
Lux, Thomas

Article  —  Published Version

Bayesian Estimation of Agent-Based Models via Adaptive
Particle Markov Chain Monte Carlo

Computational Economics

Provided in Cooperation with:
Springer Nature

Suggested Citation: Lux, Thomas (2021) : Bayesian Estimation of Agent-Based Models via Adaptive
Particle Markov Chain Monte Carlo, Computational Economics, ISSN 1572-9974, Springer US, New
York, NY, Vol. 60, Iss. 2, pp. 451-477,
https://doi.org/10.1007/s10614-021-10155-0

This Version is available at:
https://hdl.handle.net/10419/287124

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10614-021-10155-0%0A
https://hdl.handle.net/10419/287124
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Bayesian Estimation of Agent-Based Models via Adaptive
Particle Markov Chain Monte Carlo

Thomas Lux1

Accepted: 11 July 2021 / Published online: 22 July 2021
� The Author(s) 2021

Abstract
Over the last decade, agent-based models in economics have reached a state of

maturity that brought the tasks of statistical inference and goodness-of-fit of such

models on the agenda of the research community. While most available papers have

pursued a frequentist approach adopting either likelihood-based algorithms or

simulated moment estimators, here we explore Bayesian estimation using a Markov

chain Monte Carlo approach (MCMC). One major problem in the design of MCMC

estimators is finding a parametrization that leads to a reasonable acceptance prob-

ability for new draws from the proposal density. With agent-based models the

appropriate choice of the proposal density and its parameters becomes even more

complex since such models often require a numerical approximation of the likeli-

hood. This brings in additional factors affecting the acceptance rate as it will also

depend on the approximation error of the likelihood. In this paper, we take

advantage of a number of recent innovations in MCMC: We combine Particle Filter

Markov Chain Monte Carlo as proposed by Andrieu et al. (J R Stat Soc B 72(Part

3):269–342, 2010) with adaptive choice of the proposal distribution and delayed

rejection in order to identify an appropriate design of the MCMC estimator. We

illustrate the methodology using two well-known behavioral asset pricing models.
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1 Introduction

Over the last decade, agent-based models in economics have reached a state of

maturity that brought the tasks of statistical inference and goodness-of-fit of such

models on the agenda of the research community. Using mostly relatively simple

models of financial markets, a variety of statistical tools have meanwhile been

developed to this end (cf. Lux and Zwinkels, 2018, for a review of this literature).

Most available papers have used a frequentist approach adopting either likelihood-

based algorithms or simulated moment estimators. In contrast, Bayesian estimation

approaches can be found in very few papers only. This is surprising insofar as

Bayesian methods have become the dominating paradigm in estimation of

contemporaneous dynamic general equilibrium models in macroeconomics (cf.,

Herbst and Schorfheide, 2015).

At the time of writing, to my knowledge only three contributions exist applying a

Bayesian methodology to agent-based models: Grazzini et al. (2017), Lux (2018)

and Bertschinger and Mozzhorin (2021). Grazzini et al. (2017) use both Markov

Chain Monte Carlo (MCMC) and Approximate Bayesian Computation (ABC) to

estimate the posterior of the parameters of a medium-scale macroeconomic model

with heterogeneous expectations. In contrast to traditional MCMC, the ABC

algorithm uses auxiliary measures of fit rather than the likelihood to sample from

the posterior distribution (cf. Sisson et al., 2007). Since the likelihood is often not

available in analytical form in agent-based models, the authors adopt a kernel

density estimator to approximate this component of the MCMC algorithm.

Lux (2018) applies both frequentist and Bayesian methods for estimation of two

basic financial ABMs. All his implementations of various estimators are based on an

approximation of the likelihood using the concept of a particle filter as introduced in

the statistical literature by Gordon et al. (1993) and Kitagawa (1996). This approach

presumes a state-space representation of the underlying model (which is natural for

many ABMs). A particle filter approximation is initiated by sampling the initial

values of the particles for the hidden states of the model from their unconditional

distribution. The collection of particles is, then, updated via sampling-importance-

resampling over the length of the available time series of the observable variables.

Andrieu et al. (2010) show that when using the particle filter within MCMC the

resulting Markov chain converges to the posterior under very general conditions on

the structure of the likelihood and the proposal density. More generally, they

demonstrate that using an unbiased estimate of the likelihood (which is, for instance,

the case with the particle filter), leaves the equilibrium distribution of the posterior

of the MCMC chain unchanged.1 One advantage of using a particle filter

approximation of the likelihood within an MCMC algorithm is that together with

estimation of the posterior distribution it also allows for filtering of the time

variation of the unobservable variables which are often at the center of interest in

ABMs (e.g. agents’ expectations, opinions or strategies).

1 Within an agent-based model in ecology, Particle Markov Chain Monte Carlo (PMCMC) has been used

recently also by Golightly and Wilkinson (2011).
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One problem of traditional MCMC and PMCMC alike is finding a parametriza-

tion that leads to a reasonable acceptance probability for new draws from the

proposal density. While with an analytical likelihood this requires an appropriate

choice of the proposal density and its parameters, in PMCMC the number of

particles enters as another factor that influences the acceptance rate as it determines

the extent of approximation error of the likelihood. Most empirical applications first

run a number of trials to determine an appropriate specification for the proposal

density before turning to estimation proper. Doing so, Lux (2018) identifies

scenarios with conventional acceptance rates for the three-parameter model of

Alfarano et al. (2008), but admits that he had been unable to find a satisfactory

combination of proposal density and number of particles for a second model with

four parameters based upon Franke and Westerhoff (2012).

He states that in all trial runs, the acceptance rate remained extremely low. While

this would not impede the statistical validity of the approach as established by

Andrieu et al. (2010), it makes its implementation impractical as very long

simulation runs would be required to compensate for a low acceptance rate.

The very problem of low acceptance rates is addressed by the third entry on this

topic in the recent literature by Bertschinger and Mozzhorin (2021). These authors

use so-called Hamiltonian MCMC for Bayesian estimation of two agent-based

models. Hamiltonian MCMC attempts to find regions with high probabilities of

acceptance by introducing an auxiliary momentum variable (cf., Neal, 2011).

Adopting the principle of joint preservation of volume in conservative dynamic

systems, the dynamics of the parameters and their associated momentum variables

is modeled as a Hamiltonian system which when used to draw new proposals of the

parameters, should select these approximately along an iso-line of equal probability

and, thus, should guarantee high acceptance rates. Unfortunately, this approach

requires numerical derivatives of the log probability density to implement the

Hamiltonian dynamics as a conservative system of differential equations.

This is particularly problematic in the present setting: First, in most agent-based

models with a finite number of agents, the probabilistic elements in the individuals’

behavior will make any statistics derived from the underlying process non-smooth.

For instance, if agents’ behavior is described by probabilities to switch from one

behavioral alternative to another, even with a fixed sequence of random numbers, a

discrete change will happen at a certain value of any one of the parameters of the

model. Second, the same type of discrete changes happens in the particle filter in the

resampling step when the acceptance of any particle to the new population is

decided via multinomial draws based on their relative likelihood (implying that the

Hamiltonian approach is generally not computable with a particle filter approxi-

mation). The first type of complication is not relevant for the models explored in

Bertschinger and Mozzhorin (2021) since these are either based on a limiting case

with an infite number of agents or on a dynamic process with two uniform groups of

agents without consideration of individual agents per se. The examples in Lux

(2018), however, do consider a finite number of autonomous agents and, thus, the

elegant approach of Hamiltonian MCMC appears unfeasible because of the lack of

smoothness of the numerical approximation of the likelihood. To make MCMC
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work, we, therefore, have to choose an alternative route: adaptive adjustment of the

parameters of the proposal density.

