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Abstract
We present an algorithm to solve capacity extension problems that frequently occur
in energy system optimization models. Such models describe a system where certain
components can be installed to reduce future costs and achieve carbon reduction goals;
however, the choice of these components requires the solution of a computationally
expensive combinatorial problem. In our proposed algorithm, we solve a sequence of
linear programs that serve to tighten a budget—the maximum amount we are willing
to spend towards reducing overall costs. Our proposal finds application in the general
setting where optional investment decisions provide an enhanced portfolio over the
original setting that maintains feasibility. We present computational results on two
model classes, and demonstrate computational savings up to 96% on certain instances.

1 Introduction

1.1 Background

Governments worldwide are pushing towards an increasing use of renewable energy
technologies. In linewith emission targets set by theEuropeanCommission—as part of
the 2050 Low Carbon Economy roadmap to reduce emissions to 80% below the levels
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in the year 1990 [6]—the German federal government plans to increase the percentage
of energy derived from renewable sources to 80% by the year 2050 [3]. This rampant
increase in the share of renewables requires important investment decisions that guide
future energy policies, e.g., the expansion of existing energy capacity infrastructure
to accommodate the needs and demands of future energy production and supply.
Expanding existing capacity to include photovoltaics, hybrid generation systems, and
storage devices are a few examples of such investment decisions that can potentially
lead to lower greenhouse gas emissions [18].

Optimization models have a rich history for both operations of installed energy
systems [1,33], as well as extending existing infrastructure; see, e.g., so-called capac-
ity expansion models [2,25], models for integrating renewable sources with existing
fossil fuels [29], and planning for expanding transmission networks [24]. Typically,
mixed-integer programs (MIPs) are developed and employed to inform these deci-
sions as well as optimize operations. Two examples of such energy system models are
MARKAL [22] and TIMES [23]; see, also [20] and references within. The Framework
for Integrated Energy System Assessment (FINE) is an open source python package
that provides a framework for the modeling, optimization and analysis of energy
systems [7,31]. The goal of such optimization models is to minimize the total annual
costs for deploying and operating energy supply infrastructure, subject to the technical
and operational constraints of a multi-commodity flow energy-system problem. FINE
provides the functionalities to set up energy system models with multiple regions,
commodities and time steps. Examples of commodities include electricity, hydrogen,
and methane gas. Time steps can also be aggregated to reduce the complexity of the
model [12]. In addition to existing infrastructural costs, costs are also incurred by build-
ing new components and increasing their capacities. The work in this article arises
from a collaboration between mathematicians and energy-and-climate researchers at
the Friedrich-Alexander-Universität Erlangen-Nürnberg and the Forschungszentrum
Jülich, with the goal to improve the performance of the FINE package as well as other
energy system models.

Against the backdrop of decreasing prices of renewable energy sources [13], rising
CO2 emission costs [5,6], a transforming energy demand and new options for energy
storage and conversion [32], the consideration of novel technologies offers opportuni-
ties for further cost reduction of existing energy systems. We consider the problem of
determining which components of an energy capacity infrastructure to install such that
total annual costs are further reduced. Installing a new component incurs a fixed cost;
however, overall costs are potentially reduced by allowing new components access to
larger ranges of energy supplies thereby leading to a more efficient utilization of the
entire system. Neumann and Brown consider a similar problem to expand transmis-
sion while minimizing total annual costs [27]. Such problems also find application
in several other contexts within energy systems that seek to minimize total annual
costs; see, e.g., [30] for a model that extends natural gas transmission networks. For
an overview of transmission expansion planning problems, see, Mahdavi et al. [26].
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1.2 Challenges

Such investment optimization problems are frequently formulated asMIPs that employ
binary variables to inform “yes” or “no” decisions for utilizing new technologies; see,
e.g., [9,20]. The choice of such discrete decision variables governing whether a new
technology “is-built” leads to a significant increase in the computational effort to solve
the MIP. Models covering multiple spatial regions impose further computational chal-
lenges as additional binary variables are required for each region. For an introduction
to the challenges and model simplifications, see, e.g., [8,20]. However, as we men-
tion in Sect. 1.1, integrating novel technologies into existing energy systems leads
to potentially reduced overall costs and is also advantageous in keeping abreast with
the dynamically changing energy sector. To this end, we provide a method that offers
scope for reduced runtimes, both for systems with several existing technologies as
well as new technologies to choose from.

