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Abstract
In this article we consider the post-retirement phase optimization problem for a spe-
cific pension product in Germany that comes without guarantees. The continuous-
time optimization problem is defined consisting of two specialties: first, we have a 
product-specific pension adjustment mechanism based on a certain capital coverage 
ratio which stipulates compulsory pension adjustments if the pension fund is under-
funded or significantly overfunded. Second, due to the retiree’s fear of and aversion 
against pension reductions, we introduce a total wealth distribution to an investment 
portfolio and a buffer portfolio to lower the probability of future potential pension 
shortenings. The target functional in the optimization, that is to be maximized, is the 
client’s expected accumulated utility from the stochastic future pension cash flows. 
The optimization outcome is the optimal investment strategy in the proposed model. 
Due to the inherent complexity of the continuous-time framework, the discrete-time 
version of the optimization problem is considered and solved via the Bellman prin-
ciple. In addition, for computational reasons, a policy function iteration algorithm is 
introduced to find a stationary solution to the problem in a computationally efficient 
and elegant fashion. A numerical case study on optimization and simulation com-
pletes the work with highlighting the benefits of the proposed model.
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1 Introduction

In this article, we study a pension insurance related optimization problem which 
targets to maximize the expected utility of the future stochastic pension cash flows 
of a client within a specific pension adjustment and investment model. This model 
covers a certain pension adjustment mechanism, where pension guarantees are dis-
regarded, but the pension needs to be adjusted (either reduced or increased) if the 
pension fund becomes underfunded or significantly overfunded, and a buffer rule to 
smooth the pension development over time and to reduce the probability of pension 
shortenings. The solution to the problem is given in form of the optimal investment 
strategy in the proposed system.

The above is motivated by the need of a suitable pension product that allows for 
higher expected returns on the investments particularly when interest rates are low 
or even negative. In the recent low interest-rate environment, traditional pension 
funds, which allocate a high proportion of their wealth to defensive assets such as 
government bonds due to the promised guarantees, can only offer a relatively small 
expected return on the investments. By this, the pension fund wealth of a client 
grows at a rather small rate and consequently the future pension payments will be 
quite low. Generally, clients seek for and desire a stable evolution of their reported 
wealth (and their pension) at a high expected return and with a limited downside. 
Therefore, alternative strategies without guarantees but with a certain downside pro-
tection can provide a significant contribution.

For this reason, we consider a certain pension product1 that comes with a buffer 
and a pension adjustment mechanism to enhance expected returns. The product allows 
company pension schemes to only make contribution-related promises but forbids 
performance-related guarantees. To allow for a performance- or return-seeking char-
acteristic, the product comes with no pension cash flow guarantee at all. The product 
generally consists of two phases: the pre-retirement or accumulation phase and the 
post-retirement or decumulation phase. We focus on the wealth decumulation phase 
in what follows. This phase can be regarded as a modification of a defined benefit 
(DB) plan, where the pensions stay constant as long as the wealth remains inside a 
pre-defined corridor. As this new pension product is currently in a development stage 
in Germany and is being built up, we study the impact of the associated model. As 
every investor has an individual risk appetite or risk attitude, professional decision 
making under uncertainty needs to consider an adequate modeling of a certain risk-
reward tradeoff. A more risk-averse investor generally prefers a portfolio with a lower 
risk in terms of some risk measure, coming at the cost of smaller returns on average. 
The general question arises how the pension fund’s wealth is to be invested such that 
the benefits for the clients are maximized. This particular question about a scientifically 

1 The considered pension scheme is named “Nahles–Rente” or “Sozialpartnermodell” in Germany, 
and is also known under “reine Beitragszusage”. It is regulated by “Bundesanstalt für Finanzdienstleis-
tungsaufsicht (BaFin)” and its political starting point is the so-called “Betriebsrentenstärkungsgesetz 
(BRSG)” which came into force on January 1st, 2018. Some more details, information and current status 
can be found in [1] and [15].
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founded investment strategy for a Nahles–Rente pension product is addressed in this 
work. Thus, we contribute with the following: First, a mathematical model (for a single 
client and an age-grouped cohort) is built up that incorporates a certain buffer rule and 
a pension adjustment mechanism. Moreover, the optimal investment strategy is derived 
by maximizing the expected utility of the stochastic pension cash flows. Afterwards, a 
numerical optimization and simulation case study is carried out to illustrate the optimal 
control and analyze its characteristics. Based on the case study, under the assumption of 
a positive interest rate, we find that the introduction of the proposed buffer system sig-
nificantly reduces the probabilities for pension reductions and leads to a certain trade-
off between the initial pension level at retirement time and performance: A more pro-
nounced buffer system is connected to a smaller initial pension level, but at the same 
time leads to a superior performance of the pension evolution. We conclude that our 
proposed model leads to a sophisticated optimal dynamic asset allocation policy that 
provides remarkable benefits to clients and represents a meaningful alternative to risk-
averse clients. For a proposal and some discussion of an alternative model formulation 
that designs a pension product without guarantees we refer to [6], where the modeling 
is related to but differs from our approach.

The remainder is organized as follows: First of all, Sect. 2 introduces the consid-
ered financial market model (classical Black–Scholes model with constant parame-
ters) that consists of a riskless and multiple risky assets. Sect. 3 models the continu-
ous-time mathematical framework for the decumulation phase under a constant force 
of mortality. The resulting portfolio selection problem (single-client and cohort ver-
sion) is stated in Sect.  4 and is solved in discrete-time. Although the problem is 
finally solved in a discrete-time framework, we first introduce the continuous-time 
setup as we would like to embed the problem into the standard portfolio selection 
problems that deal with continuous-time capital market and decision models. Due 
to implementation reasons, Sect. 5 provides an approximate solution to the original 
problem in form of a stationary solution. To be able to solve the complex problem, 
we particularly impose the following assumptions and simplifications: The applied 
constant force of mortality implies an exponentially distributed remaining uncertain 
lifetime. For algorithmic reasons, the planning or investment horizon of the system 
is set to infinity to obtain an optimal stationary solution. This solution can be used 
as an approximation for a finite planning horizon when the survival probability of 
exceeding this horizon is sufficiently small. Additionally, separability of time and 
pension in the pension utility function is assumed jointly with an exponential time-
dependence. Moreover, certain (mostly equidistant) discretization grids are utilized 
when the problem is addressed in discrete-time. An extensive numerical case study 
visualizes the optimal asset allocation strategy and highlights its benefits in Sect. 6. 
Finally, Sect. 7 concludes.
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2  The financial market model

Let T < ∞ denote the initial time of the post-retirement phase, the retirement entry 
time in most cases. Further let T̃  denote the end of the investment period and let 
(Ω,F, 𝔽 =

(
Ft

)
t∈[T ,T̃]

,ℙ) be a filtered complete probability space that satisfies the 
usual conditions and let W = (W(t))t∈[T ,T̃] , W(t) = (W1(t),… ,WN(t))

� , N ∈ ℕ , denote 
a standard N-dimensional Brownian motion. Ω is the sample space, ℙ denotes the 
real-world probability measure and Ft the natural filtration generated by W(s), 
T ≤ s ≤ t , that is augmented by all the null sets. By this we introduce uncertainty 
into the considered continuous-time financial market model that is frictionless and 
consists of N + 1 continuously traded assets: one risk-less asset P0 and N risky assets 
Pi , i = 1,… ,N . The price of the risk-less asset is subject to the equation

where r ≥ 0 is the constant risk-less interest rate. The remaining N assets, usually 
referred to as asset classes, are subject to the stochastic differential equations

where � =
(
�1,… ,�N

)�
∈ ℝN

+
 with 𝜇 − r� > � is the constant drift and 

�i = (�i1,… , �iN) ∈ ℝ1×N
+

 denotes the constant volatility vector of assets 
i = 1,… ,N . Here, x′ stands for the transpose of some vector x, � ∶= (1,… , 1)� and 
� ∶= (0,… , 0)� . The volatility matrix is defined as � =

(
�ij
)
i,j=1,…,N

 with corre-
sponding covariance matrix Σ = ��� of the log-returns which is assumed to be 
strongly positive definite, i.e. there exists K > 0 such that ℙ-a.s. it is x�Σx ≥ Kx�x , 
∀x ∈ ℝN . Moreover, within this framework � = �−1(� − r�) denotes the market 
price of risk. In accordance with [13] there exists a unique risk-neutral probability 
measure ℚ within the above market dynamics. Additionally, the financial market is 
complete which enables us to determine the present value of stochastic cash flows as 
expected discounted payments under the measure ℚ . The associated pricing kernel 
or state price deflator, which we denote by Z̃(t) , is defined as

and can be used for the valuation of cash flow streams under the real-world probabil-
ity measure ℙ . The dynamics of the pricing kernel is

Further, let 𝜑 = (𝜑0, �̂�)
� , �̂� = (𝜑1,… ,𝜑N)

� denote a trading strategy that is assumed 
to be Ft-progressively measurable, self-financing with 
ℙ

�∫ T

0
�𝜑0(t)� + ‖�̂�(t)‖2dt < ∞

�
= 1 . �i(t) represents the number of individual 

shares of asset i held by the investor at time t. Analogically, we denote the Ft

(2.1)dP0(t) = rP0(t)dt, P0(T) = 1, T ≤ t ≤ T̃ ,

(2.2)
dPi(t) = Pi(t)

(
𝜇idt + 𝜎idW(t)

)
= Pi(t)

(
𝜇idt +

N∑
j=1

𝜎ijdWj(t)

)
,

Pi(T) = pi > 0,

(2.3)Z̃(t) ∶= e
−
�
r+

1

2
‖𝛾‖2

�
t−𝛾 �W(t)

(2.4)dZ̃(t) = −Z̃(t)
(
rdt + 𝛾 �dW(t)

)
, Z̃(0) = 1.
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-progressively measurable and self-financing relative portfolio process with 
𝜋 = (𝜋0, �̂�

�)� , �̂� = (𝜋1,… ,𝜋N)
� , where �̂� represents the risky relative investment and 

𝜋0(t) = 1 − �̂�(t)�� the risk-less relative investment. In general, �i(t) denotes the pro-
portion of wealth allocated to asset i at time t and is related to �i(t) through

where V(t) denotes the corresponding wealth at time t. The wealth V(t), and in par-
ticular its characterizing dynamics dV(t), are to be defined in the upcoming section.

3  The decumulation phase mathematical model

In the following we present and explain the mathematical modeling of the pension plan 
dynamics associated with the decumulation phase. At first we consider a single client, 
but later relax the framework to a cohort model where customers are grouped by their 
age. Remember that time T denotes the initial time where the post-retirement pension 
fund is started. The total individual wealth of client i in cohort j at time t ≥ T is denoted 
by V (total)

ij
(t) , the individual continuously-withdrawn pension payment rate by Pij(t) ≥ 0 

and the time-t present value of all outstanding future pension payments to this specific 
client under a constant pension development assumption by Eij(t) . The latter can be 
expressed as

where �x
ij
(T) denotes the uncertain total lifetime of client i in cohort j who is aged x 

at time T. Throughout the paper we consider a constant mortality rate 𝜆x = 𝜆x(ij) > 0 . 
Therefore, the survival probability of a client aged x at time T to survive from time T 
until time t > T  is given by ℙ(�x

ij
(T) ≥ t|�x

ij
(T) ≥ T) = e−�x(t−T) , 𝜆x > 0 . Moreover, 

we assume �x
ij
(T) (uncertain total lifetime) to be independent of the filtration �  . 

Within this model, we have for s ≥ t ≥ T:

Together with a given and thus known Pij(t) at time t, applying Fubini and using that 
�x
ij
(T) is independent of �  , Eij(t) becomes

(2.5)�i(t) ∶=

{
�i(t)Pi(t)

V(t)
, if V(t) ≠ 0,

0, if V(t) = 0,

(3.1)Eij(t) ∶= �

[
�

𝜏x
ij
(T)

t

Z̃(s)

Z̃(t)
Pij(t)ds

||||Ft, 𝜏
x
ij
(T) ≥ t

]
,

(3.2)
ℙ

(
�x
ij
(T) ≥ s

||||�
x
ij
(T) ≥ t

)
=

ℙ

(
�x
ij
(T) ≥ s, �x

ij
(T) ≥ t

)

ℙ

(
�x
ij
(T) ≥ t

) =
ℙ

(
�x
ij
(T) ≥ s

)

ℙ

(
�x
ij
(T) ≥ t

)

=
e−�x(s−T)

e−�x(t−T)
= e−�x(s−t).
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Eij(t) can be regarded as perpetual annuity. Moreover, the pension rate Pij(t) is 
adjusted such that a certain capital coverage ratio

is met. Particularly, regulations of BaFin force

Generally for all t ≥ T  , the total wealth V (total)

ij
(t) that belongs to client i in cohort j is 

internally divided into an investment portfolio V (inv)

ij
(t) (portfolio mix of riskless and 

risky assets) and a buffer portfolio V (buffer)

ij
(t) (deposit account with zero interest 

rate2) such that

Let us define

This immediately implies the relationship

(3.3)

Eij(t)
(3.1)
= 𝔼

[
�

𝜏x
ij
(T)

t

Z̃(s)

Z̃(t)
Pij(t)ds

||||Ft, 𝜏
x
ij
(T) ≥ t

]

= Pij(t)�
∞

t

𝔼

[
Z̃(s)

Z̃(t)
1𝜏x

ij
(T)≥s

||||Ft, 𝜏
x
ij
(T) ≥ t

]
ds

= Pij(t)�
∞

t

𝔼

[
Z̃(s)

Z̃(t)

||||Ft, 𝜏
x
ij
(T) ≥ t

]
ℙ

(
𝜏x
ij
(T) ≥ s

||||Ft, 𝜏
x
ij
(T) ≥ t

)
ds

= Pij(t)�
∞

t

𝔼

[
Z̃(s)

Z̃(t)

||||Ft

]
ℙ

(
𝜏x
ij
(T) ≥ s

||||𝜏
x
ij
(T) ≥ t

)
ds

(3.2)
= Pij(t)�

∞

t

e−r(s−t)e−𝜆x(s−t)ds = Pij(t)
e−(r+𝜆x)(s−t)

−(r + 𝜆x)

||||
s=∞

s=t

=
Pij(t)

r + 𝜆x
.

(3.4)CCR
(total)

ij
(t) ∶=

V
(total)

ij
(t)

Eij(t)

(3.5)CCR
(total)

ij
(t) ∈ [100%, 125%], ∀t ≥ T .

(3.6)V
(total)

ij
(t) = V

(inv)

ij
(t) + V

(buffer)

ij
(t).

(3.7)CCR
(inv)

ij
(t) ∶=

V
(inv)

ij
(t)

Eij(t)
, CCR

(buffer)

ij
(t) ∶=

V
(buffer)

ij
(t)

Eij(t)
.

2 One could also think about a deposit account with interest rate r ≥ 0 . A zero interest rate is assumed 
here as it strongly simplifies later calculations. In addition, as the buffer account may need to be adjusted 
on a more frequent basis than the capital allocation to the risk-less asset, higher internal or external 
account (management) costs could justify a lower interest rate.



653

1 3

Optimal investment strategies for pension funds with…

We propose the following structure:

for some � ∈ [0, 1] . The remainder builds the investment portfolio

Thus, we define the buffer balance to be the proportion � of the cushion or surplus 
V
(total)

ij
(t) − Eij(t) , the remaining fund flows into the investment portfolio. Further we 

would like to control the capital coverage ratio for the investment portfolio such that 
all pension payments can be made by the investment portfolio under normal circum-
stances, where the buffer account can help out in bad scenarios. For this sake, let us 
denote3 by p̄ ∈ [100%, 125%] the value for CCR(inv)

ij
(tn) after readjustment at some 

re-set time tn where the pre-readjustment value at time tn falls outside the corridor 
[100%, 125%] . For instance, one could set p̄ = 112.5% to the center of the corridor. 
Note that Eq. (3.9) leads to

for all t ≥ T  , which can be reformulated to

We would like to stress out that the parameters � and p̄ are exogenously given and 
time- as well as client-independent. In the following we propose and describe a cer-
tain adjustment mechanism for the pension rate and the buffer system and demon-
strate that it actually satisfies Eq. (3.9) for all adjustment times (called tn ) as well as 
all non-adjustment times ( t ≠ tn ), i.e. for all t ≥ T .

