
Gezer, Volkan; Wagner, Achim

Article — Published Version

Real-time edge framework (RTEF): task scheduling and
realisation

Journal of Intelligent Manufacturing

Provided in Cooperation with:
Springer Nature

Suggested Citation: Gezer, Volkan; Wagner, Achim (2021) : Real-time edge framework (RTEF): task
scheduling and realisation, Journal of Intelligent Manufacturing, ISSN 1572-8145, Springer US, New
York, NY, Vol. 32, Iss. 8, pp. 2301-2317,
https://doi.org/10.1007/s10845-021-01760-9

This Version is available at:
https://hdl.handle.net/10419/287126

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10845-021-01760-9%0A
https://hdl.handle.net/10419/287126
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Intelligent Manufacturing (2021) 32:2301–2317
https://doi.org/10.1007/s10845-021-01760-9

Real-time edge framework (RTEF): task scheduling and realisation

Volkan Gezer1 · Achim Wagner1

Received: 21 November 2019 / Accepted: 12 March 2021 / Published online: 10 April 2021
© The Author(s) 2021

Abstract
With the big success of the Cloud Computing, or the Cloud, new research areas appeared. Edge Computing (EC) is one of
the recent paradigms that is expected to overcome the Quality of Service (QoS) and latency issues caused by the best-effort
behaviour of the Cloud. EC aims to bring the computation power close to the end devices as much as possible and reduce the
dependency to the Cloud. Bringing computing power close to the source also enables real-time applications. In this paper,
we propose a novel software reference architecture for Edge Servers, which is operating system (OS) and hardware-agnostic.
Edge Servers can collaborate and execute (near) real-time tasks on time, either by downscaling or scheduling them according
to their deadlines or offloading them to other Edge Servers in the network. Decision making for offloading, resource planning,
and task scheduling are challenging problems in decentralized systems. The paper explains how resource planning and task
scheduling can be overcome with software approach. Finally, the article realises the architecture as a framework, called
Real-Time Edge Framework (RTEF) and validates its correctness with a use case.

Keywords Real-time computing · Edge computing · Task offloading · Edge in manufacturing · Fog computing

Introduction

It is a well-known fact that Cloud Computing, the Cloud,
was a big success, and it will be even more essential as
the dependence on information grows. From its first initial
concepts in the early 1960s, the idea was brought to life as
Remote Job Entry (RJE) White (1971). Since then, different
experimentations were made to exploit the usage of large-
scale computing. The apparent success of the Cloud emerged
in new application areas. The Cloud is well-used for daily
tasks, such as emails, collaborative work, file or data storage,
finance, or remote monitoring. Ubiquitousness, scalability,
and accessibility are some of the significant reasons that
makeCloud so popular. Cloud also brought different business
models into life. The pay-per-use model reduces the infras-
tructure costs for the end-users. Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service
(SaaS), and Function-as-a-Service (FaaS) are some of how
the Cloud provides service differently.

B Volkan Gezer
Volkan.Gezer@dfki.de

Achim Wagner
Achim.Wagner@dfki.de

1 Innovative Factory Systems (IFS), German Research Center
for Artificial Intelligence (DFKI), Kaiserslautern, Germany

Though not used as much as it is used in daily lives as
stated above, the Cloud technologies are also used in manu-
facturing areas. One of the application areas in this context
is Cloud Manufacturing (CM). Li and Zhang initially pro-
posed the concept in 2010 Zhang et al. (2010). However, the
manufacturing-as-a-service (MaaS) concept was first seen
in literature in 1990 by Goldhar and Jelinek (1990). MaaS
does not target controlling the factories or performing real-
time computing. Instead, it provides access to a service pool,
where participants find and choose the requested services.
It is defined as a parallel distributed system where all kinds
of users involved throughout the manufacturing lifecycle are
serviced, on-demand Zhang et al. (2010).

Since the operation principle of Cloud Computing is
mostly through the Internet, reactions to the requests use a
best-effort approach. To perform (near) real-time operations,
the computation needs to be close to the field or device tier. A
layer is a logical organisation of a set of services, devices, or
software with the same/similar specific functionality, mainly
defined for the abstraction of tasks. A tier is, however, a
physical deployment of layers for scalability, security and to
balance performance Lhotka (2005). The paradigm, which
adds an additional tier between the Cloud and the field tier,
and moves the computational power near the user as close as
possible is called Edge Computing (EC) Gezer et al. (2018).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-021-01760-9&domain=pdf
http://orcid.org/0000-0003-1988-1162

2302 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Fig. 1 Automation pyramid and where Edge Computing is located at

In the automation domain, this tier is located where the Infor-
mation Technology (IT) meets Operational Technology (OT)
as seen in Fig. 1. Different researches define EC as Edge
Cloud, Fog Computing or Cloudlet. We believe that these
terms are interchangeable, and throughout this paper, only
EC will be used. EC targets reduced latencies and high QoS
that are hindered by the Cloud solutions, mainly due to rely-
ing on the Internet connection. According to Shi et al. (2016),
EC also reduces privacy and security risks of the confidential
data being exposed over the Internet. In a networked system,
most of the data is generated in the device tier. Another objec-
tive of the paradigm is to reduce the traffic of generated raw
data from field tier to the Cloud. As EC has computing power
at the field tier, it can preprocess the raw data.

In our previous paper on EC Gezer et al. (2018), we pro-
posed a conceptual software reference architecture for Edge
Servers, to realise a real-time capable server framework,
together with its requirements and enablers. The objective
of this architecture was to enable seamless execution of real-
time tasks in a resource-aware Edge Network. The partici-
pants of the networkwere responsible for finding the bestway
and location to execute the requested tasks without causing
them to miss their deadlines. The work in the previous paper
was only theoretical and conceptual. This paper presents the
progress since then; the decision algorithms, how the soft-
ware components and Edge Servers interact with each other,
their realisation, and implementation. All calculations and
internal computations are considered to have no overheads.
The realisation of this architecture is called Real-Time Edge
Framework (RTEF). Following scalability, interoperability,
extensibility, and collaboration features of the architecture,
RTEF also has multi-user support. The paper also introduces
a new novel preemptive and online scheduling algorithm
called Non-preemptible And Preemptible Aperiodic TAsk
(NAPATA) scheduling, which is integrated into the RTEF to
decide on the execution order with negligible overhead and
lowcomplexity. The paper concludes after validating the con-
cepts for their correctness after realisation/instantiation.

Related work

With the rise in popularity of the Internet and its derived
technologies such as the renowned Internet of Things (IoT),
there have been initiatives on finding new ways to increase
usability. Most notably, Cloud Computing and Grid Com-
puting can be given as two examples to the game-changers.
Additionally, new terms such as Fog and Edge have emerged.

The origins of EC go back to 1999, where Akamai Tech-
nologies introduced Content Delivery Networks (CDN) to
increase web performance (Dilley et al. 2002). They cached
contents at different locations, aiming at reduced requests on
the site’s own infrastructure and faster response times for the
users, by responding to the requests using nearby servers.
Noble et al. (1997) first demonstrated the potential of EC by
realising a speech recognition scenario on resource-limited
devices. They offloaded the computation to a nearby server,
and the results delivered an adequate performance. In 2014,
Chang et al. (2014) proposed a new model for Cloud Com-
puting, with the name Edge Cloud. Chang et al. then tested
the performance of their architecture with indoor localisation
application to evaluate latency, and with video monitoring
application to measure the bandwidth. Their results showed
a better performance compared to the existing Cloud solu-
tions.

There exist several works done for computation and con-
trol in the Cloud as well (Kretschmer 2016; Givehchi et al.
2014; Goldschmidt et al. 2015). Realising an unproven con-
cept in real environments without testing and validating is
costly in terms of engineering time and monetary expenses.
Failure in the design may also be disastrous. Nevertheless,
using virtual environments that can simulate several hours
of real environment tasks in a couple of minutes, save much
time. CloudSim is a framework to model and simulate Cloud
Computing infrastructures and their services. It supports
modelling and simulation of large scale Cloud data centres,
their application containers, costs as well as power consump-
tion CLOUDS Laboratory (2019). One simulation tool to
evaluate the reliability of the system is called iFogSim and
implemented byGupta, Dastjerdi, Ghosh, and BuyyaHarshit
et al. (2016). It is based on CloudSim and allows the addition
of fog or Edge Devices, creation of topologies and evalua-
tion of resource management policies focusing on latencies.
Sonmez, Ozgovde, and Ersoy introduced another simulator
calledEdgeCloudSimSonmez et al. (2017). It adds amobility
model and non-fixed delays into the network which is fixed
in iFogSim. However, none of the simulators is targeted for
real-time applications.