The rest of the paper proceeds as follows: The next section introduces the

principles of PMCMC together with algorithms for the adaptive choice of the

proposal density and delayed rejection. Delayed rejection generates a second

proposal from a different transition kernel if the first one is rejected, and, thus, helps

to increase the acceptance rate of the Markov Chain. Section 3 provides a short

outline of the theoretical asset-pricing models we use as test cases for adaptive

PMCMC. Section 4 provides Monte Carlo results on the performance of the

algorithms, and Sect. 5 presents empirical results obtained for data of three major

stock markets. Section 6 provides conclusions.

2 Adaptive Markov Chain Monte Carlo for Agent-Based-Models

We set the stage by introducing the seminal framework of MCMC. Markov Chain

Monte Carlo consists in generating a Markov chain that converges to a certain

invariant distribution. In this context, the distribution we are after is the posterior

distribution of the parameters of an agent-based model. To this end, one needs to

introduce a prior distribution, denoted by pð�Þ in Eq. (1) below, from which an

initial set of parameters, say h0, is drawn. One then determines the marginal

likelihood of the observed data under this initial choice of parameters, which we

denote by Ph0ðyÞ. For typical agent-based-models, no closed-form likelihood

function is available for this evaluation so that we resort to an unbiased estimation

of the likelihood using the particle filter.

The Markov chain develops with draws from a proposal density gðhnjhn�1Þ with
n the sequential order of the chain. New draws from this proposal density, say h�,
are accepted with a probability:

aðh�jhn�1Þ ¼ min
Ph� ðyÞpðh�Þgðhn�1jh�Þ

Phn�1
ðyÞpðhn�1Þgðh�jhn�1Þ

; 1

� �
ð1Þ

If the new draw is not accepted, the chain will continue with a replication of the

previous values, hn ¼ hn�1. The strength of MCMC lies in the fact, that the chain

generated in this way will converge to the limiting invariant distribution under very

mild regularity conditions on the marginal likelihood of the proposal density.

Difficulties often appear in the practical implementation. Namely, any particular

choice of starting value will lead to a more or less extended transient prior to

convergence to the invariant distribution. Second, the overall acceptance rate should

be high enough to provide for sufficient exploration of the invariant distribution. If,

in contrast, the acceptance rate is too low, the overwhelming majority of

computations will be wasted as their draws will not be accepted and, for a finite

run time of the Markov process, the few accepted proposals will only provide an

incomplete representation of the posterior density. To achieve the goal of a

sufficiently high acceptance rate, fine-tuning of the parameters of the proposal

density is required. One simple approach consists in conducting some preliminary

experiments to identify a set of parameters of the proposal density that lead to an
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acceptable dynamics of the Markov chain. However, the higher the number of

parameters of the invariant distribution, the more time-consuming this step

becomes. It might, therefore, be desirable to choose the parameters adaptively in

response to the observed rate of acceptances. Luckily, the convergence properties of

MCMC can even be maintained under adaptation provided some minimal

conditions are fulfilled. The basic requirement is that the degree of adaptation

goes to zero as n ! 1 (cf. Andrieu and Thomas, 2008). Rules with decreasing

intensity of adaptation are easy to construct. In most applications of MCMC, the

proposals are following a random walk, i.e. h� is drawn from a multivariate Normal

distribution, h� �Nðhn�1;RÞ. The focus of adaptation would then be the covariance

matrix R. In fine-tuning the acceptance probability, it would be important to adjust

R in a way to reflect the unknown covariance structure of the invariant posterior

distribution. To see this, consider as an example a bivariate Normal with high

degree of correlation. It is obvious that a proposal distribution with off-diagonal

elements equal to zero would be accepted the less often the higher the correlation

between parameters and the higher the dimension of the parameter space.

Andrieu and Thomas (2008) and Rosenthal (2011) provide details of various

algorithms for adaptive choice of the proposal density. Typically, these algorithms

use iterative estimates of the covariance of the target invariant distribution. Let l

denote the mean and R̂ the covariance of the sampled realizations of the vector of

parameters, h, over the Markov chain. One would, then, obtain an update of the

covariance matrix over the course of the simulation using:

lnþ1 ¼ln þ cnþ1ðhnþ1 � lnÞ
R̂nþ1 ¼R̂n þ cnþ1 ðhnþ1 � lnÞðhnþ1 � lnÞT � R̂n

� �
:

ð2Þ

In order to ensure convergence of the Markov chain, the degree of adaptation as

incorporated in cn should vanish asymptotically. Hence, cn should be chosen so that

cn ! 0 for n ! 1. With this adaptive estimation of the covariance of the posterior

distribution, new proposals would be drawn according to h� �Nðhn; 2:38
2

d R̂nÞ with d

the dimension of the parameter space. The scaling by 2:382

d is motivated by theo-

retical results showing that under certain conditions this scaling leads to an optimal

proposal distribution in terms of convergence speed and asymptotic variance (cf.

Rosenthal, 2011).

Since this optimal scaling has been obtained for relatively simple cases, it needs,

however, not necessarily apply to the posterior distribution of the parameters of a

complex agent-based model. Alternatively, one might then introduce an arbitrary

scaling parameter kn and draw proposals according to h� �Nðhn; knR̂nÞ. The scaling
could then vary according to the observed acceptance rate a and a predetermined

target a�:

lnðknþ1Þ ¼ lnðknÞ þ cnþ1ðan � a�Þ ð3Þ

where an is the acceptance rate of new proposals until iteration n and a� is often

chosen as 0.234 reflecting what has been found to be optimal in certain analytically

accessible cases (again, this number need not be optimal for our more complex
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applications). Equation (3) indicates that the covariance matrix of the proposals

should be linearly increased if the acceptance rate is deemed too high (as larger

changes would make acceptance less likely) and vice versa. Note that the task of

guiding the proposal distribution towards a satisfactory acceptance level could not

be fulfilled by the adjustment of the covariance matrix as per Eq. (2) alone as this

part of the adaption would rather have a tendency to preserve the current rate of

acceptances.

Besides adaptation of the scale of the proposal distribution, we will also

implement another variation of the baseline MCMC adjustment that has been

introduced in recent literature, the so-called delayed rejection. First proposed by

Tierney (1994), this generalization allows for subsequent moves after rejection of a

proposal in the first round. Here we will confine ourselves to adding a second stage

of another new proposal. The distribution of the second proposal need not be

identical to that of the first stage, and indeed, it will typically be useful to choose a

different distribution. Denoting the stage two proposal distributions by gð2Þðhnjhn�1Þ
and the resulting proposal by h��, the delayed rejection adjustment works in the

following way: (i) draw h� from g() and accept h� with probability a as given in

Eq. (1). If h� in rejected, draw another proposal h�� from gð2ÞðÞ and accept it with

probability b given by:

bðh��jh�; hn�1Þ ¼ min
Ph�� ðyÞgðh�jh��Þð1� aðh�jh��ÞÞgð2Þðhn�1jh��Þ

Phn�1
ðyÞgðh�jhn�1Þð1� aðh�jhn�1ÞÞgð2Þðh��jhn�1Þ

; 1

� �
ð4Þ

Haario et al. (2006) propose to combine adaptation and delayed rejection to enhance

the efficiency of MCMC estimation (denoting the combination by DRAM: Delayed

Acceptance Adaptive Metropolis).

3 Models

Our basic test case in this paper are two alternative models of asset-price dynamics

including non-fundamental factors based on Franke and Westerhoff (2012) and

Alfarano et al. (2008).

