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Abstract
We study sparsity constrained nonlinear optimization (SCNO) from a topological point of
view. Special focus will be on M-stationary points from Burdakov et al. (SIAM J Optim
26:397–425, 2016), also introduced as NC -stationary points in Pan et al. (J Oper Res Soc
China 3:421–439, 2015). We introduce nondegenerate M-stationary points and define their
M-index. We show that all M-stationary points are generically nondegenerate. In particular,
the sparsity constraint is active at all local minimizers of a generic SCNO. Some relations
to other stationarity concepts, such as S-stationarity, basic feasibility, and CW-minimality,
are discussed in detail. By doing so, the issues of instability and degeneracy of points due
to different stationarity concepts are highlighted. The concept of M-stationarity allows to
adequately describe the global structure of SCNO along the lines of Morse theory. For that,
we study topological changes of lower level sets while passing an M-stationary point. As
novelty for SCNO,multiple cells of dimension equal to theM-index are needed to be attached.
This intriguing fact is in strong contrast with other optimization problems considered before,
where just one cell suffices. As a consequence, we derive a Morse relation for SCNO, which
relates the numbers of local minimizers andM-stationary points ofM-index equal to one. The
appearance of such saddle points cannot be thus neglected from the perspective of global
optimization. Due to the multiplicity phenomenon in cell-attachment, a saddle point may
lead to more than two different local minimizers. We conclude that the relatively involved
structure of saddle points is the source of well-known difficulty if solving SCNO to global
optimality.
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1 Introduction

We consider the sparsity constrained nonlinear optimization:

SCNO: min
x∈Rn

f (x) s. t. ‖x‖0 ≤ s,

where the so-called �0 "norm" counts non-zero entries of x :

‖x‖0 = |{i ∈ {1, . . . , n} | xi �= 0 }| ,
the objective function f ∈ C2 (Rn,R) is twice continuously differentiable, and s ∈
{0, 1, . . . , n−1} is an integer. The difficulty of solving SCNO comes from the combinatorial
nature of the sparsity constraint ‖x‖0 ≤ s. The requirement of sparsity is however motivated
by various applications, such as compressed sensing, model selection, image processing etc.
We refer e. g. to [7,25], and [22] for further details on the relevant applications.

In the seminal paper [1], necessary optimality conditions for SCNO have been stated.
Namely, the notions of basic feasibility (BF-vector), L-stationarity and CW-minimality have
been introduced and studied there. Note that the formulation of L-stationarity mimics the
techniques from convex optimization by using the orthogonal projection on the SCNO fea-
sible set. The notion of CW-minimum incorporates the coordinate-wise optimality along the
axes. Based on both stationarity concepts, algorithms that find points satisfying these condi-
tions have been developed. Those are the iterative hard thresholding method, as well as the
greedy and partial sparse-simplex methods. In a series of subsequent papers [2,3] elaborated
the algorithmic approach for SCNO which is based on L-stationarity and CW-minimality.

Another line of research startedwith [5],where additionally smooth equality and inequality
constraints have been incorporated into SCNO. For that, the authors coin the new term of
mathematical programswith cardinality constraints (MPCC). The key idea in [5] is to provide
a mixed-integer formulation whose standard relaxation still has the same solutions asMPCC.
For the relaxation the notion of S-stationary points is proposed. S-stationarity corresponds
to the standard Karush–Kuhn–Tucker condition for the relaxed program. The techniques
applied follow mainly those for mathematical programs with complementarity constraints.
In particular, an appropriate regularization method for solvingMPCC is suggested. The latter
is proved to converge towards so-called M-stationary points. M-stationarity corresponds to
the standard Karush–Kuhn–Tucker condition of the tightened program, where zero entries
of an MPCC feasible point remain locally vanishing. Further research in this direction is
presented in a series of subsequent papers [4,6].

Finally, we would like to mention stationarity concepts for SCNO based on the normal
cones of the sparsity constrained feasible set. In [20], the Bouligand and Clarke normal
cones of the SCNO feasible set are used to derive N B- and NC -stationarity, respectively.
Corresponding second-order necessary and sufficient optimality conditions are stated there.
These findings were generalized for MPCC in [19]. In [16], the Fréchet and Mordukhovich
normal cones of the SCNO feasible set are used to derive ̂N - and N -stationarity, respectively.
These notions were generalized for the intersection of the sparsity constrained feasible set
with a polyhedral set. In [17], a penalty decomposition method essentially based on the
notion of N -stationarity is proposed for solving MPCC under the Robinson’s constraint
qualification.

The goal of this paper is the study of SCNO from a topological point of view. The topo-
logical approach to optimization has been pioneered by [12,13] for nonlinear programming
problems, and successfully developed for mathematical programs with complementarity
constraints, mathematical problems with vanishing constraints, general semi-infinite pro-
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gramming, bilevel optimization, semi-definite programming, disjunctive programming etc.,
see e. g. [23] and references therein. The main idea of the topological approach is to iden-
tify stationary points which roughly speaking induce the global structure of the underlying
optimization problem. The stationary points include minimizers, but also all kinds of saddle
points—just in analogy to the unconstrained case. It turns out that for SCNO the concept
of M-stationarity from [5] —coinciding with NC -stationarity from [20]—is the adequate
stationarity concept at least from the topological perspective. We outline our main findings
and results:

1. We introduce nondegenerate M-stationary points along with their associated M-indices.
The latter subsume as usual the quadratic part—the number of negative eigenvalues
of the objective’s Hessian restricted to non-vanishing variables. As novelty, the sparsity
constraint provides an addition to theM-index, namely, the difference between the bound
and the current number of non-zero variables at a nondegenerate M-stationary point. We
prove that all M-stationary points are generically nondegenerate. In particular, it follows
that all local minimizers of SCNO are nondegenerate with vanishing M-index, hence,
the sparsity constraint is active. Note that M-stationary points with non-vanishing M-
index correspond to saddle points. The local structure of SCNO around a nondegenerate
M-stationary point is fully described just by its M-index, at least up to a differentiable
change of coordinates.

2. We thoroughly discuss the relation of M-stationarity to S-stationarity, basic feasibil-
ity, and CW-minimality for SCNO. It turns out that nondegenerate M-stationary points
may cause degeneracies of S-stationary points viewed as Karush–Kuhn–Tucker-points
for the relaxed problem. Moreover, even under the cardinality constrained second-order
sufficient optimality condition from [4] assumed to hold at an S-stationary point, the
corresponding M-stationary point does not need to be a nondegenerate local minimizer
for SCNO. As for CW-minima, we show that they are not stable with respect to data
perturbations in SCNO. After an arbitrarily small C2-perturbation of f a locally unique
CW-minimum may bifurcate into multiple CW-minima. More importantly, this bifur-
cation unavoidably causes the emergence of M-stationary points, being different from
the CW-minima. Despite of this instability phenomenon, if a BF-vector and, hence,
CW-minimum, happens to be nondegenerate as an M-stationary point, then the sparsity
constraint is necessarily active.

3. We use the concept of M-stationarity in order to describe the global structure of SCNO.
To this aim the study of topological properties of its lower level sets is undertaken. As
in the standard Morse theory, see e. g. [10,18], we focus on the topological changes of
the lower level sets as their levels vary. Appropriate versions of deformation and cell-
attachment theorems are shown to hold for SCNO. Whereas the deformation is standard,
the cell-attachment reveals an essentially new phenomenon not observed in nonsmooth
optimization before. In SCNO,multiple cells of the same dimension need to be attached,
see Theorem 5. To determine the number of these attached cells turns out to constitute a
challenging combinatorial problem from algebraic topology, see Lemma 1.

4. As a consequence of proposedMorse theory, we derive aMorse relation for SCNO,which
relates the numbers of local minimizers andM-stationary points ofM-index equal to one.
The appearance of such saddle points cannot be thus neglected from the perspective of
global optimization. As novelty for SCNO, a saddle point may lead to more than two
different local minimizers. This is in strong contrast with other nonsmooth optimization
problems studied before, see e. g. [23], where a saddle point leads to at most two of
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them. We conclude that the relatively involved structure of saddle points is the source of
well-known difficulty if solving SCNO to global optimality.