Mohamed et al. (2017) proposed a Service-Oriented Mid-
dleware (SOM) for Cyber-Physical Systems (CPS). It pro-
vides a service-based infrastructure to develop and operate
CPS applications. The approach also enables the integration
of CPS with Cloud and EC. Pallasch et al. (2018) introduced

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2303

a concept to utilise Cloud and EC for industrial control. They
refer to the devices connected to field tier devices as Edge
Devices. Their setup uses Amazon Web Services (AWS)
Cloud services for non-real-time, but computing-intensive
tasks. One Edge Device (Edge Server in this work) can
directly access to the AWS. This device has several sensors
serially connected to it. Also, two robots and two IoT devices
(that also act as Edge Devices) which connect the robot con-
trollers with the Edge Device are connected. The research
shows that industrial control using EC approach is a feasible
solution, in terms of aggregating and processing the collected
data, and feedback control loops in the shop floor. However,
even though the setup has a network of Edge Devices, the
IoT devices closest to the robots can work only with the Edge
Devices attached to them, and Edge Devices do not provide
task offloading. They act as gateways to forward the task to
the Cloud and return the response to the original requester.

Vick et al. (2015) introduce a virtualised Robot Con-
troller (RC) and avirtualisedProgrammableLogicController
(vPLC), to enable outsourcing control functions of an indus-
trial robot. They created Virtual Machines (VMs) to realise
PLCs and a VM in the Cloud to perform control operations
that require soft real-time capability. Horn and Krüger from
the same group then test the feasibility of the novel architec-
ture Horn and Krüger (2016). They performed this test using
three different experiment setups. The results showed that the
setup with the direct connection has the lowest latency. Nev-
ertheless, using a direct connection with the solution is only
possible with modern robots and machinery, which support
communication interfaces such as OPC-UA.

Elbamby, Bennis, and Saad Elbamby et al. (2017) inves-
tigated the problems of the EC and a cache-enabled Edge
Network. They proposed a clustering method to group end-
users with the same interests on tasks. The idea was to track
end-users and the popularity of the tasks that they request
and to compute the results in advance. The solution was
simulated, and the results gave 91% better latency results
with guaranteed reliable computations. It allowed end-users
to offload their tasks to any Edge Server in their vicinity.
However, the servers were neither allowed to offload the
tasks to each other nor the Cloud. Similarly, Sonmez et al.
(2017) evaluated the performance of different three possible
generic EC architectures: single-tier, two-tier, and two-tier
with a load balancer. The evaluation analysed the perfor-
mance of each architecture over wireless communication,
and it was performed using a simulator based on CloudSim
CLOUDS Laboratory (2019). The results showed that the
two-tier setup with a load balancer had given the best results.
As its name suggests, the architecture needed a load bal-
ancer which the task is first directed to. The load balancer is
responsible for transferring the task from the pool of Edge
Servers to one Edge Server. The scenario had a latency-
intolerant application, but it did not carry out a real-time use

case. In the real-world, failure in the load balancer would
cause the whole network to stop servicing. Some compa-
nies and organisations proposed reference architectures in
the domain to raise the interest and standardisation process
of EC (IBMCloud Architecture Center 2017; OpenFog Con-
sortium 2017; EdgeX Foundry 2020; VMware 2017). Last,
the work by Yin et al. (2020) uses an approach similar to this
paper by considering the real-timeliness of tasks and avail-
able resources to determine the location to execute. However,
only the resources of the current server are considered, and
the offloading is performed only to the Cloud, not to the
neighbouring Edge Servers.

Our proposed framework in this paper deals with prob-
lems that Cloud Computing has and combines the benefits
of the existing work. On top of the state-of-the-art research,
the proposed work enables seamless execution of real-time
tasks within a created Edge Network, by abstracting low-
level decisions and enabling offloading in case of resource
unavailability. The framework can be used to execute real
tasks or as a stand-alone simulator, with its dummy load
generating features. The work brings several technologies
together, such as IoT, grid computing, virtualization, and col-
laborative computing. To the best of our knowledge, there are
no existing frameworks or scheduling algorithms that feature
the specifications of our work.

Architecture overview

Rapid changes in industry and customer requirements need
agile advancements due tomarket demands and shorter prod-
uct cycles Feldhorst et al. (2009). With the idea of flexible
and scalable servicing, EC targets simplifying the execution
of complex tasks, without limiting their usability. To over-
come the problems stated in “introduction” Section, an Edge
Network containing Edge Servers and End Devices using an
Edge Topology is going to be discussed. However, before
advancing, it is worth clarifying the terms to avoid ambigu-
ities. These terms are explained further in this section and
summarised in Fig. 2.

Edge Servers are physical hardware and communicate
with the End Devices and other Edge Servers using a
connection-oriented communication protocol. They are regu-
lar computers, but converted into Edge Servers after they run
an instance of the RTEF, developed based on the reference
architecture explained in this section. If they are formally
verified for real-timeliness, then, they can execute real-time
jobs. Whether they are real-time capable or not, the servers
will work collaboratively to handle the requests. A source or
destination device in a network is called an End Device The
Computer Language Co Inc. (2021). An End Device in this
paper is an end-user device that requests the execution of jobs
through Edge Servers. It may have computing power or only

123

2304 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Fig. 2 An example Edge Network and its participants. Dashed arrows
show best-effort communication due to the behaviour of Cloud Com-
puting, whereas solid arrows show real-time capable communications

provides input to the Edge Server. The only requirement of
being anEndDevice is to have a network interface to commu-
nicate with Edge Server(s). In the architecture, End Devices
communicate with the servers using socket communication.
An End Device can be a sensor, smart sensor, machine, com-
puter, mobile phone, or worker assistance glasses. They are
allowed to have connections to multiple Edge Servers, but
they can request a job only from a single server at a time.

An Edge Network in this work is the combination of Edge
Servers andEndDeviceswhich communicatewith each other
to request jobs and/or respond to jobs. Participant or node
terms will also be used to refer to the Edge Servers and End
Devices in the Edge Network. Edge Topology term in this
research is the creation of a network structure by linking
Edge Servers and End Devices in the Edge Network. The
research does not limit the topology, and any available com-
binations can be used. The network communication between
the Edge Servers are out of scope. Therefore, it is assumed
that the connection between participants are using real-time
communication standards.

A service is a piece of software that is reusable to perform
a specific work. In this paper, a service is a wrapper of a
program/software/command (PSC) that defines its behaviour
and how it should be executed. One PSC may have several
service definitions, eachwith a different execution behaviour.
A program cannot be executed on an Edge Server if it does
not have a service definition for it. A service has several
parameters to be set, based on the software behaviour such
as execution duration, relative deadline, Central Processing
Unit (CPU) execution utilisation in percentage, and CPU
affinities. These parameters will be discussed in further detail
in “realization” Section. The definition of the task is ambigu-
ous. It may mean a process, a thread, the process of a thread,

or a set of threads. In this work, tasks are the individual run-
ning instances of services. They perform requests that are
carried out through services. Tasks may request the execu-
tion of a single command or program or multiple processes.

The architecture is designed to be open, operating system
(OS) neutral, and to have no proprietary standards which
can hinder the usability or create vendor lock-in problems.
It is designed to be flexible, and scalable, allowing new
servers to be connected with minimum effort. The realisa-
tion of the architecture for validation is done using the Java
programming language and called Real-Time Edge Frame-
work (RTEF). The participating End Devices in the Edge
Network are abstracted from the lower-level operations by
the introduced standard Application Programming Interface
(API) methods by the architecture.

From the architecture perspective, there are two types of
users: (1) framework users, or operators, who are allowed
to set up the Edge Network, configure Edge Servers, and
add/remove services, (2) end-users that are End Devices, or
persons who use these End Devices. The following steps are
endorsed for a successful setup for the operators:

(1) Deploy and run theRTEFon the servers that are expected
to participate in the network.

(2) On these servers, install the user PSCs that should be
available for End Devices.

(3) Create services to define the execution behaviour of each
installed PSC.

(4) Make these services private or leave public, deciding
whether they should be accessible by other Edge Servers
or not.

(5) Connect Edge Servers with each other to create the
desired Edge Topology.

The steps above summarise the preparation phase of the
Edge Network. After the network is set up, the End Devices
establish connections to the Edge Servers. At any time later,
new Edge Servers can be introduced to the network. Dur-
ing establishing connections between the Edge Servers, each
server shares all known resources andpublic services (includ-
ing its own) with other participants automatically, to collect
resource information of the network. The exchange is per-
formed using a set of messages during the handshake phase.
These will be explained in the upcoming subsection. From
the end-user perspective, the setup is completed when the
desired connections between End Devices and Edge Servers
are established. Thenetwork is then ready for accepting tasks.