(3.8)

CCR
(total)

ij
(t)

(3.4)
=

V
(total)

ij
(t)

Eij(t)

(3.6)
=

V
(inv)

ij
(t)

Eij(t)
+

V
(buffer)

ij
(t)

Eij(t)

(3.7)
= CCR

(inv)

ij
(t) + CCR

(buffer)

ij
(t).

(3.9)V
(buffer)

ij
(t) ∶= �

(
V
(total)

ij
(t) − Eij(t)

)

(3.10)

V
(inv)

ij
(t)

(3.6)
= V

(total)

ij
(t) − V

(buffer)

ij
(t)

(3.9)
= V

(total)

ij
(t) − �

(
V
(total)

ij
(t) − Eij(t)

)

= �Eij(t) + (1 − �)V
(total)

ij
(t) = Eij(t) + (1 − �)

(
V
(total)

ij
(t) − Eij(t)

)
.

(3.11)
CCR

(total)

ij
(t)

(3.8)
= CCR

(inv)

ij
(t) + CCR

(buffer)

ij
(t)

(3.7)
= CCR

(inv)

ij
(t) +

V
(buffer)

ij
(t)

Eij(t)

3.9
=CCR

(inv)

ij
(t) + �

(
CCR

(total)

ij
(t) − 1

)

(3.12)CCR
(total)

ij
(t) =

CCR
(inv)

ij
(t) − �

1 − �
.

3 Values of p̄ very close to 100% or 125% are not suitable for practical purposes because it would require 
far too many adjustments over time.
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3.1  System at re‑adjustment times

As already mentioned, whenever the corridor is exceeded at some time tn ≥ T  , the 
pension rate Pij(tn) needs to be adjusted (either reduced or increased) such that 
CCR

(total)

ij
(tn) ∈ [100%, 125%] . The fund keeps the pension rates constant between 

the re-adjustment times tn , n ∈ ℕ , which are defined by

For the sake of convenience we define t0 ∶= T  as first (re-)adjustment time. At time 
tn the system gets re-adjusted such that CCR(inv)

ij
(tn) becomes p̄:

In view of Eq. (3.12) this is equivalent to

Moreover, from Eq. (3.15) it follows

This means that when p̄ and V (total)

ij
(tn) are known at time tn , then the selection of � 

determines the adjusted pension rates Pij(tn) at re-set time tn . Moreover, a higher 
value of p̄ , everything else staying constant, implies a smaller adjusted pension rate 
Pij(tn) . Hence, at every re-adjustment time tn (especially at time t0 = T  ), the adjusted 
pension rate Pij(tn) is selected according to Eq. (3.16) such that CCR(total)

ij
(tn) =

p̄−𝛼

1−𝛼
 

(and CCR(inv)

ij
(tn) = p̄ ), and it further holds4 Pij(t) ≡ Pij(tn) ∀t ∈ [tn, tn+1) . Finally, we 

receive

(3.13)

tn ∶= inf

{
t ∈ (tn−1, �

x
ij
(T)] ∶ CCR

(total)

ij
(t) ∉ [100%, 125%]

||||�
x
ij
(T) ≥ tn−1

}
.

(3.14)p̄ ∶= CCR
(inv)

ij
(tn)

(3.7)
=

V
(inv)

ij
(tn)

Eij(tn)

(3.12)
= 𝛼 + (1 − 𝛼)CCR

(total)

ij
(tn).

(3.15)CCR
(total)

ij
(tn) =

p̄ − 𝛼

1 − 𝛼
.

(3.16)

p̄ − 𝛼

1 − 𝛼
= CCR

(total)

ij
(tn)

(3.4)
=

V
(total)

ij
(tn)

Eij(tn)
⇔ Eij(tn) =

(1 − 𝛼)V
(total)

ij
(tn)

p̄ − 𝛼

(3.3)
⇔ Pij(tn) =

1 − 𝛼

p̄ − 𝛼
(r + 𝜆x)V

(total)

ij
(tn).

4 Mathematically spoken, let t ≥ T  and 
n−(t) ∶= sup

{
n ∈ ℕ0 ∶ tn ≤ t

}
,

n+(t) ∶= inf
{
n ∈ ℕ0 ∶ tn > t

}
,
 then we have 

Pij(t) ≡ Pij(tn−(t)), ∀t ∈ [tn−(t), tn+(t)]. (3.17)
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Notice that as we define p̄ ∶= CCR
(inv)

ij
(tn) in Eq. (3.14) to coincide for any customer 

( p̄ independent of ij) and to be time-independent, so do CCR(total)

ij
(tn) and 

CCR
(buffer)

ij
(tn) which we learn from Eqs. (3.15) and (3.18). As 

CCR
(total)

ij
(tn) ∈ [100%, 125%] is required, i.e. it has to stay inside the boundaries, we 

must have p̄−𝛼
1−𝛼

∈ [100%, 125%] . For economic reasons, suppose p̄ ∈ [100%, 125%] 
and � ∈ [0, 1] . Therefore we have the regulatory condition

on the variable � . In particular, when p̄ = 112.5% , then � can be selected out of the 
interval [0%, 50%].

3.2  Dynamics between re‑adjustment times

So far we described the framework and mechanism at the re-adjustment times tn . For all 
t ≥ T , t ≠ tn , we propose the following buffer rate mechanism (rate of change of the 
buffer balance) that drives V (buffer)

ij
(t) , where we implicitly assume that the buffer 

account is a simple account that pays no interest (see Footnote 2):

This means that between any two re-adjustment times, the buffer portfolio V (buffer)

ij
(t) 

evolves according to the changes in the surplus V (total)

ij
(t) − Eij(t) . Especially in a situ-

ation where the change in the total wealth V (total)

ij
(t) and the change in the liabilities 

Eij(t) coincide, the buffer portfolio remains constant. Eq. (3.20) leads to

for all t ≥ T  , i.e. Eq. (3.9) could be verified for all t = tn as well as t ≠ tn . Hence it 
turns out that the proportional distribution of the total wealth V (total)

ij
(t) to the invest-

ment and buffer portfolio is identical for all times t ≥ T  . The formula for the pension 

(3.18)

CCR
(buffer)

ij
(tn)

(3.8)
= CCR

(total)

ij
(tn) − CCR

(inv)

ij
(tn)

(3.15),(3.14)
=

p̄ − 𝛼

1 − 𝛼
− p̄ = 𝛼

p̄ − 1

1 − 𝛼
.

(3.19)𝛼 ∈

[
0%,

125% − p̄

125% − 100%

]

(3.20)dV
(buffer)

ij
(t) ∶= c

(buffer)

ij
(t)dt ∶= �d

(
V
(total)

ij
(t) − Eij(t)

)

(3.21)

V
(buffer)

ij
(t) = V

(buffer)

ij
(T) + ∫

t

T

dV
(buffer)

ij
(s)

(3.20)
= �

(
V
(total)

ij
(T) − Eij(T)

)
+ ∫

t

T

�d
(
V
(total)

ij
(s) − Eij(s)

)

= �
(
V
(total)

ij
(T) − Eij(T)

)
+ �

(
V
(total)

ij
(t) − Eij(t)

)

− �
(
V
(total)

ij
(T) − Eij(T)

)

= �
(
V
(total)

ij
(t) − Eij(t)

)
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rate at t ≠ tn was already shown in Eq. (3.17). A very beneficial feature of this pro-
posed buffer account and process is the following relation for times t ≠ tn:

Therefore, a downwards adjustment of the pension rate ( CCR(total)

ij
(t) falls short 

100% ) comes at the same time as a zero value in the buffer account.
Additionally, for times t ≠ tn , the dynamics of the investment portfolio, which serves 

the pension outflows and the buffer rate (positive or negative), follows the stochastic 
differential equation of a classically portfolio that is invested into the capital market:

The first component of the formula coincides with a pure classical investment part, 
where �̂�(inv)(t) denotes the risky relative investment that corresponds to the invest-
ment portfolio with wealth V (inv)

ij
(t) , plus two additional components in the form of a 

pension rate outflow −Pij(t)dt and a buffer rate inflow or outflow −c(buffer)
ij

(t)dt . Fur-
thermore, bringing the dynamics of V (inv)

ij
(t) and V (buffer)

ij
(t) together, gives

As the wealth of the buffer portfolio is not invested in the capital market, the total 
time-t risky exposure is given by �̂�(inv)(t)V

(inv)

ij
(t) which determines the following 

relative risky investment �̂�(total)(t) of the total wealth V (total)

ij
(t) depending on the capi-

tal coverage ratio:

Since CCR(total)

ij
(t) ∈ [100%, 125%] by regulation, we obtain

(3.22)CCR
(total)

ij
(t) ↘ 100% ⇔ V

(total)

ij
(t) ↘ Eij(t) ⇔ V

(buffer)

ij
(t) ↘ 0.

(3.23)
dV

(inv)

ij
(t) = V

(inv)

ij
(t)
[(
r + �̂�(inv)(t)�(𝜇 − r�)

)
dt + �̂�(inv)(t)�𝜎dW(t)

]

− Pij(t)dt − c
(buffer)

ij
(t)dt

(3.24)

dV
(total)

ij
(t)

(3.6)
= dV

(inv)

ij
(t) + dV

(buffer)

ij
(t)

(3.23),(3.20)
= V

(inv)

ij
(t)
[(
r + �̂�(inv)(t)�(𝜇 − r�)

)
dt + �̂�(inv)(t)�𝜎dW(t)

]

− Pij(t)dt − c
(buffer)

ij
(t)dt + c

(buffer)

ij
(t)dt

(3.10)
=

[
Eij(t) + (1 − 𝛼)

(
V
(total)

ij
(t) − Eij(t)

)]

×
[(
r + �̂�(inv)(t)�(𝜇 − r�)

)
dt + �̂�(inv)(t)�𝜎dW(t)

]
− Pij(t)dt.

(3.25)

�̂�(total)(t)V
(total)

ij
(t) = �̂�(inv)(t)V

(inv)

ij
(t) ⇔ �̂�(total)(t) =

V
(inv)

ij
(t)

V
(total)

ij
(t)

�̂�(inv)(t)

(3.10)
=

(1 − 𝛼)V
(total)

ij
(t) + 𝛼Eij(t)

V
(total)

ij
(t)

�̂�(inv)(t)

3.4
=
(1 − 𝛼)CCR

(total)

ij
(t) + 𝛼

CCR
(total)

ij
(t)

�̂�(inv)(t).
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It follows immediately that �̂�(total)(t) ≤ �̂�(inv)(t) , hence the buffer indeed dampens the 
relative risky investment for the total portfolio. To prevent from leverage for a given 
� , one has to restrict (�̂�(inv)(t))�� ≤ 1 resp. (�̂�(total)(t))�� ≤ 1 . To exclude short-selling, 
one needs to enforce �̂�(total)(t) ≥ � resp. �̂�(inv)(t) ≥ �.

Finally, the discretized version of the stochastic differential equation (3.24) of 
the total wealth is given by

where Z ∼ N(0, 1) is an N-dimensional vector of independent standard normal ran-
dom variables. Moreover, based on Eqs. (3.16) and (3.17), the discrete-time version 
of the pension rate development is

Equation (3.28) tells that if the past performance of the total wealth investment 
was very high, then the pension rate for the next period gets larger. In opposite, if 
the performance of the total wealth in the preceding period was very low, the pen-
sion rate for the upcoming period gets reduced. Finally, the pension rate remains 
unchanged if the total wealth stays within some lower and upper boundary.

4  The decumulation phase portfolio selection problem

4.1  Continuous‑time optimization problem

The fund’s target is to maximize the client’s expected accumulated utility coming 
from the stochastic future pension cash flows. The buffer portfolio is established 
to reduce the probability of undesired pension shortenings and thus to keep the 
pension more stable. The risk-return tradeoff in the optimization depends on the 
type of applied utility function U. Since no bequest payments are considered, the 
continuous-time portfolio selection problem for an initial wealth V (total)

ij
(T) = v0 

and planning horizon T̃ ∈ (T ,∞] is given by

(3.26)

�̂�(total)(t) =
(1 − 𝛼)CCR

(total)

ij
(t) + 𝛼

CCR
(total)

ij
(t)

�̂�(inv)(t) ∈

[
(1 − 𝛼)1.25 + 𝛼

1.25
, 1

]
⋅ �̂�(inv)(t).

(3.27)

V
(total)

ij
(t + Δ) = V

(total)

ij
(t) +

�
Eij(t) + (1 − 𝛼)

�
V
(total)

ij
(t) − Eij(t)

��

×
��
r + �̂�(inv)(t)�(𝜇 − r�)

�
Δ + �̂�(inv)(t)�𝜎

√
ΔZ

�
− Pij(t)Δ,

(3.28)

Pij(t + Δ) =

⎧⎪⎨⎪⎩

Pij(t), if
V
(total)

ij
(t+Δ)

Pij (t)

r+𝜆x

∈ [100%, 125%]

1−𝛼

p̄−𝛼
(r + 𝜆x)V

(total)

ij
(t + Δ), otherwise.



658 A. Lichtenstern, R. Zagst 

1 3

The dynamics of Pij(t) is covered by Eqs. (3.16)–(3.17). The set Λ covers all admis-
sible strategies �(inv) . A personal discount rate can be hidden in U. Later we select 
U to be an increasing concave utility function, which means that the client prefers a 
larger pension rate Pij(t) , but an increase in the pension rate would lead to less addi-
tional satisfaction the larger the pension rate already is. The objective function that 
is to be maximized in Problem (4.1) arises from

Similarly, the budget constraint in Problem (4.1) arises from

Throughout, let the intertemporal utility function U(t, p) admit the following form:

where Ũ is a strictly increasing and concave utility function and � ≥ 0 denotes the 
subjective discount rate with utility discount factor e−�(t−T).

(4.1)

V(v0, c
(buffer)

ij
) = sup

𝜋(inv)∈Λ

J(𝜋(inv);v0, c
(buffer)

ij
)

s.t.

⎧
⎪⎨⎪⎩

J(𝜋(inv);v0, c
(buffer)

ij
) = �

�∫ T̃

T
e−𝜆x(t−T)U(t,Pij(t))dt

�
,

�

�∫ T̃

T
e−𝜆x(t−T)

Z̃(t)

Z̃(T)
Pij(t)dt

� ≤ v0.

(4.2)

J(𝜋(inv);v0, c
(buffer)

ij
) ∶= 𝔼

[
�

𝜏x
ij
(T)∧T̃

T

U(t,Pij(t))dt

]

= 𝔼

[
�

T̃

T

U(t,Pij(t))1𝜏x
ij
(T)≥tdt

]

= �
T̃

T

𝔼

[
U(t,Pij(t))

||||𝜏
x
ij
(T) ≥ t

]
ℙ

(
𝜏x
ij
(T) ≥ t

)
dt

= �
T̃

T

𝔼
[
U(t,Pij(t))

]
ℙ

(
𝜏x
ij
(T) ≥ t

)
dt

= �
T̃

T

e−𝜆x(t−T)𝔼
[
U(t,Pij(t))

]
dt

= 𝔼

[
�

T̃

T

e−𝜆x(t−T)U(t,Pij(t))dt

]
.