The paper is organized as follows. In Sect. 2 we discuss the notion of M-stationarity for
SCNO. Section 3 is devoted to the relation of M-stationarity to other stationarity concepts
from the literature. In Sect. 4 the global structure of SCNO is described within the scope of
Morse theory.

Our notation is standard. The cardinality of a finite set S is denoted by |S|. The n-
dimensional Euclidean space is denoted by Rn with the coordinate vectors ei , i = 1, . . . , n.
For J ⊂ {1, . . . , n} we denote by conv

(

e j , j ∈ J
)

and span
(

e j , j ∈ J
)

the convex and
linear combination of the coordinate vectors e j , j ∈ J , respectively. Given a twice continu-
ously differentiable function f : Rn → R, ∇ f denotes its gradient, and D2 f stands for its
Hessian.

2 M-stationarity

For 0 ≤ k ≤ n we use the notation

R
n,k = {

x ∈ R
n | ‖x‖0 ≤ k

}

.

Using the latter, the feasible set of SCNO can be written as

R
n,s = {

x ∈ R
n | ‖x‖0 ≤ s

}

.

For a feasible point x ∈ R
n,s we define the following complementary index sets:

I0(x) = {i ∈ {1, . . . , n} | xi = 0 } , I1(x) = {i ∈ {1, . . . , n} | xi �= 0 } .

Without loss of generality, we assume throughout the whole paper that at the particular point
of interest x̄ ∈ R

n,s with ‖x̄‖0 = k it holds:

I0 (x̄) = {1, . . . , n − k} , I1 (x̄) = {n − k + 1, . . . , n} .

Using this convention, the following local description of SCNO feasible set can be deduced.
Let x̄ ∈ R

n,s be a feasible point for SCNO with ‖x̄‖0 = k. Then, there exist neighborhoods
Ux̄ and V0 of x̄ and 0, respectively, such that under the linear coordinate transformation
�(x) = x − x̄ we have locally:

�
(

R
n,s ∩Ux̄

) =
(

R
n−k,s−k × R

k
)

∩ V0, �(x̄) = 0. (1)

Definition 1 (M-stationarity, [5])A feasible point x̄ ∈ R
n,s is called M-stationary for SCNO

if

∂ f

∂xi
(x̄) = 0 for all i ∈ I1 (x̄) .

Obviously, a local minimizer of SCNO is an M-stationary point.

Definition 2 (NondegenerateM-stationarity)AnM-stationary point x̄ ∈ R
n,s with ‖x̄‖0 = k

is called nondegenerate if the following conditions hold:

ND1: if k < s then
∂ f

∂xi
(x̄) �= 0 for all i ∈ I0 (x̄),

ND2: the matrix

(

∂2 f

∂xi∂x j
(x̄)

)

i, j∈I1(x̄)
is nonsingular.
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Otherwise, we call x̄ degenerate.

Definition 3 (M-Index) Let x̄ ∈ R
n,s be a nondegenerate M-stationary point with ‖x̄‖0 =

k. The number of negative eigenvalues of the matrix

(

∂2 f

∂xi∂x j
(x̄)

)

i, j∈I1(x̄)
is called its

quadratic index (QI ). The number s − k + QI is called the M-index of x̄ .

Theorem 1 (Morse-Lemma for SCNO) Suppose that x̄ is a nondegenerateM-stationary point
for SCNO with ‖x̄‖0 = k and quadratic index QI . Then, there exist neighborhoods Ux̄ and
V0 of x̄ and 0, respectively, and a local C1-coordinate system � : Ux̄ → V0 of Rn around x̄
such that:

f ◦ �−1(y) = f (x̄) +
n−k
∑

i=1

yi +
n

∑

j=n−k+1

±y2j , (2)

where y ∈ R
n−k,s−k × R

k . Moreover, there are exactly QI negative squares in (2).

Proof Without loss of generality, we may assume f (x̄) = 0. By using � from (1), we put
f̄ := f ◦ �−1 on the set

(

R
n−k,s−k × R

k
) ∩ V0. At the origin we have:

(i) if k < s then
∂ f̄

∂ yi
�= 0 for all i = 1, . . . , n − k,

(ii)
∂ f̄

∂ yi
= 0 for all i = n − k + 1, . . . , n,

(iii) the matrix

(

∂2 f̄

∂ yi∂ y j

)

i, j=n−k+1,...,n
is nonsingular.

We denote f̄ by f again. Under the following coordinate transformations the setRn−k,s−k ×
R
k will be equivariantly transformed in itself. We put y = (

Yn−k, Y k
)

, where Yn−k =
(y1, . . . , yn−k) and Y k = (yn−k+1, . . . , yn). It holds:

f
(

Yn−k, Y
k
)

=
∫ 1

0

d

dt
f
(

tYn−k, Y
k
)

dt + f
(

0, Y k
)

=
n−k
∑

i=1

yi di (y) + f
(

0, Y k
)

,

where

di (y) =
∫ 1

0

∂ f

∂ yi

(

tYn−k, Y
k
)

dt, i = 1, . . . , n − k.

Note that di ∈ C1, i = 1, . . . , n − k. Due to (ii)-(iii), we may apply the standard Morse
lemmaon theC2-function f

(

0, Y k
)

without affecting the coordinatesYn−k , see e. g. [13]. The
corresponding coordinate transformation is of class C1. Denoting the transformed functions
again by f and di , we obtain

f (y) =
n−k
∑

i=1

yi di (y) +
n

∑

j=n−k+1

±y2j .

In case k = s, we need to consider f locally around the origin on the set

R
n−k,s−k × R

k = R
n−k,0 × R

k = {0}n−k × R
k .

Hence, yi = 0 for i = 1, . . . , n − k, and we immediately obtain the representation (2).
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In case k < s, (i) provides that di (0) = ∂ f

∂ yi
(0) �= 0, i = 1, . . . , n − k. Hence, we may

take

yi di (y), i = 1, . . . , n − k, y j , j = n − k + 1, . . . , n

as new local C1-coordinates by a straightforward application of the inverse function the-
orem. Denoting the transformed function again by f , we obtain (2). Here, the coordinate
transformation � is understood as the composition of all previous ones. ��
Proposition 1 (Nondegenerate minimizers) Let x̄ be a nondegenerate M-stationary point for
SCNO. Then, x̄ is a local minimizer for SCNO if and only if its M-index vanishes.

Proof Let x̄ be a nondegenerate M-stationary point for SCNO. The application of Morse
Lemma from Theorem 1 says that there exist neighborhoods Ux̄ and V0 of x̄ and 0, respec-
tively, and a local C1-coordinate system � : Ux̄ → V0 of Rn around x̄ such that:

f ◦ �−1(y) = f (x̄) +
n−k
∑

i=1

yi +
n

∑

j=n−k+1

±y2j , (3)

where y ∈ R
n−k,s−k × R

k . Therefore, x̄ is a local minimizer for SCNO if and only if 0 is a
local minimizer of f ◦ �−1 on the set

(

R
n−k,s−k × R

k
) ∩ V0. If the M-index of x̄ vanishes,

we have k = s and QI = 0, and (3) reads as

f ◦ �−1(y) = f (x̄) +
n

∑

j=n−s+1

y2j , (4)

where y ∈ {0}n−s × R
s . Thus, 0 is a local minimizer for (4). Vice versa, if 0 is a local

minimizer for (3), then obviously k = s and QI = 0, hence, the M-index of x̄ vanishes. ��
LetC2 (Rn,R) be endowedwith the strong (orWhitney)C2-topology, denoted byCk

s (see
e. g. [11]). The Ck

s -topology is generated by allowing perturbations of the functions, their
gradients and Hessians, which are controlled by means of continuous positive functions. We
say that a set is C2

s -generic if it contains a countable intersection of C2
s -open and -dense

subsets. Since C2 (Rn,R) endowed with the C2
s -topology is a Baire space, generic sets are

in particular dense.

Theorem 2 (Genericity for SCNO) Let F ⊂ C2(Rn,R) denote the subset of objective func-
tions in SCNO for which each M-stationary point is nondegenerate. Then, F is C2

s -open and
-dense.