An End Device can request a task execution from any
Edge Servers that it is connected to. However, the task
will be executed on the most suitable Edge Server after
the collective decision of other Edge Servers. This deci-
sion is made by using an algorithm in the Edge Server by
evaluating whether the task completes its execution until its

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2305

defined deadline. This algorithm uses a satisfaction equation
explained in Gezer and Wagner (2020). The chosen Edge
Server to offload can have a direct or indirect connection to
the original requester. No matter how they are connected,
if the task sends a response upon execution, it will also be
delivered back to the requester using the same connection
path.

Requested tasks run the PSCswhose execution behaviours
are defined by their services. These services can explicitly
set the worst-case execution time (WCET) that is the longest
execution duration, relative deadline, CPU affinity, and CPU
execution utilisation for each PSC. Once an Edge Server
receives the request, first the availability of this PSC within
the network is queried. Based on the behaviour of the service
such as its deadline, also considering the current server, the
most suitable server in the closest distance is chosen. Once
a server is chosen, it means that this task can be executed
on this server without missing its deadline. However, if the
server has other tasks that are already running, additional
precautions must be taken. First, the server decides whether
downscaling either in the new task, running tasks, or in both,
due to availability of the CPU is necessary. When necessary,
the possibility of downscaling the CPU execution utilisations
is calculated. If downscaling is feasible, then the new task
is executed with the newly calculated execution utilisation.
Since WCET (denoted as x), relative deadlines (denoted as
d, where x ≤ d) and CPU utilisation percentage during exe-
cution denoted as u (where 0% < u ≤ 100%) of tasks are set
during service definition andknownapriori, if the newexecu-
tion utilisation of a task i is u′

i , where 0% < u′
i ≤ 100%, the

new execution time x ′
i becomes

xi ui
u′
i
. If x ′

i ≤ di holds, then

the new execution utilisation does not cause task i to miss its
deadline. The worst-case execution utilisation (WCEU) c′′

i
can be calculated by replacing x ′

i with di and using the same
equation, for each CPU that the task has an affinity to. If the
sum of execution utilisations of all running tasks, including
the requested task, does not exceed 100% at each CPU, then
the tasks can run without further action. If not, this procedure
is repeated for all tasks. If this iteration also not successful,
the tasks need to be scheduled. If scheduling still does not
solve the problem, the task offloaded to another Edge Server
that has a public service defined with the same name.

According to arrival patterns, tasks, in general, are clas-
sified in three categories: (1) periodic tasks that arrive in a
constant rate and have infinite sequence of identical activi-
ties, (2) aperiodic tasks that are usually event-driven and have
no bound inter-arrival times, and (3) sporadic tasks, that are
aperiodic, but with bounded inter-arrival times Audsley et al.
(1991). These types define whether a scheduling algorithm
can be applied to them or not. Depending on the purpose
of the tasks, their wrapper services can have different types.
These types are explained below:

Table 1 A list of example PSCs with different service types

PSC Service type WCET Period Relative deadline

A Legacy 3 N/A 6

B Simple 3 N/A 6

C Simple periodic 3 6 6

Legacy

Legacy serviceswrapaperiodic non-preemptiblePSCs.Non-
preemptible means that preemption by other (especially with
higher priority) tasks is not possible Berry (2007). Such tasks
cannot be paused. Pausing such tasks means that their execu-
tion is terminated; thus, they cannot continue from the paused
state. If resuming is requested, the tasks start their execution
from their initial state.. They also reset their former execution
time. Once the execution is completed, its task is removed.

Simple

Similar to Legacy services, Simple services wrap aperiodic
tasks. Different than the Legacy services, the PSCs that are
wrapped in this category can be paused. Some examples are
the PSCs that read continuous or streaming data (e.g. video
application). Once they are started, pausing does not cause
them to reset the execution time until that point. Resuming
these tasks enables them to complete their remaining time.

Simple periodic

Simple Periodic services are repeating Simple services. As
their name suggests, they wrap periodic tasks. They are usu-
ally used, e.g. to get status from a sensor or device, or for
control loops. Since they are expected to arrive always at the
specified intervals, the scheduling algorithm keeps enough
resources allocated for these tasks at all times. Tasks in this
category are also preemptive. Pausing their instances keeps
their remaining times untouched, and they can be resumed.

Table 1 lists three PSC examples, each defined with a
different type of service. Assume that A, B, and C are inde-
pendent PSCs having the same WCET and running alone on
different computers. As described, Legacy and Simple ser-
vices do not have periods, as their inter-arrival times are not
known a priori. Then, if they are preempted at time t = 2
and resumed at t = 3, they are expected to run as illustrated
in Fig. 3. As seen from the figure, when preempted, the pre-
vious runtime of A in Legacy service type is lost, causing
it to run another three units until its completion at t = 6.
B in Simple type remembered the runtime, causing it to run
only one more unit until completion at t = 4. Similarly, C in

123

2306 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Fig. 3 An example of the execution behaviours of independent PSCs
in Legacy, Simple and Simple Periodic service types on different com-
puters when they are preempted at t = 2 and resumed at t = 3

Simple Periodic completed execution at t = 4 and its second
period started at t = 6, idling the CPU for two units of time.

While defining services, it is essential to know the char-
acteristics of the PSC that is to be wrapped. For example, the
type, duration, and deadline of the PSCmust be knownbefore
creating its service. These parameters are used to estimate the
schedulability as well as for the decision of offloading loca-
tion. The required parameters are explained in “services”
Section.

If the chosen Edge Server cannot directly execute a task
due to unavailable resources, it needs to schedule the incom-
ing task, or the running tasks. Depending on the service type,
RTEF uses two types of scheduling algorithms: (1) Earliest
Deadline First (EDF) scheduling for Periodic services and (2)
Non-preemptible And Preemptible Aperiodic TAsk (NAP-
ATA) scheduling for Legacy and Simple services. Both of
them are online, preemptive, and dynamic priority schedul-
ing algorithms that can be used to schedule real-time tasks.
NAPATA scheduling is a novel scheduling algorithm that
has a negligible overhead and low complexity. Details on the
algorithm will be explained in “stscheduler” Section. EDF
and NAPATA scheduling algorithms are implemented for
single CPU systems. For multiprocessor Edge Servers, the
service creator is responsible for setting the most viable CPU
mask during design. An Edge Server does not always receive
requests for the same type of service. When running tasks
with different types, an additional algorithm for scheduling is
required. Such cases are solved by introduction of scheduling
server algorithms (Sprunt et al. 1989; Lehoczky et al. 1987).
At the moment, the RTEF does not implement any schedul-
ing servers and requires that the combination of tasks with
different types are isolated using different CPU affinities.
Nevertheless, this leaves an open door for future work.

The following section will explain the novel scheduling
algorithm used in the framework.

NAPATA scheduling

Limited hardware resources require a fair distribution of
resources among all tasks on an Edge Server. The orches-

Fig. 4 Calculation of the remaining execution time (duration) for a task
Ti at time t

trator that prevents resource starvation, enables fair resource
usage, and switches the turn of the tasks is called scheduler.

As mentioned earlier, three types of tasks are defined in
the computing domain: periodic, aperiodic, and sporadic. For
periodic tasks, one of the scheduling algorithms developed
for periodic tasks canbeused (e.g. EDFScheduling). For ape-
riodic tasks, Least Slack Time (LST) Scheduling can be used.
However, LST cannot optimally schedule non-preemptible
tasks. A non-preemptible task is a task that cannot be pre-
empted if a higher priority task is requested. This thesis also
aims to work with legacy tasks and execute them without
missing their deadlines. It also aims to improve the effi-
ciency by enabling a combination of non-preemptible and
preemptible tasks to run together. This requires the intro-
duction of another scheduling algorithm. This algorithm is
called Non-preemptible And Preemptible Aperiodic TAsk
(NAPATA) scheduling.

NAPATAscheduling provides an online, dynamic priority,
and preemptible scheduler with negligible overhead, and it
uses counting sort for ordering the tasks.UnlikeLSTschedul-
ing,NAPATAscheduling canworkwith non-preemptible and
preemptible tasks together. Instead of slack time, NAPATA
scheduling uses only the remaining times of the active tasks.
If a non-preemptible task needs to be preempted, the algo-
rithm can terminate it if it can still be completed on time
and start it from the beginning to complete execution. This
section will elaborate how the algorithm works.

Let Ti be the only task running on an Edge Server. Also,
let xi be the worst-case execution time and di be the relative
deadline of this task. On an idle server N with enough com-
puting power, if xi ≤ di holds, this task can be executed on
this server before its deadline. If the task starts at the time
ai , then, the absolute deadline of the Ti becomes di + ai .
Nevertheless, the inequality for feasibility does not change
as ai on both sides cancel themselves out (ai + xi ≤ di +ai).

