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Abstract
In order to allocate limited resources in emergency medical services (EMS) networks, mathematical models are used to select
sites and their capacities. Many existing standard models are based on simplifying assumptions, including site independency
and a similar system-wide busyness of ambulances. In practice, when a site is busy, a call is forwarded to another site. Thus,
the busyness of each site depends not only on the rate of calls in the surrounding area, but also on interactions with other
facilities. If the demand varies across the urban area, assuming an average system-wide server busy fraction may lead to an
overestimation of the actual coverage. We show that site interdependencies can be integrated into the well-known Maximum
Expected Covering Location Problem (MEXCLP) by introducing an upper bound for the busyness of each site. We apply
our new mathematical formulation to the case of a local EMS provider. To evaluate the solution quality, we use a discrete
event simulation based on anonymized real-world call data. Results of our simulation-optimization approach indicate that
the coverage can be improved in most cases by taking site interdependencies into account, leading to an improved ambulance
allocation and a faster emergency care.

Keywords Emergency medical services · Facility location · Site interdependency · Busy fraction · Operations Research

Highlights

• We propose a new mixed-integer programming model
for emergency medical services (EMS) systems incor-
porating site interdependencies.

• To evaluate EMS service quality, we develop a
simulation model based on a real-life EMS system.

• Computational studies show increased service quality
when modeling site interdependencies.

• Further, results from a case study reveal improved
service quality for a real-world application.
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1 Introduction

In case of medical emergencies, patients require fast and
qualified assistance. From a patients point of view, the
response time of paramedics depends primarily on the
location of the nearest ambulance. These locations are
typically fixed on a strategic level and there may be several
ambulances at each one. If an ambulance is available at the
closest site, that site will answer an incoming emergency
call. Otherwise, if all ambulances of that site are busy, the
call is transferred to the second closest site in the system
and so on. Therefore, the availability of a site has a great
influence on the response time of emergency calls. By
locating multiple ambulances at one site, the probability of
the site being available increases.

The quality of an EMS system is typically measured
using coverage, defined as the proportion of emergency
calls that are reached within a given time threshold.
Coverage targets vary across countries and regions [1]. In
our study, we use the target to reach at least 90% of calls
within 10 minutes, which is common for German urban
areas. A high service quality is achieved when there is a
high probability that an ambulance is available at the site
closest to a call. Therefore, a given number of ambulances
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is to be allocated to sites so that the level of coverage is
maximized.

We measure the time threshold from the time an
incoming call occurs until the first ambulance arrives at the
location of the emergency. In this context, we differentiate
between pre-travel delay and travel time. We define the pre-
travel delay as the time between the arrival of an incoming
call and the departure of an ambulance. The travel time is
the time an ambulance needs to reach the location of the
emergency after departure from its site. Thus, an optimal
distribution of ambulances over the urban area is important
for a high quality EMS system.

Due to the practical relevance, there is a rich body of
literature on EMS location problems. Standard models max-
imize, e.g., the coverage (Maximal Covering Location Prob-
lem (MCLP)) [2] or the expected coverage of emergencies
using busy fractions (Maximum Expected Covering Loca-
tion Problem (MEXCLP)) [3]. The busy fraction denotes
the proportion of time a resource (an ambulance, a site,
or the system) is in service and therefore not available for
incoming emergency calls. Further research focuses on the
availability of the system (Maximal Availability Location
Problem (MALP)) [4]. These standard models make several
simplifying assumptions on, e.g., server busyness, server
independence, or location-independent service times [5].
These assumptions are used to deal with the challenges that
arise from the probabilistic nature of EMS systems and to
obtain tractable linear mathematical formulations. There are
many extensions of these standard formulations that aim at
representing the emergency demand and objectives of a city
or area more realistically.

One central assumption that limits the adequate repre-
sentation of reality and, thus, is often addressed by these
extensions, is the average system-wide server busy fraction.
Urban areas are typically characterized by a heterogeneous
spatial distribution of emergency calls - the frequency of
calls at the city center is higher than in the suburbs. Thus,
the busy fraction is different for each ambulance throughout
an urban area. If a uniform (i.e., a system-wide identical)
busy fraction is assumed, given a similarly sized area of cov-
erage for each site, the actual busy fraction of sites close
to the city center tends to be higher, while the busy frac-
tion of suburban sites is lower. This simplifying assumption
of the MEXCLP tends to lead to an overestimation of the
expected coverage at the city center and an underestimation
in the suburbs. In practice, ambulances in the suburbs less
frequently face emergency calls compared to ambulances in
the city center. Thus, these less frequented ambulances often
serve as a back-up for emergency events that occur in the
city center, but need more time to reach the emergency. The
result is an inefficient allocation of the limited resources
of the EMS system due to the simplifying assumption of a
system-wide busy fraction. To improve the standard models

for the case of heterogeneous demand regions, a specified
system-wide busy fraction must be adhered at every sin-
gle site. This upper bound for capacity utilization limits the
number of assigned emergency calls for each site depending
on its number of ambulances. Whenever discussing ’capac-
ity’ in the context of capacitated EMS location models, we
follow this interpretation.

One main simplifying assumption in standard models
is the site or ambulance independency, i.e., neglecting the
interaction effects between sites or ambulances. However, if
the closest site cannot answer an incoming emergency call,
the call is transferred within the system with predetermined
priorities (levels) as depicted in Fig. 1 and the assumption
of independently operating ambulances may not be strictly
true in reality [6]. In most cases, the priority of a site
decreases with an increasing distance to the emergency
location. Thus, an unavailable site is supported by other
available sites and vice versa takes calls from other sites.
These interdependencies are modeled in a formulation
with a system-wide busy fraction as an upper bound for
each specific ambulance by Ansari et al. [7] and Shariat-
Mohaymany et al. [8]. The back-up assistance on lower
priority levels has to be included in the calculation of the
busy fraction. In contrast to [7, 8], we impose a system-wide
upper bound on the busy fraction of each site in the strategic
optimization model while ambulances in the system may
have different busy fractions.

This leads to the following research question: How can
we model site interdependencies in EMS location models
and what is the impact on service quality? To answer this
question, we propose a simulation-optimization approach
with an innovative mixed-integer linear optimization model
based on the MEXCLP accounting for a maximum busy
fraction per site by the introduction of capacity constraints.
In extensive computational experiments, we show that the

Fig. 1 Site interdependencies in EMS networks
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consideration of site interdependencies leads to an improved
model performance compared to existing standard models.
The remainder of this paper is structured as follows:
Section 2 gives a literature review of the basic EMS location
models and the related chance constraint and capacitated
approaches. The innovative mathematical formulation is
presented in Section 3. In Section 4 extensive computational
experiments evaluate our new model formulation before
a detailed case study with anonymized real-world data is
conducted in Section 5. Section 6 concludes the paper and
gives an outlook on further research.

2 Literature review

2.1 Basic EMS locationmodels

Mathematical optimization models are frequently applied
to support decision-making in emergency medical services,
examples related to staff planning or location problems
are presented in [9, 10]. There are several literature
reviews that provide a comprehensive overview of various
aspects related to EMS. A review of covering models and
optimization techniques for the planning of EMS facility
locations is provided by Li et al. [11]. A recent and
extensive overview of many important aspects for EMS
systems is given by Aringhieri et al. [12]. They consider
the entire chain of events from emergency call to recovery
in the hospital. Ahmadi-Javid et al. [13] provide another
comprehensive review with a focus on emergency and
non-emergency healthcare facility location problems.

Most publications deal with stochastic EMS location
problems. This work extends classical EMS location models
to consider heterogeneous busyness over the urban area and
model site interdependencies. Thus, our review focuses on
ambulance location models and probabilistic extensions.