Proof Let us fix a number of non-zero entries k ∈ {0, . . . , s}, an index set of k non-zero
entries D ⊂ {1, . . . , n}, i. e. |D| = k, an index subset of zero entries E ⊂ {1, . . . , n}\D,
and a rank r ∈ {0, . . . , k}. For this choice we consider the set �k,D,E,r of x such that the
following conditions are satisfied:

(m1) xi �= 0 for all i ∈ D, and xi = 0 for all i ∈ {1, . . . , n}\D,

(m2)
∂ f

∂xi
(x) = 0 for all i ∈ D,

(m3) if k < s then
∂ f

∂xi
(x) = 0 for all i ∈ E ,

(m4) the matrix

(

∂2 f

∂xi∂x j
(x)

)

i, j∈D
has rank r .
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Note that (m1) refers to feasibility, (m2) to M-stationarity, and (m3)-(m4) describe possible
violations of ND1-ND2, respectively.

Now, it suffices to show that all �k,D,E,r are generically empty whenever E is nonempty
or the rank r is less than k. By setting I1(x) = D and I0(x) = {1, . . . , n}\D, this would

mean, respectively, that at least one of the derivatives
∂ f

∂xi
(x) vanishes for i ∈ E ⊂ I0(x) in

ND1 if k < s, or the matrix

(

∂2 f

∂xi∂x j
(x)

)

i, j∈I1(x)
is singular in ND2. In fact, the available

degrees of freedom of the variables involved in each �k,D,E,r are n. The loss of freedom
caused by (m1) is n − k, and the loss of freedom caused by (m2) is k. Hence, the total loss
of freedom is n. We conclude that a further nondegeneracy would exceed the total available
degrees of freedom n. By virtue of the jet transversality theorem from [13], generically the
sets �k,D,E,r must be empty.

For the openness result, we argue in a standard way. Locally, M-stationarity can be written
via stable equations. Then, the implicit function theorem for Banach spaces can be applied
to follow M-stationary points with respect to (local) C2-perturbations of defining functions.
Finally, a standard globalization procedure exploiting the specific properties of the strong
C2
s -topology can be used to construct a (global) C

2
s -neighborhood of problem data for which

the nondegeneracy property is stable. ��

Theorem 3 (Genericity for minimizers) Generically, all minimizers of SCNO are nondegen-
erate with the vanishing M-index.

Proof Note that every local minimizer of SCNO has to be M-stationary. Nondegenerate
M-stationary points are generic by Theorem 2. Hence, generically, local minimizers are
nondegenerate. Due to Proposition 1, they have vanishing M-index. ��

By recalling Definition 3 of M-index, we deduce the following important Corollary 1 on
the structure of minimizers for SCNO.

Corollary 1 (Sparsity constraint at minimizers) At each generic local minimizer x̄ ∈ R
n,s of

SCNO the sparsity constraint is active, i. e. ‖x̄‖0 = s.

3 Relation to other stationarity concepts

We relate M-stationarity to other well-known stationarity concepts for SCNO from the litera-
ture. First, we focus on S-stationarity introduced in [5]. Then, the notions of basic feasibility
and CW-minimality from [1] will be discussed.

3.1 S-stationarity

In [5] the following observation has been made: x̄ solves SCNO if and only if there exists ȳ
such that (x̄, ȳ) solves the following mixed-integer program:

min
x,y

f (x) s. t.
n

∑

i=1

yi ≥ n − s, yi ∈ {0, 1}, xi yi = 0, i = 1, . . . , n. (5)
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Using the standard relaxation of the binary constraints yi ∈ {0, 1}, the authors arrive at the
following continuous optimization problem:

min
x,y

f (x) s. t.
n

∑

i=1

yi ≥ n − s, yi ∈ [0, 1], xi yi = 0, i = 1, . . . , n. (6)

As pointed out in [5], SCNO and the optimization problem (6) are closely related: x̄ solves
SCNO if and only if there exists a vector ȳ such that (x̄, ȳ) solves (6). Additionally, the
concept of S-stationarity is proposed for (6). For its formulation the following index sets are
needed:

I±0 (x̄, ȳ) = {i ∈ {1, . . . , n} | x̄i �= 0, ȳi = 0 } ,

I00 (x̄, ȳ) = {i ∈ {1, . . . , n} | x̄i = 0, ȳi = 0 } .

Definition 4 (S-stationarity, [5]) A feasible point (x̄, ȳ) of (6) is called S-stationary if there
exist real multipliers γ1, . . . , γn , such that

∇ f (x̄) +
n

∑

i

γi ei = 0, γi = 0 for all i ∈ I±0 (x̄, ȳ) , (7)

and, additionally, it holds:

γi = 0 for all i ∈ I00 (x̄, ȳ) .

Remark 1 (M-stationarity) We point out that initially [5] defined the concept of M-
stationarity for the relaxed optimization problem (6). Namely, a feasible point (x̄, ȳ) of
(6) is called M-stationary if just (7) is valid. Due to the feasibility of (x̄, ȳ), we have ȳi = 0
if x̄i �= 0 for all i = 1, . . . , n. Hence, it holds:

I±0 (x̄, ȳ) = I1 (x̄) ,

and M-stationarity is independent from the auxiliary variable ȳ. Thus, already in [4] it is
sometimes said that a feasible point x̄ of SCNO is M-stationary itself. We use M-stationarity
exactly in this sense, cf. Definition 1. ��

In order to relate M- and S-stationarity, we introduce the canonical choice of the auxiliary
variables ȳ for a feasible point x̄ of SCNO:

ȳi =
{

0, if i ∈ I1 (x̄) ,

1, if i ∈ I0 (x̄) .
(8)

The auxiliary variables ȳ can be seen as counters of the zero elements of x̄ . Note that (x̄, ȳ)
becomes feasible for (6).

Proposition 2 (M- and S-stationarity) If (x̄, ȳ) is S-stationary for (6) then x̄ is M-stationary
for SCNO. Vice versa, for any M-stationary point x̄ the canonical choice (8) of auxiliary
variables ȳ provides an S-stationary point (x̄, ȳ) for (6).

Proof Let (x̄, ȳ) be S-stationary for (6). After amoment of reflectionwe see that I±0 (x̄, ȳ) =
I1 (x̄) is the support of x̄ , and (7) reads as the M-stationarity of x̄ :

∇i f (x̄) = 0 for all i ∈ I1 (x̄) .

123



Journal of Global Optimization (2022) 82:219–242 227

Vice versa, let x̄ be an M-stationary point for SCNO with the canonical choice (8) of ȳ.
Then, (x̄, ȳ) is feasible for (6), since

n
∑

i=1

ȳi = |I0 (x̄)| = n − |I1 (x̄)| ≥ n − s.

The last inequality is due to ‖x̄‖0 ≤ s or, equivalently, |I1 (x̄)| ≤ s. Moreover, by the choice
of ȳ we have I±0 (x̄, ȳ) = I1 (x̄) and I00 (x̄, ȳ) = ∅. Thus, due to the M-stationarity of x̄ ,
(7) is fulfilled, and (x̄, ȳ) is S-stationary. ��

The importance of S-stationary points is due to the following Proposition 3.

Proposition 3 (S-stationarity and KKT-points, [5]) A feasible point (x̄, ȳ) satisfies the
Karush–Kuhn–Tucker condition if and only if it is S-stationary for (6).

Despite this appealing relation, nondegenerate M-stationary points of SCNO may cause
degeneracies of the corresponding S-stationary points. This means that they become degener-
ate Karush–Kuhn–Tucker-points for (6), i. e. the linear independent constraint qualification is
not fulfilled, strict complementarity is violated, or the second derivative of the corresponding
Lagrange function restricted to the tangential space becomes singular. The appearance of
these degeneracies is mainly due to the fact that the objective function in (6) does not depend
on y-variables. We illustrate this phenomenon by means of the following Example 1.

Example 1 (S-stationarity and degeneracies)We consider the following SCNOwith n = 2
and s = 1:

min
x1,x2

(x1 − 1)2 + (x2 − 1)2 s. t. ‖(x1, x2)‖0 ≤ 1.

