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Abstract
The calibration of financial models is laborious, time-consuming and expensive, and
needs to be performed frequently by financial institutions. Recently, the application
of artificial neural networks (ANNs) for model calibration has gained interest. This
paper provides the first comprehensive empirical study on the application of ANNs
for calibration based on observed market data. We benchmark the performance of
the ANN approach against a real-life calibration framework that is in action at a
large financial institution. The ANN based calibration framework shows competitive
calibration results, roughly four times faster with less computational efforts. Besides
speed and efficiency, the resulting model parameters are found to be more stable
over time, enabling more reliable risk reports and business decisions. Furthermore,
the calibration framework involves multiple validation steps to counteract regulatory
concerns regarding its practical application.
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1 Introduction

The calibration of financial models is a laborious, time-consuming and expensive task
performed by financial institutions on a regular basis (e.g., daily). Asset pricingmodels
are used to determine the value of derivatives or to generate scenarios for Monte Carlo
calculations in risk management. Hence, the outcomes of these models are crucial
information required for investment and business decisions. The calibration of these
models needs to be performed frequently to ensure the validity of their outcomes. In
particular, the calibration of complex and multi-dimensional models is burdensome
and requires significant computational efforts and time. The choice of an asset pricing
model for a specific product involves balancing the accuracy of the model and the time
required for its calibration.

Calibration of a financial model can be described as a reverse optimization task,
where the inputs of a pricing function (model parameters) are determined to fit observ-
able outputs (e.g., market prices). The solution of this problem usually requires calling
a specific pricing function a large number of times with different parameter settings.
Hence, the required time and computational resources have always been limiting fac-
tors when choosing a pricing model and models with fast (semi-)analytical solutions
are generally preferred. Furthermore, these limitations have led to the broad application
of local optimization algorithms for calibration, see Liu et al. (2019). The application
of more advanced optimization algorithms is rarely considered. Particularly models
with multiple parameters give rise to multiple minima for calibration. Hence, local
optimization algorithms tend to struggle finding a robust solution.

Given the aforementioned issues and limitations, the application of machine learn-
ing for the calibration of asset pricingmodels has recently gained interest. In particular,
the application of artificial neural networks (ANNs) for accelerating the pricing of
derivatives is a topic of interest. As one of the first, Hutchinson et al. (1994) analyzed
the applications of ANNs to estimate the pricing function for derivatives in a non-
parametric, model-free way. This idea was resumed amongst others by Quek et al.
(2008) and Culkin and Das (2017).1 Recently various papers emerged dealing with
a model-based approximation of derivative pricing functions under advanced asset
pricing models. For example, Ferguson and Green (2018) apply a forward feed net-
work to estimate the valuation function for equity basket options. Hirsa et al. (2019)
analyse the performance of ANN pricing methods for European, Barrier and Ameri-
can options under different mathematical regimes. Liu et al. (2019) use ANNs for the
approximation of option values under the Black & Scholes and Heston model. With
respect to interest rate models, Kienitz et al. (2020) analyze the application of ANNs
for the approximation of swaption prices under the Hull-White and Trolle–Schwartz
model.

Based on the application of ANNs for the pricing of derivatives, there are several
papers on utilizing these trained ANNs for calibration. Hernandez (2017) firstly pre-
sented this idea by applying a feed forward ANN for the calibration of a single-factor
Hull-Whitemodel based on realmarket data (SterlingATMswaptions). Dimitroff et al.

1 Ruf and Wang (2020) provide a comprehensive review of literature on the application of neural networks
for option pricing and hedging.
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(2018) use convolutional neural networks for the calibration of stochastic volatility
models. As the application of ANNs is expected to accelerate the pricing process, the
application ofmore complexmodels is an intensively discussed issue. In particular, the
calibration of rough volatility models is extensively analyzed by Bayer and Stemper
(2018), Bayer et al. (2019), Horvath et al. (2021) and Stone (2020) . The general idea
is the acceleration of the instrument valuation via the application of a neural network.
The optimization itself is in most cases still based on a local optimization algorithm.
Furthermore, most of the existing papers do not use real market data to assess the
performance of the ANN, but use only simulated data. Correspondingly, there is no
study which compares the ANN results to a real-life implementation at a financial
institution to shed light on practical benefits.