The present version of the model of Franke and Westerhoff2 is a slightly modified

one that has also been used already by Lux (2018). It uses the distinction between

the notorious fundamentalists and chartists that are characterized by their excess

demand functions:

EDf ;t ¼ Nf ;taðpf ;t � ptÞ; ð5Þ

2 While it would be interesting to explore Bayesian estimation of the full ‘‘battery’’ of ABMs of financial

markets in their paper, a closer inspection shows that at least some of their models suffer from non-

stationary, so that also no invariant distribution of the parameters could be expected to exist.

Parenthetically, it might be remarked that this lack of stationarity also makes estimation via simulated

maximum likelihood (SML) and model comparisons on the base of the SML objective function

cumbersome.
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EDc;t ¼ Nc;tbðpt�1 � pt�2Þ ð6Þ

with Nf ;t and Nc;t their respective numbers at time t and a, b the elasticities of their

demand functions. pf ;t and pt denote the log fundamental value and the log price,

respectivity.

Defining c ¼ b

a
and zt ¼

Nc;t

N
ðN ¼ Nf ;t þ Nc;tÞ, the log price is determined in

market equilibrium with zero excess demand by:

pt ¼ pf ;t þ
zt

1� zt
cðpt�1 � pt�2Þ: ð7Þ

If the log fundamental value is assumed to follow a Brownian motion with incre-

ments ef ;t �Nð0; rf Þ, we obtain returns rt ¼ pt � pt�1 obeying:

rt ¼ ef ;t þ
zt

1� zt
cðpt�1 � pt�2Þ �

zt�1

1� zt�1

cðpt�2 � pt�3Þ: ð8Þ

The observable variable rt is, thus, a noisy signal for the realization of the latent

variable zt with the similarity unobservable fundamental innovations constituting

the noise that distorts the signal.

In one version of their battery of models, Franke and Westerhoff (2012) assume

that the fractions of fundamentalists and chartists follow a herding process with

simple transition rates between both groups. Denoting pc;tðpf ;tÞ the transition rate

for a change of a fundamentalist to a chartist strategy (and vice versa), a baseline

herding dynamics can be expressed as:

pc;t ¼ meaxt ; pf ;t ¼ me�axt ð9Þ

with

xt ¼
Nc;t � Nf ;t

N
¼ 2zt � 1 : ð10Þ

This model comes with four parameters that one would like to estimate when

confronting the model with data: the ratio of demand elasticities of both groups of

traders, c, the standard deviation of the distribution of the fundamental shocks, rf ,
the constant m that expresses the overall tendency of agents to change their strate-

gies, and a, the herding coefficient. In contrast to Franke and Westerhoff (2012), we

apply the transition rates (9) to a true ensemble of agents (using N ¼ 100) while the

original paper has assumed an infinite population. This implies that the latent state

variable zt is driven not by a single noise factor, but by the joint distribution

characterizing N Poisson processes with time-varying intensities as defined in

Eq. (9). Lux (2018) found this prototype model combining chartists/fundamentalists

and herding dynamics to be inferior to a simple framework proposed by Alfarano

et al. (2008). The basic aim here is to revisit this comparison on the base of

Bayesian estimation instead of the frequentist model comparison of the earlier

paper.
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The Alfarano et al. (2008) framework includes the same demand of fundamen-

talists, but assumes that the second group are pure noise traders and that agents do

not switch between the groups of noise traders and fundamentalists. The former are

either optimistic or pessimistic and their attitude is determined by a similar

contagion dynamics as has been assumed for the choice of trading strategy in the

modified Franke/Westerhoff approach.

Noise traders’ and fundamentalists’ excess demand are given by:

EDc ¼ Tcyt; ð11Þ

EDf ¼ Tf ðpf ;t � ptÞ ð12Þ

with Tc; Tf denoting trading volumes of both groups, respectively, and the sentiment

index yt being defined as

yt ¼
nþ;t � n�;t

Nc
ð13Þ

with nþ;tðn�;tÞ the currently optimistic (pessimistic) individuals among the constant

overall number of noise tenders, Nc. The equilibrium price in this model is obtained

as:

pt ¼ pf ;t þ
Tc
Tf

yt: ð14Þ

Hence, returns are given by:

rt ¼ ef ;t þ
Tc
Tf

ðyt � yt�1Þ ð15Þ

Again, asset returns are a noisy signal for the realization of the latent variable, now

denoted by yt.
The within-group dynamics are determined by the following transition rates:

pþ;t ¼ aþ bnþ;t ; ð16Þ

p�;t ¼ aþ bn�;t ð17Þ

for the switch from pessimistic to optimistic opinion ðpþ;tÞ and vice versa. It

includes a autonomous propensity to change opinion, a, and one that is driven by the
current majority, b.

Normalizing Tc
Tf
¼ 1, the model leaves the parameters, rf , a and b to be estimated.

Again, to preserve the spirit of a ‘true’ ABM, a finite number of agents ðNc ¼ 100Þ
is used to simulate the time-variation of the latent variable yt.

The present models have been chosen for our study because their dynamics is

genuinely driven by the interactions of the agents and their characteristic features

would not be preserved by a reduction to their deterministic counterparts. Indeed,

while there exists a rich literature of heterogeneous agent models in finance with

highly complex dynamics of their deterministic ‘skeleton’ (surveyed, for instance by
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Dieci and He 2018), the present models have relatively simple deterministic

counterparts, and their main attraction comes from the interplay of the stochastic

factors governing the interaction of agents. Many of the models surveyed by Dieci

and He are based on the deterministic trajectories of occupation numbers of

different groups within an infinite population, leading to cyclical or chaotic asset

price dynamics. In contrast, in the above models, the finiteness of the pool of agents

and their autonomous behaviour is crucial to the dynamic outcome (and therefore

the stochastic elements cannot be reduced to an additive factor superimposed on the

deterministic skeleton).

Figure 1 serves to illustrate this feature. In this figure, we exhibit a typical

simulation of both the models by Alfarano et al. (2008) and Franke and Westerhoff

(2012). Both realisations show the proximity of the model-generated returns to

typical such time series from financial markets. In particular, both synthetic time

series show clear signs of volatility clustering or ARCH-type effects, and, therefore,

could count as possible behavioural explanations of these ubiquitous stylized facts.

The clustered volatility is intrinsic to the stochastic nature of these models and

would not be present in a reduction to a deterministic skeleton plus additive noise.

Lux (1997) shows how ARCH-type behaviour of second moments emerges

generically from the interaction of the agents in models with a stochastic

formalisation of a finite ensemble of agents.

Fig. 1 Simulated returns from the models of Franke and Westerhoff and Alfarano et al. Parameters are
the same as used in the computational experiments with the PMCMC estimator in Sect. 4

123

Bayesian Estimation of Agent-Based Models via Adaptive MCMC 459



As shown in Alfarano et al. (2008), a deterministic approximation of their model

(its mean-valued dynamics) would simply lead to a mean-reverting autoregressive

process. Similarly, the model of Franke and Westerhoff (2012) would give rise to

either a unique fundamental equilibrium or two speculative market equilibria (one

with overvaluation, the other with undervaluation) depending on whether the

parameter a is below or above unity.