This work is related to previous works on a so-called “district model” that includes
six multi-family houses and households in each building [15], and also to a model
with 16 transmission zones within Great Britain [28]. In previous improvements to
the FINE package, Kannengießer et al. use a time-series aggregation method and
present a temporally aggregated simplification of the model [15]. The authors use a
multi-regional district model and fix the binary design decisions for all components.
The corresponding optimization model is thus reduced to a linear program (LP); this
model is solved easily, however the solutions are suboptimal. In contrast the approach
wepresent is an iterative heuristic that is guaranteed to converge to the optimal solution.

2 Mathematical modeling

2.1 Notation

Indices/ Sets

c ∈ C Set of components [c1, ..., c|C|]
l ∈ L Set of locations [l1, . . . , l|L|]
Parameters

CapMinc,l Minimum capacity for component c at location l [kW]
CapMinc,(l1,l2) Minimum capacity for component c on edge (l1, l2) [kW]
CapMaxc,l Maximum capacity for component c at location l [kW]
CapMaxc,(l1,l2) Maximum capacity for component c on edge (l1, l2) [kW]
TACcap

c,l Total annual cost for installing one unit of capacity for component
c at location location l [e/kW]

TACbin
c,l Total annual cost for building component c at location l; indepen-

dent of the size of the installed capacity [e]
TACop

c,l Total annual cost for one unit of operation of component c at loca-
tion l [e/kWh]

TACcap
c,(l1,l2)

Total annual cost for installing one unit of capacity for component
c on edge (l1, l2) [e/kW]
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1376 B. Singh et al.

TACbin
c,(l1,l2)

Total annual cost for building component c on edge (l1, l2); inde-
pendent of the size of the installed capacity [e]

TACop
c,(l1,l2)

Total annual cost for one unit of operation for component c on edge
(l1, l2) [e/kWh]

Decision Variables

binc,l (IsBuilt-variable) 1 if component c is built at location l; else 0
binc,(l1,l2) (IsBuilt-variable) 1 if component c is built on edge (l1, l2); else 0
capc,l Installed unit capacity of component c at location l [kW]
capc,(l1,l2) Installed unit capacity of component c on edge (l1, l2) [kW]
opc,l Used unit capacity of component c at location l [kWh]
opc,(l1,l2) Used unit capacity of component c on edge (l1, l2) [kWh]

In the above notation, bin denotes a binary decision variable, cap and op denote
continuous decision variables for the capacity and operation, respectively. The param-
eters CapMin and CapMax denote bounds on the cap variable, while TAC denotes
total annual cost. We provide details in Sect. 2.2.

2.2 Optimizationmodel

The models build with the FINE package allow the inclusion of two types of com-
ponents: (i) “optional” components that are modeled with additional investment costs
independent of the installed unit size, and (ii) already existing components that are
modeledwith an installation cost contribution that is linearly dependent on the installed
unit size. We have five choices for these optional and existing components that are
relevant to the discussion in this work: Source, Sink, Storage, Conversion, and Trans-
mission. The complete FINE package includes other components as well, and the user
specifications decide the components that form part of the optimization model. We
then have a graph where the nodes include combinations of the first four component
types, while each Transmission component represents an edge connecting two nodes.
Let the index c ∈ C denote the components, index l ∈ L denote the locations of a
node, and tuple (l1, l2) with l1, l2 ∈ L, l1 �= l2 denote the start and end locations for
an edge, respectively.

Further, let CN ⊂ C denote the set of four components that form nodes, and CE

denote the set of components that form edges; i.e., CN = {CSource, CSink, CStorage,
CConversion} and CE = {CTransmission}. Here, the source components include nodes that
provide commodities to the graph, while the sink components withdraw commodities
from the graph. The storage components are nodes that connect the different time
steps with each other by incorporating a so-called state of charge (SoC) variable;
these components operate as a sink (that increases the SoC) or a source (that decreases
the SoC) “state variable" (the SoC) at a given time step. The conversion components
are nodes that connect multiple “commodity-subgraphs” to each other by converting
one commodity to another; e.g., an electrolyzer consumes electricity and converts it
into hydrogen. Finally, let Lc denote the location(s) of a component c. Although the
decision variables and parameters within the FINE package include other indices (such
as time and commodity) as well, we suppress these indices as they are not relevant to

123



Budget-cut: introduction to a budget based cutting… 1377

the discussion in this article; see, the complete model description in the appendix, and
further details in [31].