Since the early 1970s, several deterministic EMS
location models have been proposed [2, 14–16]. Despite
their shortcomings, deterministic models have nevertheless
enjoyed great popularity in many applications, due to their
relative simplicity of implementation. Particularly in cases
with a low population density, few resources are distributed
over a large geographical area and probabilistic effects
are less important. However, there is a number of studies
that extend deterministic models by probabilistic effects.
The Maximum Expected Covering Location Problem
(MEXCLP) by Daskin [3] and the Maximum Availability
Location Problem (MALP) by ReVelle/Hogan [4] represent
two seminal studies in this area. In addition to applications
in the context of EMS, there are other applications of the
MEXCLP as, e.g., locating fire and police stations, as well
as large-scale emergency and disaster events [17, 18]. The
MEXCLP and MALP extend the MCLP and include a busy

fraction q, i.e., the fraction of time a server is busy with a
call and therefore not available to answer an additional call.
This is the probability that a call cannot be answered by the
server.

The MEXCLP maximizes the fraction of demand that is
covered within a certain time threshold considering server
busyness. Integer variable xi specifies the number of servers
at site i. Binary variable yjk denotes whether demand node
j is covered by a number of k servers that are positioned at
facilities i ∈ Nj that reach node j within the time threshold.
The number of calls at demand node j is specified by dj and
a total number of V servers is available. The uniform server
busy fraction q is obtained by assuming that the system-
wide workload is evenly distributed among the V servers.
The MEXCLP is then defined as follows [3]:

max
∑

j∈J

∑

k∈K

(1 − q)qk−1djyjk (1)

s.t.
∑

k∈K

yjk ≤ ∑

i∈Nj

xi ∀j ∈ J (2)

∑

i∈I

xi = V (3)

xi ∈ Z
≥0; yjk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (4)

The additional fraction of demand covered by adding
server k is (1−q)qk−1. Objective (1) maximizes the fraction
of demand covered within the specified distance, taking
into account average server unavailability. Constraints (2)
ensure that demand node j is only covered by k servers
if a number of k servers are positioned at the facilities
i ∈ Nj . Constraint (3) ensures that a number of V servers
is positioned at the available facilities. The MEXCLP
requires several simplifying assumptions, in particular that
all servers are uniformly busy and they are independent.
The probability of server unavailability is modeled by
parameter q and does not depend on the decision variables.
In fact, the actual busy probability of each site q̃i depends
on the number of calls in proximity to the location i.
Furthermore, it depends on the location and capacity
of other sites in the proximity because they influence
the total number of calls that arrive, including back-
up calls. Thus, the objective function of MEXCLP may
over- or underestimate the actual coverage. There already
exist some extensions of the MEXCLP on improving
the accuracy of the estimation of expected coverage by
relaxing some of the assumptions, i.e., server independency
and location independent uniform server busy fractions
(see e.g., [6, 19]). However, Saydam et al. [20] compare
different MEXCLP extensions and conclude that none of the
compared extensions is consistently superior in terms of a
more accurate estimation of the expected coverage. We, too,
develop an extension of MEXCLP but model coverage more
precisely.
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2.2 Chance constraint approaches

For modeling uncertainties in the EMS context, chance
constraint approaches based on the idea of the MALP
formulation by ReVelle/Hogan [4] are widely used. These
models have in common that a set of constraints is met
with α reliability. Their chance constraint requires that at
least one server is available in the system with a probability
greater or equal than α. Note that the busy fraction is
1-α. Uncertainty in the EMS context mostly refers to
answering emergency calls within a given time threshold
while some ambulances may already be busy. Chance
constraint approaches are widely used in the context of EMS
(see e.g., [21–26]).

Following the idea of these chance constraint approaches,
this paper presents a new type of linear capacity constraint
that ensures a given busy fraction for each site to be kept.
Similar to the chance constraints of ReVelle/Hogan [4] we
state that each site has at least one server available with
a given probability. Thus, there is an upper bound on the
probability that a site cannot answer to an incoming call.
Shariat-Mohaymany et al. [8] adopt this idea of reliability
constraints in a similar manner. They propose a linear model
that provides a pre-specified minimum reliability level for
each demand node based on an upper probability limit
for the busy fraction of each ambulance. Other approaches
based on chance constraints are, e.g., [5, 27–29]. Our paper
uses a similar reliability approach to Shariat-Mohaymany
et al. [8] with the main differences that we consider
ambulances to have different busy fractions and sites to
operate interdependently.

2.3 Capacitated extensions

There are many extensions of the original MEXCLP and
MALP models in the EMS context. These extensions
include time dependencies (see e.g., [30, 31]), ambulance
relocations (see e.g., [10, 32]), probabilistic coverage (see
e.g., [33–35]), or patient survival (see e.g., [36–38]).

Furthermore, some extensions comprise capacity con-
straints to which our approach belongs. These models allow
for allocating additional demand to a site if and only if there
is enough capacity, i.e., idle servers, available at that site.
One of the first publications addressing this issue was pub-
lished in 1991 by Pirkul/Schilling [39] based on the capaci-
tated version of the MCLP model by Current/Storbeck [40].
They propose a backup based model that restricts the total
service provided by each site to a specified service capac-
ity. To solve the model, several simplifying assumptions
are necessary, e.g., one server per site, one backup level,
no interaction effects between servers as well as capacity
limits. Araz et al. [41] extend this approach by a fuzzy

multi-objective model that relaxes some of the restrictive
assumptions, e.g., they allow for multiple servers per site.
Recently, Raghavan et al. [42] have presented the Capaci-
tated Mobile Facility Location Problem (CMFLP). In their
approach, there is a limit on the number of clients that
may be allocated to a server. In a similar manner, Shariat-
Mohaymany et al. [8] propose an upper bound that limits the
utilization of servers to a predefined maximal busy fraction.
One central assumption of independently operating servers
remains.

All these approaches neglect some of the system
dynamics, e.g., server interdependencies, which could lead
to errors in determining the level of coverage. Ansari
et al. [7] propose a model that relaxes the assumption
of independently operating ambulances. The Maximum
Expected Covering Problem for District Design (MECPDD)
is a stochastic model that accounts for travel time and
server availability uncertainties and balances the busyness
among the servers by introducing lower and upper capacity
bounds on the servers. Thus, this model formulation
also follows the idea of limiting server capacity by a
maximum busy fraction. To solve the MECPDD an iterative
algorithm is presented based on the hypercube queueing
model by Larson [43]. In contrast, our approach limits site
capacities, leading to a reduced model complexity, and can
therefore be solved with a commercial solver, also taking
interdependencies into account.

2.4 Contribution

This paper proposes a new linear optimization model
accounting for limited site capacities to ensure a maximum
busy fraction. In our simulation-optimization approach, we
use a discrete event simulation to evaluate the performance
of the model solutions in order to identify the upper
bound on the busy fraction that provides the highest
coverage. The effect of forwarded calls on the busyness
of a site is considered and thus site interdependencies are
explicitly modeled under the assumption of statistical server
independence. Furthermore, we propose two extensions
of the MEXCLP with probabilistic coverage and capacity
constraints. In this way, our computational experiments can
separately quantify the advantage of modeling probabilistic
coverage and capacity constraints. Thus, the contribution of
the paper is fourfold:

1. Modeling of site interdependencies and capacity
utilization,

2. Innovative mathematical formulation which imposes an
upper bound on the site busy fraction,

3. Mixed-integer linear optimization model that is solved
using commercial solvers,
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4. Validation of the formulation in a large computational
experiment and case study with anonymized real-world
data, showing improved coverage.

We are not aware of any previous linear mathemati-
cal formulations that integrate site interdependencies by
introducing a uniform capacity upper bound for each site.

In contrast to the idea of Shariat-Mohaymany et al. [8]
that limit demand capacities for each server, we suggest an
extension of the upper bound capacity utilization approach
that integrates site interdependencies by limiting the
demand capacities for each site. As opposed to the iterative
hypercube approach by Ansari et al. [7], we use a level
based approach to handle the non-linearities imposed by
the probabilistic nature of site interdependencies. Thereby,
we are able to solve the proposed model using commercial
solvers. Further, our approach can be integrated into existing
EMS models to provide a more realistic representation of
the EMS system.