It is easy to see that the feasible point x̄ = (0, 0) is M-stationary with ‖x̄‖0 = k = 0.
Moreover, it is nondegenerate with quadratic index QI = 0. For its M-index we have

s − k + QI = 1 − 0 + 0 = 1,

meaning that x̄ is a saddle point which connects two minimizers (1, 0) and (0, 1). Further, by
the canonical choice (8) of auxiliary y-variables, we obtain the corresponding S-stationary
point (x̄, ȳ) = (0, 0, 1, 1). Due to Proposition 3, (x̄, ȳ) is also a Karush–Kuhn–Tucker-point
for the optimization problem (6):

min
x,y

(x1 − 1)2 + (x2 − 1)2 s. t. y1 + y2 ≥ 1, y1, y2 ∈ [0, 1], x1y1 = 0, x2y2 = 0.

The gradients of the active constraints at (x̄, ȳ) are linearly independent:
⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

ȳ1
0
x̄1
0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

0
ȳ2
0
x̄2

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

.

Hence, the linear independent constraint qualification holds at (x̄, ȳ). Let us determine the
unique Lagrange multipliers from the Karush–Kuhn–Tucker condition:

⎛

⎜

⎜

⎝

2 (x̄1 − 1)
2(x̄2 − 1)

0
0

⎞

⎟

⎟

⎠

= μ1

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

+ μ2

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

+ λ1

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

+ λ2

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

, μ1, μ2 ≤ 0.
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We get μ1 = μ2 = 0 and λ1 = λ2 = −2. Hence, the strict complementarity is violated at
(x̄, ȳ). Finally, the tangential space on the feasible set vanishes at (x̄, ȳ). Hence, the second
derivative of the corresponding Lagrange function restricted to the tangential space is trivially
nonsingular. Overall, we claim that (x̄, ȳ) is a degenerate Karush–Kuhn–Tucker-point for (6)
due to the lack of strict complementarity. It remains to note that the degeneracy of S-stationary
points (x̄, y) prevails if other choices of auxiliary y-variables are made. ��

An attempt to define a tailored notion of nondegeneracy for S-stationary points of (6) has
been recently undertaken in [4]. Let us briefly recall their main idea. For that, the so-called
CC-linearization cone LCC (x̄, ȳ) at a feasible point (x̄, ȳ) of (6) is used, cf. [6]. Namely,

(

dx , dy
) ∈ LCC (x̄, ȳ) ⊂ R

n × R
n

satisfies by definition the following conditions:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n
∑

i=1

(

dy
)

i ≥ 0 if
n

∑

i=1

ȳi = n − s,

(

dy
)

i = 0 for all i ∈ I±0 (x̄, ȳ) ,
(

dy
)

i ≥ 0 for all i ∈ I00 (x̄, ȳ) ,
(

dy
)

i ≤ 0 for all i ∈ I01 (x̄, ȳ) ,

(dx )i = 0 for all i ∈ I01 (x̄, ȳ) ∪ I0+ (x̄, ȳ) ,

(dx )i
(

dy
)

i = 0 for all i ∈ I00 (x̄, ȳ) .

(9)

Here, the new index sets are

I01 (x̄, ȳ) = {i ∈ {1, . . . , n} | x̄i = 0, ȳi = 1 } ,

I0+ (x̄, ȳ) = {i ∈ {1, . . . , n} | x̄i = 0, ȳi ∈ (0, 1) } .

Definition 5 (CC-SOSC, [4]) Let (x̄, ȳ) be an S-stationary point for (6). If for all directions
(

dx , dy
) ∈ LCC (x̄, ȳ) with dx �= 0, we have

dTx · D2 f (x̄) · dx > 0,

then the cardinality constrained second-order sufficient optimality condition (CC-SOSC) is
said to hold at (x̄, ȳ).

The role of CC-SOSC can be seen from the following Proposition 4.

Proposition 4 (Sufficient optimality condition, [4]) Let (x̄, ȳ) be an S-stationary point for
(6) satisfying CC-SOSC. Then, (x̄, ȳ) is a strict local minimizer of (6) with respect to x, i. e.

f (x̄) < f (x)

for all feasible points (x, y) of (6) taken sufficiently close to (x̄, ȳ), and fulfilling x �= x̄ .

We relate the concepts of nondegeneracy for M-stationary points and of CC-SOSC for
S-stationary points. Next, Proposition 5 mainly follows from Corollary 3.2 a) in [4]. We
prove it here for the sake of completeness.

Proposition 5 (Nondegeneracy and CC-SOSC) Let x̄ be an M-stationary point for SCNO
with ‖x̄‖0 = s. Assume that CC-SOSC holds at the S-stationary point (x̄, ȳ) for (6) with the
canonical choice (8) of auxiliary variables ȳ. Then, x̄ is a nondegenerate local minimizer for
SCNO.
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Proof By Proposition 4, (x̄, ȳ) is a local minimizer of (6) with respect to x . For all x ∈ R
n,s

sufficiently close to x̄ we have because of ‖x̄‖0 = s that (x, ȳ) is feasible for (6). Thus, x̄ is
is a local minimizer for SCNO. Due to the canonical choice (8) of auxiliary variables ȳ, the
index sets from the definition of the CC-linearization cone LCC (x̄, ȳ) are

I±0 (x̄, ȳ) = I1 (x̄) , I00 (x̄, ȳ) = I0+ (x̄, ȳ) = ∅, I01 (x̄, ȳ) = I0 (x̄) .

Due to ‖x̄‖0 = s, we additionally have
n

∑

i=1

ȳi = n − s. Recalling (9),
(

dx , dy
) ∈ LCC (x̄, ȳ)

if and only if
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

n
∑

i=1

(

dy
)

i ≥ 0,

(

dy
)

i = 0 for all i ∈ I1 (x̄) ,
(

dy
)

i ≤ 0 for all i ∈ I0 (x̄) ,

(dx )i = 0 for all i ∈ I0 (x̄) .

Hence, it holds:

LCC (x̄, ȳ) = {

(dx , 0)
∣

∣ (dx )i = 0 for all i ∈ I0 (x̄)
}

,

so that CC-SOSC says that the matrix

(

∂2 f

∂xi∂x j
(x̄)

)

i, j∈I1(x̄)
is positive definite. Hence, the

minimizer x̄ is nondegenerate. ��
If the sparsity constraint is not active for an M-stationary point x̄ of SCNO, i. e. ‖x̄‖0 < s,

the implication in Proposition 5 does not hold in general anymore. Namely, x̄ does not need
to be a local minimizer for SCNO, even if CC-SOSC holds at the corresponding S-stationary
point (x̄, ȳ)with the canonical choice (8) of auxiliary variables ȳ. This is illustrated bymeans
of the following Example 2.

Example 2 (Sparsity constraint and CC-SOSC) We consider the following SCNO with
n = 2 and s = 1:

min
x1,x2

x1 + x2 s. t. ‖(x1, x2)‖0 ≤ 1.

It is easy to see that the feasible point x̄ = (0, 0) is M-stationary. Note that the sparsity
constraint is not active for x̄ , since k = ‖x̄‖0 = 0 < 1 = s. By the canonical choice (8) of
auxiliary y-variables, we obtain the corresponding S-stationary point (x̄, ȳ) = (0, 0, 1, 1).
Analogously to the proof of Proposition 4 and by recalling (9),

(

dx , dy
) ∈ LCC (x̄, ȳ) if and

only if
⎧

⎨

⎩

(

dy
)

i = 0 for all i ∈ I1 (x̄) ,
(

dy
)

i ≤ 0 for all i ∈ I0 (x̄) ,

(dx )i = 0 for all i ∈ I0 (x̄) .

Note that here I1 (x̄) = ∅ and I0 (x̄) = {1, 2}. Hence, the CC-linearization cone is

LCC (x̄, ȳ) = {(

0, dy
) ∣

∣

(

dy
)

1 ,
(

dy
)

2 ≤ 0
}

.

Overall, CC-SOSC trivially holds at (x̄, ȳ), and as follows from Proposition 4, it is a strict
local minimizer of (6) with respect to x . Nevertheless, x̄ is not a local minimizer. Actually,
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it is a nondegenerate M-stationary point with the quadratic index QI = 0. For its M-index
we have

s − k + QI = 1 − 0 + 0 = 1.