FINE includes binary variables to inform whether new optional components are
built, and calls these binary variables as “IsBuilt-variables” [31]. A value of 1 denotes
a component is built at a given location. If a component already exists, it does not have
a IsBuilt-variable; we assume that there is at least one such component, else there is
no configuration to start with. Building an optional component c at location l incurs a
fixed total annual cost (TAC) of TACbin

c,l . For the sake of notation, we assume existing

components also have associated binary variables that are always 1 with TACbin
c,l = 0.

Further, the decision to build is governed by its corresponding capacity variable, capc,l .
The value of a capacity variable corresponds to the scale of the installed component,
e.g., for a photovoltaic Source component it corresponds to the area of solar panels
installed [31]. If any capacity is installed, the corresponding IsBuilt-variable takes the
value 1. All optional components haveminimum capacity thresholds that are informed
by data; we take this threshold as 0 if data is unspecified. In other words, capc,l is a
semi-continuous variable that is either 0 or lower bounded by the minimum capacity.
Analogously, maximum capacity thresholds are available as well, and we take these
as +∞ if unspecified. Equations (1) and (2) summarize this discussion for the nodes
and edges, respectively.

∀c ∈ CE ; l1, l2 ∈ Lc, l1 �= l2 :
capMaxc,(l1,l2) · binc,(l1,l2) ≥ capc,(l1,l2) (1a)

capMinc,(l1,l2) · binc,(l1,l2) ≤ capc,(l1,l2) (1b)

capc,(l1,l2) ≥ 0 (1c)

binc,(l1,l2) ∈ {0, 1}. (1d)

∀c ∈ CN ; l ∈ Lc :
capMaxc,l · binc,l ≥ capc,l (2a)

capMinc,l · binc,l ≤ capc,l (2b)

capc,l ≥ 0 (2c)

binc,l ∈ {0, 1}. (2d)

If binc,(l1,l2) = 1, thenEqs. (1) enforce capMinc,(l1,l2) ≤ capc,(l1,l2) ≤ capMaxc,(l1,l2);
else, capc,(l1,l2) = 0. Equations (2) are analogous to equations (1). Further, we have
operational variables, that include time indices, corresponding to the components that
we denote by opc,l ; these denote how much of the installed capacity is actually used.

Below is the optimization model we consider in this article.

z∗ = min TACcap · cap + TACbin · bin + TACop · op (3a)

s.t. (1), (2) (3b)

non-temporal bounding constraints (3c)

temporal bounding constraints (3d)
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component-linking constraints (3e)

transmission constraints (3f)

storage constraints. (3g)

The objective function in Eq. (3a) abbreviates the following quantity:

∑

c∈CN

∑

l∈Lc

(
TACcap

c,l · capc,l + TACbin
c,l · binc,l + TACop

c,l · opc,l
)

+
∑

c∈CE

∑

(l1,l2)∈Lc×Lc,
l1 �=l2(

TACcap
c,(l1,l2)

· capc,(l1,l2) + TACbin
c,(l1,l2)

· binc,(l1,l2) + TACop
c,(l1,l2)

· opc,(l1,l2)
)
.

(4)

Here, cap, bin, and op denote three vectors corresponding to the capacity, IsBuilt,
and operational variables, respectively. The coefficients — TACcap, TACbin , and
TACop — denote vectors of appropriate size for the TAC corresponding to installing
capacity, building new components, and operating these components, respectively.
That is, the objective function includes cost contributions that scale with the size of
the installed capacities of the components linearly (TACcap), cost contributions that
are independent of the size of the installed capacity but occur if a component is built
(TACbin), as well as cost contributions that are connected to the operation of the built
components (TACop); see, the appendix for details. Then, the objective function seeks
to minimize the sum of the TACs of the entire system, with both optional and existing
components. The bounding constraints in Eq. (3c) and (3d) enforce further limits on
the capacity and operation variables with and without time indices, respectively. The
component-linking-constraints of Eq. (3e) include commodity balances, annual com-
modity inflow and outflow limits as well as shared potentials; they also serve to define
limits via the capMax parameter.