At any time t , the feasibility may be rechecked, regardless
of the need. As seen in Fig. 4, if the feasibility at the time t is
to be calculated, the remaining execution time (duration) of
the task can be used, which should be between t and di + ai .

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2307

Fig. 5 Calculation of the remaining execution time of a preemptible
task

If ri is the runtime since ai and until t , andmi the remain-
ing execution time of the task until completion, Eq. 1 and 2
can be used to find them out.

ri = t − ai (1)

mi = xi − ri (2)

xi ≤ di can also be written in terms of t as seen in equa-
tions 3 to 7.

t = ri + ai (3)

ri = xi − mi (4)

inserting ri in Eq. 3

t = xi − mi + ai (5)

and solving for xi

xi = t + mi − ai (6)

yields

t + mi ≤ di + ai (7)

However, if tasks are preemptible, equations 1 and 2 may
not reflect the actual runtime or remaining time, as the task
may be preempted at any time (ki, j) between ai and di + ai .
This case is illustrated in Fig. 5.

In this case, actual runtime Ri of the task Ti until time
instance t from the first arrival time ai can be calculated as
seen in Eq. 8.

Ri =
t∑

j=0

ri, j =
t∑

j=0

(ki, j − ai, j) (8)

Then, the remaining execution time Mi for task Ti
becomes:

Mi = xi − Ri (9)

If there is more than one task request on an Edge Server,
at each time instance t where a task request is made, it is
necessary to check if any of the tasks miss their deadlines. In
this scenario, the algorithm first sorts the active tasks at t by
their absolute deadlines (di + ai). Similar to EDF schedul-
ing, the earliest deadline receives the highest priority. Then,
starting from the highest priority task, for each task, the algo-
rithm sums up the remaining times of the tasks with the same
or higher priority, adds the current measurement time t , and
compares the sum with the absolute deadline of the current
task. If the sum is less than or equal to the deadline, the task
is schedulable at time instance t . If the sum is greater than
the deadline, the algorithm stops as the task is not schedu-
lable. Based on inequality 7, the feasibility algorithm Fi for
task Ti is summarised in Eq. 10. The algorithm calculates
the schedulability of task Ti with N running tasks at time t ,
whose priorities are equal to or higher than task Ti . The left
side of the inequality represents the minimal time required
to execute the task Ti .

Fi = t +
N∑

n=1

Mn ≤ di + ai (10)

Let task Ti = {ai , xi , di } have an arrival time of ai , an
execution time (duration) of xi , and a relative deadline of di .
Also, assume two tasks T1 and T2 as seen in Eq. 11 arrive at
t = 0.

T1 = {0, 2, 5}
T2 = {0, 3, 4} (11)

If they were periodic tasks whose deadlines are equal to
their periods, using the feasibility equation for EDF given in
Liu and Layland (1973) would yield:

x1
d1

+ x2
d2

≤ 1 (12)

2

5
+ 3

4
≤ 1

23

20
≤ 1 (13)

As inequality 13 does not hold, according toEDFSchedul-
ing, the tasks are not schedulable. However, if these tasks are
not periodic, Eq. 10 can be applied to test the feasibility. If
the tasks are in aperiodic type, they run only once, and they
will not be requested again in a predictable time. For T2 hav-
ing a higher priority than T1, first, T2 will be calculated. Both
tasks request execution at time zero (t = 0). The calculation
of feasibility F2 for T2 is shown in Eq. 14.

F2 = t + (x2 − R2) ≤ d2 + a2

F2 = 0 + (3 − 0) ≤ 4 (14)

123

2308 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Table 2 An example set of tasks for the Non-preemptible And Pre-
emptible Aperiodic TAsk (NAPATA) scheduling with mixed types

Task a x d d+a Type

T1 0 2 8 8 Non-preemptible aperiodic

T2 1 1 3 4 Non-preemptible aperiodic

T3 2 2 3 5 Preemptible aperiodic

T4 1 1 3 4 Preemptible aperiodic

Since the inequality 14 holds, the calculation is repeated
for other tasks (in this case T1) that are requested at t = 0.
Calculation of F1 for T1 will also require T2 values as T1 has
a higher priority than T1.

F1 = (0 + (2 − 0)) + (0 + (3 − 0)) ≤ 5 (15)

Inequality 15 also holds. This means that these tasks can
be scheduled if they are known as aperiodic.

One important remark here is that, as mentioned, pre-
emptible tasks can continue fromwhere they left off, keeping
their remaining times as they are preempted. However, once
non-preemptible services are preempted, they are terminated.
Hence, their running time resets - also their remaining times.
The following example will demonstrate another scenario
with different service types.

Assume that the tasks arrive at an Edge Server as shown
in Table 2.

Unlike the first example, this example cannot directly use
the inequality 12, due to arrival times of tasks being different.
Moreover, the tasks are also not periodic. However, NAPATA
scheduling can be used to check whether they meet their
deadlines.

There are three arrival times: 0, 1, and 2. The algorithm
will be repeated at each arrival for each task that is active in
these times, whether it is in running or preempted state.

For t = 0

F1 = 0 + (2 − 0) ≤ 8 + 0 (16)

At t = 0 only T1 is active, and the inequality 16 holds.
Then, T1 is executed until t = 1, since there is another arrival
at that time point. At t = 1, T1, T2, and T4 are active. Sorting
them by their absolute deadlines gives the following order:
T2, T4, T1. Until this point, T1 ran for one unit, and one unit
execution remains, however, there are higher priority tasks
which require T1 to be preempted. T1 has the non-preemptible
type, meaning, when preempted, at each resumption, the
remaining time resets to its original execution time. Other
tasks have just arrived; hence they have remaining times
equal to their execution times. T2 and T4 have equal pri-
orities. Any of them can be picked first, but their remaining
times must be added when checking each of them. Starting
from the highest priority:

Fig. 6 Resulting scheduling diagram of theNAPATA scheduling exam-
ple

For t = 1

F2 = 1 + (1) + 1 ≤ 3 + 1 (17)

3 ≤ 4

F4 = 1 + (1) + 1 ≤ 3 + 1 (18)

3 ≤ 4

F1 = 1 + (2) + 1 + 1 ≤ 8 + 0

5 ≤ 8 (19)

Inequalities from 17 to 19 hold. In this example, T2 is
chosen to be executed until t = 2.

At t = 2, T3 also arrives. At this time point, T2 com-
pletes execution, and the server contains three active tasks.
Similarly, sorting the tasks by their absolute deadlines gives:
T4, T3, T1. Following the algorithm:

For t = 2

F4 = 2 + (1) ≤ 3 + 1 (20)

3 ≤ 4

F3 = 2 + (2) + 1 ≤ 3 + 2 (21)

5 ≤ 5

F1 = 2 + (2) + 2 + 1 ≤ 8 + 0

7 ≤ 8 (22)

Inequalities from 20 to 22 also hold. Since there are no
more task arrivals, using the algorithm, it can be ensured that
the tasks will be scheduled on time. The resulting scheduling
diagram is shown in Fig. 6.

If T1 were to be a preemptible type instead of non-
preemptible, inequality 22 would be written as shown in
inequality 23 and T1 would be finished at t = 6 instead
of t = 7.

F1 = 2 + (1) + 2 + 1 ≤ 8 (23)

6 ≤ 8 (24)

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2309

Preemptible tasks always satisfy Mi ≤ xi condition. As
seen in Eq. 23, the time required to execute T1 is less than
the value in Eq. 22.

The following section will explain how the concept using
this scheduler is implemented.

Realisation of the framework

“concept” Section explained how architecture should behave
when implemented. This section will explain how the RTEF
is realised to fulfil these requirements. To actualise a frame-
work that can execute real-time tasks, the OS and hardware
that theOS is running on,must be real-time capable. Success-
ful testing of the hardware with random or long-running tests
does not make it completely real-time. Formal verification is
necessary to guarantee a real-time execution.

The implementation assumed that RTEF is working on
an ideal and formally verified hardware that runs a real-time
OS. An example implementation based on the architecture
is realised using the Java programming language and run in
simulation mode, without physical hardware.

Communication

An Edge Network following the architecture is set up only
when it has at least one End Device and Edge Server con-
nected to each other. If there are multiple Edge Servers, the
creation of the network also requires connections established
between them, to benefit from their computing resources.
After the connection is established, they introduce them-
selves to each other by exchanging some set of messages
using socket communication. To have an ordered and guar-
anteed end-to-endmessage delivery, the frameworkusesTCP
to exchange messages among the participants. The introduc-
tory communication flow - handshaking - is both valid for
End Device to Edge Server and Edge Server to Edge Server
communication, and it is completed when the connection ini-
tiator logs in. The flow is illustrated in Fig. 7, and explained
further below.