We employ the calibration framework proposed by Liu et al. (2019). It involves a
two-step procedure for the calibration of financialmodels. First, a feed forwardANN is
trained based on simulated training data to approximate the valuation function under a
given asset pricing model.2 Second, the trained ANN is utilized in a backward manner
for the calibration of model parameters. We apply the calibration framework to an
interest rate (IR) term structure model based on Trolle and Schwartz (2009), as this
setup is applied in the benchmark implementation.

While Liu et al. (2019) show the effectiveness of their approach on simulated data
for the training of the ANN as well as the calibration of the model parameters, we
empirically analyze the performance of this framework based on a comprehensive set
of historic market data for a consecutive series of trading days (21months). Hernandez
(2017) uses historic market data for the calibration of the Hull-White model, but the
data is limited to ATM swaptions. Furthermore, the adjustments to the Hull-White
model, such as keeping the parameters constant across swaption maturities are con-
sidered as being too simplistic for practical application (Kienitz et al. (2020)). Hence,
we consider our study as the first comprehensive empirical assessment that deeply
examines the application of ANNs for calibration of financial models based on real
market data. The purpose of the paper is to answer the question if current calibration
frameworks of financial institutions can be accelerated,maintaining similar calibration
accuracy. This would make it possible to use more advanced financial models or/and
optimizers for the calibration tasks frequently performed by risk managers.

We extend the literature regarding the calibration of IR term structure models in
three important ways. We are the first to establish an ANN for the valuation of swap-
tions under the Trolle–Schwartz (TS)model and validate the results based on historical
market data, evaluating their performance in real-life situations. Second, we calibrate
the Trolle–Schwartz model parameters for a consecutive series of trading days based
on historic market data for EUR swaptions using a global optimization algorithm.

2 Horvath et al. (2021) train a neural network on a financial model in a first step and use this for the
calibration in an consecutive step. The main difference between Liu et al. (2019) and Horvath et al. (2021)
is the type of neural network employed. The latter authors use convolutional neural networks (CNN) as they
focus on a 2-dimensional volatility surface, which can be interpreted as a picture. This enables Horvath
et al. (2021) to lift all potentials of the CNN proved for pattern recognition and processing of pictures. In
our empirical application, we use a financial model, where the volatility surface/prices are represented by
3-dimensions. As the transfer of the output layer of a CNN to higher dimensions is not trivial, we employ
a feed-forward neural network similar to Liu et al. (2019). Hence, we follow the calibration framework of
Liu et al. (2019) more closely than Horvath et al. (2021).
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112 P. Büchel et al.

We find that the resulting model parameters using a global optimizer are more stable
compared to the benchmark implementationwhich is in action at a large financial insti-
tution. This has important managerial implications as more stable parameters might
contribute to less volatile P&L figures over time, which is a desirable outcome for
financial institutions. Furthermore, several more simplistic but widely used IR term
structure models can be recovered from the Trolle–Schwartz model by using assump-
tions for certain parameters (Trolle and Schwartz 2009). Therefore, we consider our
results interesting not only for institutions using the TS model, but for a wide range of
market participants applying less complex IR term structure models. Third, we outline
lessons learned for the practical application of ANNs for financial model calibration
and decision making in risk management.

The rest of the paper is structured as follows. In Sect. 2, we briefly introduce the
Trolle–Schwartz model and show the procedure for calibrating the model. Section 3
provides a detailed explanation of the ANN calibration approach and its subsequent
components. The data, methodology and results of our comprehensive empirical study
are presented in Sect. 4. This includes the validation and benchmarking of our results.
Section 5 concludes this paper.

2 Calibration of interest rate term structure models

2.1 The benchmark implementation

The calibration of interest rate term structure models is a widely faced task in the
financial industry. In general, more complex models are accompanied by higher com-
putational burden and an increase of time required for calibration. Therefore, financial
institutions usually set up a costly infrastructure for the calibration of these financial
models. However, they have to find a trade-off between the complexity of a financial
model, the optimization algorithms and the available time in their daily calibration
task. Hence, the computational resources are a limiting factor, when choosing pricing
models and optimization algorithms. We set out to validate the ANN approach on
empirical data and benchmark against a traditional calibration framework which is in
action at a large financial institution. The traditional framework uses a semi-analytical
solution of the Trolle–Schwartz model for the pricing of European swaptions, when
performing the calibration task. The daily calibration at the financial institution is
processed on a large computing cluster utilizing 72 CPU cores simultaneously. Due
to time constraints in the productive setting, a local optimizer is used. This is called
the “benchmark implementation” henceforth. To make a fair comparison, we use the
exact same set of instruments and the same calibration loss function. The aim of the
following sections is to show if an ANN can accelerate and increase the robustness of
calibration frameworks at financial institutions, while maintaining similar calibration
results.
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2.2 Model calibration