In all these cases, the deterministic ‘skeleton’ would just consist in a monotonic

convergence from any initial condition to one of these equilibria (the nearest one in

the case of two equilibria).3 Adding a noise factor, the returns would just reflect the

realisations of this noise factors as fluctuations around a constant equilibrium value

for the price. It is this irreducibility of the agent-based component of the above

models that motivates our focus on these particular examples from the wide

spectrum of heterogeneous agent models in finance.4

Another welcome property of the present models is that despite the complex

interactions of an ensemble of agents, they constitute well-behaved stochastic

processes. Both models introduced above are actually Markov processes, quite in

contrast to models that are reduced to a deterministic dynamics of the fractions of

agents in different groups that often generate chaotic trajectories (cf. Dieci and He,

2018). The underlying agent-based processes characterized by the transition rates of

Eqs. (9), and (16) and (17), respectively, are easily seen to be aperiodic and

recurrent, and all their states are irreducible which guarantees ergodicity of the

Markov chain. This ergodicity should carry over to the processes governing returns

(Eqs. 8 and 15, respectively) that consist of normally distributed changes of the

fundamentals and a sentiment factor generated by the agent-based dynamics.

Ghonghadze and Lux (2016) compute various moments of the returns process of the

model of Alfarano et al. (Eq. 15). From their results it can be inferred that the

parameters a, b and rf of this model are all identified, for instance, by a moment

estimator using the variance, kurtosis, and the autocovariance of squared returns.

Since in MCMC we are using information about the complete shape of the

distribution of returns, identification necessarily carries over to the present

framework as well.5

3 This can be easily seen by applying the apparatus of Lux (1995) to this very similar model.
4 While these models would loose their interesting properties in a reduction to their deterministic

skeleton of the mean-value dynamics, one can derive deterministic approximations to the dynamics of

their second moments via so-called mean-field approximations as detailed in Lux (1997). Such

approximations are helpful to understand the dynamic interactions that generate the ARCH-type

dynamics exhibited in Fig. 1.
5 To be precise, identification depends on the available data. If we would have data on the sentiment

index yt in Eq. (13), and would estimate the parameters a and b from its stationary distribution (derived in

Alfarano et al. (2008), Eq. 13 on p.113) only the ratio a/b would be identified as only the relative

strengths of the idiosyncratic (a) and herding component (b) would matter. However, if we have time-

ordered realisations, or changes of yt (as in 15), the time scale of switches would be observable so that

both a and b become identifiable separately. Since the distribution of returns is the sum of a Gaussian and

a non-Gaussian process, the influence of the Gaussian part additionally identifies rf . Similarly, for the

model of Franke and Westerhoff, availability of sentiment xt and estimation via the unconditional

distribution would identify a only, while the velocity parameter m would become identifiable if time-

ordered data could be used. Again, since returns are defined as the sum of Gaussian fundamentals plus

non-Gaussian sentiment (plus a scale factor c for the non-Gaussian part) all parameters should again be
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4 Simulation Results

In the following we provide details on explorative simulations of Adaptive Markov

Chain Monte Carlo estimation using both adaptation of the proposals and delayed

rejection. For the adaptive component, we set cn in Eqs. (2) and (3) as follows:

cn ¼
1

ðn� nTransÞg
ð18Þ

with nTrans the number of iterations during the burn-in phase of the MCMC run.

Since with g[ 0 adaptation vanishes asymptotically, this extension of PMCMC

preserves the convergence of the Markov chain. Experimentation showed that the

results were not very sensitive to g if this parameter were not chosen too large. In

the results reported below, g ¼ 0:1 has been used.

In the following, we first report the results of two sets of computational

experiments for the modified model of Franke and Westerhoff (2012). All

simulations have the purpose of estimating the posterior distribution of the

parameters on the base of returns generated for a typical length of financial time

series with T ¼ 2000 observations. The underlying parameters were: m ¼ 1,

a ¼ 0:85, c ¼ 0:5, rf ¼ 0:03 and N ¼ 100. In the first series of experiments we

run 10 Markov chains with a length of 7500 iterations and the number of particles

B ¼ 1000. We consider the first 1500 data points as transient observations. Since

with little experience on the estimation of this model, we have hardly any guidance

for the prior, we choose a uniform prior over the interval [0,5] for parameters m; a
and c, and a uniform prior over [0,rr] for the parameter rf . In the latter case, rr is
the pseudo-empirical standard deviation of the underlying time series of returns.

This constitutes a natural upper bound for this parameter as the fundamental

innovations could at most generate fluctuations of the size of the entire return

volatility if the parameters for the behavioral components all converge towards zero.

For the parameters m and a, upper restrictions are also needed in order to limit the

computational demands of the repeated simulations of the model in the development

of the Markov chains. In particular, high m leads to increasing frequency of agents’

revision of their strategy per unit time. Since we simulate the Poisson processes

governing the agents’ change of behavior as discrete events, more frequent switches

increase the computational demands.

During the burn-in phase, proposals have been drawn from a relatively wide

multivariate Normal distribution with variances of the parameters m, a and c set all

to 0.5, and the variance of rf to 0.1 times the standard deviation of the synthetic

returns, and all covariance terms set equal to zero. The burn-in, thus, serves to learn

Footnote 5 continued

identifiable. Since in contrast to the model of Alfarano et al., we do not have any analytical results for the

resulting distribution of returns, we have checked identifiability of the parameters via a sensitivity

analysis around the parameters used in Fig. 1. As expected the numerical approximation of the likelihood

has a very clear maximum in the vicinity of the ‘true’ parameters along all the dimensions of the

parameter space. This does, of course, not exclude, that there exist parameter sets for which estimation

would encounter particular problems. We will see in the empirical application that this indeed appears to

happen for this model in an application to stock market data.
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about correlations between the parameters of the model. Once the burn-in phase is

completed, Eqs. (2) and (3) are applied in order to adapt the proposals to the

correlation structure of the parameters and to adjust the scale of the proposal

distribution in a way to get close to an optimal acceptance rate. In order to avoid

degenerate outcomes of the adaptation process, the proposal density is modified

slightly by adding a small constant term:

h� �Nðhn; knR̂nÞ þ 0:01N ðhn;R0Þ with R0 the proposal density used in the burn-

in phase. In cases with delayed rejection, a second round has been added after the

rejection of the initial proposal with the new proposal distribution gð2Þðh��jhn�1Þ set
equal to 0:01gðh�jhn�1Þ. Choosing a more concentrated distribution in the second

round leads to a proposal close to the last accepted set of parameters and, therefore,

makes acceptance of this second draw more likely. The following plots and

tables illustrate the results of ten shorter runs with adaptation only (denoted AM

runs) and one longer run using the full DRAM (delayed rejection plus adaptive

Metropolis algorithm) as proposed by Haario et al. (2006).

As can be seen in Fig. 2 the burn-in phase of the first 1500 iterations generates

very few accepted proposals. As displayed in Table 1, the average acceptance rate is

just 0.039 with as few as 10 in one particular run. After this burn-in phase we start

adaptation: We compute the covariance matrix of the proposals in a data-driven way

and adapt its scale k as prescribed in Eqs. (2), (3) and (18). As we can see,

Fig. 2 Evolution of parameters during 10 adaptive MCMC runs for the modified Franke and Westerhoff
model. The ‘true’ parameter values are demarcated by the dotted lines
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adaptation leads immediately to a much higher acceptance rate of about 0.147 with

indeed relatively little variation between runs.