(4.3)

v0 ≥ �

[
�

𝜏x
ij
(T)∧T̃

T

Z̃(t)

Z̃(T)
Pij(t)dt

]
= �

[
�

T̃

T

Z̃(t)

Z̃(T)
Pij(t)1𝜏x

ij
(T)≥tdt

]

= �

[
�

T̃

T

e−𝜆x(t−T)
Z̃(t)

Z̃(T)
Pij(t)dt

]
.

(4.4)U(t, p) ∶= e−𝛽(t−T)Ũ(p),
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4.2  Discrete‑time dynamic optimization

In what follows we target to solve Problem (4.1). Due to the nature and complex-
ity of the scheme (especially the pension rate adjustment mechanism) coming from 
the regulatory requirements, we consider the discrete-time version of Problem (4.1) 
from now on and apply discrete-time dynamic optimization methods. We first trans-
late the Problem (4.1) into the corresponding discrete-time problem. For this sake, 
we divide the investment period [T , T̃] into an equidistant grid with a distance of 
Δ > 0 between every grid point

with NΔ ∶=
T̃−T

Δ
 , such that t(0) = T  and t(NΔ) = T̃  with t(k+1) − t(k) ≡ Δ . We assume 

NΔ =
T̃−T

Δ

!
∈ℕ which for instance holds true if T̃ − T ∈ ℕ is in full years and 

Δ ∈ {1,
1

2
,
1

4
,

1

12
,

1

52
,

1

250
,…} , i.e. pension rate adjustments and rebalancing of the 

portfolio take place annually, semi-annually, quarterly, monthly, weekly, daily, etc.. 
The decision variable �(inv)(t(k)) is applied on the entire interval 
[t(k), t(k+1)) = [t(k), t(k) + Δ) and is updated again at time t(k+1) = t(k) + Δ ; the same 
holds for Pij(t) . Within the discrete framework, the objective function 
J(�(inv);v0, c

(buffer)

ij
) that is to be maximized translates to

For simplifying notations, let us define for k ∈ {0,… ,NΔ}:

S(k) denotes the two-dimensional state space with S(k) ⊆ ℝ2
+
 . ak is the action (or con-

trol variable) for period [t(k), t(k+1)) . It is the risky relative investment strategy of the 
investment portfolio, with ak ∈ � , where � ∶=

{
a ∈ [0, 1]N ∶ a�� ≤ 1

}
 denotes the 

set that includes all possible portfolio weights at a given time point. The definition 

(4.5)t(k) ∶= T + Δ ⋅ k, k = 0,… ,NΔ

(4.6)

J(𝜋(inv);v0, c
(buffer)

ij
) = �

[
�

T̃

T

e−𝜆x(t−T)U(t,Pij(t))dt

]

= �

[
�

T̃

T

e−(𝜆x+𝛽)(t−T)Ũ(Pij(t))dt

]

= �

[
NΔ−1∑
k=0

�
t(k+1)

t(k)
e−(𝜆x+𝛽)(t−T)Ũ(Pij(t))dt

]

Pij(t)≡Pij(t
(k)) on [t(k),t(k+1))

= �

[
NΔ−1∑
k=0

�
t(k+1)

t(k)
e−(𝜆x+𝛽)(t−T)Ũ(Pij(t

(k)))dt

]
.

(4.7)

V(k) ∶= V
(total)

ij
(t(k)),

P(k) ∶= Pij(t
(k)),

S(k) ∶=
(
V(k),P(k)

)
,

ak ∶= �̂�(inv)(t(k)) = �̂�(inv)(t(k);S(k)),

Fk ∶= Ft(k) .
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of � ensures the following: For a vector a ∈ � , a ≥ � prevents from short-selling of 
a risky asset, a′� ≤ 1 rules out leverage. In the case of a single asset class ( N = 1 ), 
the set reduces to � = [0, 1] . Moreover, Fk contains all the information accumulated 
from time t = 0 to time t = t(k) , which particularly includes the information (
V
(total)

ij
(t(k)),Pij(t

(k))
)
=
(
V(k),P(k)

)
= S(k) . The optimization problem in discrete 

time then reads

We now address the stochastic control problem in (4.8). We assume a Markov 
model, i.e. the objects at time t(k+1) depend only on the respective objects at time 
t(k) but not on all preceding times t(0),… , t(k−1) . Hence, the information S(k) at time 
t(k) is sufficient, Fk contains additional but unnecessary information. In view of the 
dynamic programming principle (or Bellman’s principle) (cf. [2, 4, 5, 14], or [9] 
for an application), we consider the following time-t problem (for convenience let 
t = t(k) for some k ∈ {0,… ,NΔ − 1}):

and

As we have a Markov model, we search for the optimal asset allocation decision rule 
a⋆
k
= �̂�⋆(inv)(t(k)) = �̂�⋆(inv)(S(k)) at every time t(k) . Note

where S(0) = (V(0),P(0))
(3.16)
= (v0,

1−𝛼

p̄−𝛼
(r + 𝜆x)v0) . In order to write the Bellman equa-

tion associated with Problem (4.9), the definition of the state transition function 
comes next. Let Z ∼ N(0, 1) be a multi-dimensional vector of independent standard 
normal random variables of dimension N (= number of risky assets). Z represents 
the stochastic part of the fund return in period [t(k), t(k+1)) (independent in every 
period), i.e. Z is the risk driver or risk factor that drives the fund’s performance 
besides the deterministic drift part. According to Eqs. (3.27) and (3.28), the transi-
tion function TB for S(k) ↦ S(k+1) is

(4.8)

V(v0, c
(buffer)

ij
) = sup

a0,…,aNΔ
∈�

J(𝜋(inv);v0, c
(buffer)

ij
)

s.t. J(𝜋(inv);v0, c
(buffer)

ij
) = �

[
NΔ−1∑
k=0

∫
t(k+1)

t(k)
e−(𝜆x+𝛽)(t−T)Ũ(P(k))dt

]
.

(4.9)

Vk(S(k);c
(buffer)

ij
) = sup

ak ,…,aNΔ−1∈�

Jk(a;S(k), c
(buffer)

ij
)

s.t. Jk(a;S(k), c
(buffer)

ij
) = �

[
NΔ−1∑
i=k

∫
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−t

(k))Ũ(P(i))du
||||S(k)

]

(4.10)JNΔ
(a;S(NΔ)

, c
(buffer)

ij
) = 0.

(4.11)J0(a;S(0), c
(buffer)

ij
) = J(�(inv);v0, c

(buffer)

ij
),
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where

and

with

for j ≥ i . We further have

(4.12)

TB ∶ ℝ
2
+
×𝔸 ×ℝ → ℝ

2
+
,(

S(k), ak, Z
)
↦ S(k+1)

= TB(S(k), ak, Z) =

(
V(k+1)(S(k), ak, Z)

P(k+1)(S(k), ak, Z)

)
=

(
T
(V)

B
(S(k), ak, Z)

T
(P)

B
(S(k), ak, Z)

)
,

(4.13)

V(k+1) = T
(V)

B
(S(k), ak, Z)

(3.27)
= V(k) +

�
Eij(t

(k)�S(k)) + (1 − �)
�
V(k) − Eij(t

(k)�S(k))
��

×
��
r + a�

k
(� − r�)

�
Δ + a�

k
�
√
ΔZ

�
− P(k)Δ

(4.14)

P(k+1) = T
(P)

B
(S(k), ak, Z)

(3.28)

=

⎧
⎪⎨⎪⎩

P(k), if
T
(V)

B
(S(k),ak ,Z)

Eij(t
(k+1)�S(k)) ∈ [100%, 125%]

1−𝛼

p̄−𝛼
(r + 𝜆x)T

(V)

B
(S(k), ak, Z), otherwise

(4.15)Eij(t
(j)|S(i)) =

P(i)

r + �x

(4.16)

V
(buffer)

ij
(t(k)) = 𝛼

(
V(k) − Eij(t

(k)|S(k))
)
,

V
(inv)

ij
(t(k)) = V(k) − V

(buffer)

ij
(t(k))

= Eij(t
(k)|S(k)) + (1 − 𝛼)

(
V(k) − Eij(t

(k)|S(k))
)
,

CCR
(total)

ij
(t(k)) =

V(k)

Eij(t
(k)|S(k))

,

�̂�(total)(t(k))
(3.25)
=

V
(inv)

ij
(t(k))

V(k)

ak

=
V(k) − V

(buffer)

ij
(t(k))

V(k)

ak
3.25
=

(1 − 𝛼)CCR
(total)

ij
(t(k)) + 𝛼

CCR
(total)

ij
(t(k))

ak.
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4.3  Bellman equation

The definition of the transition function enables us to introduce the associated Bell-
man equation

with S(k+1) = TB(S(k), ak, Z) . The formula for k ∈ {NΔ − 1,… , 0} follows from 
inserting the one-period or one-stage reward function rk(S(k), ak) ≡ rk(S(k)) into the 
original equation

The one-period reward function describes the contribution or reward to the cli-
ent’s satisfaction in the period [t(k), t(k+1)) linked to the pension P(k) that is paid out 
in [t(k), t(k+1)) independently of the action or applied relative risky investment strat-
egy ak = �̂�(inv)(t(k)) . Since the value for rk(S(k)) is already known at time t(k) , i.e. it is 
deterministic and independent of the decision ak . We moreover obtain

The original discrete-time dynamic optimization problem (4.8) can then be solved 
by backwards induction of the Bellman equation (4.17). The optimal decision rule 
or policy a⋆

k
= �̂�⋆(inv)(S(k)) needs to be determined in any step and for every possible 

(4.17)

k = NΔ ∶ VNΔ
(S(NΔ)

;c
(buffer)

ij
) = 0,

k ∈ {NΔ − 1,… , 0} ∶ Vk(S(k);c
(buffer)

ij
) = rk(S(k))

+ e−(�x+�)Δ sup
ak∈�

{
�

[
Vk+1(S(k+1);c

(buffer)

ij
)
||||S(k)

]}
,

(4.18)

Vk(S(k);c
(buffer)

ij
) = sup

ak∈�

{
rk(S(k), ak) + e−(�x+�)(t

(k+1)−t(k))
�

[
Vk+1(S(k+1);c

(buffer)

ij
)
||||S(k)

]}
.

(4.19)

rk(S(k), ak) ≡ rk(S(k)) = �
t(k+1)

t(k)
e−(𝜆x+𝛽)(u−t

(k))Ũ(P(k))du = e(𝜆x+𝛽)t
(k)

Ũ(P(k))

× �
t(k+1)

t(k)
e−(𝜆x+𝛽)udu

= e(𝜆x+𝛽)t
(k)

Ũ(P(k))

[
e−(𝜆x+𝛽)u

−(𝜆x + 𝛽)

||||
u=t(k+1)

u=t(k)

]

= e(𝜆x+𝛽)t
(k)

Ũ(P(k))

[
e−(𝜆x+𝛽)t

(k+1)

− e−(𝜆x+𝛽)t
(k)

−(𝜆x + 𝛽)

]

= Ũ(P(k))

[
e−(𝜆x+𝛽)(t

(k+1)−t(k)) − 1

−(𝜆x + 𝛽)

]

=
1

𝜆x + 𝛽

(
1 − e−(𝜆x+𝛽)(t

(k+1)−t(k))
)
Ũ(P(k))

=
1

𝜆x + 𝛽

(
1 − e−(𝜆x+𝛽)Δ

)
Ũ(P(k)).
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state S(k) backwards in time. By this, we further receive the optimal total risky rela-
tive portfolio process �̂�⋆(total) = �̂�(total)(a⋆

k
) through Eq. (4.16).

4.4  Extension to a single‑cohort model

In this section we briefly describe one possible method of how the so far explained 
single-client model can easily be extended and aggregated into a single-cohort 
model where one cohort covers all clients of (roughly) the same age. Let us consider 
a cohort of clients grouped by age ( x = x(j) years old at time T) that has mj members. 
We manage the total cohort portfolio and the pension collectively and thus define

to be the sum of all pension payments Pij(t) connected to all members i in cohort j 
at time t. Since we consider one cohort, there are no intertemporal inflows into the 
model. We assume that there is no bequest paid out in the case of a cohort member’s 
death. Further we re-interpret the mortality model: The survival probability

for a single client is now regarded as the average relative survival frequency of the 
cohort, i.e. we assume e−�x(j)(s−t) to be the average proportion of clients in cohort j 
that survive from time t to time s. This comes from the following observation: Let 
�
x(j)

ij
(T) denote the uncertain remaining lifetime of client i in cohort j which is identi-

cally distributed among all clients in one cohort. Then the uncertain proportion of 
survivors from time t to s in the cohort is described by the random variable ∑mj

i=1
1
{�
x(j)
ij

(T)≥s��x(j)
ij

(T)≥t}
mj

 . Its expectation is

In other words, the average cohort proportion of surviving clients equals the sur-
vival probability of a single client in this cohort. Moreover, since the number of 

(4.20)Pj(t) ∶=

mj∑
i=1

Pij(t)

(4.21)ℙ

(
�
x(j)

ij
(T) ≥ s

||||�
x(j)

ij
(T) ≥ t

)
= e−�x(j)(s−t), s ≥ t,

(4.22)

𝔼

⎡
⎢⎢⎣

∑mj

i=1
1
{�

x(j)

ij
(T)≥s��x(j)

ij
(T)≥t}

mj

⎤
⎥⎥⎦
=

∑mj

i=1
𝔼

�
1
{�

x(j)

ij
(T)≥s��x(j)

ij
(T)≥t}

�

mj

=

∑mj

i=1
ℙ(�

x(j)

ij
(T) ≥ s��x(j)

ij
(T) ≥ t)

mj

�
x(j)

ij
(T) identically distributed ∀i∈{1,…,mj}

=

∑mj

i=1
ℙ(�

x(j)

1j
(T) ≥ s��x(j)

1j
(T) ≥ t)

mj

=
mjℙ(�

x(j)

1j
(T) ≥ s��x(j)

1j
(T) ≥ t)

mj

= ℙ(�
x(j)

1j
(T) ≥ s��x(j)

1j
(T) ≥ t) = e−�x(j)(s−t).
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customers in cohort j reduces continuously in time due to deaths of cohort members, 
the average pension cash flows Pj(t) needs to be adjusted to

assuming that all single-client pensions remain constant, and only those connected to 
a client’s death are removed. We define P(k) ∶= Pj(t

(k)) in the state S(k) =
(
V(k),P(k)

)
 , 

where V(k) denotes the total collective wealth of cohort j. For this reason, we have to 
modify the transition function T (P)

B
 for the pension P(k) as follows:

with

for l ≥ i . Following earlier definitions we further introduce the collective cohort-
specific functionals

(4.23)Pj(s) ∶= e−�x(j)(s−t)Pj(t), s ≥ t,

(4.24)

P(k+1) = T
(P)

B
(S(k), ak, Z)

=

⎧
⎪⎨⎪⎩

e−𝜆x(j)(t
(k+1)−t(k))P(k), if

T
(V)

B
(S(k),ak ,Z)

Ej(t
(k+1)�S(k)) ∈ [100%, 125%]

1−𝛼

p̄−𝛼
(r + 𝜆x(j))T

(V)

B
(S(k), ak, Z), otherwise

(4.25)Ej(t
(l)|S(i)) =

e−�x(j)(t
(l)−t(i))P(i)

r + �x(j)

(4.26)

Ej(t) ∶=

mj∑
i=1

Eij(t)
(3.3)
=

mj∑
i=1

Pij(t)

r + �x

(4.20)
=

Pj(t)

r + �x
,

V
(total)

j
(t) ∶=

mj∑
i=1

V
(total)

ij
(t),

V
(buffer)

j
(t) ∶=

mj∑
i=1

V
(buffer)

ij
(t)

(3.21)
=

mj∑
i=1

�
(
V
(total)

ij
(t) − Eij(t)

)

= �
(
V
(total)

j
(t) − Ej(t)

)
,

V
(inv)

j
(t) ∶=

mj∑
i=1

V
(inv)

ij
(t)

(3.6)
=

mj∑
i=1

(
V
(total)

ij
(t) − V

(buffer)

ij
(t)
)

= V
(total)

j
(t) − V

(buffer)

j
(t)

= Ej(t) + (1 − �)
(
V
(total)

j
(t) − Ej(t)

)
,

CCR
(total)

j
(t) ∶=

V
(total)

j
(t)

Ej(t)
, CCR

(inv)

j
(t) ∶=

V
(inv)

j
(t)

Ej(t)
, CCR

(buffer)

j
(t) ∶=

V
(buffer)

j
(t)

Ej(t)
.
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Note that the properties CCR(inv)

ij
(tn) ≡ p̄ and CCR(total)

ij
(tn) ≡ p̄−𝛼

1−𝛼
 at the re-adjustment 

times tn are passed to the collective objects

Hence, the regulatory constraint CCR(total)

ij
(t) ∈ [100%, 125%] for any single cus-

tomer is satisfied iff it is satisfied for the cohort-specific constraint 
CCR

(total)

j
(t) ∈ [100%, 125%] on the collective fund. In summary, under the proposed 

framework, both collective ratios CCR(total)

j
(t) as well as CCR(inv)

j
(t) coincide with the 

individual ratios CCR(total)

ij
(t) and CCR(total)

ij
(t).

