graph model. Conflict-free schedules
can then be achieved by finding the shortest path in this
graph. Since the graph happens to be acyclic, this can be
done very efficiently. No further side constraints or other
objectives are considered. In Nossack et al. (2018), a two-
stage decomposition approach is proposed to determine the
task assignment and task sequences for two crossover cranes
in the first stage, while the right of way is decided in the
second stage. Here, the shortest path approach developed
in Briskorn and Angeloudis (2016) is employed to deter-
mine the right of way for given candidate assignments and
sequences. With a restriction to crossover cranes, Nossack
et al. (2018) refine the approach by Briskorn and Angeloudis
(2016) and speed it up slightly. The approach by Briskorn
and Angeloudis (2016) is employed in Zey et al. (2020),
where two twin cranes can hand over containers in a dedi-
cated position. A branch-and-bound algorithm is developed
where task assignment and task sequences are determined by
branching, and the right of way is decided by evaluating leaf
nodes of the search tree. The shortest path approach devel-
oped in Briskorn and Angeloudis (2016) is refined to account
for precedence constraints and explicit consideration of trol-
ley moves and is then used to determine the right of way.
Eilken (2019) also provides a branch-and-bound approach
for scheduling two twin cranes. However, containers can-
not be handed over from one crane to the other in this case.
Again, task assignment and task sequences are determined
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Table 1 Approaches for right-of-way decisions

Cranes Dim. Operation characteristics Objective function
Twin CO Triple G T p j w j e j d j d j prec Cmax max f j

∑
f j

Briskorn and Angeloudis (2016) � � � � �
Briskorn and Zey (2018) � � � �
Eilken (2019) � � � � � � � �
Nossack et al. (2018) � � � �
Zey et al. (2020) � � � � � �
This paper � � � � � � � � � (�) � �

CO, crossover cranes; G, gantry; T, trolley; p j , lift/release durations; w j , weights representing importance of operations; e j , earliest operation
start time; d j , hard deadlines for operations; d j , soft due dates of operations; prec, precedence constraints; Cmax, makespan minimization; max f j ,
minimization of maximum cost;

∑
f j , minimization of total cost

by branching, and the right of way is decided by evaluat-
ing leaves of the search tree. For evaluation of leaf nodes,
the approach in Briskorn and Angeloudis (2016) is extended
by accounting for release dates, deadlines, and precedence
constraints and explicitly considering trolley moves. Finally,
Briskorn and Zey (2018) extend the approach developed by
Briskorn andAngeloudis (2016) to a three-crane setting. Fol-
lowing the same basic idea, a geometricalmodel is developed
which allows for a DP approach. However, the authors do not
resolve the computational complexity of the problem. The
extended approach is also employed in Briskorn and Zey
(2020), where a branch-and-bound algorithm is again devel-
oped with task assignment and task sequences determined by
branching, and right of way by evaluating leaf nodes of the
search tree. For the latter, the approach proposed in Briskorn
and Zey (2018) is employed. While all these papers tackle
the problem on the third level of the three-part decision, they
differ with respect to the crane setting and whether trolley
moves and the characteristics of tasks are considered explic-
itly. Table 1 gives an overview of the features covered in these
papers and in the current one.

As shown in Table 1, existing approaches aim only for
makespan minimization. In the present paper, a much more
general class of objective functions is considered, namely
minimizing the maximum cost or minimizing the total cost,
where the cost of an operation is determined by an individ-
ual function mapping its completion time on a cost value.
Note that minimization of maximum cost includes mini-
mization of the makespan. Furthermore, the problems in
in Briskorn and Angeloudis (2016) are generalized in the
present paper by considering trolley moves explicitly and
taking into account various operational characteristics, and
the problems in Eilken (2019), Nossack et al. (2018), and Zey
et al. (2020) are generalized by considering both twin cranes
and crossover cranes. The problem setting in Briskorn and
Zey (2018) considers triple cranes but is far more restricted
with respect to trolley moves, operation characteristics, and
objective function.

1.2 Contribution and outline

The contribution of this paper is threefold. First, we formalize
the problem setting, distinguishing between crossover cranes
and twin cranes and two types of objective functions. Second,
we provide a pseudo-polynomial-time algorithm for themost
general problem settings considered. Third, we show that,
depending on the type of objective function, the problem
is NP-hard or can be solved in polynomial time. Further-
more, we provide strongly polynomial-time algorithms for
two important special cases.

We restrict ourselves to a deterministic and offline per-
spective on the optimization problem, for two reasons. First,
it allows for a thorough analysis of the inherent complexity of
the problem. As we will see, the computational complexity
of the problem is heavily dependent on the objective func-
tion under consideration. We hope that these insights and the
algorithmic framework we develop will provide a valuable
starting point for developing algorithms for more involved
problems as well, for example, those addressing the first two
levels of the three-part decision. Second, while it is true
that container terminals are highly dynamic and stochas-
tic environments which often require frequent revising of
decisions, those revisions will most likely also involve the
first two levels. Hence, in order to account for the dynamic
and stochastic nature, we need an integrated approach for
the three-part decision. We can easily imagine how a more
involved approach, potentially applied in a rolling horizon
scheme, bears the deterministic (sub)problem setting con-
sidered in this paper, and this approach might benefit from
a component that can efficiently solve the deterministic sub-
problem. We provide such a component.

The paper proceeds as follows. In Sect. 2, we outline the
problem characteristics and formally define the problem set-
tings. Section 3 focuses on the general problem settings.
Here, we show that it is binary NP-hard or can be solved
in polynomial time depending on the objective function con-
sidered. Section 4 highlights important special cases that can
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Fig. 1 Gantry cranes at container terminal Altenwerder, Jessen (2020)

be solved in strongly polynomial time. Finally, we conclude
the paper in Sect. 5.

2 Problem settings

In this section, we first provide an informal problem descrip-
tion in Sect. 2.1 and then a formal one in Sect. 2.2.

2.1 Problem description and assumptions

We consider a block in the storage area of a container termi-
nal managed by two cranes. Each crane’s gantry spans the
whole block in width and moves on a pair of rails installed
alongside the block. There is a trolley which moves on the
horizontal beam of the gantry and from which a spreader
can be lowered to pick up or release a container. By moving
the gantry, trolley, and spreader, each position in the three-
dimensional block can be reached. Furthermore, the gantry
can move outside the block to a limited extent to reach auto-
mated guided vehicles or trucks for handing over containers
to them or receiving containers from them. We refer to the
areas for handovers as seaside and landside handover areas,
respectively. Figure 1 depicts multiple such blocks with two
cranes each.