3Mathematical formulation

This section presents the proposed Capacitated Maximum
Expected Covering Location Problem (CMEXCLP). Prelim-
inary considerations focus on the capacitated extension of
the MEXCLP taking into account site interdependencies. To
avoid redundancies, the notation is adopted from the previ-
ous section, unless otherwise stated. A complete overview
of the notation can be found in the Appendix.

3.1 Modeling interdependencies

A realistic representation of an EMS system often leads
to complex and non-linear mathematical formulations. To
maintain a linear formulation, models assume values for the
busy fraction that are based only on system-wide demand
possibly resulting in inefficient ambulance allocations.

By introducing an upper bound for the busyness of each
site, i.e., the probability that all servers located at a site
are busy, this error can be limited. In contrast to limiting
the busyness of each ambulance, limiting the busyness of
each site allows for different busy fractions for individual
ambulances. Furthermore, it is possible to explicitly model
site interdependencies in the capacity constraints while
maintaining a linear model. Additionally, the resulting
linear model formulation is more compact compared to a
server oriented approach as there are usually at least as many
ambulances as sites in an EMS system. Let t̄ be the average
duration (in hours) of a call and let dj denote the number of
calls per day at demand node j ∈ J . Then, the average busy

fraction of a server q can be derived as follows, taking into
account that there are a number of V servers and 24 hours
per day:

q = t̄ · ∑
j∈J dj

24 · V
(5)

There is an inverse relationship of the busy fraction of a site
and the number of servers Vi at a site i ∈ I . Furthermore,
the site busy fraction increases with the allocated demand
fij from demand node j ∈ J . To ensure that the site
busy fraction does not exceed a value of qub, the following
inequalities can be deduced for each site i from equation (5):

(
t̄ · ∑

j∈J fij

24 · Vi

)Vi

≤ qub ∀i ∈ I (6)

The numerator on the left-hand side of inequalities (6)
denotes the expected time consumed by answering calls
during a day where the number of calls that are served is
given by

∑
j∈J fij . The denominator captures the number

of ambulance hours which are available over the course of
each day. The maximum amount of demand that can be
served while maintaining a busy fraction qub depends only
on the number of servers Vi . Thus, inequalities (6) can be
rewritten as follows:

t̄ ·
∑

j∈J

fij ≤ 24 · Vi
Vi

√

qub ∀i ∈ I (7)

Note that the right-hand side of inequalities (7) states the
maximum capacity of a site i ∈ I given a number of Vi

servers and a maximum busy fraction of qub. Given this
upper bound for the busy fraction, it is possible to integrate
site interdependencies.

The priority a site i has when an emergency occurs at
demand node j is specified as the level l of coverage. A
site that covers a demand node with l = 1 is requested
first when an emergency occurs. If that site is busy, the
site with l = 2 responds. Let L denote the set of possible
levels l of coverage. Binary variable yijl = 1 if site i

provides coverage for demand node j on level l, and
yijl = 0 otherwise. Moreover, binary variable xik =
1 if site i has server k, and xik = 0 otherwise. In
addition, let cij denote the average time required to serve
an emergency at demand node j when answered by site i.
Note that cij substitutes t̄ as level based site specific travel
times are considered. This relaxes the assumption of a site
independent average call duration as travel times might
be different depending on the location of the responding
site. Finally, we propose the following capacity constraints
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considering site interdependencies to ensure a maximum
busy fraction of qub:

∑

j∈J

∑

l∈L

qub(l−1)
(1 − qub)cij dj yij l ≤

∑

k∈K

(24 · k
k

√

qub − 24 · (k − 1)
(k−1)

√

qub)xik ∀i ∈ I (8)

The left-hand side of constraints (8) captures the busyness
of site i. Given a first level assignment, a site has to serve a
fraction of 1 − qub of the demand (dj ). On each successive
level, the probability that a call is forwarded is the product
of the busy fractions of all preceding facilities and the
probability that the site is available. The maximum amount
of demand that is forwarded from the preceding levels is

thus defined by qub(l−1)
(1 − qub). Thus, the maximum

busy fraction of a site is qub if constraint (8) is met with
equality. If a lower amount of demand is assigned, the
busy fraction is strictly lower than qub. The right-hand side
specifies the capacity of site i in terms of the maximum
amount of demand that can be served given k servers while a
busy fraction of qub is maintained. These preconsiderations
lead to the mathematical formulation of the new capacitated
MEXCLP (CMEXCLP).

3.2 CapacitatedMaximum Expected Covering
Location Problem (CMEXCLP)

The CMEXCLP extends the MEXCLP by capacity constraints
to ensure a maximum busy fraction and to account for site
interdependencies as well as for probabilistic coverage.

max
∑

i∈I

∑

j∈J

∑

l∈L

(1 − qub)qub(l−1)
dj pij yij l (9)

s.t .
∑

i∈I

∑

k∈K

xik = V (10)

xik ≤ xi(k−1) ∀i ∈ I, k ∈ K | k > 1 (11)
∑

i∈I

yij l = 1 ∀j ∈ J, l ∈ L (12)

yijl ≤ xi1 ∀i ∈ I, j ∈ J, l ∈ L (13)
∑

l∈L

yijl ≤ 1 ∀i ∈ I, j ∈ J (14)

∑

j∈J

∑

l∈L

qub(l−1)
(1 − qub)cij dj yij l ≤

∑

k∈K

(24·k k

√

qub−24·(k−1)
(k−1)

√

qub)xik ∀i ∈ I (8)

xik, yij l ∈ {0, 1}∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (15)

The CMEXCLP (9) maximizes the expected number of
calls reached within the time threshold across all demand
nodes. The consideration of probabilistic coverage by
multiplying pij represents an extension of the MEXCLP.
Constraints (10) ensure that a number of V servers is

distributed among all facilities. Constraints (11) state that,
except for the first server, a site may only have an additional
server k if it has server k − 1. Constraints (12) require
that every demand node is covered on each level. A site i

can only provide coverage to a demand node j if it is
activated, i. e. xi1 = 1 (Constraints (13)). Additionally,
each site i can provide coverage to demand node j only
on a single level l (Constraints (14)). Finally, to model
site interdependencies and to ensure a maximum busy
fraction qub, Constraints (8) is adopted from Section 3.1
according to the previous discussion. For those constraints i

in (8) which are met with equality, the site busy probability
is equal to qub. The busy probability of a site decreases
with an increasing slack for Constraints (8). In the objective
function, we estimate the coverage using busy probability
qub. Since the busy probability of each site is at most qub

according to Constraints (8), the objective is a worst case
estimation of the expected coverage as the objective value
tends to increase for lower busy probabilities. Constraints
(15) limit binary variables xik and yijl to their domains.
Probabilistic coverage has been proposed as an alternative
to the binary definition of coverage (see [33, 35]). Binary
coverage definitions assume that there is a set of demand
nodes for each site that can be reached within the
time threshold if a server is available. In contrast, with
probabilistic coverage a probability pij is specified, which
denotes that a server dispatched from site i will reach
a call from demand node j within the time threshold.
In order to evaluate the impact of probabilistic coverage
and site interdependencies separately, we further propose
the Level Maximum Expected Covering Location Problem
(LMEXCLP). The LMEXCLP represents an extension of
the MEXCLP by probabilistic coverage only. We use the
LMEXCLP as a benchmark for the CMEXCLP in our
computational experiments and case study. We state the
mathematical formulation in the Appendix.