The bidirectional and symmetric nature of the components along edges, as well as
constraints that model the optimal power flow using the standard linearized DC formu-
lation, is expressed via the transmission constraints of Eq. (3f). The storage constraints
of Eq. (3g) express the charging and discharging status via the state of the charge for
the different components. For a detailed description of these constraints, see [31];
we provide a complete model description in the appendix. Importantly, constraints
(3c)–(3g) do not contain any binary variables.

3 A budget-cut algorithm

3.1 Background

MIP solvers typically rely on branch-and-bound strategies to identify the optimal
solution. The presence of additional binary variables results in a larger search tree that
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can create potential computational challenges. In this section, we propose an algorithm
that prunes branches that lead to suboptimal solutions. To this end,wederive a sequence
of cuts by solving a sequence of LPs. We use these cuts to determine a “budget” that
provides a valid inequality for the original problem—that is now reduced in size. We
formalize this concept in the Budget-Cut Algorithm, present it in Fig. 1, and explain
it in more detail below. We first note that when constraints (1d) and (2d) are reduced
to their continuous relaxation, model (3) is an LP. To this end, we solve two models
where all the binary IsBuilt-variables are apriori determined. Consider the following
optimization models:

z̄ = min TACcap · cap + TACop · op (5a)

s.t. (1a) − (1c), (2a) − (2c) (5b)

(3c) − (3g) (5c)

bin = 0, (5d)

and

z
¯

= min TACcap · cap + TACop · op (6a)

s.t. (1a), (1c), (2a), (2c) (6b)

(3c) − (3g) (6c)

bin = 1. (6d)

We denote models (5) and (6) as Existing and Extended with optimal objective
function values of z̄ and z

¯
, respectively. We assume Existing is feasible; in Sect. 5

we discuss the implications of this assumption. The Existing model determines
a baseline where no optional components are built, and the only components used
for the solution are those that that do not have costs independent of the size of the
installed capacity; i.e., all the IsBuilt-variables are set to 0. Thus, the second term -
TACbin · bin - in the objective function of model (3) is 0 for all the IsBuilt variables.
We note that the Existingmodel still includes the already existing components, and
these are the only components we optimize over. The Extended model determines
the other extreme where all the optional components are built; i.e., all the IsBuilt-
variables are set to 1. The idea of the Extended model is subtle. Although all the
IsBuilt-variables are set to 1, we ignore the cost to build them by not including the
second term - TACbin · bin - of the objective function of model (3). By ignoring
the cost to build the components, the Extended model focuses on finding the most
cost-effective components to use and install capacities on. Further, we do not include
the lower thresholds on capacity for optional components in Eqs. (1c) and (2c). Since
optional components are built to reduce total costs, the Extended model represents
the best we can hope to achieve. Intuitively, the Existingmodel chooses an optimal
solution from the existing capacity infrastructure,while theExtendedmodel chooses
the optimal solution from the existing and the optional capacity infrastructure. The
following lemma relates the Existing and Extended models with the “true”
model (3).
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Algorithm 1 Budget-Cut Algorithm
Input: an instance of model (3); ai ←objective function coefficient of element i, ∀i ∈ I ; T I ME
Output: z∗; optimality gap for best known feasible solution to model (3)
1: i ter ← 0, search ← True
2: while time ≤ T I ME
3: Solve model (5), get z̄
4: Solve model (6), get z

¯5: Update time to the cumulative wall-clock time
6: b ← z̄ − z

¯7: if b < mini∈I ai
8: z∗ ← z̄; Gap ← 0%; go to 23
9: if b > maxi∈I ai
10: search ← False
11: while search
12: J = ∪i :ai>b; I ← I \ J
13: if J �= ∅
14: i ter ← i ter + 1
15: Solve model (6) with bini ← 0, ∀i ∈ J ; update z

¯
, Gap ← optimality gap

16: b ← z̄ − z
¯17: if b < mini∈I ai

18: z∗ ← z̄; go to 23
19: else
20: go to 22
21: Update time to the cumulative wall-clock time
22: Solve model (8); z∗ ← z∗, Gap ← optimality gap
23: Return: z∗, Gap

Lemma 1 z
¯

≤ z∗ ≤ z̄.