Interference between cranes depends on the crane setting.
For two twin craneswhich cannot pass eachother (as depicted
in Fig. 1), we require that one is closer to the seaside han-
dover area than the other throughout the planning horizon.
For twocrossover cranes,we require that the positions of their
gantries do not overlap when the larger crane’s spreader is
lowered. That is, both cranes can pass each other and can be
present in the same gantry position as long as the larger crane
has its spreader up.

For each crane, we have a predetermined sequence of con-
tainers given. Each container is associated with an origin
position within the block (including positions in handover

areas) and a destination position within the block (including
positions in handover areas). Moreover, for each container,
the time necessary for lifting it up from its origin posi-
tion and the duration for dropping it off at its destination
position is given. These container sequences prescribe the
order in which each crane conducts the container transport
assigned to it. Also, for each container and both its pickup
and its drop-off, we have a release date denoting the first time
point that it can be started and a deadline denoting the last
time point at which it can be completed. Finally, two cost
functions are given for each container, mapping the time a
container is lifted and the time a container is set down to
a cost value. How these cost values are consolidated to a
schedule’s objective value depends on the objective function
itself.

In this paper, we impose simplifying assumptions, as fol-
lows.

• The sequences of containers to be transported are fully
known, and the containers’ properties are deterministic.
The problem setting we consider is very short-term, and
thus this restriction seems to be acceptable.

• Interference between cranes depends only on the posi-
tions of their gantries. Obviously, while this might not
cover all kinds of interference, it fully accounts for phys-
ical interference.

• The gantry and the trolley of each crane move either with
full speed or not at all, that is, we neglect bounded accel-
eration. Furthermore, the full gantry speeds for the two
cranes are identical.

• The spreader can only be moved while the gantry and
trolley stand still. This is a technical prerequisite of many
cranes and a safety restriction in most container termi-
nals. However, the gantry and the trolley of a crane can
move in parallel.

• The cost functions are non-decreasing in time. As long
as release dates are respected, we typically will not suffer
from completing lifting or drop-off as early as possi-
ble, since it provides more flexibility to other devices
exchanging containers with cranes.

• We have a grid of discrete gantry and trolley positions
of cranes in the block which needs to be considered in
order to pick up or drop off a container. Since blocks are
typically discretized into slots able to host one stack of
large containers or two stacks of small containers, these
discrete positions occur naturally.

• Gantry positions of cranes are with respect to the center
of the respective gantry, and gantries do not overlap if
their positions differ by a distance of two consecutive
gantry positions in the grid.

123



Journal of Scheduling (2021) 24:367–380 371

2.2 Problem definitions

We consider a time horizon of length � and storage posi-
tions of the yard block arranged in a two-dimensional grid.
The slots in the first dimension are passed by the whole
gantry, and we refer to them as bays, with b = 1, . . . , B.
The slots in the second dimension are passed by a crane’s
trolley and are referred to as rows, with r = 1, . . . , R.
Consequently, each storage position can be identified by a
tuple (b, r) ∈ {1, . . . , B} × {1, . . . , R}. Additionally, we
have bay 0 with positions (0, 1), . . . , (0, R) representing
the seaside handover area and bay B + 1 with positions
(B + 1, 1), . . . , (B + 1, R) representing the landside han-
dover area. The set of all positions is denoted by P :=
{0, . . . , B + 1} × {1, . . . , R}.

For each crane c ∈ {1, 2}, we have an initial position
(b0c , r

0
c ) and a sequence σc of tasks with length nc. We refer

to the kth task in σc, c ∈ {1, 2} as σc(k) and denote the set
of all tasks by J . For each task j ∈ J , the duration p j ∈ N,
the earliest start time e j ∈ N, the deadline d j ∈ N for com-
pletion, and the position (b j , r j ) ∈ P are given. Duration p j

covers the time span the gantry and trolley have to remain
in position (b j , r j ) in order to conduct j , that is, time for
lowering the spreader, adjusting it, locking it to a container
(unlocking it from the container), and lifting it. Hence, the
cranes’ moves along the third dimension which are not cap-
tured by position set P are covered by task durations. Note
that we abstract from containers here and consider each lift-
ing operation and each drop-off operation to be an individual
task in σc. Since the sequence of tasks is fixed, it can conve-
niently represent a sequence of containers to be transported
from given origin positions to given destination positions.

The cranes move their gantries requiring time sg = 1 per
bay and their trolleys requiring time st ∈ N

+ per row. Thus,
if no interference occurs, it takes a crane max{|b − b′|, |r −
r ′| · st } time units to move from (b, r) to (b′, r ′).

For the input described above, a routing for crane c,
c ∈ {1, 2}, is specified by two continuous piecewise linear
functions pgc : [0,�] → [0, B+1] and ptc : [0,�] → [1, R]
with pgc (0) = b0c , p

t
c(0) = r0c , ∂ pgc /∂θ ∈ {−1, 0, 1}, and

∂ ptc/∂θ ∈ {−1/st , 0, 1/st } (if differentiable at θ ). Functions
pgc and ptc then reflect the position of the gantry and the
trolley, respectively, over time. Note that differentials taking
values in {−1, 0, 1} and {−1/st , 0, 1/st } reflect gantries and
trolleys either moving at full speed or not moving at all. We
say crane c visits position (b, r) in time interval [θ, θ ′] if
pgc (θ ′′) = b and ptc(θ

′′) = r for each θ ′′ ∈ [θ, θ ′].
A routing of crane c is sequence-compatible if for each

task j ∈ σc there is a visit of length p j in (b j , r j ) such that

• the visit associated with task σc(k) has a time interval
preceding the one of the visits associatedwith task σc(k+
1) for each k = 1, . . . , nc − 1, and

Table 2 Task properties j b j r j p j e j d j

a 5 4 3 4 8

b 6 4 2 0 20

c 5 4 4 0 20

d 8 4 1 0 20

• for each k = 1, . . . , nc the time interval of the visit of
σc(k) is in [e j , d j ].

We will say that the end of the time interval of the visit
associated with task j ∈ J is its completion time C j . For
each task j ∈ J , a non-decreasing cost function f j maps
completion time C j on a cost value f j (C j ).

A feasible solution is a pair ((pg1 , p
t
1), (p

g
2 , p

t
2)) of

sequence-compatible routings for cranes 1 and 2 which are
compatiblewith each otherwith respect to interference.Here,
we distinguish between the two types of crane settings.