3.3 A note on a chance constrained extension

In the CMEXCLP, the objective is to maximize the
expected number of calls reached within the time threshold.
We consider this objective throughout our computational
experiments and case study. Nevertheless, we would like to
formulate a chance constraint that is a possible extension of
the CMEXCLP. Let αj be the minimum probability that a
call at demand node j is reached within the time threshold.
Then we can state the maximum tolerable failure probability
as 1 − αj . The following non-linear constraint limits the
failure probability for each demand node j :
∏

i∈I

∏

l∈L

(1 − (1 − qub)pij )
yij l ≤ 1 − αj ∀j ∈ J (16)
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The product of the probabilities that each of the assigned
sites does not reach the demand node in time must be lower
or equal to the tolerable failure probability. Constraints (16)
ensure that every demand node is covered at least with
the probability αj . Similar to our capacity constraint, we
rely on a uniform upper bound for the site busy probability
and integrate probabilistic coverage. We may linearize the
constraint in a similar manner to the chance constraint
proposed in MALP II by ReVelle/ Hogan [4] (this version
of MALP considers a locational adjustment of the busy
fraction) to obtain an equivalent linear form:

∑

i∈I

∑

l∈L

log(1 − (1 − qub)pij )yij l ≤ log(1 − αj )

∀j ∈ J (17)

We can add Constraints Eq. 17 to the CMEXCLP
to specify a maximum fraction of calls that is not
reached within the time threshold for each demand node.
Multiplying the right-hand side by a binary variable, the
constraint can be relaxed and violations may be penalized
in the objective if it is not possible to find a solution that
satisfies the constraints for all demand nodes.

4 Computational experiments

To evaluate our model, this section presents extensive
computational experiments. We compare the performance
of the MEXCLP, LMEXCLP, and CMEXCLP across a
large set of test instances, which have been obtained by
systematically varying the number of sites and ambulances.
We have also evaluated other models (e.g., the models
presented in [7, 8]) as a possible benchmark. A comparison
with our results is difficult due to divergent model
formulations, methodologies, and the scope of application.
In particular, [7] use hypercube queuing models for district
design and [8] focus on rural areas. We do not compare our
model to [7] as they use an iterative procedure including
the hypercube queuing model. We provide computational
results of the CMEXCLP against an adjusted version of the
model of [8] in Appendix 6. For our urban planning area,
the CMEXCLP greatly outperforms the model of [8].

4.1 Data description

We use anonymized real-world data of an EMS provider
for our computational experiments and case study in the
next section. We subdivide the city area into |J | = 163
planning squares, each of which is one square kilometer
in size. Among these, there are a number of |I | = 50
planning squares, where sites exist or additional sites could
be established. Currently, an average of 13 ambulances are

on duty, allocated to six ambulance stations. We consider
one year of call data as the basis for our experiments.
Over the period of a year, there were a total number of
about 27,000 time critical emergency calls or on average
approximately 3.1 calls per hour. As a model input, the
Euclidean distance between planning squares only provides
a rough approximation of the real street network distances.
Thus, we use the Open Street Map Routing Machine and
Nominatim to estimate the actual street distances between
each two planning squares [44]. In order to determine the
average service duration of an ambulance for an emergency,
we add the pre-travel delay until the ambulance leaves the
site and the time the ambulance is busy after reaching the
emergency (e.g., treatment, travel time to hospital, return to
site, disinfection) to the corresponding travel time. We are
able to determine these model input values based on the
empirical call data. For the pre-travel delay we assume a
fixed time of 60 seconds (s) for each call. For the travel time
we obtain an average of 425s with a standard deviation of
217s. Finally, for the average service duration we obtain a
value of 3925s and a standard deviation of 1560s.

The busy fraction for the MEXCLP and LMEXCLP are
computed on the basis of the historical average call duration,
the historical average number of calls per day and the
number of available ambulances using Equation (5). In
the case of the CMEXCLP, the busy fraction represents
a uniform upper bound for site unavailability. In order to
determine the best upper bound on the site busy fraction for
the CMEXCLP, we solve each test instance for a fixed set of
parameter values. We evaluate each value for qub based on
the coverage resulting from our Discrete Event Simulation
(DES) as described in Section 4.2, which we will refer to as
simulated coverage in the following. The highest simulated
coverage value then defines the best qub value for each test
instance.

4.2 Discrete Event Simulation

To evaluate the quality of the solutions obtained by the
different mathematical formulations for our test instances,
we use a Discrete Event Simulation (DES). DES is a
common methodology for analyzing the quality of model
solutions in the context of EMS [45]. An emergency call
is characterized mainly by the associated demand node, the
position of the associated ambulance and the call duration.
The dispatch of an ambulance follows the closest-idle
strategy. Thus, the time that an ambulance takes to reach
the scene depends directly on the location of the closest idle
site. In order to simulate call arrival times, we use historical
call arrival times in a trace-driven simulation approach.

Furthermore, we simulate uncertainties associated with
dynamic pre-travel delays and travel times of the ambu-
lances using distribution functions. There are many different
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approaches in the literature to account for randomness of
travel times (see e.g., [46–48]). We use a transformation
of the normal distribution for pre-travel delays and a gen-
eralized logistic distribution for travel times to account for
different driving speeds of an ambulance. These distribu-
tions provide the best fit for our empirical data which has
been determined using the Python statistics package scipy
based on the minimum sum of squared errors. To esti-
mate the travel times, the actual travel time as predicted
by the Geographic Information System (GIS) software is
multiplied by a time dependent travel time correction fac-
tor. These time dependent correction factors are the ratio
of the historical and the GIS estimated times required for
each trip. We then fitted time dependent generalized logis-
tic distribution functions for each hour of the day based on
the computed correction factors of all historical trips. On
average our fitted distribution function generates a value of
0.9570 with a standard deviation of 0.3707 for the correc-
tion factor. This implies that an ambulance on average only
needs 95.70% of the travel time that GIS software estimates.
However, the high standard deviation implies that the actual
travel times highly depend on various known and unknown
factors as, e.g., traffic, weather conditions, types of road, or
time of day [46, 48]. Thus, we are able to integrate empirical
data and real variations in travel time in our simulation.

In order to determine the time required to reach the scene
of an accident, we add the pre-travel delay to the travel
time. Each simulation run then determines the response
time for all historical calls over the period of one year.
The total call duration, that determines when the ambulance
is available after answering a call, is calculated by adding
up the stochastic response time and the historical average
duration it takes for an ambulance to return to its site. If the
rare event occurs that a call cannot be answered by any local
ambulance, it is outsourced to another EMS provider and,
thus, leaves the considered system. It is a common policy
between the municipalities to answer emergency calls of
neighboring EMS providers when no local ambulance is
available. For detailed information on the frequency of
calls arriving when all local ambulances are busy, see
Appendix 6.

Finally, for a validation of our DES model we compared
the historical coverage values with the simulated coverage
as obtained by the simulation model for the actual choice
of facility and vehicle locations. We compared the coverage
values of more than 100 planning squares with at least
30 calls over the period of one year. On average, the
simulation would indicate whether a call was covered on
time incorrectly for less than 2 emergency calls per planning
square per year. Thus, our simulation model provides a
suitable representation of the real world EMS system.

4.3 Results

All computational experiments were performed on a
computer with an Intel Core i7-8550 with 8GB of RAM.
The models were implemented in Python 3.7 and solved
with Gurobi 8.1. Test instances were obtained by varying the
number of sites from 4 to 12 and the number of ambulances
from 6 to 12 both in single steps. Note that cases with
fewer ambulances than sites are not of interest and have
been neglected (for more details see Table 2). In order to
determine the upper bound for the capacity constraints of
the CMEXCLP, busy fractions from 0.05 to 0.525 were
assessed in 0.025 increments. Preliminary experiments have
indicated that a more detailed subdivision does not improve
coverage results. Furthermore, busy fractions > 0.525 did
not improve the solution quality either, as the capacity
constraints are non-binding for large values of qub. In order
to determine the best upper bound for the site busy fraction,
the model solution was evaluated by the DES for each
qub value. The highest coverage value calculated by the
simulation then defines the best qub value for each instance.
As a result, the MEXCLP, LMEXCLP, and CMEXCLP were
solved for a total of 42 test instances to evaluate the model
performance. Note that the CMEXCLP model had to be
solved multiple times per instance. The time limit for all
computations was set to 1800 seconds.