The calibration of financial models is a reverse optimization problem. We assume
that we can use a given model to calculate prices of certain financial instruments.
The calculation of the price estimate ( p̂(model)

j ) under a specific model for a given
instrument ( j) requires a series of inputs. This includes the properties of the instrument
(τ j ), the parameters of the model (�t = (ωt1, . . . , ωtp)), where p is the number of
parameters to calibrate, and a set of market data (�t ) at a specific point in time (t). By
applying a calibration procedure, the model parameters are set such that the difference
between the resulting model prices and the observable market prices is minimized
given a specific loss function (L):

argmin�t

∑

j∈Ft

L
(
p(market)
j , p̂(model)

j (�t | τ j ,�t )
)

, (1)

where Ft represents a set of financial instruments, which have observable market
prices (p(market)

j ). The calibration requires a reasonable and thoughtful choice of
calibration instruments. Instruments used for calibration should be liquid, frequently
traded and inherit all relevant risk drivers of the instruments it will be applied to.
Furthermore, the quality of the calibration is limited by the ability of the model to
capture all relevant risk drivers and dependencies of the observable market prices.
Nevertheless, the calibration of a complex and high-dimensional model might be
quite burdensome from a methodological and computational point of view. Hence,
the choice of an appropriate model requires balancing accuracy and computational
performance. Especially, if these models are used for pricing financial instruments the
ability to perform the calibration in a reasonable amount of time is a crucial prerequisite
for their practical application, e.g., for investment or hedging decisions. In addition,
the traceability and interpretability of themodel is an important feature and considered
a key aspect in supervisory oversight and validation.

2.3 The Trolle–Schwartz model

In this paper, we perform an empirical study for the application of an ANN based
framework to calibrate an interest rate term structure model. We use a term structure
model based on Trolle and Schwartz (2009), the so called Trolle–Schwartz model (TS
henceforth), used by the real-life benchmark implementation. The TS model is an
advanced stochastic volatility model based on the Heath-Jarrow-Morton framework
(Heath et al. 1992). We use the TS model in its risk-neutral setting. The TS model
consists of two stochastic processes for the instantaneous forward rate and the variance
of the rate process. The dynamics of the forward rate are modelled as follows (see
Trolle and Schwartz 2009):3

3 Within this paper we provide an overview of the Trolle–Schwartz model based on Trolle and Schwartz
(2009). Hence, we do not provide mathematical derivation, proofs and background of the model. For
additional information on themodel and its methodological foundations, please refer to Trolle and Schwartz
(2009) and Kienitz et al. (2020).
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d f (t, T ) = μ f (t, T )dt +
N∑

i=1

σ f ,i (t, T )
√

vi (t)dW
Q
i (t) (2)

dvi (t) = κi (θi − vi (t)) dt + σi
√

vi (t)

(
ρi dW

Q
i (t) +

√
(1 − ρ2

i )dZ
Q
i (t)

)

(3)

Given these differential equations, the evolution of the forward rate is defined based on
2N standard Wiener processes (WQ

i (t),ZQ
i (t)). N defines the number of dimensions

of the model. In Eq. (2), μ f (t, T ) equals the forward drift. Under the assumption of
no-arbitrage, Heath et al. (1992) have shown that this term is defined as:

μ f (t, T ) =
N∑

i=1

vi (t)σ f ,i (t, T )

∫ T

t
σ f ,i (t, u)du (4)

Based on this property, the evolution of the forward rate under the risk-neutral measure
is solely driven by the initial forward rate curve, the volatility state variables (vi (t))
and the volatility function (σ f ,i ). Within the TS model, the volatility function is set
to a specific form (see Eq. 5) to ensure that the forward rate can be represented by a
finite-dimensional Markov process and a time-homogeneous volatility structure as:

σ f ,i (t, T ) = (
α0,i + α1,i (T − t)

) · e−γi (T−t) (5)

The TS model offers semi-analytical pricing for the most common interest rate prod-
ucts. In this paper, we use swaptions prices as input for the calibration of the TSmodel,
in line with the benchmark implementation. Hence, we need to calculate the prices of
swaptions under the TS model. The TS model provides a semi-analytical solution for
an option on a zero-coupon bond. We perform the pricing of swaptions by utilizing
these pricing functions and mapping the swaptions based on the stochastic duration
method (Munk 1999).4