According to the definition of the transition function in Eq. (4.24), if 
CCR

(total)

j
(t(k+1)) stays inside its pre-defined corridor, the collective cohort pension 

P(k+1) at time t(k+1) decreases with rate �x(j) (on average) due to the deaths of cohort 
members. At the same time, the individual pensions of clients that survived until 
time t(k+1) remain untouched, i.e. stable. Thus, P(k+1) = e−�x(j)(t

(k+1)−t(k))P(k) indicates a 
stable, constant individual pension Pij(t

(k+1)) = Pij(t
(k)) for those clients in the cohort 

that are still alive at time t(k+1) . Using this notation, the Bellman equation in (4.17) 
and the one-period reward function in (4.19) remain the same.5 Finally, due to this 
definition, Ej decreases in time (death of cohort members). As there are no bequest 
payments, this implies that the CCR(total)

j
 is more likely to cross the 125%-border and 

less likely to fall short the 100%-border compared to the single-client model if the 
same investment strategy is applied.

Remark 1 It is remarkable that the probabilities for future reductions of individual 
customer pensions in the cohort model are smaller than the ones in the single-client 
model, whereas the probability of future pension enhancements in the cohort model 
are larger than in the single-client model, if the same investment strategy is applied. 
The economic reason is that the wealth of a client in the cohort that died in the pre-
vious period remains in the collective portfolio and is not paid out to heirs, while 
the cohort-related collective pension declines. Therefore, the survivors in the cohort 
benefit from the death of a cohort member.

(4.27)

CCR
(inv)

j
(t) =

V
(inv)

j
(t)

Ej(t)
=

∑mj

i=1
V
(inv)

ij
(t)

∑mj

i=1
Eij(t)

(3.14)
=

∑mj

i=1
p̄Eij(t)∑mj

i=1
Eij(t)

= p̄ = CCR
(inv)

ij
(t),

CCR
(total)

j
(t) =

V
(total)

j
(t)

Ej(t)
=

∑mj

i=1
V
(total)

ij
(t)

∑mj

i=1
Eij(t)

(3.16)
=

∑mj

i=1

p̄−𝛼

1−𝛼
Eij(t)∑mj

i=1
Eij(t)

=
p̄ − 𝛼

1 − 𝛼
= CCR

(total)

ij
(t).

5 Note: The rate �x(j) decreases the average total sum of pensions P(k+1) that is to be paid in the next 
period because some fraction of the clients in the cohort died during the previous period. Alternatively, 
one could use this rate to increase the individual pensions Pij(t

(k+1)) of the clients that survived step-by-
step while keeping P(k+1) of the cohort constant.
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5  A stationary solution

It was already shown that the discrete-time Problem (4.8) could be solved by 
backwards induction of the Bellman equation (4.17). However, this procedure 
shows noteworthy shortfalls: First, it has to be performed for every single client 
(or cohort) with different initial state S(0) = (V(0),P(0)) . Furthermore, the compu-
tational effort dramatically increases if a long time horizon T̃  is considered. All 
the mentioned arguments considerably increase the computation time. To find a 
computationally efficient solution for an arbitrary planning horizon, an arbitrary 
number of decision periods and an arbitrary initial state (customer), we present 
an elegant approximate stationary solution next, where the solution to the finite-
horizon problem is approximated with the solution to the infinite-horizon prob-
lem. The stationary solution will depend on the specific state only, but not on the 
time point, which makes this approach very practicable and simplifies applica-
tion and implementation for a wide range of customers with different states. In 
general, we are now looking for a faster and more efficient algorithm to find the 
optimal investment decision.

5.1  The infinite‑time horizon problem

Let T̃ = ∞ hold. The idea is that a⋆
k
(S) ≡ a⋆(S) = �̂�⋆(inv)(S) for all states S, i.e. the 

optimal asset allocation decision depends on the current state and is independ-
ent of time; we seek for a stationary solution. This leads to the infinite-horizon 
discrete-time optimization problem

with state S = (V ,P) and stochastic pension P = P(t(i)) at time t(i) . Due to T̃ = ∞ , the 
corresponding Bellman equation to this problem is as follows:

where the last equality holds due to r(S, a(S)) ≡ r(S) for the one-period reward. It is 
obvious that the problem is independent of time and falls into the class of stationary, 

(5.1)

V(S) = V(S;c
(buffer)

ij
) = sup

a(S)∈�

J(a(S);S, c
(buffer)

ij
)

s.t. J(a(S);S, c
(buffer)

ij
) = �

[
∞∑
i=0

∫
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)Ũ(P(t(i)))du

]

(5.2)
V(S) = sup

a(S)∈�

{
r(S, a(S)) + e−(�x+�)Δ�

[
V(TB(S, a(S), Z))

||||S
]}

= r(S) + e−(�x+�)Δ sup
a(S)∈�

{
�

[
V(TB(S, a(S), Z))

||||S
]}

,
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infinite-horizon Markovian decision problems, also known as Markovian dynamic 
programming (MDP) problems. The transition function TB for S ↦ TB(S, a, Z) is 
given by

where S = (V ,P) and

and6

with

The gap in the expected utility between the finite- and the infinite-horizon model, 
i.e. T̃ < ∞ vs. T̃ = ∞ , is usually very small, but it simplifies calculations a lot. If 
particularly the survival probability (from time T to time T̃ < ∞ , for instance 
T̃ = 120 ) is close to zero, the error stays rather small which implies that the approxi-
mation becomes more reliable and the approach can be justified from a mathemati-
cal perspective. In more detail, the crucial object is the absolute error in the infinite-
horizon problem (5.1) compared to the finite-horizon problem (4.8):

(5.3)TB ∶ ℝ
2
+
× 𝔸 ×ℝ → ℝ

2
+
, (S, a, Z) ↦ TB(S, a, Z) =

(
T
(V)

B
(S, a, Z)

T
(P)

B
(S, a, Z)

)
,

(5.4)
T
(V)

B
(S, a, Z) = V + [E(S) + (1 − �)(V − E(S))]

×
��
r + a�(� − r�)

�
Δ + a��

√
ΔZ

�
− PΔ

(5.5)T
(P)

B
(S, a, Z) =

⎧
⎪⎨⎪⎩

P, if
T
(V)

B
(S,a,Z)

E(S)
∈ [100%, 125%]

1−𝛼

p̄−𝛼
(r + 𝜆x)T

(V)

B
(S, a, Z), otherwise

(5.6)E(S) =
P

r + �x
.

6 The definition corresponds to the transition for a single client. If one aims for determining the optimal 
investment decisions for a cohort of customers, then we define

with

(5.7)T
(P)

B
(S, a,Z) =

⎧
⎪⎨⎪⎩

e−𝜆x(j)ΔP, if
T
(V)

B
(S,a,Z)

e
−𝜆x(j)ΔE(S)

∈ [100%, 125%]
1−𝛼

p̄−𝛼
(r + 𝜆x(j))T

(V)

B
(S, a,Z), otherwise

(5.8)E(S) =
P

r + �x(j)
.



668 A. Lichtenstern, R. Zagst 

1 3

The relative error is then defined as

The approximation is more reliable if the relative error is small. Thus, if one desires 
to use the solution to the infinite-horizon problem as an approximation for the solu-
tion to the finite-horizon problem, one needs to ensure that errorrel

T̃ ,∞
 is sufficiently 

small to justify the approach.7
From now on we consider utility functions with hyperbolic absolute risk aversion 

(HARA) as intertemporal pension utility function:

with coefficient of risk aversion b < 1 , b ≠ 0 and â > 0 , p > F with F ≥ 0 . This 
utility function is increasing and strictly concave in the argument p and provides a 
floor F. For the one-period reward r(S) in the Bellman equation (5.2) the choice of a 
HARA utility function leads to

(5.9)

errorabs
T̃ ,∞

∶=

||||||
�

[
∞∑
i=0

∫
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)Ũ(P(t(i)))du

]

−�

[
NΔ−1∑
i=0

∫
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)Ũ(P(t(i)))du

]||||||
=

||||||
�

[
∞∑

i=NΔ

∫
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)Ũ(P(t(i)))du

]||||||
=
|||||
�

[
∫

∞

T̃

e−(𝜆x+𝛽)(u−T)Ũ(P(u))du

]|||||
.

(5.10)

errorrel
T̃ ,∞

∶=

|||�
[∫ ∞

T̃
e−(𝜆x+𝛽)(u−T)Ũ(P(u))du

]|||
|||�
[∫ ∞

T
e−(𝜆x+𝛽)(u−T)Ũ(P(u))du

]|||
=

errorabs
T̃ ,∞

|||�
[∫ ∞

T
e−(𝜆x+𝛽)(u−T)Ũ(P(u))du

]|||
.

(5.11)
Ũ(p) ∶= â

1 − b

b

(
1

1 − b
(p − F)

)b

, U(t, p) = e−𝛽(t−T)Ũ(p)

= e−𝛽(t−T)â
1 − b

b

(
1

1 − b
(p − F)

)b

7 To get a rough idea about the size of the relative error, let the pension payments stay constant over 
time. Then, the relative error simplifies to errorrel

T̃ ,∞
=

∫ ∞

T̃
e−(𝜆x+𝛽)(u−T)du

∫ ∞

T
e−(𝜆x+𝛽)(u−T)du

= e−(𝜆x+𝛽)(T̃−T) . If T, T̃  and �x are 
given, then one can write and interpret the relative error as a function of � , i.e. errorrel

T̃ ,∞
= errorrel

T̃ ,∞
(𝛽) . If 

exemplarily T = 65 , T̃ = 120 and �x = 1.18% (compare the later case study in Sect.  6), then 
errorrel

T̃ ,∞
= (10.0%|3.3%|1.1%) for the personal discount factors � = (3%|5%|7%) which shows reasona-

ble numbers.
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For ease of exposition, we place the following assumption on the utility function 
that is to hold from now on.

Assumption 1 Let us consider HARA utility Ũ(P) (parameterization in Eq. (5.11)) 
for Pmin ≤ P ≤ Pmax with8 F < Pmin < Pmax < ∞.

Assumption 1 introduces lower and upper bounds for the pension payment that is 
to be paid out. We then have to adjust the transition function T (P)

B
 for the pension to 

become

in the single-client model.9 Based on Assumption 1, it can immediately be con-
cluded that Ũ(p) is bounded. Furthermore, since the later proposed algorithm will be 
supposed to perform the optimization on a finite set for the action a(S) (discretiza-
tion grid for � with a(S) ∈ � ), i.e. on a set with a finite number of elements, the fol-
lowing assumption is said to hold true from now on.

Assumption 2 � has a finite number of elements.

For instance, one could assume 1%-point steps in � =
{
a ∈ �

N
1
∶ a�� ≤ 1

}
 , 

�1 ∶= {0%, 1%,… , 99%, 100%} , with � ≡ �1 in the situation of one risky asset 
class ( N = 1 ). Further note that every function g ∶ 𝔸 → ℝ attains its maximum on 
the finite set � . Hence, from Assumption 2 it immediately follows that the supre-
mum over a(S) ∈ � turns into its maximum:

(5.12)

r(S) = r((V ,P)) ≡ r(P)
(4.19)
=

1

𝜆x + 𝛽

(
1 − e−(𝜆x+𝛽)Δ

)
â
1 − b

b

(
1

1 − b
(P − F)

)b

.

(5.13)

T
(P)

B
(S, a, Z) =

⎧
⎪⎨⎪⎩

P, if
T
(V)

B
(S,a,Z)

E(S)
∈ [100%, 125%]

max
�
min

�
1−𝛼

p̄−𝛼
(r + 𝜆x)T

(V)

B
(S, a, Z),Pmax

�
,Pmin

�
, otherwise

8 In the case of a positive coefficient of risk aversion 0 < b < 1 , the lower bound Pmin can be neglected 
( Pmin ∶= F ). In the case of a negative coefficient of risk aversion b < 0 , the upper bound Pmax can be 
neglected ( Pmax ∶= ∞).
9 For the cohort model, the transition function for the pension needs to be modified to

(5.14)

T
(P)

B
(S, a,Z) =

⎧
⎪⎨⎪⎩

max
�
e−𝜆x(j)ΔP,Pmin

�
, if

T
(V)

B
(S,a,Z)

e
−𝜆x(j)ΔE(S)

∈ [100%, 125%]

max
�
min

�
1−𝛼

p̄−𝛼
(r + 𝜆x(j))T

(V)

B
(S, a,Z),Pmax

�
,Pmin

�
, otherwise.
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Thus, the maximum is attained. In what follows we present an approach to solve the 
infinite-horizon problem (5.1) under Assumptions 1 and 2 via the Bellman equation 
(5.2).

5.2  Definition of the grid

Since the algorithm for solving the Bellman equation for every possible state S will 
work on grids of the relevant objects, we introduce the respective grid definitions: 

1. Discretization of the state space S = (V ,P) : We build up the state space grid fol-
lowing the three steps below: 

(a) One-dimensional total wealth grid V: Vmin (minimal value for V), Vmax (max-
imal value for V), nV (number of values for V with equidistant distances): 

 with cardinality nV.
(b) One-dimensional capital coverage ratio grid CCR : Let Grid(CCR) be 

the grid of the capital coverage ratio that ranges from CCRmin = 100% to 
CCRmax = 125% with nCCR number of values in the equidistant grid, for 
instance Grid(CCR) = {1, 1.01, 1.02,… , 1.23, 1.24, 1.25}.

(c) Two-dimensional state space S: For every V (i) ∈ Grid(V) and every 
CCR(j) ∈ Grid(CCR) , the pair (V (i),P(ij)) ∈ Grid(S) lies in Grid(S) for the 
state space S, where 

 Thus, the size of Grid(S) is nS = nV ⋅ nCCR . Notice that in view of 
Assumption 1 it must hold F < mini,j P

(ij) with 
mini,j P

(ij) =
mini V

(i)

maxj CCR
(j) 1

r+�x

≥ Vmin

1.25
1

r+�x

 as well as maxi,j P
(ij) < ∞ with 

maxi,j P
(ij) =

maxi V
(i)

minj CCR
(j) 1

r+�x

≤ Vmax
1

r+�x

.