Once a connection is established, the connection initia-
tor is considered as a client. Therefore, when a connection
between two Edge Servers is established, the connecting
Edge Server also acts as a client. As seen in Fig. 7, after
the connection is established, the client starts the handshake
by sending a message to an Edge Server. In this case it is
a plain “HELLO”. Then, the Edge Server responds with an
“OLLEH:”, immediately appending its ID and name. Next,
the client acknowledges this message by sending its ID start-
ing with “ID:”, and adding its name to be used in informative
messages. After that, the Edge Server sends all known Mil-
lions of Instructions Per Second (MIPS) value list of all
known servers, separating each server’s core count with “+”

Fig. 7 Initial communication sequence diagrambetween twoEdgeNet-
work participants (End Device to Edge Server or Edge Server to Edge
Server). Messages shown using dashed arrows are only sent if both ends
are Edge Servers

and appending “@” to specify the server, and comma “,” to
separate each server.

Following the ID exchange, if the communication is
between two Edge Servers, then, the client responds with
known MIPS values and also sends known available public
services starting with “SERVERASCLIENTSERVICES:”,
followed by service parameters, separated by at sign “@”
to specify the located server IDs, and separating these public
services by comma “,”. An example of this format can be
given as:
“SERVERASCLIENTSERVICES:serviceName1+direction
1+ deadline1+mips1+CPUutil1+CPUmask1@serverId1@s
erver-IdX,serviceNameX...”. The Edge Server receiving this
list updates its known service list along with their locations,
broadcasts this information to all other connected servers,
and responds to the client with updated public services, using
“SERVERSERVICES:” message, and following the same
format. If the communication is between an End Device and
an Edge Server, then, the service exchange is skipped, and
the End Device completes the pre-login process by sending
“RDY” to the Edge Server. Services can define the same
PSCs with different parameters; therefore, it is mandatory to
exchange this information for decision making while com-
puting the optimal location for the task execution.

After the pre-login process is completed, the Edge Server
asks for username and password to authorise the client to
allow further commands. The client first sends its username,
then sends the password associated with this username. If
the authentication is successful, the server sends an “RDY”
message, enabling access to commands. The logged user can
be either a regular user or an operator. A regular user can
only execute client-side commands, read-only commands on
the server, and request tasks. Operators, however, can execute
all commands. Users in Edge Servers are local, meaning each

123

2310 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Table 3 Some commands that can be executed on Edge Servers that
utilise RTEF

Command Description

!connect,IP,PORT Connects to the edge server at IP:PORT.

!disconnect,ID Disconnects from the server ID.

ID,COMMAND Executes a remote command at server ID.

ID,requesttask,
servicename

Requests a task on a remote server ID.

server must define their own users along with their roles to
enable execution.

Components that enable communication (Fig. 7) and
play a role in task execution (Fig. 9) will be detailed in
“components” Section. The following section will explain
the minimal mandatory commands that participants should
implement.

Commands

One of the objectives of RTEF is to abstract low-level opera-
tionswithout limiting the functionality. APIs allow backward
compatibilities and provide standardised commands. These
commands prevent incompatibilities with components when
their behaviours or functionalities change. The RTEF intro-
duces several commands to be used both by the End Devices
and the Edge Servers that participate in the Edge Network.

An Edge Server accepts two types of commands: (1)
client-side commands and (2) remote commands. Client-
side commands are executed on the server itself, whether
a connection is established or not, using the interactive ter-
minal. However, remote commands are executed on an Edge
Server that is connected to. Client-side commands start with
an exclamation mark “!” directly followed by a command.
Remote commands start with the remote server ID, then the
command, and the arguments. A comma “,” separates each
argument of the command. The minimal required client-side
commands and remote command to request a task are listed
in Table 3.

Services

As explained in “concept” Section, services wrap the PSCs
that are installed on the Edge Servers and define how they
behave when executed. The service creator must make sure
that the behaviour perfectly suits to the PSC, and it is always
the same. One PSC, however, can also be wrapped with
more than one service, each with different behaviour. The
RTEF introduces the following parameters for the software
behaviour: Direction defines if the service sends a response
(TWO) or only receives input (ONE). The Type defines
the service type, that is either Legacy, Simple, or Simple

Periodic. Worst-Case Execution Time (WCET) specifies the
expected runtime of the software in worst-case conditions.
Its given in millions of instructions (MI) as unit. Relative
deadline limits the latest time that the software is allowed
to run and it is converted to the absolute deadline when the
software is executed as a task. This value is written in terms
of seconds. CPU utilisation is the execution utilisation or
CPU load in percentage that the PSC is allowed to use. CPU
mask defines the list of granted CPUs for this software. It
is also known as CPU affinity. Thread per core characterises
howmany threads are created on each allowed CPU. Assume
that the CPU utilisation is 100%, there are 2 allowed CPUs,
and thread per core value is 2. CPU utilisation for each core
will be 100%, allocating 50% utilisation for each thread in
each core. However, the WCET will not be affected. Public-
ity is a boolean value to determine if the service is visible
from other Edge Servers and public by default. Command
links the PSC that is defined by the service, and executed
when task is started. Name is a user-friendly text to be used
to request a task, logging in the server console. There is also
a memory parameter which is not used at the moment to
reduce the complexity of the problem. It is quite challenging
to determine the memory used by a running PSC.

Services expect that the PSC and its threads adopt the fol-
lowing assumptions: (1) All threads of the PSCs start and
stop at the same time as the main process, (2) threads do
not alter low-level system configuration that may affect their
execution behaviours, and (3) PSC is independent of other
running PSCs, e.g., when preempted, it does not cause a crit-
ical section issue.

Tasks

Tasks are the instances of services that track the PSC of
each request. Tasks cannot change service parameters per-
manently, but only temporarily, as long as they are active.
Tasks implement a pausemethod that pauses a PSC’s thread
group if they are running, a resume method that resumes the
paused threads and a stop method that terminates its execu-
tion. Services work on tasks instead of directly dealing with
the PSC that is tracked. A PSC can be linked with multiple
services, each defining a different behaviour. For example,
two services can be created for a PSC, one for running it
as a single-threaded process and the other one with multi-
threaded, by modifying its command line parameter.

Tasks in the proposed architecture have four states: (1)
active or requested when they arrive, (2) started or running
when the execution of the linked PSC begins, (3) paused or
preempted, when a higher priority task is executed, and (4)
terminated, when their execution is complete or interrupted.
As soon as a task instance is created, a unique identifier is
assigned. Once a task is terminated, it is no more accessible.

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2311

Fig. 8 Software components of the proposed Edge Server architecture
in Gezer et al. (2018) and their simplified communication

Components

The proposed architecture in Gezer et al. (2018) embodies
the ideas of EC and (near) real-time execution of tasks. The
realisation of the entire framework to meet the requirements
incorporates many components that work collaboratively. In
the following section, these components shown in Fig. 8
will be briefly recalled and their implementations will be
explained.

Configurator

RTEF configures itself automatically as soon as it is started.
However, manual configuration and tweaks may be neces-
sary during runtime. This component does automatic and
manual configuration and detects other Edge Servers in the
Edge Network. Additionally, the Configurator also prints log
messages into the console.

An Edge Server running RTEF requires a minimum of
four configuration keys to function. These values are:

• ID: A unique ID of the Edge Server, which is going to be
used in the Edge Network.

• PORT: A port number of the Edge Server, which will
listen for connections and commands during TCP socket
communication.

• NAME:A user-friendly name to be displayed on the con-
sole and logs.

• TOPOLOGYFILE: The path to a file that specifies the
Edge Network Topology. If empty, it is created as the
connections are established.

TOPOLOGYFILE is a simple text file that contains infor-
mation about the participants in the Edge Network. A hash
“#” character at the beginning of each line is a comment.
Information about an Edge Server or an End Device on each
line should have the following format:

Node, Unique Node ID, Node Name [, Free Text]

To add a connection between participants for creation of
Edge Topology, the following format is used:

Connection, From Node ID, To Node ID,

Delay [, Free Text]

Additionally, Configurator also accepts a reserved AUTO-
CONNECT key, which takes true or false value. If true, the
TOPOLOGYFILE is read, and pre-defined connections are
established, if possible. To achieve that, the Node lines must
be slightly modified. If the Free Text field is replaced with
@IP:PORT, then the servers establish their previous con-
nections provided that the target Edge Servers are up and
running.

Server

Each Edge Server implements a TCP server to communicate.
This component is responsible for performing pre-login com-
munication. It also calls the relevant components by parsing
the received commands, which can also be called API meth-
ods. End Devices or Edge Servers connected to another Edge
Server also send their commands through this server. It keeps
the list of all connected clients and keeps them updated when
a change in resource usage or services are detected. If a con-
nection is disconnected, it is automatically re-established.
Some of the accepted commands by the server are explained
in “commands” Section.