We conclude that x̄ is rather a saddle point for SCNO. ��

3.2 Basic feasibility and CW-minimality

We proceed by discussing stationarity concepts from [1]. Inspired by linear programming
terminology, they first introduce the notion of a basic feasible vector for SCNO.

Definition 6 (Basic feasibility, [1]) A vector x̄ ∈ R
n,s with ‖x̄‖0 = k is called basic feasible

(BF) for SCNO if the following conditions are fulfilled:

BF1: in case k < s, it holds:

∂ f

∂xi
(x̄) = 0 for all i = 1, . . . , n,

BF2: in case k = s, it holds:

∂ f

∂xi
(x̄) = 0 for all i ∈ I1 (x̄) .

Attention has been also paid to the notion of coordinate-wise minimum for SCNO.

Definition 7 (CW-minimality, [1])Avector x̄ ∈ R
n,s with ‖x̄‖0 = k is called coordinate-wise

(CW) minimum for SCNO if the following conditions are fulfilled:

– CW1: in case k < s, it holds:

f (x̄) = min
t∈R f (x̄ + tei ) for all i = 1, . . . , n,

– CW2: in case k = s, it holds:

f (x̄) ≤ min
t∈R f

(

x̄ − x̄i ei + te j
)

for all i ∈ I1 (x̄) and j = 1, . . . , n.

Basic feasibility and CW-minimality can be viewed as necessary optimality condition for
SCNO.

Proposition 6 (BF-vector and CW-minimum, [1]) Every global minimizer for SCNO is a
CW-minimum, and every CW-minimum for SCNO is a BF-vector.

It is claimed in [1] that the basic feasibility condition is quite weak, namely, there are
many BF-points that are not optimal for SCNO. The notion of CW-minimum provides a
much stricter necessary optimality condition. Based on the latter, a greedy sparse-simplex
method for the numerical treatment of SCNO is proposed by [1]. Let us now examine the
relation between M-stationarity, basic feasibility, and CW-minimality.

Proposition 7 (M-stationarity, BF-vector, and CW-minimum) Every BF-vector for SCNO is
an M-stationary point, in particular, so is every CW-minimum.

Proof Let x̄ be a BF-vector for SCNO with ‖x̄‖0 = k. If k < s, then BF1 implies M-
stationarity of x̄ . If k = s, then BF2 coincides with the latter property. Since every CW-
minimum for SCNO is a BF-vector according to Proposition 6, the assertion follows. ��
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Proposition 7 says that M-stationarity is an even weaker condition than basic feasibility
and CW-minimality.Why should we care aboutM-stationarity then? Is it not enough to rather
focus on the stricter necessary optimality condition of CW-minimality as in [1]? It turns out
that CW-minima need not to be stable with respect to data perturbations. Namely, after an
arbitrarily small C2-perturbation of f a locally unique CW-minimum may bifurcate into
multiple CW-minima. More importantly, this bifurcation unavoidably causes the emergence
of M-stationary points, being different from CW-minima. Next Example 3 illustrates this
instability phenomenon.

Example 3 (CW-mimimum and instability) We consider the following SCNO with n = 2
and s = 1:

min
x1,x2

x21 + x22 s. t. ‖(x1, x2)‖0 ≤ 1. (10)

Obviously, x̄ = (0, 0) is the unique minimizer of (10). Due to Proposition 6, it is also a
CW-minimum, as well as a BF-vector. Further, let us perturb (10) by using an arbitrarily
small ε > 0 as follows:

min
x1,x2

(x1 − ε)2 + (x2 − ε)2 s. t. ‖(x1, x2)‖0 ≤ 1. (11)

It is easy to see that the perturbed problem (11) has now two solutions x̄1 = (ε, 0) and
x̄2 = (0, ε). Both are CW-minima, and, hence, BF-points. Here, we observe a bifurcation
of the CW-minimum x̄ of the original problem (10) into two CW-minima x̄1 and x̄2 of
the perturbed problem (11). Let us explain this bifurcation in terms of M-stationarity. The
bifurcation is caused by the degeneracy of x̄ viewed as an M-stationary point of the original
problem (10). Note that ND1 is violated at the M-stationary point x̄ of the original problem
(10). More interestingly, although x̄ is neither a CW-minimum nor a BF-vector of (11)
anymore, it becomes a new M-stationary point for the perturbed problem. In fact, due to
‖x̄‖0 = k = 0 and the validity of ND1, x̄ is a nondegenerate M-stationary point of (11) with
the quadratic index QI = 0. For its M-index we have

s − k + QI = 1 − 0 + 0 = 1,

meaning that x̄ is a saddle point which connects two nondegenerate minimizers x̄1 and x̄2 of
(11). Overall, we conclude that the degenerate CW-minimum x̄ of the original problem (10)
is not stable. Moreover, it bifurcates into two nondegenerate CW-minima x̄1 and x̄2, as well
as leads to one nondegenerate saddle point x̄ of the perturbed problem (10). ��

Example 3 suggests to consider nondegenerate BF-vectors or nondegenerate CW-minima
for SCNO, in order to guarantee their stability with respect to sufficiently small data pertur-
bations. Then, however, the sparsity constraint turns out to be active. This means that BF1 in
Definition 6 and CW1 in Definition 7 become redundant.

Proposition 8 (BF-vector, CW-minumum and nondegeneracy) Let x̄ be a BF-vector for
SCNO with ‖x̄‖0 = k. If it is nondegenerate as an M-stationary point for SCNO, then
k = s. The same applies for CW-minima.

Proof Assume that k < s, then ND1 contradicts BF1, whenever I0 (x̄) �= ∅. Otherwise, we
have k = n, and, hence, n < s, a contradiction. It remains to note that every CW-minimum
for SCNO is a BF-vector due to Proposition 6. ��
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3.3 Normal cone stationarity

In [20], the Bouligand and Clarke normal cones of the SCNO feasible set are used to derive
corresponding stationarity concepts. Let N B

Rn,s (x̄) stand for the Bouligand and NC
Rn,s (x̄) for

the Clarke normal cone of Rn,s at x̄ , see e. g. [21] for details.

Definition 8 (N B- and NC-stationarity, [20]) A feasible point x̄ ∈ R
n,s is called N B- and

NC -stationary for SCNO if it respectively holds:

0 ∈ ∇ f (x̄) + N B
Rn,s (x̄) and 0 ∈ ∇ f (x̄) + NC

Rn,s (x̄).

We relate the normal cone stationarity to the previously discussed concepts in the context
of SCNO. As consequence, N B - and NC -stationarity can be viewed as necessary optimality
conditions for SCNO. Note that the equivalence of basic feasibility and N B -stationarity for
SCNO has been already mentioned in [20].

Proposition 9 The notions of basic feasibility and N B-stationarity for SCNO coincide, so do
the notions of M- and NC-stationarity.

Proof Theorems 2.1 and 2.2 from [20] provide explicit formulas for theBouligand andClarke
normal cones of Rn,s at a SCNO feasible point x̄ with ‖x̄‖0 = k:

N B
Rn,s (x̄) =

{ {0} , if k < s,
span {ei | i ∈ I0(x̄) } , if k = s

and NC
Rn,s (x̄) = span {ei | i ∈ I0(x̄) } .

Thus, the conclusion immediately follows. ��
Let us now comment on the second-order sufficient condition introduced in [20] for NC -

stationary points. For that, we denote by TC
Rn,s the Clarke tangential cone of Rn,s at x̄ , see

e. g. [21] for details.

Proposition 10 (Second-order sufficient optimality, [20]) Let x̄ be an NC-stationary point
for SCNO. Assume the second-order sufficient condition (SOSC) to hold at x̄:

dT · D2 f (x̄) · d > 0 for all d ∈ TC
Rn,s (x̄) with d �= 0. (12)

Then, x̄ is a strict local minimizer of f restricted to the set Rn,s ∩ span {ei | i ∈ I1(x̄) }.
It turns out that CC-SOSC from [4] and SOSC from [20] are equivalent.