Figure 3 exhibits in the first ten boxplots in each panel the resulting posterior

distributions. Overall, they appear relatively uniform particularly with respect to

their interquartile range (the boxes) while the extremes show somewhat more

variation. It transpires from the posterior distributions that rf is estimated very

precisely from the mean of the posterior distribution while the other parameters are

all somewhat biased upward or downward. Note that this graph just shows multiple

estimations via MCMC for the same underlying time series. Since we would not

expect a perfect parameter estimate with the limited information of one single

series, the bias per se is not surprising. What is, however, reassuring is that the

Table 1 The table shows the

results of computational

experiments with different

specifications of PMCMC to

estimate the posterior

distribution of the parameters of

the modified Franke and

Westerhoff (2012) model and

the Alfarano et al. (2008) model

Parameter mean1 mean2 R R0:975 hw0:975

Franke/Westerhoff model

v 0.824 0.836 1.022 1.028 0.013

a 0.785 0.787 1.004 1.006 0.005

c 0.547 0.548 1.005 1.006 0.003

rf 3.005 3.004 1.009 1.011 0.006

Likel. 3975.454 3975.815 1.019 1.023 0.241

Acceptance rates

AM ð1� 1500Þ : 0:039 ð0:016Þ
AM (1501 : 7500): 0:147 ð0:011Þ
DRAM ð1500 : 61500Þ : 0:265

Alfarano et al. model

a 0.191 0.190 1.016 1.020 0.016

b 1.400 1.400 1.012 1.014 0.075

rf 3.026 3.026 1.009 1.012 0.016

Likel. 3850.169 3851.204 1.013 1.015 0.266

Acceptance rates

AM ð1� 1500Þ : 0:199 ð0:044Þ
AM (1501 : 7500): 0:187 ð0:030Þ
DRAM ð1500 : 61500Þ : 0:160

Mean 1 is the mean over 10 AM runs with B ¼ 1000 and a length of

7500 iterations with the last 6000 iterations of all runs pooled

together; mean2 is the mean of the last 30,000 iterations of one

DRAM run with B ¼ 500 with a total of 61,500 iterations. R is the

convergence diagostic by Gelman and Rubin and R0:975 its 95%

upper bound. hw0:975 is the upper half-width of the 95% interval for

the mean of the posterior distributions of the long DRAM sample.

Parameters a and b in Alfarano et al. (2008) are multiplied by a

factor 1000 and rf in both models by a factor 100 for better

readability. The acceptance rates are shown for the burn-in phase as

well as for the subsequent adaptive phase of both the AM and DRAM

experiments (with standard deviations across the 10 AM runs in

brackets)
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various runs of the MCMC algorithm all generate a posterior distribution that is

apparently very similar with almost the same mean parameter estimates and

dispersion. Note that we know from Andrieu et al. (2010) that Particle MCMC

converges to the posterior density under very general conditions on the likelihood

and prior density. While MCMC is too computation intense to check the behavior of

our estimator for longer time series, we know that the particle approximation of the

likelihood is consistent and obeys a central limit law as the number of particles goes

to infinity. For an increasing number of observations and appropriately increasing

number of particles for longer time series, we thus would expect any bias to vanish

asymptotically also in the posterior distribution (see Lux, 2018, for a summary of

available results on the asymptotics of particle filters).

Figure 4 shows the adjustment of the scale parameter for the ten different runs.

From its value of one upon initialization k drops relatively fast initially and

eventually converges to a constant level between 0.2 and 0.6. The numbers appear

specific to each run, but they interact, of course, with the estimated covariance

matrix. Since the resulting distributions are very similar, the ‘degree of freedom’

implied by the adjustment of both bR and k can lead to different specific trajectories

of adaptation. Note that despite this apparent flexibility in combining k and bR, we
cannot dispense with either of both: Without an adjustment of the scale (via k) we
would get stuck at the covariance matrix of previously explored sets of parameter

Fig. 3 Boxplots of parameters for ten AM runs (numbers 1 through 10) and one DRAM run (number 11).
To guarantee roughly similar magnitudes of the estimated parameters, rf has been multiplied by 100 in

our experiments
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values and would have no chance for increasing or decreasing the acceptance rate:

Without bR we would not be able to learn about the correlation of the parameters.

Table 1 presents diagnostic statistics that are typically reported to assess the

convergence of an MCMC chain. Indeed, we have run 10 separate chains to be able

to compute the celebrated Gelman–Rubin diagnostic, denoted by R in Table 1. It

compares the within-chain variance to the between-chain variance and computes a

potential scale reduction factor, i.e., the factor by which the variance of the pertinent

parameters in the Markov chain can be reduced by doubling the running time of the

chain. Our computation of this statistics follows Flegal et al. (2008) and we also

report the upper 0.95% bound of the point estimates of R using a Student

t approximation to its distribution (cf. Flegal et al., 2008). A rule of thumb for an

acceptable range of R is to choose the length of the chain so that R falls below 1.1.

Since the scale reduction rate can be computed for any parameter or function of

parameters, we report it both for the four parameters of the model and for the

resulting likelihood. We find that in all cases the point estimate and the upper 95%

bound are much smaller than 1.1 indicating good convergence properties.

Our second experiment uses the DRAM algorithm, i.e. it combines the adaptive

adjustment of the proposal distribution with a second round of proposals in the case

of a rejection of the first proposal. We use the same covariance matrix like in the

first round but multiply it by a factor 0.01 to obtain proposals closer to the last

accepted value. In this way, we have a much higher chance of acceptance for the

second round, i.e. conditional on rejection in the first round which on balance should

provide for a much higher overall acceptance rate. In contrast to the previous

experiment, we have also reduced the number of particles to B ¼ 500 while the AM

runs had used B ¼ 1000 in the particle filter. As can be seen, the delayed adjustment

algorithm increases the acceptance rate to 0.265, slightly above the target, while

Fig. 4 Development of adaptive scale parameter k after the burn-in phase for 10 AM runs (main plot) and
one DRAM run (inlet)
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indeed the AM runs had never been able to achieve the target rate of 0.234

recommended by Rosenthal (2011). As the last boxplots in Fig. 3 show there is no

obvious difference between the resulting quantiles of this run and the previous

shorter runs with a different design.

Figure 5 compares the overall distributions for one of the parameters, m, and the

likelihood function. On the upper panel, the pooled results from the 10 AM runs

after burn-in are displayed. On the lower panel, we show those from the single

DRAM run, for the last 30,000 iterations. Both histograms are virtually indistin-

guishable. The same holds for the estimated means listed in Table 1. The last

column of the table also shows the half-width of the 95% confidence interval of the

mean parameter estimates based upon batch means (splitting the last 30,000 data

points into subsamples of 5.000). Following, for example, Flegal et al. (2008) this

half-width can be interpreted as another convergence criterion applicable to cases

where one prefers to perform one single run. With all parameters having confidence

intervals for their mean of at most 0.02 and the likelihood a confidence interval

smaller than 0.5, the precision appears within conventional bounds. It is interesting

to compare the trajectory for k for the DRAM experiment to those of the previous

runs. As shown in Fig. 4 this case shows an initial increase, but with a hump-shaped

continuation actually converges back to some limiting value close to 1. With the

more frequent acceptances, this run started out close to the target rate after the burn-

in and even exceeded it during the adaption phase so that the adaptation widened the

Fig. 5 Histograms of parameter m and the likelihood for both the ten AM runs and the single DRAM run
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covariance matrix in order to reduce the acceptance rate back towards the desired

level of 0.234.

Table 1 also shows results of a similar set of experiments for the model of

Alfarano et al. (2008). The underlying parameter values are a ¼ 0:0003,
b ¼ 0:0014, and rf ¼ 0:03 as in the other model. As it can be seen, the results

are broadly similar in terms of the precision as measured by the scale reduction

factor and the half-width of the estimates of the posterior mean. In this model, the

parameter b exhibits the smallest bias while a shows a larger deviation between the

assumed value and the posterior mean. Acceptance rates remain somewhat below

target for both the AM and DRAM experiments. In the case of this model the

adjustment leads to ever decreasing k indicating that a distribution for the proposals

with zero values in its off-diagonal entries is sufficient to arrive at the indicated

acceptance rates. However, for the model of Alfarano et al., neither the AM nor the

DRAM algorithm are able to meet the target rate of acceptance.