The TS model is applied in the given benchmark implementation and considered to
be suitable to assess the performance of the calibration framework. Furthermore, theTS
model offers a semi-analytical solution for pricing European Swaptions, which will be
used as calibration instruments for our empirical study. Hence, we are able to generate
train and test data in a fast and efficient way. Nevertheless, the model is complex
enough to capture the structure and properties of the market-implied volatility/price
cube. The TS model can be transformed into more simplistic IR term structure models
by simply using specific settings for the parameters of the volatility function (see
Trolle and Schwartz 2009). Hence, our results are also relevant for the application of
ANNs to calibrate more simplistic IR term structure models, which are also common
in practical implementations.

As discussed above, the calibration of a model requires the setting of model param-
eters such that the model prices fit the observable market prices. The calibration of the

4 For additional details and background on the pricing of swaptions under the TS model, please refer to
Trolle and Schwartz (2009) and Kienitz et al. (2020).

123



Deep calibration of financial models: turning theory into… 115

Table 1 Parameters of the Trolle–Schwartz model

Parameter Interpretation

κ Mean reversion speed of the variance process

θ Long-term variance

σ Volatility of the variance

ρ Correlation between forward rate and volatility state variables

α0 Free parameter of the volatility function σ f (t, T )

α1 Free parameter of the volatility function σ f (t, T )

γ Free parameter of the volatility function σ f (t, T )

This table provides an overview of the model parameters in the TS model and their interpretation

TS model requires the determination of Nx7 parameters (see Table 1). We consider
these parameters as elements of N parameter vectors �i . In line with the setup of the
benchmark implementation, we set N = 1 which reduces the calibration problem to
the determination of seven parameters.5 In our empirical study, we perform a daily
calibration of these parameters by using the sum of squared errors over a set of observ-
able swaption prices as loss function. Hence, the specific calibration procedure for the
TS model can be written as:

argmin�t

∑

j∈Ft

(
p(market)
j − p̂(model)

j

(
�t | τ j ,�t

))2
, (6)

where�t equals the parameter vector (�t = (κt , θt , σt , ρt , αt0, αt1, γt )) for a specific
trading day (t). In case of IR swaptions, τ j equals a vector of properties describing the
instrument, such as expiry date of the swaption, tenor and swap rate of the underlying
swap. �t represents the yield curve (and discount factors) in the respective currency.
Based on these inputs a model price is calculated. The calibration procedure optimizes
�t such that the loss function is minimized. The number of available instruments in
the empirical application is much higher than the number of parameters to calibrate
in the TS Model (Ft > �t ). Therefore, we do not add an additional penalty term
in Eq. (6) to counteract overfitting, in contrast to the original CaNN framework of
Liu et al. (2019).6 The swaptions used in the empirical section are consistent with

5 We are aware that Trolle and Schwartz (2009) propose to use more dimensions. However, our focus is not
TS model and its practical implementation. Our paper tries to provide evidence whether an implementation
at a financial institution can be substituted or accelerated by an ANN calibration framework. Hence, we
follow exactly the setup of the given benchmark to get a reliable and adequate comparison. Therefore, we
have to choose N = 1 dimensions. We thank participants of the 9th International Conference on Futures
and Other Derivatives (ICFOD) 2020 and the 33rd Australasian Finance and Banking Conference (AFBC)
2020 for putting emphasis on that point.
6 In the original paper of the CaNN framework by Liu et al. (2019) a penalty term of 10 · 10−6 is added to
the calibration loss to avoid overfitting. They used 35 instruments per calibration task and determined five
parameters in the Heston model and eight parameters in the Bates model. Hence, the number of instruments
is higher than the parameters to calibrate, but the ratio is lower than in our application. In the empirical
section, we calibrate the seven parameters of the TS model on approxmately 800 swaptions per calibration
task.
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116 P. Büchel et al.

the price observations entering the calibration in the benchmark implementation. This
means, that we only use swaptions that are sufficiently liquid. Furthermore, we do not
introduce aweighting function in Eq. (6) to focus on the calibration of ATM swaptions,
which is in line with the calibration setting at the financial institution.We refer to�BM

t
for the values calibrated by the benchmark implementation at the financial institution
and to �ANN

t for the calibrated values of our approach. The observable market prices
are structured along three dimensions (expiry tenor, swap tenor, strike). Hence, the
observable swaption data can be thought of as a cube of swaption prices.