Proposition 11 (CC-SOSC and SOSC) SOSC holds at an M-stationary point x̄ for SCNO if
and only if CC-SOSC holds at the S-stationary point (x̄, ȳ) for (6) with the canonical choice
(8) of auxiliary variables ȳ.

Proof Due to the canonical choice (8) of auxiliary variables ȳ, the index sets from the defi-
nition of the CC-linearization cone LCC (x̄, ȳ) are

I±0 (x̄, ȳ) = I1 (x̄) , I00 (x̄, ȳ) = I0+ (x̄, ȳ) = ∅, I01 (x̄, ȳ) = I0 (x̄) .

Case 1: ‖x̄‖0 = s. Then, we additionally have
n

∑

i=1

ȳi = n − s. Recalling (9),
(

dx , dy
) ∈

LCC (x̄, ȳ) if and only if
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

n
∑

i=1

(

dy
)

i ≥ 0,

(

dy
)

i = 0 for all i ∈ I1 (x̄) ,
(

dy
)

i ≤ 0 for all i ∈ I0 (x̄) ,

(dx )i = 0 for all i ∈ I0 (x̄) .
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Hence, it holds:

LCC (x̄, ȳ) = {

(dx , 0)
∣

∣ (dx )i = 0 for all i ∈ I0 (x̄)
}

.

Case 2: ‖x̄‖0 < s. Then, we additionally have
n

∑

i=1

ȳi > n − s. Recalling (9),
(

dx , dy
) ∈

LCC (x̄, ȳ) if and only if
⎧

⎨

⎩

(

dy
)

i = 0 for all i ∈ I1 (x̄) ,
(

dy
)

i ≤ 0 for all i ∈ I0 (x̄) ,

(dx )i = 0 for all i ∈ I0 (x̄) .

Hence, it holds:

LCC (x̄, ȳ)={(

dx , dy
)∣

∣(dx )i =0 and
(

dy
)

i ≤0 for all i ∈ I0 (x̄) ,
(

dy
)

i =0 for all i∈I1 (x̄)
}

.

In both case, CC-SOSC is to say that the matrix

(

∂2 f

∂xi∂x j
(x̄)

)

i, j∈I1(x̄)
is positive defi-

nite. This is exactly what SOSC requires. In fact, Theorem 2.2 from [20] gives the explicit
representation of the Clarke tangential cone of Rn,s at x̄ :

TC
Rn,s (x̄) = span {ei | i ∈ I1(x̄) } .

Now, the assertion follows due to Proposition 2. ��
We can easily relate the concepts of nondegeneracy and SOSC.

Proposition 12 (Nondegeneracy and SOSC) Let x̄ be an M-stationary point for SCNO with
‖x̄‖0 = s. Assume that SOSC holds at x̄ . Then, x̄ is a nondegenerate local minimizer for
SCNO.

Proof Due to Proposition 10, x̄ is a localminimizer of f on the setRn,s∩span {ei | i ∈ I1(x̄) }.
Since ‖x̄‖0 = s, we have for all x ∈ R

n,s sufficiently close to x̄ that I1(x) = I1(x̄). Hence, x̄
is actually a local minimizer for SCNO.Moreover, it is nondegenerate, because SOSCmeans

that the matrix

(

∂2 f

∂xi∂x j
(x̄)

)

i, j∈I1(x̄)
is positive definite. ��

If the sparsity constraint is not active for an M-stationary point x̄ of SCNO, i. e. ‖x̄‖0 < s,
the implication in Proposition 12 does not hold in general anymore. Namely, x̄ does not need
to be a local minimizer for SCNO, even in presence of SOSC. We note that this observation
has been already made in Example 2.12 from [20]. Let us reconsider this example by using
the notion of nondegeneracy.

Example 4 (Sparsity constraint and SOSC, [20]) We consider the following SCNO with
n = 3 and s = 2:

min
x1,x2,x3

1

2

(

(x1 + 1)2 + (x2 − 1)2 + (x3 − 1)2
)

s. t. ‖(x1, x2, x3)‖0 ≤ 2.

It is easy to see that the feasible point x̄ = (0, 0, 1) is M-stationary. Note that the sparsity
constraint is not active for x̄ , since k = ‖x̄‖0 = 1 < 2 = s. Here, I1 (x̄) = {3} and, hence,

TC
R3,2(x̄) = span {ei | i ∈ I1(x̄) } = span {e3} .
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Overall, SOSC holds at x̄ , but x̄ is not a local minimizer. This is due to f (0, ε, 1) < f (x̄)
for all ε ∈ (0, 1], and (0, ε, 1)T ∈ R

3,2. Actually, x̄ is a nondegenerate M-stationary point
with the quadratic index QI = 0. For its M-index we have

s − k + QI = 2 − 1 + 0 = 1.

We conclude that x̄ is rather a saddle point for SCNO. ��
In [16], the Fréchet and Mordukhovich normal cones of the SCNO feasible set are used to

derive corresponding stationarity concepts. Let ̂NRn,s (x̄) stand for the Fréchet and NRn,s (x̄)
for the Mordukhovich normal cone of Rn,s at x̄ , see e. g. [21] for details.

Definition 9 (̂N- and N-stationarity, [16]) A feasible point x̄ ∈ R
n,s is called ̂N - and N -

stationary for SCNO if it respectively holds:

0 ∈ ∇ f (x̄) + ̂NRn,s (x̄) and 0 ∈ ∇ f (x̄) + NRn,s (x̄).

Note that ̂N - and N -stationarity can be viewed as necessary optimality conditions for SCNO,
see [16]. The relation of ̂N - and N -stationarity to the previously discussed concepts in the
context of SCNO has been essentially elaborated in [16].

Proposition 13 The notions of basic feasibility and ̂N-stationarity coincide. Every N-
stationary point for SCNO is also M-stationary.

Proof Theorem 3.1 from [16] provides explicit formulas for the Fréchet and Mordukhovich
normal cones of Rn,s at a SCNO feasible point x̄ with ‖x̄‖0 = k:

̂NRn,s (x̄) =
{ {0} , if k < s,
span {ei | i ∈ I0(x̄) } , if k = s

and

NRn,s (x̄) =
⎧

⎨

⎩

⋃

J∈J (x̄)

span
{

e j | j /∈ J
}

, if k < s,

span {ei | i ∈ I0(x̄) } , if k = s,

where

J (x̄) = {J ∈ J | x̄ ∈ SJ } , J = {J ⊂ {1, . . . , n} | |J | = s } , SJ = span
{

e j | j ∈ J
}

.

The equivalence of basic feasibility and ̂N -stationarity follows immediately. For the second
assertion, we assume that x̄ is N -stationary and let i ∈ I1(x̄) be arbitrarily, but fixed. Then,

i ∈ J for every J ∈ J (x̄), and, hence,
∂ f

∂xi
(x̄) = 0. Thus, x̄ is M-stationary. ��

Remark 2 (N -stationarity and instability) Proposition 13 says that M-stationarity is a
weaker condition than N -stationarity. However, it turns out that N -stationary points need
not to be stable with respect to data perturbations. Namely, after an arbitrarily small C2-
perturbation of f a locally unique N -stationary pointmaybifurcate intomultiple N -stationary
points. More importantly, this bifurcation unavoidably causes the emergence of M-stationary
points, not being N -stationary. This is in full analogy with CW-minima and BF-vectors. The
same Example 3 illustrates the instability phenomenon for N -stationary points as well. It is
worth to mention that there bifurcation happens even though the N -stationary point under
consideration fulfils SOSC. ��
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In order to better understand the relations of M-stationarity to other stationarity concepts
discussed in Sect. 3, we provide the following diagram:

NC − stationari ty ⇐ N − stationari ty
� ⇑

M − stationari ty ⇐ BF − vector ⇐ CW − minimali t y
�

N B − stationari ty
�

̂N − stationari ty

4 Global results

Let us study the topological properties of lower level sets

Ma = {

x ∈ R
n,s | f (x) ≤ a

}

,

where a ∈ R is varying. For that, we define intermediate sets for a < b:

Mb
a = {

x ∈ R
n,s | a ≤ f (x) ≤ b

}

.

For the topological concepts used below we refer to [24].
Let us start with Assumption 1 which is usual within the scope of Morse theory, cf. [10].