• For a twin crane system, we assume crane 1 to be
the crane located towards the seaside. Then, a pair
((pg1 , p

t
1), (p

g
2 , p

t
2)) of sequence-compatible routings is

interference-compatible if pg1 (θ) ≤ pg2 (θ) − 1 for each
θ ∈ [0,�].

• For a crossover crane system, we assume crane 1 to
be the larger crane. Then, a pair ((pg1 , p

t
1), (p

g
2 , p

t
2)) of

sequence-compatible routings is interference-compatible
if |pg1 (θ)− pg2 (θ)| ≥ 1 or θ is not in an interval of a visit
associated with a task of crane 1 for each θ ∈ [0,�].
Hence, interference can occur only during visits associ-
atedwith tasks of crane 1.During these visits, the gantries
are required to maintain a distance of at least one bay.

Example In order to illustrate the concepts introduced so far,
we consider a small example concerning twin cranes with
(b01, r

0
1 ) = (3, 1), (b02, r

0
2 ) = (8, 4), st = 1, σ1 = (a, b) and

σ1 = (c, d), B = 8, R = 5 and the task properties given in
Table 2.

Now, a feasible solution is an interference-compatible pair
of routings exemplified in the following. Crane 1moves from
(b01, r

0
1 ) = (3, 1) to (5, 4), which takes three time units, waits

one time unit for ea = 4 and conducts a for three time units,
moves to (3, 4), which takes two time units and stays for
one time unit, moves to (4, 4), which takes one time unit and
stays for one time unit, moves to (6, 4), which takes two time
units, and conducts b for two time units. Crane 2 moves from
(b02, r

0
2 ) = (8, 4) to (7, 4) which takes one time unit, waits

for one time unit, moves to (6, 4) which takes one time unit
and stays for four time units, moves to (5, 4)which takes one
time unit and conducts c for four time units, and moves to
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θ

b

a

b
d

c

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 Crane 1 Crane 2

Fig. 2 Example solution

(8, 4) which takes three time units and conducts d for one
time unit.

Figure 2 depicts the gantry positions of both cranes over
time. The bold parts of the lines represent tasks being con-
ducted. Note that crane 1 needs the first time unit after
arriving in bay 5 for adjusting the trolley to row 4. For all
other moves, the crane’s trolley has reached the rowwhen the
gantry reaches the bay. Crane 1 has to wait one more time
unit before conducting a due to ea = 4.

For a feasible solution and the implied completion time
C j of each task, we consider two objective functions
max

{
f j (C j ) | j ∈ J

}
and

∑
j∈J f j (C j ) which are both to

be minimized.
In the following, we address four problem settings (and

some special cases), distinguishing between twin cranes and
crossover cranes as well as the objectives of minimization of
maximum cost among tasks and minimization of total cost.
We refer to these problems as Twin-Max, Crossover-Max,
Twin-Sum, and Crossover-Sum, respectively. Furthermore,
we consider a decision version of each of these problems
asking whether there is a solution with an objective value not
exceeding a given threshold.

The first question we are going to address is whether the
decision versions are members of NP. In order to show this,

we will consider a shorter certifier. Instead of functions pgc
and ptc, we consider two sequences of tuples

((θ
g
c,1, b

g
c,1), . . . , (θ

g
c,nb1

, bg
c,nb1

) and ((θ tc,1, b
t
c,1), . . . , (θ

t
c,nt1

, btc,nt1
)

specifying points of time when the gantry and the trolley of
crane c reach a certain bay and row, respectively, and stay
there for some positive duration. Since gantry speeds and
trolley speeds are given, two consecutive tuples are implied
when the first position is left.

Lemma 1 The decision versions of Twin-Max, Crossover-
Max, Twin-Sum, and Crossover-Sum are members of NP.

Proof Clearly, sequences of tuples as suggested fully spec-
ify a routing if the time difference of two consecutive
tuples allows us to cover the distance. Hence, we can check
sequence compatibility of the routings and also the feasi-
bility of a solution composed of the two routings in a time
polynomial in the length of the sequences.

Now, it suffices to argue that the length of the sequences
can be bounded to be polynomial in the input size of the
problem instance. First, note that the trolley of crane c can
move independently from the gantry of c and both the gantry
and trolley of crane 3 − c. Hence, we cannot do anything
wrong by moving the trolley of each crane to the row of the
next task immediately after completing a task. Thus, we can
restrict ourselves to trolley sequences with a length of at most
nc for crane c. Second, note that the gantry of crane c needs to
go to a certain bay (and stay there for some time) only if c has
a task to conduct in this bay or if c avoids crane 3 − c while
3 − c conducts a task. Between these bay visits, there is no
need for any further visits. Hence, we can restrict ourselves
to gantry sequences with a length of at most n1 + n2. ��

While the result in Lemma 1 itself does not come as a sur-
prise, the representation of a routing as a pair of sequences
with bounded length offers a particular perspective on solu-
tions of our problem. In the following, we focus on solutions
where the planning horizon is separated into time intervals
such that

• in the last interval (potentially of length 0), both cranes
have completed their respective task sequence;

• in the kth interval, k odd (potentially of length 0), both
cranes are processing their task sequences in parallel; and

• in the kth interval, k even, only one crane c is processing
its task sequence while 3− c is not and idles or avoids c
for c to complete a task.

Here, we say that a crane processes its task sequence if
it conducts a task or moves towards its next task’s position.
As soon as it delays the start of its next task, it does not
process its task sequence. Note that we can restrict ourselves
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Fig. 3 Example solution without additional visits

to routings where a crane c stops processing its task sequence
only if it is prevented from doing so by the other crane 3− c.
Once crane 3 − c is no longer preventing this action, crane
c proceeds. We can assume that crane c is located in a bay
next to the one in which crane 3− c is located, or even in the
same bay (if feasible), at that moment because it minimizes
the distance to the next task’s bay.
Example (cont.)We take up the example above and consider
the gantry positions of both cranes over time as depicted
in Fig. 2. Figure 3 depicts gantry positions over time in a
different solution, which has the same completion times of
tasks as that in Fig. 2 but fits the new perspective, and thus
does not incorporate any additional visits.

In the solution sketched in Fig. 3, both cranes process
their task sequences for two time units. Then, only crane
1 processes its task sequence for five time units (includ-
ing adjustment of trolley to row 4 and waiting for ea = 4).
Meanwhile, crane 2 waits in the neighboring bay 6. After-
wards, both cranes process their sequences for zero time units
before crane 1 avoids crane 2, and only crane 2 processes its
sequence for six time units until it reaches bay 6. In themean-
time, crane 1 avoids crane 2, moves to the neighboring bay
4, and returns to bay 5 as soon as possible. Then, both cranes
complete their sequences in parallel.