3 ANN calibration approach

3.1 Methodological overview

In general, a calibration framework should be flexible, robust, fast and accurate. All
these properties are combined in ANNs. They became widespread in the financial
domain due to their flexibility and approximation properties. We use the calibration
framework (CaNN) proposed by Liu et al. (2019), which involves two consecutive
components (two-step or indirect approach). First, we train anANN to learn the pricing
functions for swaptions under the TS model (forward pass). Second, the resulting
ANN is applied within a calibration procedure, to fit the model parameters (�) to a
set of observable market prices. There are other publications that suggest a one-step
(direct) approach, where model parameters are learned from market prices directly
(e.g. Gambara and Teichmann 2020 or Hernandez 2017).7 The indirect approach has
a series of advantages compared to the direct approach when it comes to the practical
application of ANNs for calibration of financial models (see Horvath et al. 2021 and
Bayer et al. 2019 for a comprehensive discussion of reasons for preferring the two-step
approach). Most importantly, the two-step approach leverages on existing knowledge
and experiences with respect to traditional pricing models and leads to a deterministic
calibration framework (Horvath et al. 2021). These aspects could ease the discussion
with regulators, when introducing the prevailing calibration framework in practice.
Furthermore, the separation of the pricing and calibration procedure makes it easier
to explain results and identify sources of deviations from market prices. Based on
this discussion, we prefer an indirect (two-step) approach for the practical application
of the ANN calibration framework. Figure 1 illustrates the subsequent steps of the
calibration framework, which are outlined in the rest of this section.

ANNs are capable of approximating any continuous function that maps input vari-
ables to outputs, see Cybenko (1989) and Hornik (1991). Our approach utilizes this
principle to map input features on swaption prices in a highly non-linear and complex
fashion. For each swaption, the neural network starts with covariates (�, τ j ,�) ∈ R

p

as inputs which are called input neurons. The network consists of stacked layers

7 In addition, there are discussions to use ANNs trained on market data for pricing and calibration with-
out using a traditional pricing model at all. While this method could theoretically provide a better fit to
market data, it imposes several issues with respect to its lack of traceability and the arbitrary choice of the
ANN’s properties (i.e., number of parameter, feature selection). Furthermore, evidence for the stability and
robustness in practical applications of these approaches still need to be provided.
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Fig. 1 Workflow of the CaNN framework. Note: This figure is a detailed description of the calibration
framework (CaNN). In the first step, we simulate millions of swaptions based on the Trolle-Schwartz
model. In step 2.1, we train the neural network such that the sum of squared differences between the model
prices and the ANN prices is as small as possible. Step 2.2 is an important validation step. We put the real
historic values of �BM

t , which are calibrated by the benchmark implementation of the financial institution,

into the trained neural network and compare the squared difference between the p̂(model)
j

(
�BM
t , τ j , �t

)

and p̂(ANN )
j

(
�BM
t , τ j ,�t

)
. The smaller the value, the better our ANN approximates the semi-analytical

pricing function used in the benchmark implementation.
In step 3.1 we put the observed market prices of each trading day into the neural network and try to find the

values of �ANN
t which produces the smallest deviations of p̂(ANN )

j

(
�ANN
t , τ j , �t

)
and p(market)

j for

all observable swaptions for a given trading day. To ensure that the parameter combination �ANN
t is also

a valid solution in the true model, we put the values �ANN
t into the Trolle-Schwartz model in step 3.2 and

compare the differences between p̂(model)
j

(
�ANN
t , τ j ,�t

)
and p(market)

j .

In each of these steps we want to achieve a similar level of accuracy compared to the given benchmark
implementation of the financial institution, as the advantages of the CaNN framework are speed and less
computational resources providing similar calibration errors.
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l = 1, . . . , L whereby each layer consists of kl = 1, . . . , Kl neurons hlKl ∈ R
Kl that

are determined by an affine combination of neurons in the previous layer which is
composed with an arbitrary (non-linear) activation function δ. Formally, the ANN is
defined by:8

hlKl = δ
(
W lh(l−1)Kl−1

+ bl
)

with W l ∈ R
Kl×Kl−1 , b ∈ R

Kl as parameters which are usually called weights and
biases. Estimates are derived from the last layer, the so called output layer and are
given by choosing the identity function for δ, resulting in:

F (y|x) = W L+1hKL + bL+1

3.2 The forward pass: learning the pricing function

Step 1 is a prerequisite for the approximation of the TS model using the ANN. In this
step, we generate millions of different swaptions to train the ANN. However, this is
the most computationally intense part of the whole setup. A detailed description of
the swaption characteristics and the range of parameters can be found in Sect. 4.1.
Step 2.1 of the calibration framework consists of learning the mapping function, i.e.
the Trolle-Schwarz Model, via an Artificial Neural Network (ANN). Finding a suit-
able architecture which holds the balance between computational time, complexity
and accuracy is the main task in this subsection. As our goal is a highly accurate
approximation, we use a rather large and complex neural network, as it ensures a
high approximation accuracy. As ANNs are sensitive to diverging dimensions of
input parameters, we normalize all features ξ ∈ (�, τ j ,�) to a predefined range,
i.e ξ ∈ [ξmin, ξmax ], closely following Horvath et al. (2021). This makes it also easier
in the backward pass to set optimization bounds. The features are normalized by:

2ξ − (ξmax + ξmin)

ξmax − ξmin
∈ [−3, 3]. (7)

Usually, ANNs are prone to the problem of overfitting, meaning, that the network is
able to approximate the training data very well, but fails to approximate unseen test
data. This is usually the case in out-of-time prediction in the financial context. Our
approach is not designed to provide a prediction in an out-of-time fashion, as we want
to approximate a specific mapping function as accurate as possible. In our case, the
mapping function of training and test data is equal, as both datasets are generated via
the (highly complex) pricing function for swaptions under the TS model. As stated by
Srivastava et al. (2014), someof these relationshipswill occur only due to sample noise,
resulting in overfitting complex relations in the training set. This could be averted by
increasing the number of observations. As we use simulated data for the training of

8 Within this paper we provide a short overview on the mathematical foundations of ANNs only. For a
comprehensive summary of themost commonmathematical concepts of deep learning, please refer to Kraus
et al. (2020).
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the ANN, we can ensure a large sample size. Furthermore, the data generating process
we want to approximate has no inherit noise, as the relation between input parameters
and the resulting prices in the TS model is deterministic. Therefore, the ANN is not
prone to the problem of overfitting the noise of the data.

Furthermore, in the empirical section, the number of simulated swaptions is larger
than the parameters to be estimated by the neural network. Hence, this optimization
is overdetermined, which also reduces the chance of overfitting, see Bishop (2006).9

Therefore, we are confident that approximating the training data ensures that the test
data is approximated similarly well. Hence, the issue of overfitting can be neglected
in the prevailing use case, as shown by our empirical results in Sect. 4.2. Furthermore,
this is supported by findings of previous papers, such as Liu et al. (2019) and Liu
et al. (2019). These authors conduct hyper parameter searches, including techniques
to reduce overfitting. In none of their final models, an overfitting reducing technique
is found to be beneficial for the quality of the ANN’s approximation. Hence, these
findings underline the above mention indications that the problem of overfitting can
be neglected when learning the mapping function within an ANN based calibration
framework. Of course, this only holds if we generate a vast amount of training data,
which can easily be ensured here. For a detailed description of the generation of the
training data, we refer to Sect. 4.1.

The ANN is trained to minimize the following loss function10 with respect to
weights W and biases b:

argminW ,b

∑(
p(model)
j (�, τ j ,�) − p̂(ANN )

j (W , b | �, τ j ,�)
)2

(8)

As a precaution, we also generated test samples to calculate the loss of Eq. (8) in an
out-of-sample task. In general, the ANN is trained over 5000 epochs to ensure the
weights and biases are estimated as accurate as possible. In the additional validation
step 2.2, we test the approximation properties of the ANN on real market data. We use
the historical parameter values calibrated by the financial institution, put them into the
ANN and compare the resulting prices with the observed market prices. We do this for
a time period not included in the training of the ANN, i.e. parameter values and yield
curves are unseen to the ANN. This step should give a first indication of robustness to
unseen market periods.

3.3 The backward pass: calibration of model parameters

Step 3.1 of the framework is to calibrate the input parameters �t given the observed
market prices at a specific trading day (t). After the forward pass is successfully
accomplished, the weights and biases describing the relation of the input parameters

9 We use 7.68 million swaptions as training data to estimate roughly 2.9 million parameters of the ANN.
10 We also investigated different variants of the loss functions, such as the mean absolute error (MAE),
the mean absolute precentage error (MAPE) and an inverse weighting scheme, where we multiply the
squared differences by a scaling factor of 1

p(model)
j

to put more weight on small prices, but find no superior

performance in the calibration task.