It prevents from considering asymptotic effects at infinity.

Assumption 1 The restriction of the objective function f|Rn,s on the SCNO feasible set is
proper, i. e. f −1(K ) ∩ R

n,s is compact for any compact set K ⊂ R.

Theorem 4 (Deformation for SCNO) Let Assumption 1 be fulfilled and Mb
a contain no M-

stationary points for SCNO. Then, Ma is homeomorphic to Mb.

Proof We apply Proposition 3.2 from Part I in [10]. The latter provides the deformation for
general Whitney stratified sets with respect to critical points of proper maps. Note that the
SCNO feasible set admits a Whitney stratification:

R
n,s =

⋃

I ⊂ {1, . . . , n}
|I | ≤ s

⋃

J⊂I

Z I ,J ,

where

ZI ,J = {

x ∈ R
n

∣

∣ xI c = 0, xJ > 0, xI\J < 0
}

.

The notion of criticality used in [10] can be stated for SCNO as follows. A point x̄ ∈ R
n,s is

called critical for f|Rn,s if it holds:

∇ f (x̄)|Tx̄ Z = 0,

where Z is the stratum of Rn,s which contains x̄ , and Tx̄ Z is the tangent space of Z at x̄ . By
identifying I = I1 (x̄) and, hence, I c = I0 (x̄), we see that the concepts of criticality and
M-stationarity coincide. This concludes the assertion. ��
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Let us now turn our attention to the topological changes of lower level sets when passing
an M-stationary level. Traditionally, they are described by means of the so-called cell-
attachment. We first consider a special case of cell-attachment. For that, let N ε denote the
lower level set of a special linear function on Rp,q , i. e.

N ε =
{

x ∈ R
p,q

∣

∣

∣

∣

∣

p
∑

i=1

xi ≤ ε

}

,

where ε ∈ R, and the integers q < p are nonnegative.

Lemma 1 (Normal Morse data) For any ε > 0 the set N ε is homotopy-equivalent to N−ε

with
(p−1

q

)

cells of dimension q attached. The latter cells are the q-dimensional simplices
from the collection

{

conv
(

e j , j ∈ J
) ∣

∣ J ⊂ {1, . . . , p}, 1 ∈ J , |J | = q + 1
}

.

Proof Let Nε denote the upper level set of a special linear function on R
p,q , i. e.

Nε =
{

x ∈ R
p,q

∣

∣

∣

∣

∣

p
∑

i=1

xi ≥ ε

}

.

In terms of upper level sets Lemma 1 can be obviously reformulated as follows: For any
ε > 0 the set N−ε is homotopy-equivalent to Nε with

(p−1
q

)

cells of dimension q attached.
Let us show the latter assertion.

First, we note that the sets N0 and N−ε are contractible. The contraction is performed via
the mapping

(x, t) �→ (1 − t) · x, t ∈ [0, 1].
For the lower level set N ε we have the representation

N ε =
⋃

J ⊂ {1, . . . , p}
|J | = q

N ε,J ,

where

N ε,J =
{

x ∈ R
p,q

∣

∣

∣

∣

∣

xJc = 0,
∑

i∈J

xi ≥ ε

}

.

Note that N ε,J is homotopy-equivalent to the set N J , where

N J =
{

x ∈ R
p,q

∣

∣

∣

∣

∣

xJc = 0,
∑

i∈J

xi = 1

}

is the (|J | − 1)-dimensional simplex conv
(

e j , j ∈ J
)

of Rp . In fact, the map

(x, t) �→ t · x
p

∑

i=1

xi

+ (1 − t) · x, t ∈ [0, 1]
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can be used for all N J . Altogether, Nε is homotopy-equivalent to
⋃

J ⊂ {1, . . . , p}
|J | = q

conv
(

e j , j ∈ J
)

. (13)

Note that the set in (13) is the (q − 1)-skeleton of the (p − 1)-dimensional simplex of Rp .
The (q − 1)-skeleton of the (p − 1)-dimensional simplex is the union of its simplices up to
dimension q − 1, see e. g. [9].

Within the (q − 1)-skeleton (13), we close all q-dimensional holes by attaching q-
dimensional cells from the collection of simplices

{

conv
(

e j , j ∈ J
) ∣

∣ J ⊂ {1, . . . , p}, |J | = q + 1
}

.

The attachment should result in a contractible set, as it is actually N0. We note that the union
of the subdivision

{

conv
(

e j , j ∈ J
) ∣

∣ J ⊂ {1, . . . , p}, 1 ∈ J , |J | = q + 1
}

(14)

is also contractible, namely, to e1. To see this, we may use the map

(x, t) �→ t · e1 + (1 − t) · x, t ∈ [0, 1].
Furthermore, none of the relative interiors of the simplices in (14) can be deleted. In fact,
deleting gives rise to the boundary of aq-dimensional simplex and the latter is not contractible.

On the other hand, for any J ∗ ⊂ {1, . . . , p}\{1} with |J ∗| = q + 1 the union

conv
(

e j , j ∈ J ∗) ∪
⋃

J∗∗ ⊂ J∗
∣

∣J∗∗∣

∣ = q

conv
(

e j , j ∈ J ∗∗ ∪ {1}) (15)

forms the boundary of the (q + 1)-dimensional simplex conv
(

e j , j ∈ J ∗ ∪ {1}). Hence, the
set in (15) is not contractible. Altogether, precisely the q-dimensional cells in (14) can be
attached to the (q−1)-skeleton (13) in order to obtain a contractible set. Its number obviously
equals

(p−1
q

)

. This completes the proof. ��

Theorem 5 (Cell-Attachment for SCNO) Let Assumption 1 be fulfilled and Mb
a contain

exactly oneM-stationary point x̄ for SCNOwith‖x̄‖0 = k and theM-index equal to s−k+QI .
If a < f (x̄) < b, then Mb is homotopy-equivalent to Ma with

(n−k−1
s−k

)

cells of dimension
s − k + QI attached, namely:

⋃

J ⊂ {1, . . . , n − k}
1 ∈ J , |J | = s − k + 1

conv
(

e j , j ∈ J
) × [0, 1]QI .

Proof Theorem 4 allows deformations up to an arbitrarily small neighborhood of the M-
stationary point x̄ . In such a neighborhood, we may assume without loss of generality that
x̄ = 0 and f has the following form as from Theorem 1:

f (x) = f (x̄) +
n−k
∑

i=1

xi +
n

∑

j=n−k+1

±x2j , (16)

where x ∈ R
n−k,s−k × R

k , and the number of negative squares in (16) equals QI . In terms
of [10] the set Rn−k,s−k × R

k can be interpreted as the product of the tangential part Rk
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and the normal part Rn−k,s−k . The cell-attachment along the tangential part is standard.
Analogously to the unconstrained case, one QI -dimensional cell has to be attached on R

k .
The cell-attachment along the normal part is more involved. Due to Lemma 1, we need to
attach

(n−k−1
s−k

)

cells on R
n−k,s−k , each of dimension s − k. Finally, we apply Theorem 3.7

from Part I in [10], which says that the local Morse data is the product of tangential and
normal Morse data. Hence, the dimensions of the attached cells add together. Here, we have
then to attach

(n−k−1
s−k

)

cells on Rn−k,s−k × R
k , each of dimension s − k + QI . ��

Let us put Theorem 5 into the context of Morse theory as developed in the literature
for other nonsmooth optimization problems. The new issue for SCNO is the multiplicity of
attached cells.

Remark 3 (Multiplicity of attached cells) We recall that for nonlinear programming prob-
lems (NLP) the dimension of the cell to be attached while passing a critical point equals to its
quadratic index, see e. g. [13]. The situation changes if we consider mathematical programs
with complementarity constraints (MPCC).Here, the dimension of attached cells equals to the
so-called C-index of C-stationary points, see [14]. In addition to quadratic, the C-index also
has a bi-active part. The latter counts negative pairs of Lagrange multipliers corresponding to
the bi-active complementarity constraints. The cell-attachment for mathematical programs
with vanishing constraints (MPVC) is similar, see [8]. The dimension of attached cells equals
here to the so-called T-index of T-stationary points. The T-index consists again of quadratic
and bi-active parts. We emphasize that the cell-attachment for SCNO considerably differs
from the described cases of NLP, MPCC, and MPVC. The main difference is that multiple
cells are involved into the cell-attachment procedure for SCNO. The multiplicity of attached
cells is a novel and striking phenomenon in nonsmooth optimization not observed in the
literature before. From the technical point of view, this makes the cell-attachment result for
SCNO to appear rather challenging. Note that the determination of the number of attached
cells becomes an involved combinatorial problem from algebraic topology, see Lemma 1.