4.3.1 Runtime and Gap

To evaluate the solution characteristics of the three
mathematical formulations MEXCLP, LMEXCLP, and
CMEXCLP, we compare their runtimes and optimality
gaps. We show the results in Table 1. On average
across all instances, the basic model MEXCLP has the
shortest runtime with about 0.16 seconds, followed by
LMEXCLP with 1157.93 seconds and CMEXCLP with
5577.71 seconds. The run time of the CMEXCLP includes
all 20 sub-instances for selecting the best qub value. Thus, it
takes around 280 seconds on average (=5577.71/20) to solve
one instance for a specific qub value for the CMEXCLP
model. The time the DES takes to determine the simulated

Table 1 Overview of computational characteristics for the different
mathematical formulations

Mean Mean # instances

runtime (s) gap (%) with gap ≥ 1%

MEXCLP 0.16 0% 0

LMEXCLP 1157.93 0.85% 12

CMEXCLP 5577.71 0.28% 40
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coverage in case of the CMEXCLP is not included, as it is
applied after solving all model instances and only requires
a few seconds per instance. Interestingly, the runtime of the
level based formulation of LMEXCLP is reduced on average
by adding capacity constraints given a predetermined busy
fraction. The longer runtime of the CMEXCLP stems

primarily from the iterative approach for determining the
best qub value. However, the runtime strongly depends
on the respective scenario. Instances with 6 to 8 possible
sites are more difficult to solve because there tend to be
more combinations for assigning ambulances and demand
nodes to sites. Considering the CMEXCLP formulation, the

Table 2 Comparison of the simulation results for the solutions of the different mathematical formulations

Coveragea �

Sb Vb qc qub c MEXCLP LMEXCLP CMEXCLP LMEXCLP - CMEXCLP -

MEXCLP LMEXCLP

4 6 56.34% 47.50% 66.98% 66.71% 68.66% -0.27% 1.95%

4 7 48.29% 30.00% 72.28% 72.16% 74.70% -0.12% 2.54%

4 8 42.26% 22.50% 76.79% 78.21% 79.89% 1.42% 1.68%

4 9 37.56% 15.00% 81.41% 83.56% 84.17% 2.14% 0.61%

4 10 33.80% 20.00% 83.28% 86.10% 86.27% 2.82% 0.17%

4 11 30.73% 10.00% 86.10% 86.81% 88.06% 0.71% 1.25%

4 12 28.17% 10.00% 88.63% 88.37% 89.05% -0.26% 0.68%

5 6 56.34% 50.00% 67.85% 66.93% 68.97% -0.91% 2.04%

5 7 48.29% 42.50% 73.94% 74.81% 75.74% 0.87% 0.93%

5 8 42.26% 35.00% 78.91% 79.32% 81.14% 0.41% 1.83%

5 9 37.56% 27.50% 82.19% 83.22% 84.60% 1.04% 1.38%

5 10 33.80% 12.50% 84.46% 87.17% 87.58% 2.71% 0.40%

5 11 30.73% 17.50% 87.65% 88.81% 89.97% 1.15% 1.16%

5 12 28.17% 17.50% 90.12% 90.92% 91.56% 0.80% 0.64%

6 6 56.34% 50.00% 68.47% 68.98% 69.36% 0.51% 0.39%

6 7 48.29% 55.00% 74.50% 75.47% 76.47% 0.97% 1.00%

6 8 42.26% 42.50% 79.64% 80.15% 81.97% 0.51% 1.82%

6 9 37.56% 27.50% 82.74% 84.47% 85.77% 1.73% 1.31%

6 10 33.80% 40.00% 86.19% 87.90% 88.66% 1.71% 0.75%

6 11 30.73% 25.00% 89.21% 90.40% 90.97% 1.19% 0.57%

6 12 28.17% 12.50% 90.65% 92.71% 92.71% 2.06% 0.00%

7 7 48.29% 55.00% 74.51% 76.06% 76.83% 1.54% 0.78%

7 8 42.26% 50.00% 80.18% 80.41% 82.45% 0.24% 2.04%

7 9 37.56% 52.50% 83.89% 85.11% 86.32% 1.22% 1.21%

7 10 33.80% 27.50% 86.67% 88.24% 89.39% 1.57% 1.16%

7 11 30.73% 25.00% 88.79% 90.90% 91.37% 2.12% 0.46%

7 12 28.17% 25.00% 89.95% 92.84% 93.13% 2.90% 0.28%

8 8 42.26% 45.00% 80.13% 81.15% 82.55% 1.02% 1.40%

8 9 37.56% 50.00% 84.13% 85.39% 87.03% 1.26% 1.64%

8 10 33.80% 45.00% 87.38% 88.54% 89.68% 1.16% 1.14%

8 11 30.73% 27.50% 89.54% 91.29% 91.83% 1.76% 0.53%

8 12 28.17% 17.50% 90.72% 93.26% 93.26% 2.54% 0.00%

9 9 37.56% 35.00% 83.56% 86.57% 86.72% 3.01% 0.16%

9 10 33.80% 45.00% 87.11% 89.50% 89.86% 2.39% 0.36%

9 11 30.73% 27.50% 89.66% 91.86% 92.06% 2.19% 0.20%

9 12 28.17% 22.50% 91.09% 93.41% 93.67% 2.32% 0.26%
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Table 2 (continued)

Coveragea Δ

Sb Vb qc qub c MEXCLP LMEXCLP CMEXCLP LMEXCLP - CMEXCLP -

MEXCLP LMEXCLP

10 10 33.80% 32.50% 87.71% 89.40% 90.05% 1.69% 0.65%

10 11 30.73% 32.50% 90.16% 91.80% 92.33% 1.64% 0.53%

10 12 28.17% 27.50% 91.02% 93.69% 93.83% 2.67% 0.14%

11 11 30.73% 30.00% 89.74% 92.52% 92.52% 2.77% 0.00%

11 12 28.17% 35.00% 92.12% 93.58% 94.09% 1.47% 0.50%

12 12 28.17% 32.50% 91.15% 93.79% 94.17% 2.64% 0.38%

average 1.46% 0.88%

aFraction of calls reached within the time threshold of 10 min
bS = no. of sites, V = no. of ambulances
cq = average system-wide busy fraction, qub = best upper bound for site busy fraction

runtime additionally depends on the selected value for qub.
A high value for qub means that the capacity of each site
increases, as ambulances are allowed to be called more
frequently. Thus, the coverage constraints can be met more
easily and the instances are typically easier to solve.

It turns out that some instances of LMEXCLP could
not be solved to optimality within the time limit, while
the average gap is 0.85%. However, most instances of
CMEXCLP were solved to optimality and the average
gap is 0.28% across all 840 sub-instances (= 20 ∗ 42)
for determining the best qub value for each instance. As
a result, the test instances were solved to a reasonable
degree of optimality from a practical perspective. The
complexity of the LMEXCLP and CMEXCLP as compared
to the MEXCLP stems from the combinatorial nature of the
multi-level assignments. The MEXCLP could be solved to
optimality in all instances.

4.3.2 Coverage

To assess the solution quality, we compare the level of
coverage for the optimal solutions of each of the three
mathematical formulations. Therefore, we use the previ-
ously described DES to determine the coverage of the
network structure prescribed by the different mathemat-
ical formulations for each test instance. In our experi-
ments, an emergency call is considered covered if it is
reached within a time threshold of 10 minutes, e.g., a
coverage of 90% means that 90% of all emergency calls
were reached within 10 minutes. The resulting coverage
for each instance is calculated as the mean of 30 simula-
tion runs and is shown in Table 2. Table 6 in the Appendix
shows that 39 out of 42 coverage improvements are sig-

nificant with a 99% confidence level. The coverage results
in Table 2 show that an extension of the MEXCLP by
probabilistic coverage improves the coverage by 1.46%-
points (%p) on average, while the maximum improve-
ment amounts to 3.01%p. Adding capacity constraints
improves the simulated coverage by a further 0.88%p on
average and up to 2.54%p at maximum as reported in
Table 2.