Proof The feasible region represented by constraints (5b)–(5d) is a subset of the fea-
sible region represented by constraints (3b)–(3g). Further, the objective functions of
models (3) and (5) are identical, since TACbin · bin is 0 for model (5). With a min-
imization objective, z∗ ≤ z̄ follows. Next, we note that constraints (6b) and (6d)
restrict the capacity variables between 0 and capMax; while, constraints (3b) enforce
the capacity variables are either 0 or bounded between capMin and capMax. Since the
other constraints of models (3) and (6) are identical, the feasible region of model (3)
is smaller than that of model (6). Further, the objective function in Eq. (3a) is at least
that in Eq. (6a). Thus, z

¯
≤ z∗ follows. �

Let the triplets [cap∗, bin∗, op∗], [cap, bin, op] and [cap, bin, op] denote the optimal

solutions for models (3), (5) and (6), respectively. Here, bin = 0 and bin = 1.
Further, we define z̄ − z

¯
= b ≥ 0. Next, we show that b determines a “budget” -

the maximum cost we are willing to spend on building IsBuilt components. In other
words, spending more than b exceeds the potential savings offered by the addition of
optional components. We use the following corollary to Lemma 1 in the proof.

Corollary 1 TACcap · cap∗ + TACop · op∗ ≥ TACcap · cap + TACop · op.
Proof From the proof of Lemma1, it follows that the solution (cap∗, op∗, 1) is feasible
for model (6). �
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Lemma 2 TACbin · bin ≤ b is a valid inequality for model (3).

Proof From Lemma 1 and the definition of b we have, TACcap ·cap∗ +TACop ·op∗ +
TACbin · bin∗ − (TACcap · cap + TACop · op) ≤ b. Then, from Corollary 1, we have

TACbinbin∗ ≤ b, for any optimal solution for model (5). �
For sake of completeness, we rewrite the valid inequality in its full form:

∑

c∈CN

∑

l∈Lc

TACbin
c,l · binc,l +

∑

c∈CE

∑

(l1,l2)∈Lc×Lc,
l1 �=l2

TACbin
c,(l1,l2)

· binc,(l1,l2) ≤ b, (7)

as well as model (3) with the valid inequality:

z∗ = min TACcap · cap + TACbin · bin + TACop · op (8a)

s.t. (3b) − (3g), (8b)

(7). (8c)

3.2 A budget-cut algorithm

Equation (7) provides a valid inequality formodel (3) that takes the form of a typical 0–
1 knapsack constraint. For ease of exposition within this section, we represent Eq. (7)
as

∑
i∈I ai · bini ≤ b. Although the weights of the knapsack items, ai , are known, the

benefit derived by the addition or removal of a single element requires the solution of a
new instance of model (3).We could determine this benefit by solving an instance with
a subset of IsBuilt-variables fixed to 1, and then compute the possible savingsminus the
construction costs. However, this requires a solution to 2|I | problem instances. Instead,
we use b to determine elements that are too expensive to construct, remove them apriori
via Lemma 2, and re-solve model (3) with the valid inequality (i.e., model (8)). Small
values of b provide tighter models. In this section, we seek to further reduce the size
of the reduced model (8) by reducing b. We begin by distinguishing three cases.

1. Case 1: b < mini ai It follows from Lemma 2 that bini = 0,∀i ∈ I ; then, from
Lemma 1 z = z∗.

2. Case 2: mini ai ≤ b ≤ maxi ai We proceed by first fixing all binaries with ai > b
to 0. Then, we recompute the budget; i.e., we solve Extendedwith these binaries
set to 0. This guarantees the updated budget is no more than the previous budget,
and we repeat this process.

3. Case 3: maxi ai < b In this case, we cannot reduce the budget further. Further, if∑
i∈I ai < b is true, Eq. (7) is redundant.

We reflect these three cases in the Budget-Cut Algorithm. The algorithm takes as
input an instance of model (3), and a time limit, T I ME . A key prerequisite of the
algorithm is that model (5) is feasible, else the algorithm’s step 3 fails. In Sect. 5,
we provide a discussion on handling infeasible instances. The other assumption of the
algorithm is that not all the components are optional. In the absence of this assumption,
the initial configuration has no cost and thus there is nothing to do. The Budget-Cut
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1382 B. Singh et al.