Let us present a global interpretation of our results for SCNO. For that, we need to state
another assumption. Following Assumption 2 is standard in the context of SCNO, cf. [1],
and gives a necessary condition for its solvability.

Assumption 2 The restriction of the objective function f|Rn,s on the SCNO feasible set is
lower bounded.

Now, we consider M-stationary points x̄ for SCNO with ‖x̄‖0 = k and the M-index equal
to one, thus, fulfilling s − k + QI = 1. These so-called saddle points can be of two types:

(I) with active sparsity constraint and quadratic index equal to one, i. e.

k = s, QI = 1,

(II) with exactly s − 1 non-zero entries and vanishing quadratic index, i. e.

k = s − 1, QI = 0.

Theorem 6 (Morse relation for SCNO) Let Assumptions 1 and 2 be fulfilled, and all M-
stationary points of SCNO be nondegenerate. Additionally, we assume that there exists a
connected lower level set which contains all M-stationary points. Then, it holds:

rI + (n − s)rI I ≥ r − 1, (17)

where r is the number of local minimizers of SCNO, rI and rI I are the numbers of M-
stationary points with M-index equal to one, which correspond to the types (I) and (II),
respectively.
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Proof We assume without loss of generality that the objective function f has pairwise dif-
ferent values at all M-stationarity points of SCNO. If it is not the case, we may enforce this
property by sufficiently small perturbations of the objective function. Due to the openness
part in Theorem 2, allM-stationarity points of such a perturbed SCNO remain nondegenerate.
Moreover, the formula (17) is still valid since it does not depend on the functional values of
f .
Further, let qa denote the number of connected components of the lower level set Ma .

We focus on how qa changes as a ∈ R increases. Due to Theorem 4, qa can change only if
passing through a value corresponding to an M-stationary point x̄ , i. e. a = f (x̄). In fact,
Theorem 4 allows homeomorphic deformations of lower level sets up to an arbitrarily small
neighborhood of the M-stationary point x̄ . Then, we have to estimate the difference between
qa and qa−ε, where ε > 0 is arbitrarily, but sufficiently small, and a = f (x̄). This is done
by a local argument. For that, let the M-index of x̄ be s − k + QI with ‖x̄‖0 = k. We use
Theorem 5 which says that Ma is homotopy-equivalent to Ma−ε with a cell-attachment of

⋃

J ⊂ {1, . . . , n − k}
1 ∈ J , |J | = s − k + 1

conv
(

e j , j ∈ J
) × [0, 1]QI . (18)

Let us distinguish the following cases:

1) x̄ is a local minimizer with vanishing M-index, i. e. k = s and QI = 0. Then, by (18)
we attach to Ma−ε the cell conv (e1) of dimension zero. Consequently, a new connected
component is created, and it holds:

qa = qa−ε + 1.

2) x̄ is of type (I) with M-index equal to one, i. e. k = s and QI = 1. Then, by (18) we
attach to Ma−ε the cell conv (e1) × [0, 1] of dimension one. Consequently, at most one
connected component disappears, and it holds:

qa−ε − 1 ≤ qa ≤ qa−ε.

This case is well known from nonlinear programming, see e. g. [13].
3) x̄ is of type (II) with M-index equal to one, i. e. k = s − 1 and QI = 0. Then, by (18)

we attach to Ma−ε as many as n − s cells of dimension one, namely:
⋃

j = 2, . . . , n − s + 1

conv
(

e1, e j
)

.

Consequently, at most n − s connected components disappear, and it holds:

qa−ε − (n − s) ≤ qa ≤ qa−ε.

For illustration we refer to Fig. 1. Case 3) is new and characteristic for SCNO.
4) x̄ is M-stationary with M-index greater than one, i. e. s − k + QI > 1. The boundary of

the cell-attachment in (18) is
⋃

J ⊂ {1, . . . , n − k}
1 ∈ J , |J | = s − k + 1

(

∂conv
(

e j , j ∈ J
) × [0, 1]QI

)

∪
(

conv
(

e j , j ∈ J
) × {0, 1}QI

)

.

The latter set is connected if s − k + QI > 1. Consequently, the number of connected
components of Ma remains unchanged, and it holds:

qa = qa−ε.
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Fig. 1 Cell-attachment for type
(II)

x3

xn−s+1

x1

. . .

x2

Now, we proceed with the global argument. Assumption 2 implies that there exists c ∈ R

such that Mc is empty, thus, qc = 0. Additionally, there exists d ∈ R such that Md is
connected and contains all M-stationary points, thus, qd = 1. Due to Assumption 1, Md

c is
compact, moreover, it contains all M-stationary points. Since nondegenerate M-stationary
points are in particular isolated, we conclude that there must be finitely many of them. Let us
now increase the level a from c to d and describe how the number qa of connected components
of the lower level sets Ma changes. It follows from the local argument that r new connected
components are created, where r is the number of local minimizers for SCNO. Let qI and
qI I denote the actual number of disappearing connected components if passing the levels
corresponding to M-stationary points of types (I) and (II), respectively. The local argument
provides that at most rI and (n − s)rI I connected components might disappear while doing
so, i. e.

qI ≤ rI , qI I ≤ (n − s)rI I .

Altogether, we have:

r − rI − (n − s)rI I ≤ r − qI − qI I = qd − qc.

By recalling that qd = 1 and qc = 0, we get Morse relation (17). ��
We illustrate Theorem 6 by discussing the same SCNO as in Example 1.

Example 5 (Saddle point)We consider the following SCNO with n = 2 and s = 1:

min
x1,x2

(x1 − 1)2 + (x2 − 1)2 s. t. ‖(x1, x2)‖0 ≤ 1.

As we have seen in Example 1, both M-stationary points (1, 0) and (0, 1) are nondegenerate
minimizers. Thus, we have r = 2. Morse relation (17) from Theorem 6 provides:

rI + rI I ≥ 1.

Hence, there should exist an additional M-stationary point with M-index one. In fact, (0, 0)
is this nondegenerate M-stationary point of type (II), cf. Example 1. Note that, due to rI = 0
and rI I = 1, Morse relation (17) holds with equality here. ��

Let us briefly comment on the applicability of deformation and cell-attachment results in
Theorems 4 and 5 , respectively, for the least squares loss function.
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Remark 4 (Least squares loss function)We take the least squares as the objective function
in SCNO, i. e.

f (x) = ‖Ax − b‖22 ,

where A ∈ R
m×n can be viewed as a sensing matrix and b ∈ R

m as a measurement vector.
Then, SCNO corresponds to the problem of sparse recovery from compressed sensing, see
e. g. [1]. Here, it is convenient to assume that the bound on the number of non-zero entries of
the signal does not exceed the number of measurements, i. e. s ≤ m. Let us examine whether
Assumption 1 is fulfilled for the least squares loss function. It turns out that the so-called
s-regularity of A is sufficient for the latter. Recall from [1] that a matrix A ∈ R

m×n is called
s-regular if for every index set I ⊂ {1, . . . , n} with |I | = s it holds:

rank (AI ) = s,

where AI denotes the submatrix of A with the columns corresponding to the set I , and
rank (AI ) stands for its rank. In presence of s-regularity of A, it is shown in [15] that the
lower level sets

Ma = {

x ∈ R
n,s

∣

∣ ‖Ax − b‖22 ≤ a
}

are bounded for all a ∈ R. Hence, the restriction of the least squares loss function on R
n,s

is in this case proper, i. e. Assumption 1 is satisfied. Note that Assumption 2 trivially holds
for the least squares loss function, since it is nonnegative. Finally, we refer to [15] for the
detailed exposition of the topological approach as applied to sparse recovery. ��
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