Message router

Receives the commands and redirects them to their respon-
sible components or Edge Servers. If the command is a task
request from an End Device, it communicates with Resource
Monitor and Orchestrator to receive the Edge Server ID
that is decided to execute this task. When the chosen Edge
Server is not the same as the current one, the task request is
forwarded to the relevant Edge Server (See “concept” Sec-
tion). If there is no direct connection with the target Edge
Server, the shortest path to the target is calculated using
Dijkstra’s algorithm, and the request is delivered to its desti-
nation via intermediate Edge Servers. This component also
informs the Edge Device with information on where the
requested task is being executed and using which unique
task ID. The message uses the following format: “RUN-
NING:serviceName@EdgeServerID,UniqueTaskID”. After

123

2312 Journal of Intelligent Manufacturing (2021) 32:2301–2317

execution is completed, “TASKCOMPLETED” message is
also sent. Similarly, at each resource usage, each Edge Server
broadcasts the current resources to all connected servers.

Security protocols

The role of this component is to perform authentication and
maintain secure communication between the participants. It
introduces methods to add/remove users, set user roles, log
a user in and out. After login, instead of carrying the pass-
word throughout the active session, it generates and assigns
a unique token to the logged user. Whenever a method is to
be called, this token is validated against active user token.
Then, the user role is checked, and the method is called. The
sessions are invalidated if the client disconnects or the con-
nection is broken. However, if AUTOCONNECT is enabled,
the connection is re-established when available.

Resource monitor

Resource Monitor (RM) keeps track of available resources
in the current Edge Server and the connected Edge Servers
within the Edge Network. Additionally, it contains the infor-
mation on the existing services in the network and how the
Edge Topology is structured. Each change in the resource
usage informs the Server component, which updates other
Edge Servers. RM makes execution decisions in conjunc-
tion withOrchestrator. RM performs the simple initial check
whether the available resources of the current Edge Server
is enough to execute the task until its deadline without any
further actions, such as scaling or scheduling. This is usually
the case when the requested task is the only task to execute
on that Edge Server, or the task has a CPU affinity value that
its allowed CPUs do not exceed 100% CPU utilisation when
executed. If further actions are required, the RM consults
Orchestrator for the last decision.

Orchestrator

If RM finds a possibility for the execution of the task in this
Edge Server, but with some actions, this component becomes
active. This is the last component that decides whether the
task is executed here or not. Orchestrator itself is com-
posed of three sub-components: (1) Scaler, (2) Scheduler,
and (3) Queue Manager. Sub-components are called in order
to evaluate the feasibility of running all tasks, including the
requested one, without causing any deadline miss.

Scaler
Scaler is the first called sub-component of Orchestrator.

It is called to check if the requested task or/and running tasks
can be downscaled and still meet their absolute deadlines.
It computes the WCEU following the formula in “concept”
Section. If downscaling succeeds, then the tasks can runwith-

out further action. Otherwise, the Scheduler component is
activated. Scaler upscales the downscaled tasks when possi-
ble, back to their original CPU execution utilisations, as soon
as CPU utilisation is available.

On the hardware and OS level, changing CPUs of threads
during runtime can be costly due to context switching.
Increasing the available CPU count for tasks also increase the
parallel execution overheads, reducing efficiency Lee et al.
(2003). Moreover, finding an optimal scheduling diagram on
multiprocessors is NP-hard Leung and Whitehead (1982).
Lee, Hong, and Kim Lee et al. (2003) introduce a schedul-
ing algorithm that can schedule aperiodic tasks online on
multiprocessor systems. However, this requires that the tasks
are non-preemptive and they can be decomposed into sub-
tasks. Therefore, slightly deviating from our previous plan
in Gezer et al. (2018), we decided to keep the CPU affinities
unchanged during execution, leaving the decision to service
creator at the beginning.

Scheduler
This component is calledwhenWCEUsof all tasks exceed

100%, and the Edge Server cannot guarantee an on-time exe-
cutiononly bydownscaling.TheRTEF implements two types
of schedulers: EDF scheduler for Simple Periodic services
and NAPATA scheduling for Legacy and Simple services.
A combination of multiple service types, running their tasks
in the Edge Server is not yet fully supported. Currently, this
can be achieved by isolating their CPUs, setting a different
CPU affinity for each type during service definition. Addi-
tional schedulers can also be implemented and integrated. A
scheduler is required to provide two methods: (1) A sched-
ule() method which returns true or false depending on the
schedulability and requires a list of tasks containing their
WCETs and absolute deadlines as input, (2) a sort() method
which returns the sorted scheduling diagram. The schedulers
must be implemented in a way that they consider the CPU
affinities of the tasks as well. If tasks, including the new
task, can be scheduled, this sorted scheduling diagram will
be passed to the Queue Manager, and the task at the begin-
ning of the list will be executed. Otherwise, the task request
is directly forwarded to the most available Edge Server con-
taining the same service, viaMessage Router.

Queue Manager
If tasks are schedulable, the sorted list of scheduling dia-

gram is stored in this component. Then, Scheduler picks the
first task from the list and executes it. Tasks are executed
only if they are on that list, and it is their turn to execute.
Periodic tasks are automatically added to the list again when
their next period starts.

Virtual processors

“services” Section explained the parameters that a service
defines for software. One of the parameters is the CPUmask,

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2313

which lists the allowed CPUs for a task. The scheduling
algorithms calculate the feasibilities considering these CPU
masks.

Virtual Processors (VPs) work in a similar fashion to
control groups (cgroups) in Linux Linux manuals (2020).
Cgroups organise the set of processes into hierarchical groups
to limit their resource usage and monitor. Likewise, VPs
assign tasks to theCPUs and limit their execution utilisations.
A newVP can be added during Edge Server creation. A name
to call later, a runtime x and period value p to determine the
maximum given execution utilisation (xp) LinuxDocumenta-
tion (2020), and aCPUmask LinuxDocumentation (2021) is
provided as input. Multiple VPs can reuse the same CPU(s).
The tasks in this work can get up to 100% CPU utilization
and unlike stated in Linux Documentation (2021), runtime
value in this work cannot exceed the period value, meaning
x
p cannot be greater than 1. VPs can be used to isolate Peri-
odic services from Legacy and Simple services, as running a
combination of all types is not entirely yet supported. Tasks
can be assigned to the VPs while they are running or during
service creation.

Other components

There are also other components such as Cache or Stor-
age/Database. These components are not explained again
since they do not require anything specific to function, and
are indirectly used as they are.

This section completed explaining the components. The
next sectionwill validate the architecture as well as the RTEF
using a complex scenario with multiple Edge Servers.

Requesting tasks

The architecture prevents execution of tasks directly as they
arrive. This is due to the decision algorithms that come into
the play. Once a request is received, set of calculations are
made in the background. As it may be noticed, this operation
is not called “start”, but a “request”. The flow that is followed
by the RTEF after getting a task request is shown in Fig. 9
and explained below.

After each connection between Edge Servers a list of the
available resources and services together with their locations
are exchanged (“communication” Section). Once a request
is received, first, the current server queries the possible loca-
tions for the requested task, including itself. If the current
server does not contain the service for this task or does not
have enough resources, then, an alternative server in the Edge
Network is looked up. In case multiple alternatives can exe-
cute the task on time, the server which can execute the task
in the shortest time is chosen. If the resources are the same,
then, the server with the smallest delay is chosen. If delays
are also the same, then, one of the servers is chosen randomly.

Fig. 9 Simplified flow that shows the process of executing a task after
its request

If no server found that can execute the task, then the current
server tries to plan the execution, following “no” in multiple
alternatives branch. In this case, the chosen server will be
itself.

Once the task request is offloaded, if the chosen server is
busy with other tasks, the Orchestrator determines whether
scaling, scheduling, queueing is necessary. Finally, the task is
executed. If task returns a result, it is sent back to its original
requested.

Test case

The framework is tested on a virtual environment in simula-
tion mode, with an Edge Network of two Edge Servers and
four End Devices. In the simulation mode, the hardware is
assumed to be ideal and real-time capable. First server has
two identical CPUs and the second server has only a single
CPU. The first server is connected to the second server, and
the delay between them is one time unit. The first server also
has connections with the first three End Devices and the sec-
ond server with the fourth one. Services A, B,C , D, E , F are
defined with the parameters listed in Table 4. These services
are linked with the load generator of the framework to be run
when called. Load generator allows creation of ideal tasks
based on the defined parameters. Service A is created in both
servers, using the same behaviour. Services B, C , D, and E
are created only on the first server, and Service F only on
the second server. End Device 1, 2, and 3 request tasks from
Edge Server 1 at t = 0 to execute A, B, and E , respectively.
At the same time, End Device 4 requests F from Edge Server
2. At t = 3, End Device 1 also requests an instance of C and

123

2314 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Table 4 An example set of pre-defined services with defined execution behaviours of tasks.