Fig. 1 Visualization of the budget calculation and update during the Budget-Cut Algorithm. Here,
Existing and Extended are the restricted and relaxed versions of the original problem. Here N is
the number of optional components, while M is an integer less than N . See, Sect. 3 for details

Algorithm solves two LPs in Steps 3 and 4, at most |I | LPs in the loop around step 15,
and finally a MIP in step 22. The algorithm outputs the optimal solution and objective
function value for model (3), or the corresponding optimality gap and the best found
feasible solution in the time limit. The Budget-Cut Algorithm provides at least three
advantages compared to a naive solution method. First, from Lemma 2 we can directly
proceed to Step 23; this happens if the algorithm recognizes that the budget does not
allow building any optional elements. Second, if the algorithm does proceed to the
while loop, we are guaranteed at least one element has a binary variable that is fixed to
0. This ensures a finite termination of the algorithm in at most |I | iterations. Third, the
solutions of the LPs serve aswarmstarts formodel (8). Figure 1 presents a visualization
of the budget update. In the next section, we compare the computational performance
of the algorithm with a naive solution method.

4 Computational results

4.1 Setup

To examine the computational performance of the Budget-Cut Algorithm, we conduct
a number of computational experiments on different instances of model (3). The FINE
package uses a time series aggregation method to reduce the size of the optimization
model; i.e., it aggregates the complete considered time horizon of, e.g., 365 days
into so-called “typical days”. For details on the time series aggregation methods used
within FINE, see [12]. We define a model instance with a time horizon of one year
using typical days — 7, 14, 28, 56, and 112 — and weather years from 1995 to 2000.
The weather year parameter does not affect the size of the optimization model, but
determines which input data set of commodity power demands and supplies is used.
However, models with a larger number of typical days result in larger optimization
models.

All tests in this article are carried out with Pyomo 5.7.1 [11] using Gurobi 9.0.2
[10] on two machines: (i) an Intel Core i7 2.8 GHz processor with 16 GB of memory,
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Fig. 2 Structure of the Self-sufficient building scenario of Sect. 4.1 from Figure 1 of [19]

and (ii) a node on the Jülich Research on Exascale Cluster Architectures (JURECA)
supercomputer, with a cluster’s batch partition 2x Intel Xeon E5-2680 v3 (Haswell)
and a 2.5GHz processor and 128 GB of memory [14]. We refer to these two machines
asMachine I andMachine II, respectively.We solve smaller models of up to 56 typical
days on Machine I with the Gurobi threads parameter set to 3, and larger models
with 112 typical days on Machine II with the threads parameter set to 32. We
use T I ME = 900 seconds and T I ME = 15, 000 seconds as time limit for our
computational experiments on Machine I and Machine II, respectively.

We use the self-sufficient building scenario (SelfScen) of Kotzur et al. [19] for our
experiments; see, also [16]. The SelfScen optimizes the cost of a single household
building to construct and operate on its own, thereby being self-sufficient from an
energy perspective. The available technologies include rooftop photovoltaic systems
and batteries for short-term electricity storage, as well as reversible fuel cells and liq-
uid organic hydrogen storage systems for long-term energy storage, to meet demand
for power. There is also a demand for heat, this is fulfilled by a combination of electric
boilers, heat pumps and heat storage. SelfScen includes the following commodities -
heat, electricity, hydrogen, liquid organic hydrogen carrier (LOHC), and high temper-
ature heat. Scenario instances include heat and electricity demand for the household,
and the maximum power rate that can be generated by the photovoltaic units, for the
weather years 1995-2000. To this end, the SelfScen chooses the technologies to install
(i.e., bin), the capacities for each component (i.e., cap), and their operation (i.e., op).
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Optional modeled components are the heat pump, the reversible fuel cells, and con-
version technologies that are required for using the hydrogen storage components. See
Fig. 2 for an illustration of the SelfScen, and [17] for the dataset associated with the
SelfScen. In Online Appendix A.3 we provide additional computational experiments
for another scenario that includes multiple buildings.

4.2 Computational experiments

In Table 1, we compare the computational results for the naive solution method and
the Budget-Cut Algorithm.Within our time limit, the Budget-Cut Algorithm succeeds
in finding the optimal solution in all the instances. The naive solutionmethod, however,
fails to find even a feasible solution for all instances with 56 typical days. For the
instance with 112 typical days and the year 1995—that we solve on Machine II—the
naive solution terminates with a large MIP gap of 45%. The value in the third column
of Table 1 is the best known value of the objective function in model (3); the value
reported by the algorithm is indeed the optimal in all instances. Next, we note that
the naive solution method performs better for smaller instances up to 7 typical days.
However, for the larger instances on Machine I the improvements are significant; for
instances with 14, 28, and 56 typical days the average improvement is 61.2%, 88.0%,
and 82.2%, respectively. For the largest instance with 112 typical days that we solve
on Machine II, the runtimes are an order of magnitude lower except for the year 2000;
the average improvement here is 81.4%.