Fromnowonwe thus assume that at anypoint of time, each
crane c has already completed its task sequence, is processing
it, or is prevented from doing so by crane 3− c. In the latter

case, there is a task j ∈ σ3−c such that c is prevented from
processing its task sequence up to the completion of j . If we
consider twin cranes, we assume that c waits in bay b j −3+
2c, that is, in b j − 1 if c = 1 and in b j + 1 if c = 2. If we
consider crossover cranes, we assume that crane 1 waits in
b j , and crane 2 waits either in b j − 1 or in b j + 1 depending
on whether crane 2 has been operating in a smaller or in a
larger bay before. This perspective is close to the one taken
by Briskorn and Angeloudis (2016) and Eilken (2019).

3 General problem settings

In this section, we address the general problem settings. We
show NP-hardness of Crossover-Sum in Sect. 3.1 explicitly
and concludeNP-hardness ofTwin-Sum. InSect. 3.2,wepro-
pose aDP framework that enables us to solve Crossover-Sum
and Twin-Sum in pseudo-polynomial time, and Crossover-
Max and Twin-Max in polynomial time.

3.1 NP hardness of Crossover-Sum and Twin-Sum

We will focus on the special case of Crossover-Sum with
R = 1 and prove it to be NP-hard. For the sake of con-
venience, we thus address positions by bay numbers only
in Sect. 3.1. For this special case, Briskorn and Angeloudis
(2016) introduce a graphical model representing solutions.
We will use this model to clarify the reduction used in
our proof and, in order to keep the paper self-contained,
briefly describe the model. Let T1 and T2 be the time spans
required by cranes 1 and 2, respectively, to complete their
task sequences, including moving durations between tasks if
no interference occurs. The model encompasses a rectangu-
lar area with width T1 and height T2. Each point (t1, t2) in the
rectangular area represents a state where cranes 1 and 2 have
completed the first t1 and t2 time units of their task sequence,
respectively.

Note, however, that some points might be infeasible with
respect to crane interference. We have a rectangular cluster
of infeasible points for each pair comprising a task of crane 1
in a bay b and the presence of crane 2 in b (including entering
b, leaving b, and conducting a task in b).

Consider the following example with cranes 1 and 2 ini-
tially located in bays 0 and 1, respectively, and task sequences
σ1 = (1, 2, 3) and σ2 = (4, 5, 6) with positions b1 = 3,
b2 = 4, b3 = 6, b4 = 5, b5 = 3, and b6 = 1 and durations
p2 = 2 and p1 = p3 = p4 = p5 = p6 = 1. Then, we have
T1 = 10 and T2 = 11.

Among the three tasks of crane 1, only the first two raise
the potential for interference, since crane 2 never moves to
bay b3 = 6 according to its task sequences. The two left
clusters depicted in Fig. 4 correspond to task j = 1 in bay
b1 = 3 with duration p1 = 1. Consequently, they have width
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T2 = 11

T1 = 10
0
0

Fig. 4 Example model

p1 = 1 and correspond to crane 2 crossing bay 3 before
conducting task 4 and task 5 in bay b5 = b1 = 3. The right
two clusters correspond to task j = 2 in bay b2 = 4 with
duration p2 = 2, and thus have width p2 = 2 and correspond
to crane 2 crossing bay 4 twice.

As shown in Briskorn and Angeloudis (2016), these clus-
ters accurately specify the set of infeasible points. A solution
corresponds to a path from the lower left corner of the area
to the upper right corner of the area. A path consists of
lines that can only run horizontally from left to right, ver-
tically upwards, or diagonally upwards from left to right,
and must not cross through obstacles. Horizontal sections,
vertical sections, and diagonal sections correspond to time
intervals where only crane 1 processes its task sequence, only
crane 2 processes its sequence, or both cranes process their
sequences in parallel, respectively. In Fig. 4, several such
paths are outlined in bold. The bottommost path represents
both cranes processing their task sequences for one time unit,
then only crane 1 processing its sequence for three time units
(including conducting task 1 in bay 3) while crane 2 waits in
bay 2, then again both cranes processing their sequences for
one time unit, crane 2waiting in bay 3while crane 1 conducts
task 2 in bay 4, and finally, both cranes completing their task
sequences.

We will prove the hardness of Crossover-Sum by reduc-
tion from PARTITION, which is known to be binary NP-
complete.
PARTITION:

Given m integers a1, . . . , am with total value 2D, is there
a subset A of these numbers with total value of D?

Lemma 2 Crossover-Sum is NP-hard.

Proof We consider a particular cost function f j (C j ) for each
task j ∈ J . Each task j is associated with a due date d ′

j and
a weight w j , and we have

f j (C j ) =
{
0 if C j ≤ d ′

j

w j else
,

and thus our objective is the classic minimization of the
weighted number of tardy tasks.

We start by introducing a structure which represents the
decision of whether to have number ak in subset A by means
of Crossover-Sum. We refer to the structure as switch in the
following. We consider two pairs of tasks k1 and k2 as tasks
k′
1 and k′

2 which are consecutive tasks in the sequences of
cranes 1 and 2. The positions of these tasks (neglecting rows)
are bk1 = bk2 = b and bk′

1
= bk′

2
= b + 2 for a b ∈

{0, . . . , B − 1}.

• For the time being, we assume that larger crane 1 reaches
b at the same time point as crane 2 reaches bay b − 1
(we will justify this assumption later). This point of time
depends on the routings up to this point. Hence, it is not
constant, but we assume it to be bounded from below by
θk and from above by θk . Now, the decisionmust bemade
as towhich crane can go first.We have pk1 = θk−θk+ak ,
d ′
k1

= ∞,wk1 = 0, pk2 = ak −2, d ′
k2

= θk +ak −1, and
wk2 = ak . Note that completion of k2 will be non-tardy
if and only if crane 2 goes first, and we are indifferent as
to whether to let crane 1 go first with respect to fk1(Ck1),
since wk1 = 0.

• For the two next tasks k′
1 and k

′
2, we have pk′

1
= ak − 2,

d ′
k′
1

= 2 · θk − θk + 3 · ak , wk′
1

= ∞, pk′
2

= d ′
k′
1
− θk ,

d ′
k′
2

= ∞, and wk′
2

= 0. Again, we must decide which

crane can go first. Note that completion of k′
1 will be

non-tardy if and only crane 1 conducts k′
1 before crane

2 conducts k′
2, and this does not depend on the priority

of cranes with regard to k1 and k2. In order to meet a
given finite upper bound for the overall objective value,
k′
1 indeed needs to be conducted first due to wk′

1
= ∞.