Service WCET Rel. deadline Type CPU mask Max. CPU Util. % Thread/core Available on

A 6 8 Legacy 1 100 1 1,2

B 3 3 Legacy 1 100 1 1

C 4 8 S.Periodic 3 100 1 1

D 3 6 S.Periodic 3 100 1 1

E 2 5 Simple 2 100 1 1

F 2 9 Simple 1 100 1 2

All tasks are one-directional

Fig. 10 Experiment setup and plan for an Edge Network using four
End Devices and two Edge Servers

End Device 2 requests D. The experiment setup and plan are
summarised in Fig. 10.

At t = 0, multiple tasks arrive. The execution order of the
tasks based on their deadlines on Edge Server 1 is B, E , and
A. E uses CPU 2; however, A and B share the same CPU:
CPU 1. As there is no available resource at the only allowed
CPU (CPU 1) to execute A before its deadline, the possibility
of scaling is evaluated. Since the WCEU B is 100% (33100),
the downscaling of B will not be possible. Since A and B are
not periodic tasks, NAPATA scheduling can evaluatewhether
it is possible to schedule these tasks. B has higher priority
than A, hence, the feasibility check starts with task B.

FB = 0 + MB ≤ dB + aB (25)

= 0 + 3 ≤ 3 + 0 (26)

= 3 ≤ 3 (27)

As the inequality 27 holds, the algorithm then proceeds
with task A.

FA = 0 + MA + MB ≤ dA + aA (28)

= 0 + 6 + 3 ≤ 8 + 0 (29)

= 9 ≤ 8 (30)

The feasibility test for A fails since inequality 30 does not
hold. Scheduling A after B causes A to miss its deadline.
Therefore, another alternative server within the network is
searched. Edge Server 2 also has service A and the request
can be forwarded to that server. The transfer of the request
takes one time unit due to the delay between the servers.
Then, the first request of A at Edge Server 2 occurs at t = 1.
However, as the initial request was on Edge Server 1, this
delay must be subtracted from absolute deadline calculation.
Hence, the arrival time of A (aA) used on Edge Server 2 is
zero (0).

At t = 1 on Edge Server 2, the possibility of on-time
execution of tasks F and A are calculated using Eq. 10 from
NAPATA scheduling. Starting from the highest priority, the
feasibility calculation of task A (FA):

FA = 1 + MA ≤ dA + aA (31)

= 1 + 6 ≤ 8 + 0 (32)

= 7 ≤ 8 (33)

passes. Similarly, feasibility of task F (FF):

FF = 1 + MF + MA ≤ dF + aF (34)

= 1 + 1 + 6 ≤ 9 + 0 (35)

= 8 ≤ 9 (36)

is satisfied. As scheduling is feasible, task F is preempted
at t = 1 for having a lower deadline than task A. After A
completes its execution, F is resumed to complete its remain-
ing execution time. C and D task requests arrive at t = 2.
Both have one thread at each CPU due to their CPU mask
and thread per core parameters. At this time, Edge Server 1
is available. DownscalingWCEUs of both tasks to 50% dou-
bles execution times of both tasks, but they can still complete
their executions before missing their deadlines. The result-
ing scheduling diagram is shown in Fig. 11. The framework
uses scheduling as a fallback in case downscaling does not

123

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2315

Fig. 11 Resulting scheduling diagram based on the experiment defined
in Fig. 10 and Table IV

work. Nonetheless, it was also possible to schedule C and D
if scaler had been disabled.

As soon as the tasks start execution, each Edge Server
returns the ID of the server running the task and the unique
task ID, back to the original End Device (See “requesting-
tasks” Section).Assuming that that F has an IDof one (1) and
A two (2), for example, at t = 1, End Device 1 would then
receive “RUNNING:A@2,2”. This is interpreted as Service
A is running on Edge Server 2, with task ID 2.

The service creator is expected to create a feasible distri-
bution of tasks in Edge Servers. If the example above had
a shorter deadline for F (e.g. at t = 7), then scheduling F
would not be feasible. Since there is not another alternative
server to execute F , it would miss its deadline. An alter-
native fallback would be a Cloud server connected to the
Edge Servers with RTEF installed; however, in that case,
the execution would have been made using a best-effort
approach. Another possibility would be terminating lower
priority tasks, if any. However, task termination is not con-
sidered in this thesis. Instead, it is listed as an open point for
future work.

Conclusion and future work

Edge Computing (EC) is a paradigm that introduces a new
tier between the device tier and the Cloud tier. It enables
lower-delay servicing by providing computation power close
to this tier. This work implemented the novel architecture in
the EC domain, which was formerly conceptually proposed
in Gezer et al. (2018). In this paper, the realised framework
of this architecture is called the Real-Time Edge Framework
(RTEF). The framework allows the execution of (near) real-
time tasks within their defined deadlines. The hardware that
utilises this framework is called an Edge Server. If a network
contains multiple Edge Servers connected using any avail-
able topology arrangement, the framework is able to offload

task requests to another server if resources are insufficient
to execute a task on time. The network can also include a
Cloud server. In this case, as a fallback, the task will be exe-
cuted using a best-effort approach in the Cloud. This work
also introduced a novel scheduling algorithm, called Non-
preemptible And Preemptible Aperiodic TAsk (NAPATA)
scheduling. As its name suggests, it is used to schedule non-
preemptible and preemptible aperiodic tasks. The algorithm
is provided with a feasibility equation and explained using
two examples.

This work follows Liu and Layland’s assumptions Liu and
Layland (1973) for task scheduling. One of the assumptions
is that the tasks are independent of each other. However, tasks
can depend on each other, or require that a previous task is
completed before its execution. In the future, the algorithms
will support a graph to schedule the tasks in a specific order,
defined by their services. Another plan is to offload a running
task to another Edge Server if a higher priority task needs to
run on a specific Edge Server. Currently, running tasks can be
preempted, but cannot be offloaded to continue from where
they left off.Moreover, the researchwill be conducted to fully
support scheduling of aperiodic and periodic tasks together.
Lastly, it is assumed that the algorithmic calculations and
internal computations have no impact on time and cause no
overheads. Nevertheless, in real environments, this is not the
case. Performance evaluations of the architecture and frame-
work will be performed on different hardware to get a view
on time performance.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Audsley, N. C., Burns, A., Richardson, M. F., &Wellings, A. J. (1991).
Hard real-time scheduling: The deadline-monotonic approach.
IFAC Proceedings Volumes, 24(2), 127–132.

Berry, G. (2007). “SCADE: Synchronous Design and Validation of
Embedded Control Software,” In Next Generation Design and
Verification Methodologies for Distributed Embedded Control
Systems, S. Ramesh and P. Sampath, Eds. Dordrecht: Springer
Netherlands, (pp. 19–33).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2316 Journal of Intelligent Manufacturing (2021) 32:2301–2317

Chang,H.,Hari,A.,Mukherjee, S.,&Lakshman,T.V. (2014). “Bringing
the cloud to the edge,” In 2014 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), 04,
(pp. 346–351).

CLOUDS Laboratory. (2019). CloudSim: A Framework for modeling
and simulation of cloud computing infrastructures and services.
[retrieved: Jan 2021]. [Online]. Available: http://www.cloudbus.
org/cloudsim/.

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., & Weihl,
B. (2002). Globally distributed content delivery. IEEE Internet
Computing, 6(5), 50–58.

EdgeX Foundry. (2020). EdgeX foundry architectural tenets. [retrieved:
Jan 2021]. [Online]. Available: https://docs.edgexfoundry.org/2.
0/.

Elbamby, M. S., Bennis, M., & Saad, W. (2017). “Proactive edge com-
puting in latency-constrained fog networks,” In 2017 European
Conference on Networks and Communications (EuCNC), 06, (pp.
1–6).

Feldhorst, S., Libert, S., ten Hompel, M., & Krumm, H. (2009). “Inte-
gration of a legacy automation system into a SOA for devices,”
Proceedings of the IEEE Conference on Emerging Technologies
Factory Automation, (pp. 1–8).

Gezer, V., & Wagner, A. (2020). “Real-time edge framework (rtef):
Decision making for offloading and task scheduling,”Manuscript
submitted for publication.

Gezer, V., Um, J., & Ruskowski, M. (2018). An introduction to edge
computing and a real-time capable server architecture. The Inter-
national Journal on Advances in Intelligent Systems, 11(1&2),
105–114,07.