Given the adaptive nature of our choice of the proposal densities, it appears

mysterious how the adjustment could underachieve relative to its set target rate. The

difference is likely due to the influence of another crucial parameter, the number of

particles used in the approximation of the likelihood function. Efficient choice of

this parameter has been studied by Pitt et al. (2012), Sherlock et al. (2015) and

Doucet et al. (2015). These contributions derive various results on the efficient

choice of the number of particles, B, by assuming that the approximation of the

likelihood function leads to a distortion against the exact likelihood that can itself be

approximated by a Gaussian noise governing the behavior of the log-likelihood.

Their general recommendation is choosing B so that the standard deviation of the

log-likelihood is in the range of 1.0 to 1.7 in order to minimize overall computing

time (balancing the computational effort due to a longer Markov chain needed to

compensate for a higher rejection rate against the effort needed to reduce the

rejection rate through a higher number of particles). A larger standard deviation of

the particle approximation to log-likelihood implies more sampling variability in the

likelihood ratio Ph� ðyÞ=Phn�1
ðyÞ in Eq. (1). This leads to occasional large deviations

of the particle approximation from the ’true’ likelihood for a draw hn that would not

be exceeded by new draws for new parameters for a long time, and, thus, would

reduce the acceptance rate. However, how exactly the standard deviation of the log-

likelihood scales with the number of particles depends on the structure of the model

and the (true) parameters.

Table 2 shows in its second and third column estimates of the standard deviation

of the log-likelihood at the chosen parameter values, using 100 replications of its

computations with different random number seeds for the particle filter. We find that

for B ¼ 1000 the Franke /Westerhoff model gets very close to the target of unity,

and also for B ¼ 500 the increase of the standard deviation appears moderate and

acceptable. In contrast, the Alfarano et al. model has a much higher standard

deviation at B ¼ 500 which explains the low acceptance rate of 0.160 in the DRAM

experiments reported in Table 1.

123

Bayesian Estimation of Agent-Based Models via Adaptive MCMC 467



5 Empirical Application

Equipped with the insights of the previous section on how to design an adaptive

PMCMC algorithm efficiently, we apply this approach to a selection of time series

of major stock markets. The series we consider consist of the S&P500 for the U.S.

economy, the German DAX and the Japanese Nikkei index. To obtain a series with

a length comparable to that of our previous simulations initially the time period

January 2008 through February 2015 had been chosen, with a total of 1886

observations of daily returns. If the PMCMC algorithm would attain an acceptance

rate close to its target, the empirical estimation should allow for an efficiency of

parameter estimation that should be comparable to the results obtained by the

synthetic data in Table 2. The chosen sample is also part of the larger sample used

in Lux (2018) for the same series so that results of the present exercise could be

compared with his previous parameter estimates on the base of a frequentist use of

the particle filter.

The empirical exercise was initiated with a complete replication of the design of

the simulations reported in the previous section using the DRAM algorithm with the

same initial distribution of the proposals and the same length of the burn-in phase

before initiating the adaptation. Unfortunately, what had been working well in the

simulations, did not work so well in the practical applications: For both models, we

obtained Monte Carlo chains with an acceptance rate way below the usual target of

0.234, even in the adaptation phase. In many cases, the chains showed rejection

rates close to hundred percent and only two digit numbers of accepted values over

runs of 60,000 iterations. As can be inferred from Table 2, the reason for this dismal

Table 2 Standard deviation of log-likelihood for different data

B ALW FW ALW-

S&P

ALW-

S&P

short.

ALW-

DAX

ALW-

NIKKEI

FW-

S&P

FW-

S&P

short.

FW-

DAX

FW-

NIKKEI

500 2.505 1.439 50.993 2.309 12.179 6.380 13.630 1.299 0.042 0.019

1000 1.668 1.135 29.862 1.226 1.672 4.602 10.177 0.873 0.031 0.013

2000 1.070 0.736 4.250 0.976 1.016 3.435 9.771 0.575 0.022 0.010

4000 2.226 0.688 0.700 4.716 10.378 0.460 0.014 0.007

6000 2.338 0.714 0.619 3.672 10.451 0.378 0.012 0.005

8000 2.011 0.519 0.568 1.745 9.103 0.286 0.010 0.005

The table shows the standard deviation of the estimated log-likelihood values across 100 evaluations

using the particle filter with different seeds of the random number generator. ALW and FW stand for

experiments on the base of the same simulated time series with the parameter values used in Table 1, and

likelihood evaluations using these ‘true’ values. ALW-S&P and FW-S&P report the same results for daily

data of the S&P 500 from January 2008 through February 2015 and parameters taken from the posterior

of a preliminary run of the DRAM algorithm. The remaining experiments ALW-S&P short and FW-S&P

short have used only the last 1000 observations of the original 1886 daily S&P returns. The pertinent

results for the DAX and Nikkei indices also use a sample of only 1000 observations that is synchronous to

the S&P 500 sample
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performance of the algorithm lies in the high variability of the log-likelihood for

these two models with the chosen number of particles in the approximation of the

likelihood. In order to assess this variability, a preliminary set of parameter

estimates, obtained as posterior means of the last 30,000 observations of our initial

APMCMC runs with a burn-in period of length 1500 and adaptation period of length

60,000, have been used to simulate the model and compute the standard deviation of

its log likelihood for the given data.

As can bee seen in Table 2, the log likelihood for the S&P 500 data has a

standard deviation of about 50 for the Alfarano et al. model with number of particles

set as B ¼ 500. Increasing the number of particles leads to a monotonic decrease of

the variability, but even with B ¼ 8000 the standard deviation is still as high as

2.011. While for the Franke/Westerhoff model, the variability is somewhat lower

than for the first model, increasing the number of particles has only a small effect,

and even with B ¼ 8000 the standard deviation remained above 9. While one could

in principle still increase the number of particles further, the computational demands

of an efficient PMCMC estimation, unfortunately, appear out of reach for this time

series, period of investigation and hypothesized models. The same actually was

found for the DAX and the Nikkei. Closer inspection shows that the log-likelihood

is so volatile over the chosen period because of the large fluctuations at the start of

this period which coincides with the time of the worldwide financial crises after the

collapse of Lehman brothers. When removing this part, the log-likelihood shows

distinctly less variations. To see whether a shorter series would be amenable to

PMCMC estimation, the last 1000 observations have been used stretching from 04/

26/2011 to 02/28/2015. In terms of the standard deviation of the log likelihood this

time window appears better-behaved: For the Alfarano et al. model one obtains a

standard deviation of 1.226 with B ¼ 1000 while for the Franke/Westerhoff model it

is 0.873, obtained again from simulations with parameters estimated from our first

implementation of the DRAM algorithm. For the two other series, the same

restriction of the time window yielded the following results: With the Alfarano et al.

model, the DAX showed similar behavior like the S&P 500 while the Nikkei index

showed still too high variability of the likelihood which only receded to

acceptable levels with B ¼ 8000. In contrast, the same series showed a standard

deviation of the log likelihood under the Franke/Westerhoff model that was almost

two orders of magnitude lower with entries all below 0.05 over the entire range from

B ¼ 500 to B ¼ 8000 displayed in Table 2. Since a value below the optimal one of a

about unity indicates a high acceptance rate this somewhat unexpected behavior is

not really an obstacle for PMCMC estimation. Indeed, it would rather indicate that

we would need a relatively short chain only to achieve a given target of efficiency.

In the following we repeat the results using the DRAM algorithm for these three

series with T ¼ 1000 observations, using as the default setting B ¼ 1000 for the

model of Alfarano et al. and B ¼ 500 for the Franke/Westerhoff model and a chain

of length 61,500 with adaptation starting after the first 1500 iterations.