In a solution meeting a finite upper bound, the decision of
whether to give crane 1 or crane 2 priority with respect to k1
and k2 is open, but crane 1 necessarily is given priority with
respect to k′

1 and k
′
2, and crane 2 is waiting in bay b+1 when

crane 1 completes k′
1. Then, if crane 2 is given priority with

respect to k1 and k2,

• the total weight of tardy tasks among k1, k2, k′
1, and k

′
2 is

zero, and
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• the time span between cranes 1 and 2 reaching bays b
and b − 1, respectively, and crane 1 completing k′

1 is

1 + pk2 + 1
︸ ︷︷ ︸
in b, k2, out of b

+ pk1 + 2 + pk′
1︸ ︷︷ ︸

k1, move to b+2, k′
1

= ak + (θk − θk + ak) + 2 + (ak − 2) = 3 · ak
+(θk − θk).

Here, the left part reflects the length of time that crane 1
is delayed from starting k1 by crane 2, and the right part
reflects the time crane 1 needs to complete k′

1 after that.

However, if crane 1 is given priority with respect to k1 and
k2,

• the total weight of tardy tasks among k1, k2, k′
1, and k

′
2 is

wk2 = ak , and
• the time span between cranes 1 and 2 reaching bays b
and b − 1, respectively, and crane 1 completing k′

1 is

pk1 + 2 + pk′
1

= (θk − θk + ak) + 2 + (ak − 2)

= 2 · ak + (θk − θk)

Here, crane 1 can start k1 immediately, and crane 2 can
conduct k2 and move to b+ 1 while crane 1 conducts k′

1.

In summary, the switch lets us decide between twooptions,
where the first implies a total weight of involved tardy tasks
that is lower by ak but implies a partial solution that is longer
by ak . We depict this switch bymeans of the graphical model
in Fig. 5.

We see four paths in Fig. 5 leading below and above the
left and the right clusters in which cranes 1 and 2 are given
priority, respectively. Only the two black paths leading below
the right cluster can lead to a solution with a finite objective
value. The upper path among the two is longer by ak but has
k2 as non-tardy. The two gray paths lead to k′

1 being tardy.
We now show how to combine such switches, one per

number in the instance of PARTITION, in order to represent
the instance of PARTITION. We argue using the graphical
model depicted in Fig. 6.

We have a switch like the one described before for each
number in the instance of PARTITION. For each number
ak , we have a switch where we can decide whether to com-
plete k2 as non-tardy, avoiding the extra weight of ak of a
tardy task and paying the price of ak in extra length of the
routing up to this point. Note that we can decide whether
to complete k2 as non-tardy independently of our decisions
regarding a1, . . . , ak−1, since we can account for all possible
resulting routing lengths by having θk − θk ≥ ∑k−1

k′=1 ak′ .

pk1 = θk − θk + ak

pk2 + 2 = ak

2

pk′
1
= ak − 2

pk′
2
= dk′

1
− θk

Fig. 5 Switch

T2TT

T1TT

σσσσσσσσ111111(((((((((nnnnnnnnn111111)))))))))

Fig. 6 Model obtained by reduction from the PARTITION instance

It remains to be discussed how switches corresponding
to ak and ak+1 can be geared to each other such that cranes
1 and 2 in fact reach b = b(k+1)1 = b(k+1)2 and b − 1
simultaneously (as we assumed when outlining the switch
above). We consider a third task of crane 1 per switch which
has the same duration as k′

2, location bk′
1
+1, weight zero, and

due date∞. Crane 1 then is busy in bk′
1
+1 for the same time

as crane 2 is busy with k′
2 in bk′

2
= bk′

1
, and cranes 1 and 2 can
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proceed simultaneously to b = bk′
1
+ 2 and b− 1 = bk′

1
+ 1,

respectively, immediately afterwards.
So far, we have used 5m tasks in total for designing a

switch for each number in the instance of PARTITION. A
lower bound LB on the length of feasible routings complet-
ing these 5m tasks can be given as the duration it takes crane
1 to complete its 3m tasks without any delay caused by inter-
ference. A feasible routing for these 5m tasks having length
LB can be visualized as the path in Fig. 6 where crane 1
is given priority at each cluster of infeasible points up to
the shaded area. This routing corresponds to a total weight
of tardy tasks of 2D, since each task k2, k = 1, . . . ,m is
tardy. Furthermore, for an arbitrary subset A of numbers in
the PARTITION instance, we have a partial routing where k2
is non-tardy if and only if k ∈ A with length LB + ∑

k∈A ak
and total weight of tardy tasks of

∑
k /∈A ak .

Now we add one last task to sequence σ1 with a weight of
D+1 which can be non-tardy only if the routing completing
the first 5m tasks has length of at most LB + D; that is, we
set its due date to d ′

σ1(n1)
= T1 + D. The question then is

whether there is a solution with a total weight of tardy tasks
of at most D. We claim that the answer to this question is
yes if and only if the answer to the instance of PARTITION
is yes.

First, for an arbitrary feasible solution, consider the subset
A ⊂ {1, . . . ,m} with k ∈ A if and only if k2 is non-tardy.
If the total weight of tardy tasks does not exceed D, then∑

k∈A ak ≥ D (since otherwise the total weight of tardy
tasks in {k2 | k = 1, . . . ,m} exceeds D) and

∑
k∈A ak ≤ D

(since otherwise the last task in σ1 with weight D + 1 is
tardy). Hence, the answer to the instance of PARTITION is
yes if we can achieve a total weight of tardy tasks of at most
D.

In Fig. 6, task σ1(n1) or rather the points corresponding to
conducting σ1(n1) are highlighted as the shaded area. Note
that this area does not constitute a cluster of infeasible points.
It becomes clear that T1 is a lower bound for the completion
time of σ1(n1). Since the due date of σ1(n1) is set to T1 + D,
each path with σ1(n1) being non-tardy can have a total height
of vertical segments of at most D.

Second, for a yes instance of PARTITIONand correspond-
ing subset A of numbers, the routing with k2 being non-tardy
occurs if and only if k ∈ A has a total weight of tardy tasks
of D. This completes the proof. ��
Lemma 3 Twin-Sum is NP-hard.