123



120 P. Büchel et al.

Fig. 2 The CaNN framework | Simulation of training and test data. Note: In the first step, we simulate
millions of swaptions based on the Trolle-Schwartz model.

(�t , τ j ,�t ) to the prices of a swaption p j are known. This means that the mapping
function is now deterministic in the sense that simple and fast matrix multiplications
map the input to the corresponding swaption prices ( p̂(ANN )

j ). Hence, we have now a
very fast way to price a swaption given (�t , τ j ,�t ). For calibration purposes, we are

interested in �t which expresses the observed market prices p(market)
j based on the

TS model as good as possible. Hence, we basically invert the trained neural network
by setting the values of �t as degrees of freedom in a optimization problem:

argmin�t

∑

j∈Ft

(
p(market)
j − p̂(ANN )

j (�t | τ j ,�t ,W , b)
)2

(9)

The optimization problem in Eq. (9) is essentially the calibration problemwidely faced
in the financial industry. To solve this problem, usually local optimizers are widely
used due to their speed (see Liu et al. 2019 or Gambara and Teichmann (2020)).
In our analysis, several local minima exist, see e.g., Gilli and Schumann (2012).
This may be a bottleneck for local optimizers. As we gain a high amount of speed
by using the neural network approach, we are able to use slower, but in terms of
minimization more robust optimizers. In the calibration framework, we apply a global
optimizer called differential evolution (see Storn and Price 1997 for more details).11

This stochastic optimization scheme is probably able to find a global minimum even
if the optimization problem is non-convex. We speed up the calibration framework by
using the (transformed) values of �t−1 as initial values for the optimization (this is
also done by the benchmark implementation).

4 Empirical study

4.1 Data

The first step of the calibration framework is to simulatemillions of different swaptions
to train the ANN. This is a computationally intensive step, but has to be done only
once. Figure 2 illustrates this initial step of the calibration framework.

Our empirical study is based on a comprehensive set of daily prices for EUR
swaptions. These prices are used as input for the calibration procedure. The available
market data covers 439 consecutive trading days from January 2019 to September
2020. Hence, our dataset includes the stressed market period in the context of the

11 Please note that we use the default values in the implementation of the Python package SciPy, except
for the population size which we set to 49.
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Table 2 Training and market data

Parameter Observed (Benchmark) Sampling (CaNN)

Kappa (κ) [0.0031,2.80] [0.005,3]

Theta (θ ) [0.037,3.89] [0.01,4.0]

Sigma (σ ) [0.24,1.73] [0.1,2.0]

Rho (ρ) [−0.047,0.60] [−0.50,0.80]

Alpha0 [0.00001,0.006] [0.00001,0.008]

Alpha1 [0.0007,0.005] [0.0005,0.005]

Gamma (γ ) [0.048,0.089] [0.01,0.1]

Prices
(
p̂(model)
i

)
[0.0,0.64] [0.0,1.06]

This table provides observed values for Trolle–Schwartz parameters as well as the value ranges used for
sampling of training data

COVID-19 pandemic in spring 2020. The daily swaption data is available for different
expiry tenor, swap tenor and strike values:

– Option Tenor: 1M, 3M, 6M, 9M, 1Y, 2Y, 5Y, 10Y, 15Y, 20Y
– Swap Tenor: 1Y, 2Y, 5Y, 10Y, 15Y, 20Y, 30Y
– Strike (ATM ± bp): 0, 12.5, 25, 50, 100, 150, 200

On each trading day, we observe valid prices for about 800 swaptions. This amounts
to a total number of more than 350,000 price observations. In practical applications,
financial institutions tend to use a reduced set of swaptions for the calibration of IR
term structure models to reduce the calibration time. For our empirical study, we do
not further reduce the amount of swaptions entering the calibration procedure to be
in line with the benchmark implementation. In addition to swaption data, we obtain
the yield curve (6m EURIBOR) for each trading day as well as the relevant forward
rate for each swaption. The yield curve is transformed into discount factors for 53
tenors. We compare our calibration performance against the benchmark implementa-
tion, which is using a Levenberg–Marquardt optimization algorithm (see Levenberg
1944; Marquardt 1963) by iterating the traditional pricing formula using a large com-
puting cluster using 72 CPU cores simultaneously. In contrast, the ANN calibration
procedure is based on a standard office computer with 8 CPU cores used at the same
time.12

The data for each trading day includes the model parameters and model prices
estimated by the benchmark implementation. Table 2 provides an overview of the
observed values for each TS parameter and the associated model prices.