2. Discretization of the risk driver Z: We assume N = 1 from now on whenever it 
comes to implementation, i.e. the financial market consists of a single risky asset 
class that can be interpreted as a mutual fund. The stochastic return or shock is 
discretized by the following equidistant partition of the probability space [0, 1] 
for the risk factor Z ∈ ℝ = (−∞,∞) : Let q ∈ (0, 1) ; for instance q = 5% . The 
corresponding cumulative probabilities are 

(5.15)
V(S)

(5.2)
= r(S) + e−(�x+�)Δ sup

a(S)∈�

{
�

[
V(TB(S, a(S), Z))

||||S
]}

Assumption 2
= r(S) + e−(�x+�)Δ max

a(S)∈�

{
�

[
V(TB(S, a(S), Z))

||||S
]}

.

(5.16)V (i) ∈ Grid(V) ∶= {Vmin,… ,Vmax}, i = 1,… , nV ,

(5.17)P(ij) ∶=
V (i)

CCR(j) 1

r+�x

⇔ CCR(j) =
V (i)

P(ij) 1

r+�x

.



671

1 3

Optimal investment strategies for pension funds with…

 with Δ(q) ∶= q , Nq ∶=
1−q

q

!
∈ℕ because then 

∑Nq

i=0
q = (1 + Nq)q = 1 . For 

instance, one could set q(0) = 5% , Δ(q) = 5% ( Nq = 19 ), then 
q(i) = 5%, 10%,… , 95%, 100% . The corresponding values or representatives for 
Z with probability ℙ(Z = z(q(i))) = q and quantile probabilities q(i) are obtained 
by 

 With this definition, the z values are stronger centered around zero, with a larger 
step size for large positive and negative values. Then 

 with cardinality nZ ∶= Nq + 1 and probabilities q, i.e. Zj = z(q(j−1)) , 
j = 1,… , nZ.

3. Discretization of the investment decision a ∈ � : Lastly, we discretize the decision 
set for the control variable a. Since a ∈ � with � = [0, 1] , we split the interval 
� = [0, 1] into a grid with equidistant distances and representatives 

 with Na ∶=
a(Na )−a(0)

Δ(a)

!
∈ℕ . It is natural to select a(0) = 0 and a(Na)

= 1 , or apply 
lower and upper bound constraints on the relative risky investment if present. 
Thus, if for instance Δ(a) = 1% , a can take any integer percentage value, i.e. 
a ∈

{
a(0),… , a(N�)

}
= {0%, 1%, 2%,… , 98%, 99%, 100%} . Therefore, 

 with cardinality na ∶= Na + 1 . It is clear that the discretization Grid(a) for � 
fulfills Assumption 2 on �.

We would like to mention that the construction of Grid(S) is very efficient since it 
consists of admissible (V, P)-pairs only and rules out non-admissible (V, P)-pairs; 
admissible pairs fulfill V∕ P

r+�x
∈ [100%, 125%] . Furthermore, by construction we 

ensure that the CCR  values are uniformly spread over the entire corridor 
[100%, 125%] . If now TB(S, a, Z) ∉ Grid(S) , we select the grid node in the state 
space grid that provides the smallest sum of squared relative distances to 
TB(S, a, Z) ∉ Grid(S) as method for interpolation between grid points.

(5.18)q(i) ∶= q(0) + Δ(q)
⋅ i, i = 0,… ,Nq

(5.19)

z(q(0)) ∶= N−1

(
0 + q(0)

2

)
,

z(q(i)) ∶= N−1

(
q(i) + q(i+1)

2

)
, i = 1,… ,Nq − 1,

z(q(Nq)) ∶= N−1

(
q(Nq) + 1

2

)
.

(5.20)Z ∈ Grid(Z) ∶= {z(q(0)),… , z(q(Nq))} = {Z1,… , ZnZ}

(5.21)a(i) ∶= a(0) + Δ(a)
⋅ i, i = 0,… ,Na,

(5.22)a ∈ Grid(a) ∶= {a(0),… , a(Na)
}
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5.3  Stationary grid solution

The definition of the grids allows us to rewrite the expectation in the Bellman equation 
for any state S(l) ∈ Grid(S):

The optimal policy a⋆(S(l)) for state S(l) is the maximizer

In the following we aim to solve the above Bellman equation for every S(l) ∈ Grid(S) 
and by this determine the optimal decisions or policies a⋆(S(l)) for all states in the 
grid. We now treat every a = a(S(l)) ∈ Grid(a) as if it was the maximizer of the Bell-
man equation, and select the optimal a⋆(S(l)) at the very end by choosing the one 
that maximizes V(S(l)) . Hence, consider

for all S(l) ∈ Grid(S) and all a(S(l)) ∈ Grid(a) which is a linear system of equations 
since TB(S(l), a(S(l)), Zj) ∈ Grid(S) according to the applied interpolation rule if not 
already in the grid.

Given a specific a(S(l)) = a(i(l)) ∈ Grid(a) for some i(l) ∈ {0,… ,Na} , we solve 
this linear system in V(S(l)) for all l = 1,… , nS by rewriting the right-hand sum using 
matrix notation with S = (S(1),… , S(nS))� the vector that consists of all state grid points 
in Grid(S) . Define the matrix Q ∈ ℕnS×nS by

with block matrix Q1 ∈ {0, 1}nS×(nS⋅nZ ) such that

where InS ∈ {0, 1}nS×nS is the identity matrix with dimension nS . Furthermore, 
Q2 ∈ {0, 1}(nS⋅nZ )×nS is defined as a block matrix such that

(5.23)

V(S(l)) = r(S(l)) + e−(�x+�)Δ max
a(S(l))∈Grid(a)

⎧
⎪⎨⎪⎩

nZ�
j=1

ℙ(Z = Zj)
⏟⏞⏞⏟⏞⏞⏟

≡q

V(TB(S
(l), a(S(l)), Zj))

⎫
⎪⎬⎪⎭

= r(S(l)) + e−(�x+�)Δq max
a(S(l))∈Grid(a)

�
nZ�
j=1

V(TB(S
(l), a(S(l)), Zj))

�
.

(5.24)a⋆(S(l)) ∶= arg max a∈Grid(a)

{
nZ∑
j=1

V(TB(S
(l), a, Zj))

}
.

(5.25)V(S(l)) = r(S(l)) + e−(�x+�)Δq

nZ∑
j=1

V(TB(S
(l), a(S(l)), Zj))

(5.26)Q ∶= Q1Q2

(5.27)Q1 ∶=

⎛
⎜⎜⎜⎜⎝
InS ⋯ InS ⋯ InS
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

nZ times InS

⎞
⎟⎟⎟⎟⎠
,
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with Aj ∈ {0, 1}nS×nS defined by

Then it follows

with dl ∈ ℕ1×nS such that (dl)m is the number of Zj , j = 1,… , nZ , which leads 
to a transition from S(l) to S(m) . Consequently, it follows for QV(S) ∈ ℝnS , where 
V(S) = (V(S(1)),… ,V(S(nS)))� ∈ ℝnS:

Note Q = Q(a) with a = (a(i(1)),… , a(i(nS)))
� , and therefore,

which allows us to rewrite the linear system in the value function in matrix-vector 
form:

where r(S) = (r(S(1)),… , r(S(nS)))� ∈ ℝnS . This is a linear equation system in V(S) 
and can easily be solved; theoretically the solution reads

Notice that existence of the inverse of InS − e−(�x+�)ΔqQ(a) is proven in Appendix 1.

(5.28)Q2 ∶=

⎛
⎜⎜⎜⎜⎜⎝

A1

⋮

Aj

⋮

AnZ

⎞
⎟⎟⎟⎟⎟⎠

(5.29)(Aj)lm ∶=

{
1, if TB(S

(l), a(i(l)), Zj) = S(m)

0, otherwise.

(5.30)Ql⋅ =
�
Q1Q2

�
l⋅
=
�
Q1

�
l⋅
Q2 =

�
InS ⋯ InS ⋯ InS

�
l⋅

⎛
⎜⎜⎜⎜⎜⎝

A1

⋮

Aj

⋮

AnZ

⎞
⎟⎟⎟⎟⎟⎠

=∶ dl

(5.31)

(QV(S))l = Ql⋅V(S) = dlV(S) =

nS∑
m=1

(dl)mV(S
(m)) =

nZ∑
j=1

V(TB(S
(l), a(i(l)), Zj)).

(5.32)
V(S(l))

(5.25)
= r(S(l)) + e−(�x+�)Δq

nZ∑
j=1

V(TB(S
(l), a(i(l)), Zj))

= r(S(l)) + e−(�x+�)Δq(Q(a)V(S))l

(5.33)
V(S) = r(S) + e−(�x+�)ΔqQ(a)V(S) ⇔

(
InS − e−(�x+�)ΔqQ(a)

)
V(S) = r(S),

(5.34)V(S) =
(
InS − e−(�x+�)ΔqQ(a)

)−1

r(S).
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Equation (5.33) shows that the problem of solving the Bellman equation can be 
reduced to finding the fixed point of the Bellman operator Γ:

Now we would like to draw attention to the fact that Q = Q(a) with 
a = (a(i(1)),… , a(i(nS)))

� : For this reason, we need to repeat the above for all possi-
ble combinations i(l) ∈ {0,… ,Na} , l = 1,… , nS , and finally select the combination 
a⋆(S) = (a⋆(S(1)),… , a⋆(S(nS)))� that maximizes V(S) across all a(i) combinations 
in Grid(a) . The total number of combinations equals nnSa  . Thus, we have to calcu-
late nnSa  times an nS × nS transition matrix Q(a) (plus additionally the inverse of 
InS − e−(�x+�)ΔqQ(a) ). If for instance we consider nV = 1, 000 grid points for V and 
nCCR = 26 for CCR ,10 then nS = 26, 000 . If additionally the allocation grid is divided 
into steps of 5% , i.e. na = 21 , we would have to calculate 2126,000 ≈ 1034,378 times an 
26, 000 × 26, 000 matrix, which is a vast number. To overcome this computational 
problem, we present an alternative by using a policy function iteration algorithm in 
the following.

5.4  Policy function iteration: the algorithm

The algorithm is a tailored version of Howard’s improvement algorithm, and iterates 
the policy a(S) until it converges towards its optimal value. For further readings on 
the policy iteration we refer to [3, 4, 12, 16–18] and [20]. Notice that the one-period 
total discount factor to this problem is 0 < e−(𝜆x+𝛽)Δ < 1 and is a composite of the 
one-period utility discount factor e−�Δ and the mortality discount factor e−�xΔ . For 
n periods, the total discount factor is e−(�x+�)nΔ and converges to zero as n → ∞ . In 
what follows we describe the policy function iterating mechanism:

Let a(i) = a(i)(S) denote the decision value at iteration step i. Let niter denote the 
number of iterations until the algorithm stops. The terminal a(niter) = a(niter)(S) is 
regarded as the optimal final decision variable a⋆ = a⋆(S) . Inside the algorithm we 
repeat the policy improvement and policy evaluation until a sufficient, prescribed 
level of convergence or solution tolerance is achieved. 

1. i = 0 : 

(a) Select initially a(0)(S) ∈ Grid(a) for all states in the grid, for instance 
a(0)(S(l)) ∶= 0 ∈ Grid(a) ∀l ∈ {1,… , nS}.

(b) Define initially V(S) =
(
InS − e−(�x+�)ΔqQ(a(0)(S))

)−1

r(S) for all states in 
the grid according to Eq. (5.34).

(c) Select a convergence criterion 𝜖 > 0.

(5.35)V(S) = Γ(V(S)) ∶= r(S) + e−(�x+�)Δq max
a∈Grid(a)

{Q(a)V(S)}.

10 This coincides with the applied setup in Sect. 6.
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2. Iteration i = 1, 2,… : 

1. Policy improvement: For all S(l) ∈ Grid(S) , l = 1,… , nS , find a new policy 
rule a(i)(S(l)) ∈ Grid(a) , such that11

 with V(i−1)(TB(S
(l), a, Zj)) = V(i−1)(S(m)) given from the previous iteration 

step and according to applied interpolation rule if S(m) not already in the 
grid.

2. Policy evaluation: Having determined a(i)(S(l)) for each S(l) ∈ Grid(S) , 
a(i)(S) = (a(i)(S(1)),… , a(i)(S(nS)))� , we update the value function according to 
Eq. (5.34): 

3. Check the convergence criterion: If maxS∈Grid(S)
{||a(i)(S) − a(i−1)(S)||

} ≤ � , then 
stop and set niter ∶= i and a⋆(S) ∶= a(niter)(S).12 Otherwise, repeat Step 2. for itera-
tion i + 1.

When the algorithm stops after niter iterations, i.e. when the convergence criterion 
after iteration step niter is met, the stationary solution to the problem is defined as 
a⋆ = a⋆(S) = a(niter)(S) for all grid states.

Before we derive the optimal allocations in a case study next, we briefly sum-
marize the benefits that are associated with this policy function iteration procedure:

– One can determine and thereafter use the optimal strategy for all states indepen-
dently of time; thus the iterative approach as a very elegant method enhances the 
speed and efficiency of the numerical optimization.

– The optimal control is independent of the initial state. Therefore, the derived 
optimals can be used for different initial states. One only has to make sure that 
the considered initial state lies approximately in the center of the grid, such that 
a sufficient number of grid nodes still are above and below the starting state. 
Otherwise it could happen that one remains at the edge of the grid (due to the 
applied interpolation rule) which would lead to a suboptimal strategy.

In addition, we provide a comment on the speed of convergence of the algorithm. As 
already mentioned before, the total discount factor equals e−(�x+�)nΔ for n periods. In 
the case study in Sect. 6 we will use � = 3% and �x = 1.18% . Then the convergence 
factor has an approximate size of e−(�x+�)Δ = 0.9591 after one iteration (step size Δ = 1 

(5.36)a(i)(S(l)) ∶= arg max a∈Grid(a)

{
nZ∑
j=1

V(i−1)(TB(S
(l), a, Zj))

}

(5.37)V(i)(S) =
(
InS − e−(�x+�)ΔqQ(a(i)(S))

)−1

r(S).

12 As long as 𝜖 < Δ(a) , it holds a(niter )(S) = a(niter−1)(S).

11 If a(i)(S(l)) is not unique, then we select the smallest value among all maximizers and thereby follow 
the most defensive strategy.
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year), e−(�x+�)10Δ = 0.6584 after ten iterations and e−(�x+�)100Δ = 0.0153 after hundred 
iterations. This shows that a rather low number of iterations is necessary. In particular, 
[20] further argue that policy iteration commonly converges to its stationary solution 
after a small number of iterations.

Every iteration requires the calculation of Q(a(i)(S)) plus the calculation of the 
inverse of InS − e−(�x+�)ΔqQ(a(i)(S)) which are both matrices of dimension nS × nS ; in 
total the algorithm requires the calculation of niter times an nS × nS (plus an inverse). 
This is usually dramatically faster than calculating nnSa  times an nS × nS matrix (plus 
an inverse) in the previous section on the stationary grid solution. Furthermore, one 
can use and exploit the property of Q,Q1,Q2 to be very sparse matrices; in Matlab 
the functions sparse(m,n) and speye(n) generate the required sparse matrices 
which saves memory. Additionally the command x = A�b is recommended for solving 
systems of linear equations of the form Ax = b efficiently.