We omit a formal proof in order to reduce the nota-
tional burden. However, note that the routing enforced in
the reduced instance in the proof of Lemma 2 closely resem-
bles the routing that could be implemented by twin cranes.
While crossover cranes are allowed to pass each other, we
can see that for each of the considered routings of crossover
cranes for the reduced instance there is a routing having the

same completion time for each task where crane 1 is located
in a larger bay than crane 2 at each time point. This might
require crane 1 to avoid crane 2 if crane 2 is given priority
(and conducts k2 before crane 1 conducts k1), which however
does not delay any completion time. Hence, we can use the
same task sequences as in the proof of Lemma 2 in a similar
proof for Twin-Sum.

3.2 General dynamic programming framework

We develop a DP framework for each of the considered prob-
lems. In order to achieve unifying phrasing, we distinguish
between different crane settings as little as possible and rely
on the structure of solutions as outlined at the end of Sect. 2.2.

We consider a state (k1, k2, c, θ) for each kc = 1, . . . , nc,
c ∈ {1, 2}, and θ ∈ {0, . . . , �}. State (k1, k2, c, θ) represents
crane c having just completed task σc(kc) at time point θ , and
crane 3 − c having completed σ3−c(k3−c) last and waiting
for crane c (to complete σc(kc)). Hence, the implied position
of crane c is (bσc(kc), rσc(kc)). Depending on the crane system
under consideration, state (k1, k2, c, θ) also implies or at least
restricts the possible gantry and trolley positions of crane3−c
at time θ .

• If we consider twin cranes, then the gantry of crane
3 − c is located in bay b = bσc(kc) + 3 − 2c. The trol-
ley of crane 3 − c has a position in [rσ3−c(k3−c+1) −
|b − bσ3−c(k3−c+1)|, rσ3−c(k3−c+1) + |b − bσ3−c(k3−c+1)|].
Note that any trolley position in this interval allows
an adjustment of the trolley to the next task’s row
rσ3−c(k3−c+1) while moving the gantry to the next task’s
bay bσ3−c(k3−c+1). Thus, if the trolley is in a position in
this interval, then the start of the next task of crane 3− c
is delayed by crane c. If, however, the trolley is not in a
position in this interval, then while the gantry of crane
3 − c is prevented from approaching the next task’s bay,
crane 3− c can use this delay of the gantry (at least par-
tially) to adjust its trolley.

• If we consider crossover cranes, we distinguish between
c = 1 and c = 2.

– If c = 2, then crane 3 − c = 1 is located in bay
bσc(kc), and its trolley has a position in [rσ3−c(k3−c+1)−
1, rσ3−c(k3−c+1) + 1].

– If c = 1, then crane 3 − c = 2 is located in bay
bσc(kc) − 1 or bσc(kc) + 1 if bσ3−c(k3−c) < bσc(kc)

or bσ3−c(k3−c) > bσc(kc), respectively. The trolley of
crane 3 − c has a position in [rσ3−c(k3−c+1) − |b −
bσ3−c(k3−c+1)|, rσ3−c(k3−c+1) + |b − bσ3−c(k3−c+1)|].

In any case, the trolley position may not be fully defined
here, but it is narrowed such that it does not delay conducting
σ3−c(k3−c+1) any further once c givesway to 3−c. Note that
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the states considered in our DP are similar to those proposed
for twin cranes in Eilken (2019).

Furthermore, we have an initial state (0, 0, 0, 0) rep-
resenting each crane being in its initial position at the
beginning of the planning horizon, a state (k1, 0, 1, θ) for
each k1 = 1, . . . , n1 and θ ∈ {0, . . . , �} representing crane
2 waiting for crane 1 to complete k1 before starting its first
task, and a state (0, k2, 2, θ) for each k2 = 1, . . . , n2 and
θ ∈ {0, . . . , �} representing crane 1 waiting for crane 2 to
complete k2 before starting its first task. Finally, we have a
final state (n1, n1, 0, θ) for each θ ∈ {0, . . . , �} representing
both task sequences to be completed.

There is a transition from (k1, k2, c, θ) to (k′
1, k

′
2, c

′, θ ′) if

• k′
c′ > kc′ and k′

3−c′ ≥ k3−c′ and
• there is an interference-compatible pair of partial routings
starting from (k1, k2, c, θ) where

– crane c′ processes its task sequence up to completing
σc′(k′

c′)without anydelay causedby interferencewith
crane 3 − c′ and completes σc′(k′

c′) at θ ′,
– crane 3 − c′ processes its task sequence up to com-

pleting σ3−c′(k′
3−c′) without any delay caused by

interference with crane c′, and
– crane 3 − c′ gets into the position implied by

(k′
1, k

′
2, c

′, θ ′) prior to θ ′.

Note that we do not consider a crane to be delayed by
interference here if its next task is not delayed. For example, if
a crane’s gantry is prevented fromapproaching the next task’s
bay for some time but still reaches the next task’s position
before its release date, we do not consider the crane to be
delayed by interference.

Furthermore, there is a transition from (k1, k2, c, θ) to
final state (n1, n1, 0, θ ′) if there is an interference-compatible
pair of partial routings starting from (k1, k2, c, θ) where
both cranes complete their task sequences without any delay
caused by interference.

Hence, states represent situations where both cranes have
completed their tasks or where a crane has prevented the
other crane from proceeding and the other crane is just about
to resume processing its task sequence. Transitions, then,
connect two such situations if there is no third such situation
in between. Note that a transition corresponds to two con-
secutive time intervals in a solution, as discussed towards
the end of Sect. 2.2.

Note that we can check in O(|J |) time whether a transi-
tion from (k1, k2, c, θ) to (k′

1, k
′
2, c

′, θ ′) exists by scanning
through task sequences and considering release dates of
tasks, moving times for gantries and trolleys, and deadlines.
Note also that since θ is given, we can determine the comple-
tion times of all tasks completed during this transition. This
allows us to, first, check whether one of these tasks misses

its deadline, which means the partial routing is not sequence-
compatible, and second, determine the total cost of these
tasks and the maximum cost among these tasks, respectively,
depending on the objective function considered.

We evaluate each state (k1, k2, c, θ) by F(k1, k2, c, θ),
reflecting the total cost of tasks σ1(1) to σ1(k1) and σ2(1) to
σ2(k2) or the maximum cost among these tasks depending
on the objective function considered.