Figure 2 provides a concise illustration of some of the
results from Table 2. An interesting result with respect
to Fig. 2 is that capacity constraints often lead to greater
improvements when resources are limited. Comparing the
CMEXCLP with the LMEXCLP formulation, instances with
fewer resources, i.e., 4 to 6 sites and 6 to 8 ambulances,
improve coverage by 1.58%p on average, which is 0.70%p
above the overall average. By contrast, in cases with many
resources, i.e., 8 to 12 sites and 10 to 12 ambulances, the
coverage is improved only by 0.39%p on average, which is
0.49%p below the overall average. Conversely, an extension
of the MEXCLP by probabilistic coverage leads to a higher
improvement if more resources are available. Comparing
the LMEXCLP with the MEXCLP, an improvement in
coverage by 0.38%p is obtained on average for instances
with few resources. For instances with many resources,
however, the coverage is improved by 2.10%p on average,
which is highly above the average improvement of 1.46%p.

Intuitively, one of the main reasons that the improvement
of the CMEXCLP is higher in case of limited resources is
that the capacity constraints are more frequently binding.
With a higher number of ambulances and sites, the capacity
constraints are binding less frequently and thus have a lower
impact on the solution. The consideration of probabilistic
coverage is particularly important when a high number of
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ambulances is available. This is mainly caused by uncertain
travel times leading to a lower coverage than expected
by the model. When more ambulances are available, it is
possible to counteract the effect of uncertain travel times by
locating ambulances out over the urban area. This option is
neglected by the MEXCLP because of its binary definition
of coverage, whereas coverage is improved using the
LMEXCLP by considering a more accurate representation
of travel times. In 3 of 42 cases, the LMEXCLP finds
the same solution as the CMEXCLP because the capacity
constraints are non-binding for the optimal solution of the
LMEXCLP. In these cases, there are neither advantages
nor disadvantages in introducing the capacity constraints.
As a result, our experiment has shown (Table 2) that the
introduction of capacity constraints improves the solution in
most cases and never causes a disadvantage.

Overall, the results of our computational experiments
indicate that the solution quality is greatly improved by an
extension of EMS location models by probabilistic coverage
and capacity constraints. Most importantly, the CMEXCLP
formulation integrates site interdependencies leading to
a more accurate modeling approach. Furthermore, the
solution of the new mathematical formulation is always at
least as good and in most cases better than the solutions
of the LMEXCLP and MEXCLP. To get further insights
into the applicability of this modeling approach, the next
section discusses the effects of capacity constraints and
probabilistic coverage in the context of a real EMS provider.

5 Case Study

To get further insights into the applicability of the new
model formulation, we investigate five scenarios based on
an existing EMS network. Figure 3 provides an overview of
the city structure and shows the 6 existing base locations,
indicated by the planning squares framed in black. In
the base scenario Sbase, there are 6 existing sites and
13 ambulances. The number and color of each square

Fig. 2 Coverage effect in %-points by model extensions of probabilis-
tic coverage and additionally site interdependencies at different levels
of resource availability

indicates the number of emergency calls that occurred at
that demand point over a year. As can be seen, the majority
of emergencies arises near the city center while fewer calls
originate in the suburbs.

5.1 Scenario description

In this case study, we consider different scenarios to
adapt the existing EMS site locations. Our analysis
focuses especially on the impact of considering site
interdependencies on a real EMS network. Therefore, we
investigate different scenarios with a fixed number of
ambulances and analyze the effects of relocating sites and
constructing new sites. In all scenarios, 13 ambulances are
available. To evaluate the impact of different policies, each
scenario considers a different number of site constructions
and site relocations. Table 3 provides an overview of the
scenarios. The scenario subscript indicates the number of
additional sites and relocations.

The base scenario Sbase represents the base case with six
existing sites. In scenarios S0/1 and S0/2, respectively, one
or two relocations of existing sites are permitted. In total,
the number of sites in these cases remains at six. Scenario
S1/0 allows for an additional site while the existing ones
are retained. Finally, scenario S1/1 allows for one relocation
and the construction of one new site. Thus, scenarios S1/0

and S1/1 result in a total number of seven sites. Note that
in all scenarios no more than two new sites are established,
either by moving existing sites, or by constructing new
ones, or a combination of both. From a practical point of
view, scenarios that require the construction of more than
two new sites are not realistic, as these scenarios would
require excessive investment and impose a large change
on the existing system. In the base case, the locations are
predetermined.

Fig. 3 Demand distribution over the entire city and existing emergency
site locations (Sbase)
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Table 3 Overview of case study scenarios (scenario subscript indicates
number of additional sites and relocations)

Scenario

Sbase S0/1 S0/2 S1/0 S1/1

Existing sites 6 6 6 6 6

Additional sites 0 0 0 1 1

Relocations 0 1 2 0 1

The optimal ambulance allocation has to be chosen,
which may differ from the existing ambulance allocation.
In all other scenarios, at least one additional site may be
established.

5.2 Results and implications

In the following, we evaluate the model solutions of the
five scenarios described above. We solve each of the three
models for each scenario and evaluate the solution using the
DES described in Section 4.

Table 4 shows the solutions of the different model for-
mulations. The values represent the number of ambulances
located at the site indicated by the column value in the
respective scenario that is given by the row of each model
formulation block. In the majority of cases where site relo-
cations are permitted, the same locations are selected by the
different model formulations. On the other hand, the ambu-
lance allocation is different for almost all the scenarios. We

use these site locations and ambulance allocations as input
for the DES to evaluate the performance of each emergency
network.

Table 5 shows the difference of the coverage in the
simulation between the models for the different scenarios.
The extension of MEXCLP to LMEXCLP by probabilistic
coverage improves the resulting coverage by 2.31%p on
average. Scenario S0/2 obtains the highest improvement of
4.78%p coverage in comparison to the MEXCLP model.
In case of site interdependencies, we obtain an additional
improvement. The CMEXCLP considers both probabilistic
coverage and interdependencies between emergency sites
and improves the coverage by a further 0.59%p on average
compared to the LMEXCLP. Site interdependencies lead
to the highest improvement in scenario S0/2, which allows
for the relocation of two existing sites. In this instance,
the simulated coverage site increases by 1.05%p compared
to the LMEXCLP. If all ambulances of a certain site are
busy, the probability that a nearby site will have to deploy
an ambulance to answer a call increases. Limiting the
site busyness and thereby providing enough ambulances to
answer primary as well as additional calls from other sites
leads to a further improvement of the coverage provided by
the network.

To further illustrate the effects of explicitly modeling
probabilistic coverage and site interdependencies, we
compare the optimal ambulance allocation prescribed by
the mathematical models (CMEXCLP, LMEXCLP, and
MEXCLP) and the resulting simulated coverage for each

Table 4 Optimal site locations and ambulance allocations of the MEXCLP, LMEXCLP, and CMEXCLP for each scenario

Number of ambulances at Planning square (see Fig. 3)

C7 C10 C12 D8 E11 G7 G10 I5 I10 K5 N6

MEXCLP Sbase 2 1 3 3 1 3

S0/1 2 2 1 2 2 3

S0/2 2 2 2 1 3 3

S1/0 2 2 1 1 2 2 3

S1/1 2 2 2 1 1 2 3

LMEXCLP Sbase 2 2 2 2 2 3

S0/1 3 1 2 2 2 3

S0/2 2 1 3 2 2 3

S1/0 2 1 1 2 2 2 3

S1/1 2 2 1 1 2 2 3

CMEXCLP Sbase 2 2 2 3 2 2

S0/1 2 2 2 3 2 2

S0/2 2 2 2 3 2 2

S1/0 2 1 2 2 2 2 2

S1/1 2 2 2 1 2 2 2

aPS = Planning square
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Table 5 Comparison of the additional effects on the coverage obtained
by the different mathematical formulations in the case study scenarios

Δ

LMEXCLP - CMEXCLP - CMEXCLP -

MEXCLP LMEXCLP MEXCLP

Sbase 0.35% 0.45% 0.80%

S0/1 1.81% 0.54% 2.35%

S0/2 4.78% 1.05% 5.83%

S1/0 1.36% 0.16% 1.52%

S1/1 3.24% 0.74% 3.98%

average 2.31% 0.59% 2.89%

planning square in Fig. 4 for the two scenarios Sbase and
S0/2.