5.5  Policy function iteration: theoretical foundation

The infinite-horizon problem (5.1) is a stationary, infinite-horizon Markovian dynam-
mic programming (MDP) problem in line with the definition in [20]. We now theoreti-
cally justify our policy iteration approach for solving Problem (5.1) under Assumptions 
1 and 2, where we used that the value function is a fixed point. It is necessary to prove 
the existence and optimality of a unique fixed point for our policy function iteration 
algorithm and monotone convergence to such a solution. First, we prove existence of a 
unique fixed point and optimality of the stationary solution. In what follows we denote 
S the state space, s ∈ S a certain state. Further, X is the set of functions that map from 
S to ℝ ∶= ℝ ∪ {±∞} , i.e. X = {f ∶ S → ℝ} , or a suitable subset of this set. In accord-
ance with [21] and [22] the notion of a contraction mapping and a fixed point can be 
found in Appendix 1 with additional background details. [20] further comment that 
MDP problems are mathematically equivalent to computing the fixed point to the Bell-
man equation

with Bellman operator of interest Γ (defined in line with Eqs. (5.2) and (5.35))

for some function f, where � ∶= e−(�x+�)Δ ∈ (0, 1) . We now follow the line of [19] 
and prove the existence of a unique fixed point of the Bellman operator Γ and opti-
mality of the stationary policy for the infinite-horizon problem, where a stationary 
policy is formally defined as a sequence a∞ ∶= {a, a, a,…} for some decision rule 
a = (a(s))s∈S ∈ � ( [10, 23]). Let

(5.38)V = ΓV

(5.39)(Γf )(s) ∶= r(s) + � sup
a(s)∈�

{
�

[
f (TB(s, a(s),Z))

||||s
]}

(5.40)X ∶=
�
f ∶ S → ℝ ∶ f measurable, ‖f‖∞ < ∞

�
.
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We show that the Bellman operator Γ is a contraction mapping on X equipped with 
the sup norm d ∶= ‖⋅‖∞ , i.e. on the metric space (X, d).

Theorem 3 Let Assumptions 1 and2 be fulfilled. Then, Γ is a contraction mapping 
on X with modulus � ∈ (0, 1).

Proof The proof can be found in Appendix 1.   ◻

We now come to the main result in [19] about existence of a unique fixed point 
of Γ and optimality of the stationary policy. The respective theorem is Theorem 8 
in Appendix 1, where we copied the relevant statements from [19] and omitted 
the unnecessary conditions. Using this result, we infer the following outcome:

Theorem 4 Let Assumptions 1 and 2 hold true. Further, let X be defined according 
to Eq. (5.40) and d be the uniform metric. Then the value function V is the unique 
fixed point of Γ in X and the stationary policy (aV)∞ is the optimal solution to the 
infinite-horizon discrete-time optimization problem.

Proof The proof can be found in Appendix 1.   ◻

From Theorem 4 we infer that, under Assumptions 1 and 2, there exists a fixed 
point of Γ in X and if one can find a fixed point of Γ in X, this fixed point is unique 
and coincides with the value function V . Moreover, the stationary policy (aV)∞ is 
the optimal solution to the infinite-horizon discrete-time optimization problem.

In view of the previously presented policy function iteration algorithm, it 
remains to show that this algorithm indeed converges to a fixed point V(i)

→ V 
with corresponding optimal stationary policy a(i) → (aV)

∞ . [20] explain that the 
policy function iteration algorithm can be shown to generate a sequence with 
V(i+1) ≥ V(i) under fairly general conditions. In our setup where the state space S 
and the values for the risk driver Z come from finite sets or grids, we have the fol-
lowing general monotonicity result for the iterated value function:

Theorem  5 (Monotonicity of V(i) ) The iteration in the policy function algorithm 
leads to a monotone increasing sequence 

(
V(i)

)
i=0,1,2,…

:

Proof The proof can be found in Appendix 1.   ◻

In view of Theorem 5,, that tells that the iterated value function does not cycle, 
we conclude the following:

Theorem 6 (Convergence of the policy function iteration algorithm) Let us consider 
a finite state space Grid(S) and a finite action space Grid(a) . Then the policy func-
tion iteration algorithm converges to the true fixed point for the contraction Γ , which 

(5.41)V(i+1)(S) − V(i)(S) ≥ �.
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is the optimal value function V of the problem, within a finite number of iteration 
steps.

The argument is clear due to monotonicity in Theorem 5 and the finite cardinality 
of the state and action space, see also [20]. Further readings on convergence results 
can also be found in [17, 18]. In summary, we have proven that, under Assumptions 
1 and 2, our problem admits a unique fixed point solution and our presented policy 
function iteration algorithm converges to this solution.

6  Case study: policy function iteration for a cohort of clients

We focus on the cohort perspective and consider a cohort of clients with an initial 
age of T = 65 years (retirement entry time). This section aims for solving the dis-
crete-time infinite-horizon optimization problem with the policy function iteration 
algorithm as well as analyzing the performance of the optimal asset allocation strat-
egy via simulation. First, we introduce the general setting and the parameter choices: 
For the market we suppose r = 1% , � = 2.97% , � = 11.75% (market parameters: 
risk-free interest rate; drift and volatility of one risky asset which is interpreted as 
a buy and hold portfolio that consists of the three asset classes government bonds, 
corporate bonds and equity with initial weights 1

N
=

1

3
 each, where we used the num-

bers from the parameter estimation in [9]). Moreover, the HARA utility function 
parameters are assumed to be � = 3% (cf. [24]), b = −1 , a = 1 and13 F = 25.8 which 
gives

Further let �x = �x(j) = 1.18% (mortality rate of the cohort), determined such that the 
survival probability of a 65-year old client to survive one more year coincides with 
the average survival probability of 99.202956% (female) and 98.457889% (male) in 
Germany, cf. [7], and p̄ = 112.5% (CCR  of the investment portfolio at initial time 
and at every re-set).

For the discretization grids we suppose the following: The time grid is divided 
into points with distance or step size Δ = 1 (annual rebalancing and adjustments of 
the pension payments) which implies t(i) = T + i , i = 0,… ,∞ , and thus 
t(i) ∈ {T , T + 1, T + 2,…} . The grid for the risk driver Z follows from Eq. (5.19) 
with probability intervals of length q = 2.5% , i.e. q(i) = q(0) + Δ(q) ⋅ i, i = 0,… ,Nq , 
with Δ(q) = q = 2.5% , Nq =

1−q

q
= 39 . The corresponding representatives for Z start 

with z(q(0)) = −2.2414 and end with z(q(39)) = 2.2414 . Finally, for the sake of sim-
plicity let us consider steps of five percentage points for the decision interval � , i.e. 
a(0) = 0% , a(Na)

= a(20) = 100% , Na = 20 (equivalent to Δ(a) = 5% ) which translates 

(6.1)U(t, p) = e−𝛽(t−T)Ũ(p) = −e−0.03(t−T)
4

p − 25.8
.

13 It has to hold P > F for all applied pensions P. We select F = 10% × P(0) which will result in F = 25.8

.
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to a ∈ {0%, 5%, 10%,… , 90%, 95%, 100%} . Finally, let V0 = 10, 000 (initial post-
retirement wealth at time t(0) = T  ) and let us define the state space grid by 
Vmin = 20% × V0 , Vmax = 500% × V0 , nV = 1, 000 for Grid(V) . We further select a 
step size of 1% for Grid(CCR) , i.e. CCR ∈ Grid(CCR) = {100%, 101%,… , 124%,

125%} , and thus nCCR = 26 . This leads to a total grid size of nS = 26, 000 states. In 
particular, Assumptions 1 and 2 are fulfilled.

Let us consider three different values for the buffer parameter, namely 
� = (0%|20%|40%) (no | moderate | pronounced buffer). In what follows we dem-
onstrate the presented policy function iteration algorithm, where we determine the 
optimal investment decision variables for every state under the infinite-horizon 
problem (stationary solution). Afterwards, a simulation analysis in the finite-horizon 
model, where the approximate optimal stationary solution to the infinite-horizon 
model is applied, provides the most relevant numbers and probabilities and com-
pares the considered strategies for different � values.

6.1  Optimization

We seek for a fixed-point solution to the value function according to the policy func-
tion iteration algorithm in Sect. 5. We would like to comment that it only takes seven 
iterations maximal ( niter ≤ 7 ) to find the fixed point for each � = (0%|20%|40%) and 
with that the stationary solution to the infinite-horizon optimization problem. Thus, 
the algorithm converges very quickly.

Figure 1 visualizes the average optimal risky relative asset allocations �̂�⋆(inv) = a⋆ 
(investment portfolio) and �̂�⋆(total) (total cohort portfolio) for all CCR(total)

j
 values in 

the grid. Hence, for every CCR ∈ Grid(CCR) , we build the average over the nV val-
ues for a⋆ and �̂�⋆(total) that have an equal CCR  value. The pattern comes close to an 
S-shaped form: It can be seen that a higher buffer parameter � , in particular for 
� = 40% , leads to a lower relative risky investment for small CCR(total)

j
 values, but 

catches up for large CCR(total)

j
 values. This is a desired behavior, since it implies a 

Fig. 1  Average a⋆ and �̂�⋆(total) for a given CCR(total)

j
 value in the grid
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lower risk of a pension shortening for small CCR(total)

j
 values within the range 

[100%, 110%] , without losing the upside potential of a pension enhancement for 
CCR

(total)

j
 values close to 125% . Furthermore, except for the region 

CCR
(total)

j
∈ [100%, 105%] , the average optimal risky relative investment increases 

with the CCR(total)

j
 value. This is meaningful since with a higher CCR(total)

j
 value, one 

is less exposed to the risk of falling outside the lower boundary of the CCR(total)

j
 cor-

ridor (pension reduction risk). The higher risky investment close to 100% is also rea-
sonable. Imagine the CCR(total)

j
 is close to 100% ; if now the risky allocation is very 

small, even some positive return of the underlying asset class cannot compensate for 
the outflows (cohort-related pensions), which pushes the CCR(total)

j
 below 100% with 

a high probability.

6.2  Simulation study

We next carry out a simulation study with a finite time horizon of 
T̃ = T + 10Δ = T + 10 years. We start with the initial states 
S0 = (V0,P0) = (10, 000, (277|270|258)) for � = (0%|20%|40%) , where P0 comes 
from Eq. (3.16) (see also Eq. (4.24)). Intuitively, the higher the buffer parameter � , 
the lower is the initial pension P0 . Moreover, the initial distribution to the invest-
ment and the buffer portfolio is 

V
(buffer)

j
(T)

V0

= (0%|2.7%|6.9%) , 
V
(inv)

j
(T)

V0

= (100%|97.3%|93.1%) due to Eq. (4.16). The initial capital coverage ratio is 

by definition CCR(total)

j
(T)

(4.27)
=

p̄−𝛼

1−𝛼
= (112.5%|115.6%|120.8%) (at every re-set time 

tn as well). We simulate 10, 000 paths of the relevant processes where we use the 
optimal stationary solution as asset allocation that corresponds to the closest grid 
point.

We assume that the average mortality (explained in Sect. 4) for the cohort is 
realized. We look at the optimal relative pension evolution P⋆(t)

e
−𝜆x(j)(t−T)P0

 , where P⋆(t) 
denotes the cohort pension at time t under the optimal stationary asset allocation 
strategy a⋆ = a⋆(S) . We already explained earlier that P⋆(t)

e
−𝜆x(j)(t−T)P0

=
P⋆(t+Δ)

e
−𝜆x(j)(t+Δ−T)P0

 
indicates a stable individual pension for the customers in the cohort from time t 
to t + Δ , i.e. if P⋆(t)

e
−𝜆x(j)(t−T)P0

 is stable then the individual pensions keep stable. Conse-

Table 1  Probabilities of 
pension rate changes for 
� = (0%|20%|40%)

a We count the number of paths which fulfill the statement in ℙ(⋅) . 
The relative frequency then serves as an estimation for the probabil-
ity

Probabilitya

ℙ(“at least one pension reduction”): 49.5%|36.4%|25.5%
ℙ(“path-wise average pension ≥ P′′

0

): 74.1%|80.8%|86.1%
ℙ(“number of pension enhancements ≥ num-

ber of pension reductions”):
84.4%|91.3%|96.8%
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quently, due to the cohort view, P⋆(t+Δ)

P⋆(t)e
−𝜆x(j)Δ

< 100% indicates an individual pension 
reduction, P⋆(t+Δ)

P⋆(t)e
−𝜆x(j)Δ

= 100% a stable individual client’s pension development and 
P⋆(t+Δ)

P⋆(t)e
−𝜆x(j)Δ

> 100% an enhancement of the individual pension of the client mem-
bers from time t to t + Δ.

In what follows we always look at the individual pension perspective in the 
cohort. Moreover, let V⋆(t) denote the total cohort wealth at time t under 
a⋆ = a⋆(S) . Analogously to the relative pension, we look at the optimal relative 
total wealth evolution V

⋆(t)

V0

 . Note that P⋆(t)

e
−𝜆x(j)(t−T)P0

= 1 and V
⋆(t)

V0

= 1 at initial time 
t = T .

Table  1 illustrates relevant probabilities of pension shortenings and enhance-
ments. Table 2 provides risk and reward numbers for the relative pension and the 
total wealth. In general, we observe that a higher buffer parameter � significantly 
improves the probabilities in Table 1 from a client’s perspective. In particular, the 
probability that the average individual pension that is to be paid out over the entire 
period is larger than the initial pension level P0 and the probability that there are 
more pension enhancements than reductions are quite high, especially for � = 40% . 
However, both the (relative) risk in terms of volatility and Value-at-Risk and the 
(relative) reward in terms of expected value do not suffer, which is remarkable. Actu-
ally the opposite is the case: A higher buffer parameter � leads to a higher average of 
the relative pension level and a lower standard deviation (lower standard deviation 
of relative pension means a more stable pension development). Moreover, the worst 
case relative pensions in the tail (Value-at-Risk) also exceed the ones for smaller � . 
The single exception is the volatility of the pension, where � = 20% shows a slightly 
smaller number than � = 40% . Those benefits of the 𝛼 > 0% portfolios comes at 
the cost of an initially lower pension level P0 = P0(�) , which represents a tradeoff 
between the initial pension level and future pension properties. The selection of the 
case-specific optimal � value, named 𝛼⋆ , depends on the respective target or crite-
rion. If for instance the probability of at least one pension shortening shall coincide 
with a pre-defined probability pred , 𝛼⋆ can be selected such that the corresponding 
probability comes closest to pred . Alternatively, 𝛼⋆ could be selected such that the 
expectation of the sum of pension cash flows gets maximized.

Table 2  Relative performance 
numbers for � = (0%|20%|40%) 
under 10, 000 simulations

� = 0% � = 20% � = 40%

�

[
P⋆(t)

e
−𝜆x(j) (t−T)P

0

]
:

107.5% 108.4% 110.9%

Sd
(

P⋆(t)

e
−𝜆x(j) (t−T)P

0

)
:

18.1% 16.8% 17.0%

VaR
0.05

(
P⋆(t)

e
−𝜆x(j) (t−T)P

0

)
:

83.3% 84.8% 86.5%

VaR
0.01

(
P⋆(t)

e
−𝜆x(j) (t−T)P

0

)
:

71.9% 75.1% 77.0%

�

[
V⋆(t)

V
0

]
: 96.6% 96.2% 96.5%

Sd
(

V⋆(t)

V
0

)
: 15.7% 14.3% 14.6%
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In summary in terms of the relative individual cohort pension, one can see that 
� = 40% outperforms the � = (0%|20%) strategies, and the � = 20% outperforms 
the � = 0% strategy. The higher the buffer parameter � , the more the downside 
risk is limited, and even the upside potential is enhanced.

We draw the conclusion that our proposed model, where we divide our total 
wealth into an investment and a buffer portfolio, leads to a sophisticated optimal 
dynamic asset allocation policy that is performance seeking while reducing down-
side risks and improving probabilities; hence provides remarkable and meaningful 
benefits to clients.