Initial state (0, 0, 0, 0) has F(0, 0, 0, 0) = 0, while for
each of the other states (k1, k2, c, θ) the Bellman function is

F(k1, k2, c, θ) = min
{
F(k′

1, k
′
2, c

′, θ ′)
+csum((k′

1, k
′
2, c

′, θ ′), (k1, k2, c, θ)) |
(k′

1, k
′
2, c

′, θ ′) ∈ P(k1, k2, c, θ)
}

for Crossover-Sum and Twin-Sum and

F(k1, k2, c, θ) = min
(k′

1,k
′
2,c

′,θ ′)∈P(k1,k2,c,θ)
{
max

{
F(k′

1, k
′
2, c

′, θ ′), cmax((k′
1, k

′
2, c

′, θ ′), (k1, k2, c, θ))
}}

for Crossover-Max and Twin-Max, where

• P(k1, k2, c, θ) is the set of states that have a transition
leading to (k1, k2, c, θ),

• csum((k′
1, k

′
2, c

′, θ ′), (k1, k2, c, θ)) is the total cost of
tasks σ1(k′

1 + 1) to σ1(k1) and σ2(k′
2 + 1) to σ2(k2), and

• cmax((k′
1, k

′
2, c

′, θ ′), (k1, k2, c, θ)) is the maximum cost
among tasksσ1(k′

1+1) toσ1(k1) andσ2(k′
2+1) toσ2(k2).

The problem then is to determine

min {F(n1, n2, 0, θ) | θ ∈ {0, . . . , �}}.
We have O(|J |2 ·�) states, since we can restrict ourselves

to integer values of θ for each state (k1, k2, c, θ) because
all the time parameters are integers. Furthermore, we have
O(|J |) transitions starting from each state. To see this, we
can imagine that starting from a state (k1, k2, c, θ)we choose
c′ and k′

c′ of the state to be reached. Note that this implies
that θ ′ of the state is reached, since the transition represents
a partial routing where c′ processes its task sequence without
any delay by interference with crane 3 − c′. For chosen c′
and k′

c′ , we furthermore can choose k′
3−c′ to be maximum

under the restriction that a transition to (k′
1, k

′
2, c

′, θ ′) exists.
Summarizing the above, we have a total number of O(|J |3 ·
�) transitions. We can determine the total cost of tasks and
themaximum cost among tasks associated with the transition
in O(|J |) time by scanning through task sequences. This
leaves us with an overall effort of O(|J |4 · �) and leads to
the following results.

Lemma 4 Twin-Max,Crossover-Max, Twin-Sum, andCrossover-
Sum can be solved in O(|J |4 · �) time.
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Lemmas 2, 3, and 4 imply the following theorem.

Theorem 1 Twin-Sum and Crossover-Sum are binary NP-
hard.

Next, we turn our attention to the problem of determining
a feasible solution. Obviously, we can use the DP approach
developed above with an arbitrary objective function, but we
instead refine it in order to derive a more efficient approach.
Using f j (C j ) = C j for each j ∈ J and objective function
max

{
f j (C j ) | j ∈ J

}
, we obtain F(k1, k2, c, θ) = θ for

each state (k1, k2, c, θ). Hence, we can restrict ourselves to
a state specification (k1, k2, c) for each kc = 0, . . . , nc and
c ∈ {0, 1}, and let θ be implied by F(k1, k2, c). Note that we
can then determine and evaluate transitions starting from a
state (k1, k2, c) only after evaluating (k1, k2, c) itself.

We have O(|J |2) states, O(|J |) transitions starting from
each state, and thus O(|J |3) transitions in total.We can deter-
mine whether a particular transition exists in O(|J |) time by
scanning through task sequences. This leaves uswith an over-
all effort of O(|J |4) to find a feasible solution.

Now, it is not hard to see that we can employ this refined
DP approach in a binary search scheme (adjusting deadlines
in order to bound themaximumcost among tasks fromabove)
which yields the following result.

Theorem 2 Twin-Max and Crossover-Max can be solved in
O(|J |4 · log(�)) and, thus, in polynomial time.

4 Special cases of Crossover-Sum and
Twin-Sum

In this section, we consider special cases of Crossover-Sum
and Twin-Sum which can be solved in strongly polynomial
time.

4.1 Number of tardy tasks

We consider a particular cost function f j (C j ) for each task
j ∈ J . Each task j is associated with a due date d ′

j , and we
have

f j (C j ) =
{
0 if C j ≤ d ′

j

1 else
,

and thus our objective is the classic minimization of the
number of tardy tasks. Obviously, we can use the approach
developed in Sect. 3.2 for Twin-Sum and Crossover-Sum
which enables us to solve the problem in O(|J |4 · �) time.
However, we will develop a strongly polynomial, and thus
more efficient, DP approach in the following.

First, we extend the previous state specifications and
explicitly maintain the number of tardy tasks in the state

definition here. Hence, we consider a state (k1, k2, c, θ, u)

for each kc = 0, . . . , nc, c ∈ {0, 1}, θ ∈ {0, . . . , �}, and
u = 0, . . . , |J |. Here, u represents the number of tardy tasks
among the first k1 and k2 tasks of cranes 1 and 2, respectively.

We then take up the approach to find a feasible solu-
tion proposed in Sect. 3.2 and use f ′

j (C j ) = C j for each

j ∈ J and objective function max
{
f ′
j (C j ) | j ∈ J

}
. Hence,

we consider a state (k1, k2, c, u) for each kc = 0, . . . , nc,
c ∈ {0, 1}, and u = 0, . . . , |J |, and let θ be implied by
F(k1, k2, c, u).

Again, we can determine and evaluate transitions start-
ing from a state (k1, k2, c, u); then, only after evaluating
(k1, k2, c, u) itself, we have O(|J |3) states and O(|J |) tran-
sitions starting from each state, which implies O(|J |4)
transitions in total. For given (k1, k2, c, u), c′, and k′

c′ , we
can determine k′

3−c′ and the number of tardy tasks implied,
and hence the resulting state (k′

1, k
′
2, c

′, u′), in O(|J |) time.
This leaves us with an overall effort of O(|J |5) and leads to
the following results.

Theorem 3 We can find a feasible solution with a minimum
number of tardy tasks in O(|J |5) time.

4.2 Total weighted completion time without release
dates and deadlines

In this section, we consider a problem setting where tasks
have no (restricting) release dates or deadlines; that is, we
have r j = 0 and d j = ∞ for each task j ∈ J . Furthermore,
we consider a particular cost function. Each task j is associ-
atedwith aweightw j , andwehave f j (C j ) = w jC j , and thus
our objective is the classic minimization of total weighted
completion time. Note that a special case of this objective
function with wσ1(n1) = wσ2(n2) = 1 and w j = 0 for each
other task j reflects the total time that cranes are busy, and
has been considered, for example, in Dorndorf and Schnei-
der (2010) for triple cranes and in Speer and Fischer (2017).
Again, the approach developed in Sect. 3.2 is available. How-
ever, we will derive a strongly polynomial DP approach in
the following.