Table 3 displays the results for the Alfarano et al. model. For the S&P500 and the

DAX, the acceptance rates for this setting are very close to target, while for the

Nikkei it remains distinctly lower (as expected). For the later, another run with

B ¼ 6000 has been conducted which shows more satisfying behavior (somewhat
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surprisingly so since the standard deviation of the log-likelihood reported it Table 2

is still relatively high with 3.672 for this setting). Together with the mean of the

posterior distribution of the parameters and the likelihood, the table also shows the

95% confidence interval for the mean and the 95% credible interval for the pertinent

parameter inferred from the full posterior distribution (i.e., the 2.5 and 97.5

simulated quantiles). The interesting aspects are the following: First, in all three

cases, we conclude that b[ a with at least a confidence level of 95% as the 95%

credible intervals of both parameters are non-overlapping. In the context of this

model, this implies that the equilibrium distribution of the latent variable yt from
Eq. (12) is bimodal. Hence, the fluctuations between volatile and tranquil market

phases are caused by changes between a dominance of optimistic and pessimistic

sentiment. Second, the estimates for the parameters rf are all distinctly smaller than

the standard deviations of the underlying time series of returns (numbers are given

in Table 4): this is again significant at least at the 95% level as the credible intervals

do not include the empirical standard deviation of the data. The conclusion within

the model is that fundamental shocks explain only parts of the variation of returns,

and the impact of sentiment dynamics (represented by the parameters a and b) is
non-negligible.

Table 3 Estimates of ALW model

S&P500 DAX Nikkei Nikkei II

mean(a) 0.176 0.303 0.233 0.245

95% conf. (0.167 0.185) (0.272 0.334) (0.192 0.274) (0.225 0.265)

95% cred. (0.076 0.300) (0.137 0.518) (0.098 0.442) (0.096 0.361)

mean(b) 1.156 0.780 1.138 1.046

95% conf. (1.101 1.211) (0.761 0.799) (0.918 1.357) (0.932 1.160)

95% cred. (0.723 1.691) (0.527 1.082) (0.663 1.764) (0.654 1.413)

mean(rf ) 6.620 7.705 9.884 9.744

95% conf. (6.570 6.670) (7.616 7.795) (9.597 10.171) (9.615 9.873)

95% cred. (6.206 7.059) (7.002 8.487) (8.987 11.026) (8.925 10.304)

mean(lkl) 3380.350 3074.106 2980.412 2979.329

95% conf. (3380.226

3380.475)

(3073.624

3074.588)

(2979.319

2981.506)

(2979.023

2979.635)

95% cred. (3376.355

3383.960)

(3069.756

3077.857)

(2974.932

2984.250)

(2975.066

2981.525)

accept. rate 0.248 0.215 0.090 0.252

The table shows the parameter estimates and maximized likelihood values for the Alfarano et al. model

obtained from the posterior distribution. The underlying samples consisted of 1000 daily observations.

The table includes the mean parameter estimates, the 95% confidence interval of this mean, and the 95%

credible interval of the posterior distribution. The first three sets of estimates are obtained with B ¼ 1000

particles while the fourth (Nikkei II) is obtained with B ¼ 6000 particles. Estimates are extracted from the

last 30.000 iterations of a Markov Chain with an overall length of 61.500 iterations of which the first

1.500 steps were used for burn-in. In the case of Nikkei II (last column) the length of the chain was only,

31.500 of which the last 15.000 steps were used for estimation
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Figure 6 displays the Markov chains for the parameter a for the three time series

(all with B ¼ 1000). As can be seen, convergence to the limiting distribution is

almost immediate, and the fluctuations appear very regular. The lower acceptance

rate in the case of the Nikkei Index is also well visible in the simulation. Parameters

b and rf behave very similarly. Also shown in Fig. 6 is the dynamics of the

adaptation parameter k for the S&P500 and the DAX series. In both cases, the

adaptation proceeds in cycles that at least up to the range of 60,000 iterations

performed here show no tendency of dying out. Since Eqs. (2) and (3) define the

dynamics of a dynamic system such a behavior is a possible outcome of the adaptive

choice of the proposal distribution. Since all the conditions for convergence of the

Markov chain are fulfilled, this should not have any impact on the posterior, and

indeed the chains of the parameters’ posteriors appear to be unaffected by the

fluctuations of k (which likely goes hand-in-hand with compensating fluctuations ofP̂
))

For the Nikkei, the adaptation parameter k converges monotonically to zero, so

that the proposal density tends to Nðhn; 0:01R0Þ. This is probably a consequence of

Table 4 Estimates of FW model

S&P500 DAX Nikkei

mean(m) 1.079 1.142 2.360

95% conf. (1.041 1.118) (1.038 1.246) (2.268 2.451)

95% cred. (0.306 1.845) (0.103 4.899) (0.169 4.740)

mean(a) 1.297 1.351 1.620

95% conf. (1.293 1.301) (1.337 1.365) (1.610 1.630)

95% cred. (1.209 1.396) (1.194 1.895) (1.336 1.939)

mean(c) �3.506 3.356 �1.227

95% conf. (�3.594 �3.418) (3.256 3.457) (�1.270 �1.185)

95% cred. (�4.974 �1.934) (0.675 4.891) (�2.916 �0.378)

mean(rf ) 9.259 12.671 12.864

95% conf. (9.255 9.283) (12.651 12.691) (12.850 12.877)

95% cred. (8.875 9.673) (12.103 13.341) (12.365 13.396)

stdc(ret) 9.695 12.891 12.936

mean (lkl) 3240.522 2928.064 2922.645

95% conf. (3240.352 3240.692) (2927.861 2928.267) (2922.593 2922.697)

95% cred. (3235.129 3244.442) (2922.787 2932.788) (2920.349 2923.671)

accept. rate 0.091 0.339 0.229

The table shows the parameter estimates and maximized likelihood values for the Franke and Westerhoff

model obtained from the posterior distribution. The underlying samples consisted of 1000 daily obser-

vations. The table includes the mean parameter estimates, the 95% confidence interal of this mean, and

the 95% credible interval of the posterior distribution. All estimates are obtained with B ¼ 500 particles.

Estimates are all obtained from the last 30,000 of a Markov chain with an overall length of 61,500

iterations of which the first 1500 steps were used for burn-in. Also shown in the table is the empirical

standard deviation of the returns, denoted by stdc(ret)
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the inability of the algorithm to find acceptable proposals because of the large

variation of the log-likelihood. In an attempt at increasing the acceptance rate, the

adaption parameter reduces the variance of the proposal distribution further and

further, albeit without sufficient success, so that this tendency drives k to zero.

Interestingly, an alternative MCMC run with B ¼ 6:000 particles (Nikkei II in

Table 3) shows again the oscillatory dynamics that were found for the two other

stock market series.

Table 4 and Fig. 7 provide the results for the Franke/Westerhoff model. This

time, we find the acceptance rate to be close to the target of 0.234 (cf. Sect. 2 above)

in the cases of the DAX and the Nikkei, while the adaption underperforms in the

case of the S&P500. Again the ‘satisfactory’ cases came along with cyclical

adjustments of k, while in the ‘unsatisfactory’ case of the S&P500 we find k
converging to zero again. The estimate of the parameter c is negative in the case of

the S&P500 and the NIKKEI and would have to be explained by strong contrarian

behavior of chartists or ‘anti-fundamentalist’ behavior of the group of fundamen-

talists (i.e., expectations of a movement of the price away from the fundamental

value).

For all three time series, we find a very large credible 95% interval of the

posterior of the parameter m. The same applies to parameters c while a and rf have
more narrow 95% credible intervals.