Givehchi, O., Imtiaz, J., Trsek,H.,& Jasperneite, J. (2014). “Control-as-
a-service from the cloud: A case study for using virtualized plcs,”
In 2014 10th IEEE Workshop on Factory Communication Systems
(WFCS 2014), 05, (pp. 1–4).

Goldhar, J. D., & Jelinek, M. (1990). Manufacturing as a service
business: Cim in the 21st century. Computers in Industry, 14(1),
225–245. special Issue Josef Hartvany Memorial.

Goldschmidt, T., Murugaiah, M.K., & Sonntag, C. (2015). “Cloud-
based control: a multi-tenant, horizontally scalable soft-PLC,” In
IEEE 8th International Conference on Cloud Computing.

Harshit,G.,Dastjerdi,A.V.,Ghost, S.K.,&Buyya,R. (2016). “iFogSim:
A Toolkit for modeling and simulation of resource management
techniques in internet of things, edge and fog computing environ-
ments,” In Software Practive and Experience, 06.

Horn, C.,& Krüger, J. (2016). “Feasibility of connecting machinery
and robots to industrial control services in the cloud,” In 2016
IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA), 09, (pp. 1–4).

IBM Cloud Architecture Center. (2017). IBM: Internet of Things.
[retrieved: Jan 2021]. [Online]. Available: https://www.ibm.
com/cloud/garage/architectures/iotArchitecture/reference-
architecture.

Kretschmer, F. (2016, 09). Projekt – pICASSO. [retrieved: Jan 2021].
[Online]. Available: https://industrie40.vdma.org/documents/
4214230/21848134/piCASSO_1510147125829.pdf/9a64d3eb-
c397-401f-893a-9994c70bcc12.

Lee,W.Y., Hong, S. J., &Kim, J. (2003). On-line scheduling of scalable
real-time tasks on multiprocessor systems. Journal of Parallel and
Distributed Computing, 63(12), 1315–1324.

Lehoczky, J.P., Sha, L.R., & Strosnider, J.K. (1987). “Enhanced aperi-
odic responsiveness in hard real-time environments.” InUnknown
Host Publication Title. IEEE, (pp. 261–270).

Leung, J. Y.-T., & Whitehead, J. (1982). On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2(4), 237–250.

Lhotka, R. (2005). Should all apps be n-tier? Blog [retrieved:
Jan 2021]. [Online]. Available: http://www.lhotka.net/weblog/
ShouldAllAppsBeNtier.aspx.

Linux Documentation. (2020). Real-time group scheduling. [retrieved:
Jan 2021]. [Online]. Available: https://www.kernel.org/doc/
Documentation/scheduler/sched-rt-group.txt.

Linux Documentation. (2021). CFS bandwidth control. [retrieved:
Jan 2021]. [Online]. Available: https://www.kernel.org/doc/
Documentation/scheduler/sched-bwc.txt.

Linux Documentation. (2021). CPUSETS. [retrieved: Jan 2021].
[Online]. Available: https://www.kernel.org/doc/Documentation/
cgroup-v1/cpusets.txt.

Linux manuals. (2020, 03). Linux Programmer’s Manual - cgroups(7).
[retrieved: Jan 2021]. [Online]. Available: http://man7.org/linux/
man-pages/man7/cgroups.7.html.

Liu, C.L., & Layland, J.W. (1973). “Scheduling algorithms for mul-
tiprogramming in a hard real-time environment,” Journal of the
ACM Vol. 20.

Mohamed, N., Lazarova-Molnar, S., Jawhar, I., &Al-Jaroodi, J. (2017).
“Towards service-orientedmiddleware for fog and cloud integrated
cyber physical systems,” In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW),
06, (pp. 67–74).

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn,
J., &Walker, K. R. (1997). Agile application-aware adaptation for
mobility. SIGOPS Operaton System Review, 31(5), 276–287, 10.

OpenFog Consortium. (2017). OpenFog consortium reference
architecture for fog computing. [retrieved: Jan 2021].
[Online]. Available: https://www.iiconsortium.org/pdf/OpenFog_
Reference_Architecture_2_09_17.pdf.

Pallasch, C., Wein, S., Hoffmann, N., Obdenbusch, M., Buchner, T.,
Waltl, J., & Brecher C. (2018). “Edge powered industrial control:
Concept for combining cloud and automation technologies,” In
2018 IEEE InternationalConference onEdgeComputing (EDGE),
07, (pp. 130–134).

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–
646, 10.

Sonmez, C., Ozgovde,A.,&Ersoy, C. (2017). “Edgecloudsim:An envi-
ronment for performance evaluation of edge computing systems,”
In 2017 Second International Conference on Fog andMobile Edge
Computing (FMEC), 05, (pp. 39–44).

Sonmez, C., Ozgovde, A., & Ersoy, C. (2017). “Performance evaluation
of single-tier and two-tier cloudlet assisted applications,” In 2017
IEEE International Conference on Communications Workshops
(ICC Workshops), 05, (pp. 302–307).

Sprunt, B., Sha, L., & Lehoczky, J. (1989). “Scheduling sporadic and
aperiodic events in a hard real-time system,” Software Engineering
Institute, Carnegie Mellon University. Tech. Rep. (CMU/SEI-89-
TR-011).

The Computer Language Co Inc. (2021). Definition of end device. PC
Magazine - Website. [retrieved: Jan 2021]. [Online]. Available:
https://www.pcmag.com/encyclopedia/term/64886/end-device.

Vick,A.,Horn, C., Rudorfer,M.,&Krüger, J. (2015). “Control of robots
and machine tools with an extended factory cloud,” In 2015 IEEE
World Conference on Factory Communication Systems (WFCS),
05, (pp. 1–4).

VMware. (2017). VMware Introduces Liota. [retrieved: Jan 2021].
[Online]. Available: https://www.vmware.com/radius/vmware-
introduces-liota-iot-developers-dream/.

White, J. (1971). “Network Specifications for Remote Job Entry and
Remote JobOutput Retrieval at UCSB,” Internet Engineering Task
Force, Internet Standard, 03 1971, [retrieved: Jan 2021]. [Online].
Available: https://tools.ietf.org/html/rfc105.

Yin, S., Bao, J., Zhang, J., Li, J., Wang, J., & Huang, X. (2020).
Real-time task processing for spinning cyber-physical production

123

http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/
https://docs.edgexfoundry.org/2.0/
https://docs.edgexfoundry.org/2.0/
https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture
https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture
https://www.ibm.com/cloud/garage/architectures/iotArchitecture/reference-architecture
https://industrie40.vdma.org/documents/4214230/21848134/piCASSO_1510147125829.pdf/9a64d3eb-c397-401f-893a-9994c70bcc12
https://industrie40.vdma.org/documents/4214230/21848134/piCASSO_1510147125829.pdf/9a64d3eb-c397-401f-893a-9994c70bcc12
https://industrie40.vdma.org/documents/4214230/21848134/piCASSO_1510147125829.pdf/9a64d3eb-c397-401f-893a-9994c70bcc12
http://www.lhotka.net/weblog/ShouldAllAppsBeNtier.aspx
http://www.lhotka.net/weblog/ShouldAllAppsBeNtier.aspx
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.pcmag.com/encyclopedia/term/64886/end-device
https://www.vmware.com/radius/vmware-introduces-liota-iot-developers-dream/
https://www.vmware.com/radius/vmware-introduces-liota-iot-developers-dream/
https://tools.ietf.org/html/rfc105

Journal of Intelligent Manufacturing (2021) 32:2301–2317 2317

systems based on edge computing. Journal of Intelligent Manu-
facturing, 31(8), 2069–2087, 12. https://doi.org/10.1007/s10845-
020-01553-6. [Online]. Available:

Zhang, L., Guo, H., Tao, F., Luo, Y. L., & Si, N. (2010). “Flexible man-
agement of resource service composition in cloudmanufacturing,”
In 2010 IEEE International Conference on Industrial Engineering
and Engineering Management, 12, (pp. 2278–2282).

Zhang, L., Luo, Y. L., Tao, F., & Ren, H. G. L. (2010). Key technologies
for the construction of manufacturing cloud. Computer Integrated
Manufacturing Systems, 16(11), 2510–2520.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10845-020-01553-6
https://doi.org/10.1007/s10845-020-01553-6

	Real-time edge framework (RTEF): task scheduling and realisation
	Abstract
	Introduction
	Related work
	Architecture overview
	Legacy
	Simple
	Simple periodic

	NAPATA scheduling
	Realisation of the framework
	Communication
	Commands
	Services
	Tasks
	Components
	Configurator
	Server
	Message router
	Security protocols
	Resource monitor
	Orchestrator
	Virtual processors
	Other components

	Requesting tasks

	Test case
	Conclusion and future work
	References