We will distinguish two parts of the completion time of
each task j ∈ σc, c ∈ {1, 2}. The first part is implied by
the task sequence σc. It accounts for the total driving dura-
tion prior to j if no interference occurs between cranes and
the total processing time of the preceding tasks and j itself.
Note that this part is constant and therefore will not be con-
sidered in our DP approach. The second part accounts for
the total duration that crane c does not process σc before j
is completed. We refer to this part of the completion time as
the delay of task j . Our DP approach focuses on minimiz-
ing the total weighted delay of tasks, which is equivalent to
minimizing the total weighted completion time.
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We consider a state (k1, k2, c) for each kc = 0, . . . , nc and
c ∈ {0, 1}. Similar to the approaches described earlier, state
(k1, k2, c) represents crane c having just completed σc(kc)
and crane 3−c having completedσ3−c(k3−c) last andwaiting
for crane c (to complete σc(kc)). Note that, as opposed to
the more general approach in Sect. 3.2, the point of time
is not specified here. Furthermore, we have an initial state
(0, 0, 0), a state (k1, 0, 1) for each k1 = 1, . . . , n1, and a state
(0, k2, 2) for each k2 = 1, . . . , n2. Finally, we have a final
state (n1, n1, 0) representing both cranes having completed
their task sequences.

We have a transition from (k1, k2, c) to (k′
1, k

′
2, c

′) if

• k′
c′ > kc′ and k′

3−c′ ≥ k3−c′ , and
• there is an interference-compatible pair of partial routings
starting from (k1, k2, c) where

– crane c′ processes its task sequence up to completing
σc′(k′

c′) without any delay,
– crane 3 − c′ processes its task sequence up to com-

pleting σ3−c′(k′
3−c′) without any delay, and

– crane 3 − c′ gets into the position implied by
(k′

1, k
′
2, c

′, θ ′) prior to the completion of k′
c′ .

Note thatwecan actually decidewhether such an interference-
compatible pair of partial routings exists without specifying
a start time (again, as opposed to the more general approach
in Sect. 3.2) since neither release dates nor deadlines need
to be considered. Note that for the same reason, delays can
only be caused by crane interference.

We evaluate each state (k1, k2, c) by F(k1, k2, c) repre-
senting the total weighted delay of tasks raised so far. Note
that the total weighted delay of tasks implied by a transi-
tion from (k1, k2, c) to (k′

1, k
′
2, c

′) can be easily determined.
No delay at all is implied for tasks in σc′ , since crane c′
processes its task sequence without any delay. The same rea-
soning allows us to deduce the time span T covered by the
pair of partial routings represented by the transition. For tasks
σ3−c′(1) to σ3−c′(k′

3−c′), no delay is implied either, since
crane 3 − c′ has no delay implied by this transition up to
completing σ3−c′(k′

3−c′). Let T ′ be the minimum time span
required by crane 3−c′ to process its task sequence as implied
by the transition from (k1, k2, c) to (k′

1, k
′
2, c

′). Then, tasks
σ3−c′(k′

3−c′ + 1) to σ3−c′(n3−c′) are delayed by T − T ′, and
the total weighted delay of tasks implied by the transition is

cdel((k1, k2, c), (k
′
1, k

′
2, c

′))

= (T − T ′) ·
n3−c′∑

k′′=k′
3−c′+1

wσ3−c′ (k′′).

Initial state (0, 0, 0) has F(0, 0, 0) = 0, while for each
other state (k1, k2, c) the Bellman function is

F(k1, k2, c) = min
{
F(k′

1, k
′
2, c

′) + cdel((k′
1, k

′
2, c

′),

(k1, k2, c)) | (k′
1, k

′
2, c

′) ∈ P(k1, k2, c)
}
,

where P(k1, k2, c) is the set of states that have a transition
leading to (k1, k2, c).

The problem then is to determine F(n1, n2, 0). We have
O(|J |2) states, O(|J |) transitions starting from each state,
and thus O(|J |3) transitions in total. We can determine the
total weighted delay implied by the transition in O(|J |) time
by scanning through task sequences. This leaves us with an
overall effort of O(|J |4) and leads to the following results.

Theorem 4 We can find a feasible solution with a minimum
total weighted completion time in O(|J |4) if no (restricting)
release dates or deadlines have to be considered.

5 Conclusion and outlook

In this paper, we considered a generalization of a problem
setting that has been considered in Briskorn and Angeloudis
(2016) and of a subproblem arising in Eilken (2019).
These problems were proven beneficial when employed as
workhorses in Eilken (2019), Nossack et al. (2018), and Zey
et al. (2020), but were limited to the objective of makespan
minimization. This motivated the investigation of a fairly
general setting in the paper at hand. Here, we consider
twin cranes and crossover cranes with predetermined task
sequences, release dates and deadlines of tasks, movement
of cranes along the three dimensions of a container stor-
age block, and the objectives to minimize total task cost or
maximum task cost where a task’s cost is determined by a
task-dependent non-decreasing function of the task’s com-
pletion time.

In this paper, we resolve the complexity of the most
general problem settings. We show that the problem of min-
imizing total task cost is binary NP-hard for both crane
settings. However, a solutionminimizingmaximum task cost
can be determined in polynomial time. For both structures of
objective functions, we provide general DP frameworks. Fur-
thermore,we provide strongly polynomial algorithms for two
important special cases. Note that our algorithmic ideas for
Crossover-SumandTwin-Sumessentially rely on a reduction
in the problem at hand to the problem of finding the short-
est path in an acyclic graph. This path can be determined by
DP, as proposed in this paper. However, every off-the-shelf
shortest path solver can be applied to solve our problem as
well.

For future research, we can think of various directions.
First, since the problem is motivated mainly as a subproblem
in more involved problem settings, it would be interesting
to develop algorithms with even better worst-case run time
behavior. Second, the algorithms provided here open new

123



380 Journal of Scheduling (2021) 24:367–380

opportunities to tackle holistic crane scheduling problems
with objectives other than makespan minimization. In fact,
in our opinion, the most promising way to benefit from our
algorithms in terms of increased efficiency in real-world ter-
minals is not to apply them in a post-processing step in an
existing terminal control system, but to embed them in an
integrated approach to address the three-part decision.
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