This figure illustrates the city structure with the color of
each planning square representing the simulated coverage

obtained by the corresponding model solutions and the
selected site locations as white boxes. We represent the
number of allocated ambulances by the value inside these
boxes. Note that these planning squares are covered ≥ 90%
as well.

An interesting observation resulting from this figure is
that the explicit consideration of site interdependencies
often leads to the same site locations compared to
the LMEXCLP but with a more efficient allocation of
ambulances. Especially in scenario S0/2, the MEXCLP
reduces the available resources near the city center and
moves sites and ambulances to planning squares further
away from the center. Taking into account variations of
the travel speed, by introducing probabilistic coverage, the
LMEXCLP locates more ambulances near the city center
compared to the MEXCLP formulation. Even in the base
scenario Sbase, the simulated coverage increases by 0.45%p
(Table 5), if site interdependencies are explicitly taken into
account. This improvement is exclusively obtained by an

Fig. 4 Comparison of location
and allocation decisions with
resulting levels of coverage
provided by MEXCLP,
LMEXCLP, and CMEXCLP
model solutions in scenarios
Sbase and S0/2
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Fig. 5 Coverage provided by the model solutions for each scenario

enhanced ambulance allocation to existing emergency sites.
The main reason for that is that in the base scenario (Sbase)
most sites are located near the city center. Due to the
assumption of a system-wide busy fraction, the MEXCLP
and LMEXCLP overestimate the coverage of the demand in
the city center. Thus, only few ambulances are located at
existing sites near the city center while most are allocated
in the suburbs. As a result, the CMEXCLP formulation
improves the coverage.

Looking at Fig. 5, it is interesting to note that the relo-
cation (S0/1) or construction of one site (S1/0) and the
relocation of two sites (S0/2) or construction and reloca-
tion of each one site (S1/1) lead to very similar simulated
coverage results for the LMEXCLP and CMEXCLP formu-
lations. It seems that the positive effect of an additional site
is limited by the given number of ambulances. Furthermore,
the main benefit appears to result from adding new sites to
the network, while some existing sites can be dropped with-
out a large impact on the coverage provided by the network.
In the considered scenarios, it is more beneficial to main-
tain a number of six sites by relocating one or two sites than
to construct additional sites. Thus, from a practical point of
view, decisions on resources should consider both the num-
ber of sites and ambulances. One result that is somewhat
counterintuitive is the deterioration in coverage of the MEX-
CLP in scenarios S0/1, S0/2, and S1/1. It is likely that this
reduction is due to the error inherent in the assumption of
a system-wide busy fraction combined with a binary cov-
erage formulation. This further illustrates the importance
of explicit consideration of probabilistic coverage and site
interdependencies in modeling EMS networks.

Overall, both extensions of the MEXCLP model have
a significant influence on the network quality. The results
of this study show that the explicit consideration of site
interdependencies is highly relevant in real EMS systems
and leads to improved location solutions, especially in
case of limited resources. The CMEXCLP model provides
the highest value for simulated coverage in all considered
scenarios and is therefore an important tool for planning
EMS networks. Further, the CMEXCLP determines a
solution that achieves a higher coverage with an identical
number of ambulances than the solution of MEXCLP or
LMEXCLP, i.e., it attains better performance at the same
cost.

6 Conclusion and Outlook

The new mathematical formulation CMEXCLP explicitly
models site interdependencies by introducing new upper
bound chance constraints on the busyness of each site.
Furthermore, we model probabilistic coverage leading to
a more realistic representation of the EMS system by the
mathematical formulations.

In extensive computational experiments, we have sepa-
rately evaluated the effect of modeling probabilistic cover-
age and site interdependencies. Probabilistic coverage has
often improved the solution. However, we have obtained the
best solution for each test instance by taking into account
site interdependencies. While the size of the effect varies,
the solution has been improved in comparison to the other
mathematical formulations. The new mathematical model
leads to large enhancements of coverage, in particular when
there are strongly limited resources. Especially, the assign-
ment of ambulances to sites is often superior to previous
formulations due to the more accurate representation of
capacities. As a result, site interdependencies are an impor-
tant feature when optimizing an EMS system with a hetero-
geneous demand distribution, since their consideration may
lead to a substantial improvement of coverage.

In our case study, we have demonstrated the value
of the new mathematical formulation for a real EMS
system. It turns out that two relocations lead to the largest
improvement over the base case.

Future research should look into further extensions of the
CMEXCLP like for example time dependencies. Moreover,
the value of the proposed formulation should be investigated
by applications to more EMS systems. Futhermore, the
possibility of overfitting could be analyzed by taking
into account training and testing samples to separate the
DES input estimation from the DES model selection that
determines the best solution. Finally, specialized solution
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approaches are required for large instances, especially when
chance constraints on the minimum fraction of coverage at
each demand node are introduced.

Appendix

Symbol directory

Name Description

I Set of potential sites
J Set of demand nodes
K Set of capacity levels at each site
L Set of coverage levels

α Probability that a call is served
within the required time

cij Average total time required to
answer a call at demand node j from site i

dj Number of calls at node j

fij Number of calls at demand node j

covered by site i per day
Nj Set of sites i covering demand node j

pij Probability that a server from site i

answers a call at demand node j in time
q Busy probability
qub Upper bound for the busy fraction
t̄ Average duration per call (in hours)
V Total number of servers that are available

xi ∈ Z
≥0 Integer variable that denotes the

number of servers at site i

xik ∈ {0, 1} 1 if server number k is added at site
i; 0 otherwise

yjk ∈ {0, 1} 1 if demand node j is covered by k

servers; 0 otherwise
yijl ∈ {0, 1} 1 if site i serves demand node j on

level l; 0 otherwise
yikj l ∈ {0, 1} 1 if site i serves demand node j with

a number of k ambulances on level
l; 0 otherwise

zj ∈ {0, 1} 1 if calls at demand node j are reached
with a reliability of at least α; 0 otherwise

LMEXCLP

The LMEXCLP is an extension of the MEXCLP by
probabilistic coverage. In contrast to the CMEXCLP, an
additional index is required for variable yikj l . Since there
is no system-wide site busy fraction, the number of servers
that provide coverage from site i for demand point j on

level l needs to be captured by index k. Then, the coverage
provided by site i takes into account the number of servers.
In that way, the additional effect of locating multiple servers
at a single site can be represented.

max
∑

i∈I

∑

k∈K

∑

j∈J

∑

l∈L

(1 − q)qldjpij yikj l (18)

s.t .
∑

i∈I

∑

k∈K

xik = V (19)

xik ≤ xi(k−1) ∀i ∈ I, k ∈ K | k > 1 (20)
∑

i∈I

∑

k∈K

yikjl = 1 ∀j ∈ J, l ∈ L (21)

yikj l ≤ xik ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (22)
∑

l∈L

yikj l ≤ 1 ∀i ∈ I, j ∈ J, k ∈ K (23)

xik, yikj l ∈ {0, 1} (24)

∀i ∈ I, j ∈ J, k ∈ K, l ∈ L

Confidence intervals

Table 6 shows the confidence intervals of our computational
experiments. Since the coverage results are simulated, we
test the improvement of the CMEXCLP model compared
to the MEXCLP and LMEXCLP for statistical significance.
Therefore, we conduct two t-tests with a confidence level
of 99.5% to test the significance of the improvement
of the CMEXCLP in comparison to the MEXCLP and
LMEXCLP. We apply the t-test to the difference between
the individually simulated coverage results to reduce the
variance. If both tests are significant it is valid to state that
the CMEXCLP is significantly better at a 99% confidence
level in comparison to both models. The test results show,
that in 39 out of 42 instances the CMEXCLP is significantly
better at a 99% confidence level compared to the MEXCLP
and LMEXCLP.