Finally, we simulate the optimal strategy a⋆ , the pension P⋆ and the wealth V⋆ 
evolution under three different scenarios: a bullish, a bearish and a non-directional 
market. In each simulation we need to generate the risk driver Z for every period. 
Figure  2 provides the corresponding underlying risky asset class price processes, 
denoted by VZ(t) , that correspond to the development of Z. Next, Fig. 3 illustrates 
the evolution of the relative pension, Fig. 4 visualizes the very same but for the total 
wealth. From Fig. 3 we infer that 

Fig. 2  Underlying risky asset class price processes VZ(t) that correspond to risk factor evolution Z in a 
bullish (left), bearish (center) and non-directional (right) market
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1. the individual pensions increase more often for higher � and even end up with a 
higher terminal pension (relative to P0 ) in a bullish market,

2. the individual pensions decrease only once for � = 40% but twice for the remain-
ing ( � = (0%|20%) ) in a bearish market,

3. and the individual pensions do not decline for � = 40% but do decrease and 
behave very unstable and volatile for the remaining ( � = (0%|20%) ) in a non-
directional market.

In total, the number of pension reductions for 𝛼 > 0% (with buffer) never exceeds the 
respective number for � = 0% (no buffer) in the considered representative scenarios.

Figure  5 complements the former figures on the pension and wealth evolution 
with a visualization of the CCR(total)

j
(t) development. While the CCR(total)

j
(t) values 

for 𝛼 > 0% (with buffer) generally do not fall short the respective values for � = 0% 
(no buffer), the 𝛼 > 0% portfolios need less pension shortenings to keep the 
CCR

(total)

j
(t) inside its target corridor. Therefore, with selecting a higher �% value, 

one can improve the management of the wealth such that the CCR(total)

j
(t) remains 

more stable in its corridor without reducing the pension.

Fig. 3  Optimal relative pension process P⋆(t)

e
−𝜆x(j) (t−T)P0

 in a bullish (left), bearish (center) and non-directional 
(right) market
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In addition, Figs. 6 and 7 show the optimal asset allocation policies a⋆(t) for the 
investment wealth and �̂�⋆(total)(t) for the total wealth. One can observe that the opti-
mal strategy for � = 40% frequently behaves opposed to the optimal strategy for 
� = 0% . Moreover, Fig. 8 illustrates the kernel density estimates for the path-wise 
average pensions and wealths. Note that for one path, a higher path-wise average 
pension automatically implies a higher total sum of pension cash flows received by 
the customer. The figure points out that although the distributions of the wealths are 
rather close among all considered � values (see also expected values and volatilities 
in Table 2), the distributions of the relative pensions differ. The pension distribution 
for � = 40% has lower probability on the left end and is more shifted to the right; 
this is also reflected in Table 2. Thus, a pension fund client that follows the � = 40% 
strategy benefits in terms of the pension distribution since lower pensions com-
pared to the initial pension level P0 are on average less likely. However, as already 
explained, these benefits come at the cost of an initially lower pension level P0 . 
We would like to comment that the averages over all simulated a⋆(t) and �̂�⋆(total)(t) 
values are very close to each other among the three considered buffer parameters 
� . However, as analyzed above, the relative performance and characteristics of the 

Fig. 4  Optimal relative total wealth process V
⋆(t)

V0

 in a bullish (left), bearish (center) and non-directional 
(right) market
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optimal portfolios with a buffer ( 𝛼 > 0% ) are superior over the optimal portfolio 
without a buffer ( � = 0% ). This shows that the dynamics and the structure of the 
asset allocation plays a crucial role.

Closing this numerical case study, we provide a brief discussion about the fund 
behavior in good and bad times of the financial market: In good times, as the buffer 
represents a certain percentage of the difference between the assets and the liabili-
ties, the buffer increases if the fund develops nicely. In this way, the development 
of the Geometric Brownian Motion is damped compared to the system without a 
buffer and the potential for pension’s increase is reduced. However, we observe in 
Fig. 4a that a pension increase happens more often for 𝛼 > 0% than for � = 0% , even 
though the growth in the pension rates is smaller. This behavior is reasonable as a 
higher buffer (higher � ) goes hand in hand with a higher funding at the beginning 
and at every reset time (which comes at the cost of a smaller initial pension rate), 
compared to the system without a buffer ( � = 0% ). Moreover, when 𝛼 > 0% , then 
the fund wealth increase is dampened but the buffer portfolio gets increased com-
pared to the � = 0% case, which can be regarded as a profit lock-in feature. If p̄ 
would increase, then a pension increase becomes more likely for the � = 0% case 
as well, but as the pension increases happen more frequently and the funding after a 

Fig. 5  Evolution of CCR(total)

j
(t) in a bullish (left), bearish (center) and non-directional (right) market
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reset of the system becomes higher, the difference between the pension rates before 
and after adjustments will be rather small. Generally, Eq. (3.19) visualizes that if p̄ 
approaches the maximum value of 125% , the possible � values approach 0% . From a 
risk management perspective, when p̄ is already very high (and thus the probability 
of pension reductions rather small), then the additional buffering through � might 
not be that beneficial anymore.

Let us assume the fund is having bad times, but CCR(total)

j
(t) is close to but still 

above 100% . In this case, the buffer account is almost empty. And therefore, in such 
a scenario where the fund recently went down, one keeps almost everything of the 
wealth in the fund. But still the fund remains well-funded and there is no need for a 
pension reduction. Therefore, the implication on the fund in such bad times is actu-
ally not that bad. If the fund decreases further and CCR(total)

j
(t) falls below 100% , 

then the system gets adjusted and the buffer is refilled. A nice feature of the buffer 
approaching zero if CCR(total)

j
(t) approaches 100% is the interpretation of a market re-

entry component. As traditional strategic asset allocations realize big losses in 
V-markets due to falling short in timing market re-entries after market declines, the 
fund in the paper still holds risky assets in bad times and hence stays invested and 

Fig. 6  Optimal asset allocation decision a⋆(t) in a bullish (left), bearish (center) and non-directional 
(right) market
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can participate if the market recovers. The fund’s wealth is not shifted to the buffer 
account as long as the fund stays well-funded ( CCR(total)

j
(t) ≥ 100% ). Hence, the def-

inition of the buffer portfolio allows to stay invested during preceding bad times.

7  Conclusion

In this article a possible post-retirement phase implementation of an innovative pen-
sion plan without guarantees, currently under discussion in Germany, was studied. 
We transferred the product rules into a mathematical model and solved the resulting 
portfolio selection problem via the discrete-time Bellman equation, to the best of our 
knowledge for the first time. We draw the following conclusions:

Section 3 modeled the complex mechanism of the product in the decumulation 
phase with ingredients buffer balance and pension adjustments. In particular we pro-
posed a special buffer rule. The resulting optimization problem with finite-horizon 
was derived and solved via Bellman’s equation in Sect. 4. Moreover, we provided 

Fig. 7  Optimal asset allocation decision �̂�⋆(total)(t) of the total wealth in a bullish (left), bearish (center) 
and non-directional (right) market
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a possible aggregation from a single-client to a cohort perspective. The stationary 
asset allocation solution approach to the infinite-horizon problem in Sect. 5 further 
provided an elegant approximate solution to the problem. Therein, we introduced an 
efficient policy function iteration algorithm that converges to the unique stationary 
solution. A case study in Sect. 6 showed several meaningful benefits to customers. 
The following conclusions apply in the scope of the tested buffer parameters: First, 
a more pronounced buffer parameter can significantly improve the probabilities of 
interest (pension shortenings and pension level evolution). Furthermore, the higher 
the buffer parameter, the more the downside risk was limited while even the upside 
potential was enhanced, both relative to the initial pension. Of course, these benefits 
came at the cost of an initially smaller pension payment. In summary, there was a 
tradeoff between relative outperformance (more pronounced buffer) and initial pen-
sion level (less pronounced buffer).

Overall, we detected that our proposed model leads to a sophisticated optimal 
dynamic asset allocation policy that is performance seeking while reducing down-
side risks and improving the probabilities of interest; hence provides remarkable 
and meaningful benefits to clients. Possible future research studies on such pen-
sion products could generally elaborate on alternative buffer processes or consider a 
more advanced mortality model with a mortality rate that is exposed to (unexpected) 
shocks such as the paper by [8] which studies a mortality model with mortality 
improvement ratio in the framework of pricing variable annuities with guaranteed 
minimum repayments. Furthermore, future research could consider alternative mod-
els compared to our approach, for a discussion we refer to [6], and could therefore 
for instance deal with the design, the modeling and the optimal management of a 
pension fund plan that belongs to an entire collective of investors, where the wealth 
is managed identically for all clients instead of a cohort-specific treatment.

Appendix A: Policy function iteration: theoretical foundation

In this appendix section we provide further background related to and required for 
the theoretical foundation of the proposed policy function iteration algorithm. First, 
a contraction mapping and a fixed point are defined as follows.

Definition 1 (Contraction mapping ([21, Definition 9.9.1, p. 160], [22, p. 50])) 
Suppose (X,  d) is a metric space. A map Γ ∶ X → X is called a (strong) contrac-
tion mapping with modulus � if, and only if, there exists � ∈ [0, 1) such that 
d(Γ(f ),Γ(g)) ≤ � ⋅ d(f , g) for all f , g ∈ X.

Definition 2 (Fixed point [21, Definition 10.10.1, p. 180]) Suppose X is a non-empty 
set and Γ ∶ X → X . A point f ∈ X is called a fixed point for Γ if and only if Γ(f ) = f .

[21] argues that “Strong contractions on a metric space, when iterated, tend to 
pull all the points of the space together into a single point”. The underlying theory is 
the Contraction Mapping Theorem (or Banach’s Fixed-Point Theorem).
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Theorem  7 (Contraction Mapping Theorem ([21, Theorem  10.10.3, p. 181], [22, 
Theorem  3.2, p. 50])) Suppose (X,  d) is a non-empty complete metric space and 
Γ ∶ X → X is a (strong) contraction mapping with modulus � ∈ (0, 1) . Then:

1. Γ has a unique fixed point f ∈ X ; and
2. for any f0 ∈ X , the sequence (Γn(f0)) converges to f with

Theorem 7 particularly ensures existence of a unique fixed point for a (strong) 
contraction mapping.

Let V and Γ be defined according to Eqs. (5.38) and (5.39). As V(s) , respectively 
the reward r(s) or the utility Ũ(p) , is not necessarily bounded in general, we need the 
notion of an upper barrier function, adjusted to our framework.

Definition 3 (Upper barrier function [19, Chapter  1]) A measurable function 
bu ∶ S → ℝ+ is called upper barrier function if there exist constants c1, c2 ≥ 0 such 
that 

1. r(s) ≤ c1bu(s) for all s ∈ S.[1.]
2. �

[
bu(TB(s, a, Z))|s

]
= ∫ Q(s, a;dz)bu(TB(s, a, z)) ≤ c2bu(s) for all s ∈ S and a ∈ �.

Q denotes the transition probability measure with Q(s, a;⋅) being a probability measure 
for all (s, a) ∈ S × �.

Furthermore, we later need the notion of a maximisator which we define next.

Definition 4 (Maximisator [19, Chapter  1]) Let f ∈ X . The policy af = af (s) is 
called a maximisator for f if it maximizes

(A.1)d(Γn(f0), f ) ≤ �n ⋅ d(f0, f ), n = 0, 1, 2,…

Fig. 8  Kernel density estimates of path-wise averages of P⋆(t)

e
−𝜆x(j) (t−T)P0

 and V
⋆(t)

V0
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for all s ∈ S , i.e. if

We already explained earlier that, due to Assumption 2, the maximum of any 
arbitrary function over the finite set � is attained. For this reason in particular for the 

function g ∶ 𝔸 → ℝ , a ↦ g(a) = �

[
f (TB(s, a(s),Z))

||||s
]
 for any given s ∈ S , and thus 

that the maximisator af  for every f ∈ X exists. Moreover, from Assumption 1 we 
already inferred that Ũ(p) is bounded, i.e. ∃0 < KŨ < ∞ with ||Ũ(p)|| < KŨ . This 
immediately implies that also r(s) is bounded with 0 < K

r
∶=

1

𝜆x+𝛽(
1 − e

−(𝜆
x
+𝛽)Δ

)
K
Ũ
< ∞:

In view of Definition 3, it is thus clear that bu ≡ 1 is an upper barrier function. In 
line with [19] we further define the set

and the weighted sup norm

which turns in our setting ( bu ≡ 1 ) to the usual sup norm

Then �bu
 becomes

where f + denotes the positive part of f. Hence � denotes the measurable functions 
mapping from S to ℝ that have an upper bound. In addition, the boundedness of Ũ(p) 
not only implies boundedness of r(s) but also of J(a(s);s, c(buffer)

ij
) and V(s) in Prob-

lem (5.1), since

(A.2)(Γf )(s)
(5.39)
= r(s) + � max

a(s)∈�

{
�

[
f (TB(s, a(s),Z))

||||s
]}

(A.3)af (s) = arg max a(s)∈�

{
�

[
f (TB(s, a(s),Z))

||||s
]}

.

(A.4)

|r(s)|(5.12)=
1

𝜆x + 𝛽

(
1 − e−(𝜆x+𝛽)Δ

) ||Ũ(p)||
���

<KŨ

<
1

𝜆x + 𝛽

(
1 − e−(𝜆x+𝛽)Δ

)
KŨ < Kr.

(A.5)

𝔹bu
∶=

{
f ∶ S → ℝ ∶ f measurable, f (s) ≤ cbu(s) for all s ∈ S, for one c ∈ ℝ+

}

⊂ {f ∶ S → ℝ}

(A.6)‖f‖bu ∶= sup
s∈S

�f (s)�
bu(s)

(A.7)‖f‖bu = sup
s∈S

�f (s)� = ‖f‖∞.

(A.8)𝔹 ∶= 𝔹1 =
{
f ∶ S → ℝ ∶ f measurable, ‖‖f +‖‖∞ < ∞

}
,
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which leads to

In line with these observations, we define the set X ⊂ � to contain bounded func-
tions only:

From the above calculations it clearly follows V(s) ∈ X as well as 
J(a(s);s, c

(buffer)

ij
) ∈ X for all a(s) ∈ �.

We now come to the main result in [19] about existence of a unique fixed point of 
Γ and optimality of the stationary policy. We copy the theorem and omit the unnec-
essary conditions (due to bu ≡ 1).

Theorem  8 [19, Satz 1.5] Let (X,  d) be a non-empty complete metric space with 
X ⊂ � and let the following hold:

1. For all f ∈ X there exists a maximisator af  of f.
2. Γ is a contraction on X.

(A.9)

���J(a(s);s, c
(buffer)

ij
)
��� =

������
�

�
∞�
i=0

�
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)Ũ(P(t(i)))du

�������

≤ �

⎡
⎢⎢⎢⎢⎣

∞�
i=0

�
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)

���Ũ(P(t(i)))
���

���������
<KŨ

du

⎤
⎥⎥⎥⎥⎦

< KŨ�

�
∞�
i=0

�
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)du

�

= KŨ

∞�
i=0

�
t(i+1)

t(i)
e−(𝜆x+𝛽)(u−T)du

= KŨ �
∞

T

e−(𝜆x+𝛽)(u−T)du =
KŨ

𝜆x + 𝛽
=∶ KJ

⇒ ∃0 < KJ < ∞ ∶
���J(a(s);s, c

(buffer)

ij
)
��� < KJ

(A.10)

|V(s)| =
|||||
sup
a(s)∈�

J(a(s);s, c
(buffer)

ij
)
|||||
� finite
=

||||max
a(s)∈�

J(a(s);s, c
(buffer)

ij
)
||||

≤ max
a(s)∈�

|||J(a(s);s, c
(buffer)

ij
)
|||

���������������������
<KJ

< max
a(s)∈�

KJ = KJ =∶ KV

⇒ ∃0 < KV < ∞ ∶ |V(s)| < KV.