All instances in Table 1 are solved without any iterations of the Budget-Cut Algo-
rithm; i.e., the while loop in the Budget-Cut Algorithm is not entered. Then, the
valid inequality in Eq. (7) is trivially true with bini = 1,∀i ∈ I . In other words,
no component is trivially excluded for having too high costs. However, even then the
naive solution method is significantly slower as the algorithm benefits from warm-
starts derived from the Extended model as well as additional cuts derived by the
optimization solver with the addition of the trivially true valid inequality.

To this end, we modify the SelfScen to ensure
∑

i∈I ai · bini > b; thus, the algo-
rithm enters the while loop. For details on how we modify the SelfScen, see Online
Appendix A.2. We denote this modified scenario as ModSelfScen. Table 2 presents
our computational results for the ModSelfScen, analogous to Table 1. The optimal
objective function values for the ModSelfScen are larger than those of SelfScen due
to the increased objective function coefficients of the ModSelfScen. All instances in
Table 2 are solved to optimality within the time limit, thus we remove the two columns
corresponding to “Gap” in Table 1. All instances require two iterations. Trends for
the ModSelfScen mirror those of the SelfScen, however the percentage savings are
smaller for the former. The average improvements for instances with 14, 28, 56, and
112 typical days are 25.6%, 53.2%, 61.2% and 68.4%, respectively.

In Online Appendix A.3 we provide an additional set of computational results on
another class of scenarios. The results again follow the same trends as those we report
above.
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5 Conclusions

5.1 Limitations

At least two limitations of our proposed algorithm offer work for future research. First,
as we mention in Sect. 3, the algorithm fails when the Existingmodel is infeasible.
However, checking the usability of Budget-Cut Algorithm for an optimization model
requires the solution of a single LP; computationally this is a small effort. Future
work could focus on determining feasible start solutions for Budget-Cut Algorithm,
as well as solving the Existing and Extended problems in parallel. Next, given
a feasible solution to initiate the algorithm, we can determine a valid upper bound for
model (3). That being said, determining feasible solutions for aMIP is, in general, hard
[4]. However, for certain classes of problems—such as the one we present—feasibility
is often maintained when no investment decisions are made [21].

A second limitation of Budget-Cut Algorithm occurs when the budget is too large;
i.e., b >

∑
ai . In this case, the algorithm skips directly to the final solution of the

MIP without a valid inequality. The only benefits of our proposal in this case is the
use of a feasible solution from Extended as a warmstart. However, even then, the
computational benefits we demonstrate in Sect. 4 with the SelfScen instances are
significant.

Finally, we mention that several practical problems include a known budget—the
maximum possible expenditure for building new components. Then, the parameter b
of Algorithm Budget-Cut Algorithm serves as an input.

5.2 Summary

To summarize, we present a simple-to-implement algorithm for reducing runtimes
of a capacity extension problem. This problem is computationally demanding when
exponentially many choices for installing new components exist. Intuitively, the gen-
eral class of problems we study addresses the following concern: given a portfolio of
potential investments with varying purchase and operation costs, choose the ones that
minimize long-term horizon expenditures subject to a given budget. Such situations
also find application in the general setting when investment decisions are optional and
only provide an enhanced portfolio, thereby the original problem serves as a base-
case. We relate this problem to a knapsack problem, and propose an algorithm that
determines a valid inequality to cut off suboptimal branches of the branch-and-bound
search tree. Our algorithm rests on determining upper and lower bounds by solving
two extremes of problems— the first where no optional components are built, and the
second where all optional components are built, respectively. By iteratively pruning
off suboptimal solutions, we increase the lower bounds obtained by the second of these
extremes.
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Documentation and data for the FINE code is available under the MIT License
at https://github.com/FZJ-IEK3-VSA/FINE. Data for the SelfScen is available under
the MIT License at https://data.mendeley.com/datasets/zhwkrc6k93/1 [16].

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11590-021-01826-w.
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