Fig. 6 Evolution of model parameter a and adaptation parameter k during the MCMC run with 1.000
particles using the DRAM algorithm for the model of Alfarano et al. Not shown is the scale parameter k
for the Nikkei as it converges to zero very quickly
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However, for rf the pertinent numbers are all very close to the standard

deviations of returns rr themselves meaning that - according to the estimates of the

Franke and Westerhoff model- most if not all of the dynamics of returns would have

to be explained by fundamental news. The remaining behavioral parameters would,

then, loose their economic relevance. Indeed, the credible 95% confidence intervals

for rf include rr for the DAX and Nikkei, and only for the S&P is rr marginally

located outside this interval. Comparing the posterior distribution of rf (which has

the same role in both models) for both models, we find that their 95% credible

intervals are non-overlapping for all three series. The same applies to the 95%

credible intervals of the estimated likelihoods. In all cases, the Alfarano et al. model

has higher values and can, thus, be said to outperform its competitor at least at a

confidence level of 95%. The results indicate that at least this version of the Franke/

Westerhoff model is not an appropriate data generating process for the time series

under consideration. With the estimate of rf being almost the same as the standard

deviation of the data, the results of the estimation suggest that this model is

consistently (at least for these three series) unable to explain the deviations of

financial returns from a Normal distribution: Since rf is about the same as the

standard deviation, the sentiment part of Eq. (8) would become negligible. With a

Fig. 7 Evolution of model parameters during the MCMC run with 500 particles using the DRAM
algorithm for the model of Franke and Westerhoff. For parameters m and a, only the cases of the S&P500
and DAX are shown as the NIKKEI shows a very wide distribution which would conceal the other series.
In the upper-right hand panel the broken lines show the empirical standard deviations of the return series
to illustrate how close the estimates of rf are to the empirical volatility (the standard deviations for the

DAX and NIKKEI are so close that they cannot be distinguished from each other)

123

Bayesian Estimation of Agent-Based Models via Adaptive MCMC 473



very weak influence of sentiment on returns the parameters driving the sentiment

dynamics (m, a and c) can only be estimated with a high degree of uncertainty. This

is exactly what we see in Table 4 and Fig. 7. Note in particular, that the high

confidence intervals only affect m and c, while they are much smaller for rf . This
result is remarkable as the estimates of the Alfarano et al. model speak in favor of a

significant influence of sentiment which in this model explains a sizable fraction of

the variability of returns (the estimated rf in the Alfarano et al. model is always

much smaller than the standard deviation of the data and, thus, leaves room for the

sentiment factor). Reducing the model almost to the Gaussian process for the

fundamental factors only, the estimates for the Franke and Westerhoff model are, in

contrast, unable to explain the typical feature of volatility clustering in financial

data. It is not surprising then that the average liklihood of its posterior distribution is

always smaller then that of the alternative model.

The illustrations of the Markov chains of the parameters of the Franke and

Westerhoff model in Fig. 7 clearly indicate that m, a and c are at best weakly

identified, whereas rf exhibits very small variations in the neighboorhood of the

standard deviation of the data. Even much longer simulations still convey the same

impression as those depicted in the figure. Note, however, that at least for the DAX

and NIKKEI, the acceptance rates are close to what is considered optimal for

MCMC. Hence, the meandering paths of the chains for parameters m, a and c and

their occasional jumps speak for a high uncertainty in the estimation of these

parameters, not for a lack of exploration of the parameter space. One may also note

that one restriction that can be inferred for all three time series is that the parameter

a of the Franke/Westerhoff model has a 95% credible interval above unity. In this

case, the collective state of the agents converges to a constant majority of either

chartists or fundamentalists. With zt in Eq. (8) remaining practically constant, the

sentiment part turns into a small autoregressive component, and, thus, given the

negligible value of the autocorrelation of financial returns, its contribution to the

likelihood also becomes marginal.

The interesting insight from this exercise is that the Franke/Westerhoff model

does not seem to have the potential to explain the particular statistical features of

financial returns. It can generate sentiment dynamics with clustering of volatility (cf.

Fig. 1) that appears visually appealing. However, as indicated by the estimates, it is

unable to match the particular form of heteroscedasticity prevailing in the data, and

the best it can do with the data is to fit it by parameters that are not too different

from a pure Gaussian process. In this sense the present Bayesian estimation serves

to identify a lack of fit of this particular model. This insight exemplifies the

observation by Siekmann et al. (2012) that MCMC can be used to check for

problems of identification of competing models. Since a Bayesian approach

provides information on the full posterior distribution, it appears more suitable than

frequentist point estimates for this purpose. In the present case, we might not have

found a complete lack of identification, but a close proximity of the posterior of the

parameters to a case in which the observed and hidden parts of the state-space

model are nearly decoupled and, hence, the parameters of the hidden component

would trivially be unidentified. This leaves us with the conclusion that this
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particular model is not a suitable representation of the asset price dynamics of our

selection of stock indices although from a purely phenomenological perspective it

appeared an attractive candidate. This confirms results reported by Lux (2018) on

the base of a frequentist comparison of both models (albeit for longer time series).

However, while the frequentist estimation just documents the significant difference

in the likelihood of both models, the Bayesian approach provides deeper diagnostic

insights.

6 Conclusions

This paper has explored the potential use of refined Markov Chain Monte Carlo

approaches for estimation of the parameters of agent-based models. Using an

adaptive choice of the distribution of proposals, we indeed found a convenient

convergence of the acceptance rates towards their target in our exploratory runs of

two behavioral stock market models with a finite number of interacting agents.

Unfortunately, the application to empirical data turned out to still be cumbersome in

certain cases. In particular, we found this approach to be still infeasible for our

initially chosen time series of three major stock indices covering daily data from

2008 though 2015. As it turned out the variation of the log-likelihood values for this

sample appeared so large in all three cases that a reasonably high acceptance rate

would have required an enormous number of particles in the simulations. This

particular behavior of our initial time series obviously stems from a number of

extreme realisations during the financial crisis that lead to large fluctuations of the

likelihood values across observations. In order to be able to apply Particle MCMC at

all, we have reduced the sample to a better-behaved subsample skipping the years

2008 to 2010. This method-driven reduction of the time series under scrutiny is

obviously unsatisfactory. As a general insight of our analyses, we find that the

flexibility of APMCMC still depends on the combination of data at hand,

hypothesized model and best-fitting parameter values of this model that taken

together is, of course, outside the control of the researcher.

Despite these limitations, the present exercise brought some interesting results to

the fore: parameter estimates for the Alfarano et al. model where in line with the

results of Lux (2018) using frequentist methods and a much larger sample, and also

the dominance of this model over the competitor of Franke and Westerhoff (2012)

has been confirmed. As in the previous paper, the parameter estimates of the latter

model basically indicated very little relevance of speculative activity and a

dominant influence of fundamental news on asset price movements, while the

Alfarano et al. model, in contrast, diagnoses a strong influence of sentiment.

While it has been demonstrated in the literature, that the use of an unbiased

estimator of the likelihood leaves the equilibrium distribution of the posterior

unchanged in MCMC estimation (Andrieu et al. 2010), the present paper shows the

practical limitations of this approach. If the computational demands of PMCMC

become infeasible, one would likely have to resort to Approximate Bayesian
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Computing (ABC) using auxiliary measures of fit rather than the likelihood. A few

recent attempts at the application of ABC, for agent-based models can be found in

ecology (Parry et al. 2013; Zhang et al. 2017). The adaptation of these methods

should be on the research agenda as one of the possible avenues to proceed in the

validation of agent-based models in economics.
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