(A.11)X ∶=
�
f ∶ S → ℝ ∶ f measurable, ‖f‖∞ < ∞

�
.
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3. 0 ∈ X.

Then the following claims hold true: 

(a) V ∈ X , ΓV = V and V is the unique fixed point of Γ in X.
(b) The stationary policy (aV)∞ is the optimal solution to the infinite-horizon dis-

crete-time optimization problem.

Appendix B: Some useful matrix properties

We define the notion of a (strictly) diagonally dominant matrix.

Definition 5 (Diagonally dominant matrix [11, Definition 6.1.9]) A matrix 
A =

(
aij
)
i,j=1,…,n

∈ ℝn×n , n ∈ ℕ , is said to be diagonally dominant if

If the inequality is strict for all i ∈ {1,… , n} , the matrix A is called strictly diago-
nally dominant.

It can be shown that every strictly diagonally dominant matrix is invertible.

Theorem  9 [11, Theorem  6.1.10, part (a)] Let A =
(
aij
)
i,j=1,…,n

∈ ℝn×n be strictly 
diagonally dominant. Then A is non-singular.

Furthermore, we provide a specific eigenvalue result for stochastic matrices 
which are also known as probability or transition matrices.

Definition 6 (Stochastic matrix [11, p. 547]) A matrix A =
(
aij
)
i,j=1,…,n

∈ ℝn×n , 
n ∈ ℕ , aij ≥ 0 , is a (row) stochastic matrix if A� = � , i.e. if all row sums of A are 
equal to one.

Definition 7 (Eigenvalue and eigenvector [11, Definition 1.1.2]) Let A ∈ ℝn×n , 
n ∈ ℕ . If a scalar � ∈ ℝ and a vector � ∈ ℝn , � ≢ � , satisfy the equation

then � =∶ �(A) is called an eigenvalue of A and � is called an eigenvector of A asso-
ciated with �.

We have the following result for the eigenvalues of a stochastic matrix.

(B.1)||aii|| ≥
n∑

j=1,j≠i
|||aij

|||, ∀i ∈ {1,… , n}.

(B.2)A� = ��,
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Theorem 10 The maximal absolute eigenvalue of a stochastic matrix A is equal to 
one, i.e. max |�(A)| = 1.

Proof We prove that any stochastic matrix A has the eigenvalue �(A) = 1 and that 
the absolute value of any eigenvalue �(A) of A is less than or equal to one. 

1. Existence of eigenvalue �(A) = 1 : The vector � that consists of ones is an eigen-
vector to the eigenvalue �(A) = 1 for any stochastic matrix A =

(
aij
)
i,j=1,…,n

 
because the rows of A sum up to one: 

2. Eigenvalue bound |�(A)| ≤ 1 : Let �(A) be an eigenvalue of the stochastic matrix 

A and let � =

⎛
⎜⎜⎝

v1
⋮

vn

⎞
⎟⎟⎠
≠ � be the corresponding eigenvector, i.e. 

 When we compare the i-th row of both sides of the equality, we obtain 

 Further let 

 and thus vm denotes the entry of the eigenvector � with the maximal absolute 
value: |vm| ≥ |vj| ∀j ∈ {1,… , n} . Due to � ≢ � it is |vm| > 0 . Inserting i = m in 
Eq. (B.5) while considering the absolute value leads to 

 Hence, as |vm| > 0 , we must have |�(A)| ≤ 1 for any arbitrary eigenvalue �(A).
In total, this shows that max |�(A)| = 1 for any stochastic matrix A.   ◻

(B.3)A� =

⎛
⎜⎜⎝

aij a12 ⋯ a1n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1

⋮

1

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

aij + a12 +⋯ + a1n
⋮

an1 + an2 +⋯ + ann

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

1

⋮

1

⎞
⎟⎟⎠
= 1 ⋅ �.

(B.4)A� = �(A)�

(B.5)
n∑
j=1

aijvj = �(A)vi, i = 1,… , n.

(B.6)m ∶= arg max j∈{1,…,n}{|vj|}

(B.7)

|�(A)| ⋅ |vm| = |�(A)vm|(B.5)∶ i=m
=

||||||

n∑
j=1

amjvj

||||||
triangle inequality≤

n∑
j=1

|||amjvj
|||
amj≥0
=

n∑
j=1

amj
|||vj

|||
|vj|≤|vm|≤

n∑
j=1

amj
||vm|| = ||vm||

n∑
j=1

amj =
||vm||.
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Appendix C: Technical appendix

Proof (Theorem 3) Notice that Γ clearly maps from X to X because for any arbitrary 
f ∈ X with |f (s)| < Kf  for some 0 < Kf < ∞ , there exists 0 < KΓf < ∞ such that 
|(Γf )(s)| < KΓf  for all s ∈ S:

for every KΓf ≥ Kr + �Kf  . Consequently, Γf ∈ X . We further prove the claim that 
d(Γf ,Γg) ≤ � ⋅ d(f , g) for all f , g ∈ X . We deduce

(C.1)

�(Γf )(s)� =
�����
r(s) + 𝛽 sup

a(s)∈�

�
�

�
f (TB(s, a(s),Z))

����s
�������

� finite
=

�����
r(s) + 𝛽 max

a(s)∈�

�
�

�
f (TB(s, a(s),Z))

����s
�������

≤ �r(s)�
���

<Kr

+𝛽 max
a(s)∈�

⎧
⎪⎪⎨⎪⎪⎩

�

⎡
⎢⎢⎢⎢⎣

��f (TB(s, a(s),Z))��
�������������������

<Kf

����s
⎤
⎥⎥⎥⎥⎦

⎫
⎪⎪⎬⎪⎪⎭

< KΓf

(C.2)

d(Γf ,Γg) = ‖Γf − Γg‖∞ = sup
s∈S

�(Γf − Γg)(s)�

= sup
s∈S

������
r(s) + � sup

a(s)∈�

�
�

�
f (TB(s, a(s),Z))

����s
��

− r(s) − � sup
a(s)∈�

�
�

�
g(TB(s, a(s),Z))

����s
�������

�

= � sup
s∈S

������
sup
a(s)∈�

�
�

�
f (TB(s, a(s),Z))

����s
��

− sup
a(s)∈�

�
�

�
g(TB(s, a(s),Z))

����s
�������

�

� finite
= � sup

s∈S

������
max
a(s)∈�

�
�

�
f (TB(s, a(s),Z))

����s
��

− max
a(s)∈�

�
�

�
g(TB(s, a(s),Z))

����s
�������

�
.
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Denote af (s) ∶= arg max a(s)∈��

[
f (TB(s, a(s),Z))

||||s
]
 the corresponding maximisator. 

For the function inside the first supremum we use the following inequality, assume 

w.l.o.g. maxa(s)∈�

{
�

[
f (TB(s, a(s),Z))

||||s
]}

≥ maxa(s)∈�

{
�

[
g(TB(s, a(s),Z))

||||s
]}

:

Inserting this back, gives

which was to be shown.   ◻

(C.3)

|||||||||||

max
a(s)∈�

{
�

[
f (TB(s, a(s),Z))

||||s
]}

− max
a(s)∈�

{
�

[
g(TB(s, a(s),Z))

||||s
]}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

|||||||||||
= max

a(s)∈�

{
�

[
f (TB(s, a(s),Z))

||||s
]}

− max
a(s)∈�

{
�

[
g(TB(s, a(s),Z))

||||s
]}

= �

[
f (TB(s, af (s),Z))

||||s
]
− max

a(s)∈�

{
�

[
g(TB(s, a(s),Z))

||||s
]}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥�
[
g(TB(s,af (s),Z))

||||s
]

≤ �

[
f (TB(s, af (s),Z))

||||s
]
− �

[
g(TB(s, af (s),Z))

||||s
]

= �

[
f (TB(s, af (s),Z)) − g(TB(s, af (s),Z))

||||s
]
.

(C.4)

d(Γf ,Γg) = � sup
s∈S

������
max
a(s)∈�

�
�

�
f (TB(s, a(s),Z))

����s
��

− max
a(s)∈�

�
�

�
g(TB(s, a(s),Z))

����s
�������

�

≤ � sup
s∈S

⎧⎪⎪⎨⎪⎪⎩

�

⎡⎢⎢⎢⎢⎣
f (TB(s, af (s),Z)) − g(TB(s, af (s),Z))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤sups∈S �f (s)−g(s)�

����s
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
≤ � sup

s∈S

�(f (s) − g(s))� = �‖f − g‖∞ = � ⋅ d(f , g)
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Proof of Theorem 4 We prove that the conditions 1.-3. in Theorem 8 are fulfilled on 
(X, d). Hence, the conclusions a) and b) in Theorem 8 hold true and the statement in 
Theorem 4 is verified.

Let Assumptions 1 and 2 be satisfied and let X and d be as defined above. First, 
(X, d) is clearly non-empty and also complete as every Cauchy sequence converges 
within X. We prove 1.–3.: 

1. For all f ∈ X there exists a maximisator af  of f: It was already shown below 
Definition 4 that the maximisator af  for every f ∈ X exists due to � being finite 
according to Assumption 2.

2. Γ is a contraction on X: This was proven in Theorem 3.
3. 0 ∈ X : The zero function clearly satisfies 0 ∈ X.

  ◻

Proof of Theorem 5 First, we have

For the second term we observe

Hence every entry in the second term is non-negative. The same holds for the first 
term by the following argument: First, it is 

�
In − H

�−1
=
∑∞

k=0
Hk = In +

∑∞

k=1
Hk 

for any matrix H ∈ ℝn×n such that the power series 
∑∞

k=1
Hk converges due to

(C.5)

V(i+1)(S) − V(i)(S)

(5.37)∶ policy evaluation step
=

(
InS − e−(�x+�)ΔqQ(a(i+1)(S))

)−1

r(S) − V(i)(S)

=
(
InS − e−(�x+�)ΔqQ(a(i+1)(S))

)−1

×
[
r(S) −

(
InS − e−(�x+�)ΔqQ(a(i+1)(S))

)
V(i)(S)

]

=
(
InS − e−(�x+�)ΔqQ(a(i+1)(S))

)−1

×
(
r(S) + e−(�x+�)ΔqQ(a(i+1)(S))V(i)(S) − V(i)(S)

)
(5.36)∶ policy improvement step

=
(
InS − e−(�x+�)ΔqQ(a(i+1)(S))

)−1

×

(
max

a(S)∈Grid(a)

{
r(S) + e−(�x+�)ΔqQ(a(S))V(i)(S)

}
− V(i)(S)

)
.

(C.6)

max
a(S)∈Grid(a)

{
r(S) + e−(�x+�)ΔqQ(a(S))V(i)(S)

}
− V(i)(S)

≥ {
r(S) + e−(�x+�)ΔqQ(a(i)(S))V(i)(S)

}
− V(i)(S)

(5.37)∶ policy evaluation step
= V(i)(S) − V(i)(S) = �.
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According to [25], the matrix power series 
∑∞

k=1
Hk (also called “Neumann series”) 

converges if for every eigenvalue �(H) of the matrix H it holds |𝜆(H)| < 1 , i.e. 
max |𝜆(H)| < 1.

Set G ∶= qQ(a(i+1)(S)) and H ∶= e−(�x+�)ΔG . The matrix G is a (row) stochas-
tic matrix (all rows sum up to one and all entries are non-negative) since it repre-
sents the transition matrix that contains the transition probabilities from one state to 
another as entries. With

it follows that �(G) is an eigenvalue to matrix G if and only if �(H) = e−(�x+�)Δ�(G) 
is an eigenvalue to matrix H. From Theorem  10 in Appendix 1 it follows that 
max |�(G)| = 1 as G is a stochastic matrix. Thus,

We conclude that

where all entries of InS and 
(
e−(�x+�)ΔqQ(a(i+1)(S))

)k are non-negative since 
e−(𝜆x+𝛽)Δ > 0 and G = qQ(a(i+1)(S)) is a stochastic matrix.

In summary, we multiply a matrix of non-negative entries (first term) with a vec-
tor of non-negative entries (second term) and therefore finally receive a vector of 
non-negative entries which implies monotonicity in the value function:

  ◻

Proof (Existence of inverse matrix of InS − e−(�x+�)ΔqQ(a) ) First notice that 
InS − e−(�x+�)ΔqQ(a) is a strictly diagonally dominant matrix according to the Defini-
tion 5 in Appendix 1: First, the matrix qQ(a) is a (row) stochastic matrix (all rows 
sum up to one and all entries are non-negative) as it represents the transition matrix 
which contains the transition probabilities from one state to another as entries. 
Hence, by construction we have (qQ(a))ij ≥ 0 , ∀i, j ∈ {1,… , nS} , and

Together with 
(
InS

)
ii
= 1 and 

(
InS

)
ij
= 0 for i ≠ j , this automatically implies that

(C.7)
(
In − H

) ∞∑
k=0

Hk =

∞∑
k=0

Hk −

∞∑
k=1

Hk = In =
(
In − H

)(
In − H

)−1
.

(C.8)Gx = �(G)x ⇔ Hx = �(H)x, �(H) ∶= e−(�x+�)Δ�(G),

(C.9)

max |𝜆(H)| = max |e−(𝜆x+𝛽)Δ𝜆(G)| = e−(𝜆x+𝛽)Δ max |𝜆(G)|
���������

=1

= e−(𝜆x+𝛽)Δ < 1.

(C.10)

(
InS − e−(�x+�)ΔqQ(a(i+1)(S))

)−1

= InS +

∞∑
k=1

(
e−(�x+�)ΔqQ(a(i+1)(S))

)k
,

(C.11)V(i+1)(S) − V(i)(S) ≥ �.

(C.12)
nS∑
j=1

(qQ(a))ij = 1, ∀i ∈ {1,… , nS}.
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where

Thus it holds

which implies that the matrix InS − e−(�x+�)ΔqQ(a) is strictly diagonally dominant. 
Therefore, the inverse of InS − e−(�x+�)ΔqQ(a) always exists in view of Theorem 9 in 
Appendix 1.   ◻
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(C.13)

����
�
InS − e−(�x+�)ΔqQ(a)

�
ii

���� =

����������

�
InS

�
ii

⏟⏟⏟
=1

−e−(�x+�)Δ (qQ(a))ii
⏟⏞⏟⏞⏟

=1−
∑nS

j=1,j≠i (qQ(a))ij

����������
=

������
1 − e−(�x+�)Δ

�
1 −

nS�
j=1,j≠i

(qQ(a))ij

�������

=

������������

1 − e−(�x+�)Δ + e−(�x+�)Δ
nS�

j=1,j≠i
(qQ(a))ij

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

������������

= 1 − e−(�x+�)Δ +

������
e−(�x+�)Δ

nS�
j=1,j≠i

(qQ(a))ij

������
(qQ(a))ij≥0

= 1 − e−(�x+�)Δ +

nS�
j=1,j≠i

���e
−(�x+�)Δ(qQ(a))ij

���,

(C.14)

nS∑
j=1,j≠i

|||e
−(�x+�)Δ(qQ(a))ij

||| =
nS∑

j=1,j≠i
|||−e

−(�x+�)Δ(qQ(a))ij
|||

(
InS

)
ij
=0, j≠i
=

nS∑
j=1,j≠i

||||
(
InS − e−(�x+�)ΔqQ(a)

)
ij

||||.

(C.15)

||||
(
InS − e−(𝜆x+𝛽)ΔqQ(a)

)
ii

|||| = 1 − e−(𝜆x+𝛽)Δ
�����������

>0

+

nS∑
j=1,j≠i

||||
(
InS − e−(𝜆x+𝛽)ΔqQ(a)

)
ij

||||

>

nS∑
j=1,j≠i

||||
(
InS − e−(𝜆x+𝛽)ΔqQ(a)

)
ij

||||
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