Dropped calls

Table 7 shows the fraction of calls that were not answered
by the EMS system because all local servers were busy for
each instance. Each value represents the average fraction of
total calls that were dropped across 30 simulation runs per
model formulation and instance.

Model benchmark

We adapted the original “TUBUL” model formulation
of Shariat-Mohaymany et al. [8], to make their model
applicable to our case and enable a comparison with
CMEXCLP. In reformulating their model several changes
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Table 7 Average fraction of dropped calls that arrive when all servers
in the system are busy (average of 30 simulation runs)

average dropped calls

Sites Vehicles MEXCLP LMEXCLP CMEXCLP

4 6 12.18% 12.19% 11.98%

4 7 7.07% 7.08% 6.96%

4 8 3.69% 3.65% 3.60%

4 9 1.80% 1.75% 1.73%

4 10 0.79% 0.76% 0.74%

4 11 0.30% 0.29% 0.28%

4 12 0.10% 0.11% 0.10%

5 6 12.12% 12.23% 12.11%

5 7 7.07% 7.03% 6.93%

5 8 3.68% 3.64% 3.61%

5 9 1.79% 1.77% 1.77%

5 10 0.78% 0.75% 0.74%

5 11 0.30% 0.28% 0.27%

5 12 0.10% 0.10% 0.09%

6 6 12.10% 12.12% 12.07%

6 7 7.04% 6.94% 6.92%

6 8 3.66% 3.61% 3.55%

6 9 1.81% 1.75% 1.71%

6 10 0.77% 0.76% 0.72%

6 11 0.28% 0.29% 0.27%

6 12 0.10% 0.09% 0.09%

7 7 7.06% 6.94% 6.89%

7 8 3.64% 3.64% 3.54%

7 9 1.78% 1.73% 1.69%

7 10 0.77% 0.75% 0.71%

7 11 0.29% 0.29% 0.27%

7 12 0.10% 0.08% 0.08%

8 8 3.65% 3.63% 3.55%

8 9 1.77% 1.74% 1.68%

8 10 0.76% 0.75% 0.71%

8 11 0.28% 0.28% 0.26%

8 12 0.09% 0.09% 0.09%

9 9 1.79% 1.73% 1.71%

9 10 0.77% 0.73% 0.72%

9 11 0.28% 0.28% 0.26%

9 12 0.09% 0.09% 0.09%

10 10 0.77% 0.74% 0.72%

10 11 0.27% 0.28% 0.27%

10 12 0.09% 0.09% 0.07%

11 11 0.29% 0.27% 0.26%

11 12 0.09% 0.09% 0.08%

12 12 0.10% 0.09% 0.08%

were required; however, we aimed at replicating their basic
assumptions as closely as possible. These are listed in
the following. We have adopted the notation of Shariat-
Mohaymany. See their paper for a definition of the basic
notation [8]. First, we reformulated the objective function
to increase comparability with the MEXCLP objective
function (see Objective (25)). In addition, we integrated
probabilistic coverage (pji) in the objective function.
Further, we added constraints on the number of sites and
vehicles (Equations (35) and (36)). Other constraints remain
unchanged with respect to the original formulation. The
mathematical formulation of Shariat-Mohaymani et al. [8]
has been adjusted in the following way:

max
∑

i∈I

∑

a∈A

diapji (25)

s.t .
∑

a∈Ni

xa =
∑

l∈L

(l + 1)yil ∀i ∈ I (26)

∑

l∈L

yil = 1 ∀i ∈ I (27)

zj ≥ xa ∀j ∈ J, a ∈ Aj (28)

24p ≥
∑

i∈Ba

dia ∀a ∈ A (29)

dia = 0 ∀i ∈ I, a ∈ A | i �∈ Ba (30)

dia ≥ qi

∑

l∈L

yil

1

1 + l
+ (xa − 1)M (31)

∀a ∈ A, i ∈ Ba

dia ≤ qi

∑

l∈L

yil

1

1 + l
∀a ∈ A, i ∈ Ba (32)

dia ≤ Mxa ∀i ∈ I, a ∈ A (33)

dia ≤ qizj ∀i ∈ I, a ∈ Aj , j ∈ J (34)
∑

a∈A

xa = V (35)

∑

j∈J

zj = S (36)

xa, zj , yil ∈ {0, 1} ∀a ∈ A, i ∈ I, j ∈ J, l ∈ L (37)

dia ≥ 0 ∀i ∈ Ba, a ∈ A (38)

We have performed the same set of computational
experiments for the adapted TUBUL, using identical
parameters as input and our discrete event simulation for
the evaluation of the solutions. In Table 8, we provide
an overview of the model performance in comparison to
CMEXCLP.

For our case, their model does not obtain reasonable
solutions. The primary reason is that they consider the
assumption of evenly distributed workload of a region
between all servers in proximity, combined with a set
of constraints that require every planning square to be
covered. They make this assumption for an area of rural

59M. Grot et al.

1 3



Table 8 Comparison of simulated coverage results of CMEXCLP and adjusted TUBUL

Coverage Δ

Sites Vehicles qub* TUBUL q MEX TUBUL CMEXCLP TUBUL - CMEXCLP

4 6 None 56,34% None 68,66% None

4 7 None 48,29% None 74,70% None

4 8 None 42,26% None 79,89% None

4 9 None 37,56% None 84,17% None

4 10 None 33,80% None 86,27% None

4 11 None 30,73% None 88,06% None

4 12 None 28,17% None 89,05% None

5 6 None 56,34% None 68,97% None

5 7 None 48,29% None 75,74% None

5 8 None 42,26% None 81,14% None

5 9 None 37,56% None 84,60% None

5 10 None 33,80% None 87,58% None

5 11 None 30,73% None 89,97% None

5 12 None 28,17% None 91,56% None

6 6 None 56,34% None 69,36% None

6 7 None 48,29% None 76,47% None

6 8 60,00% 42,26% 72,86% 81,97% -9,11%

6 9 55,00% 37,56% 78,02% 85,77% -7,76%

6 10 42,50% 33,80% 82,33% 88,66% -6,33%

6 11 40,00% 30,73% 84,88% 90,97% -6,09%

6 12 35,00% 28,17% 87,14% 92,71% -5,57%

7 7 65,00% 48,29% 67,47% 76,83% -9,36%

7 8 52,50% 42,26% 75,94% 82,45% -6,51%

7 9 47,50% 37,56% 81,52% 86,32% -4,80%

7 10 62,50% 33,80% 85,31% 89,39% -4,08%

7 11 35,00% 30,73% 88,40% 91,37% -2,96%

7 12 42,50% 28,17% 89,86% 93,13% -3,27%

8 8 50,00% 42,26% 76,56% 82,55% -5,99%

8 9 42,50% 37,56% 82,45% 87,03% -4,58%

8 10 40,00% 33,80% 85,77% 89,68% -3,90%

8 11 35,00% 30,73% 89,08% 91,83% -2,75%

8 12 35,00% 28,17% 90,86% 93,26% -2,40%

9 9 42,50% 37,56% 82,51% 86,72% -4,22%

9 10 37,50% 33,80% 85,49% 89,86% -4,37%

9 11 35,00% 30,73% 89,03% 92,06% -3,03%

9 12 40,00% 28,17% 91,45% 93,67% -2,22%

10 10 42,50% 33,80% 86,60% 90,05% -3,46%

10 11 65,00% 30,73% 89,40% 92,33% -2,93%

10 12 35,00% 28,17% 91,30% 93,83% -2,53%

11 11 35,00% 30,73% 88,95% 92,52% -3,58%

11 12 35,00% 28,17% 91,65% 94,09% -2,44%

12 12 47,50% 28,17% 91,57% 94,17% -2,60%
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outskirts with few emergencies; it turns out to be inefficient
for the densely populated city in our case study. For
experiments with a low number of sites or vehicles, this may
even lead to an infeasible model, as there are insufficient
capacities.
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