As discussed in Sect. 3.1, we do not perform the training with real swaption market
data. While our swaption dataset includes 350,000 observations, it only provides 439
combinations of TS model parameters. Hence, the number of observations is not
sufficient to ensure a satisfying performance of the ANN.

For Step 1 in Fig. 1, i.e. to train the ANN, we need to generate a large amount of
artificial (synthetic) swaption data. We get the required dataset by sampling swaption

12 We use Intel Core i7-9700 CPU cores with 3.00 GHz.
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data for 12,000 synthetic trading days. By using synthetic swaption data for training
and testing, we are able to set aside the swaption prices obtained from real market data
for the validation of the ANN. The properties of the synthetic swaptions are set to the
discrete values shown above. The values for the TS model parameters are randomly
sampled from predefined ranges (see Table 2) using a uniform distribution. Please
note that in general the value ranges used for sampling of parameter values exceed
the observed parameter values of the benchmark implementation. Thereby, we ensure
that the calibration procedure is able to provide prices for parameter values outside of
observed ranges. Furthermore, the CaNN framework is able to find optimal parameter
values outside the observed ranges in the calibration procedure.

The yield curve for each synthetic trading day is randomly sampled froma collection
of yield curve data. The yield curve dataset is constructed by a blended approach,where
we combine historically observed market data with synthetic yield curve data. First,
we collect yield curves for eight different currencies13 for a historic two-year time
period (Apr 2018–Apr 2020). This includes about 3700 different yield curves. We do
not include the yield curves observed fromMay until September 2020 to obtain a real
out-of-time validation of the CaNN calibration results within our empirical analysis.
Second, we enrich the dataset by adding 20,000 synthetic yield curves. These yield
curves are generated by using an algorithm based on the Nelson-Siegel-Svensson
methodology (see Nelson and Siegel 1987; Svensson 1994). Our blended approach
provides a comprehensive and representative yield curve dataset. On the one hand,
we consider recent historic market environment in the training process. On the other
hand, we ensure that the resulting ANN is flexible enough to cope with new unseen
market data. Furthermore, this approach offers the possibility for recurring generation
of training data and re-training of the CaNN framework based on newly observed yield
curves.

By following thegenerationprocedure outline above,weobtain a total number of 9.6
million synthetic swaptions. The prices of these swaptions are calculated by applying
the pricing procedure outlined in Sect. 2.3. The resulting dataset is used for training
and testing the ANN in Step 2.1, see Fig. 1, of the calibration framework. In general,
we consider the generation of training and test data as a crucial and probably the most
laborious task within the calibration framework. The composition of the dataset and its
granularity are important drivers of the CaNN’s estimation power. Please note that the
initial training of the ANN is time consuming and requires significant computational
capacities. Nevertheless, this step has to be performed only once. The application of the
CaNN framework can be accompanied by frequent re-training, which is significantly
less time consuming.

4.2 ANN architecture and forward pass (pricing)

After simulating millions of swaptions, the training of the ANN is the subsequent
step. Hereafter, we optimize the network architecture and determine the weights and

13 We use the historically observed yield curves for the following currencies: EUR, USD, GBP, JPY, CHF,
DKK, NOK, SEK
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Fig. 3 The CaNN framework | The forward pass. Note: In step 2.1, we train the neural network such that
the sum of squared differences between the model prices and the ANN prices is as small as possible.

Table 3 Hyper parameter of the
CaNN

Parameter Value

Number Features (X) 66

Hidden Layers 4

Neurons per Layer [66, 2048, 1024, 512, 256, 1]

Number of parameters 2,891,777

Loss function Sum of squared errors

Activation function ReLu

Optimizer Adam

Initialization Glorot-Uniform

Batch Size 16,384

This table provides the applied hyper parameters of the final CaNN. In
total, a neural network with four hidden layers and 2,891,777 param-
eters is trained to approximate swaption prices under the TS model

biases to approximate the TS model as close as possible. Figure 3 provides a graphical
representation for this step of the calibration framework.

Finding a suitable ANN architecture is a major cornerstone of the successful
approximation of the pricing function. As usual, one has to find the balance between
approximation accuracy and computational burden, hence a so called random search
of the hyper parameters with a subset of the training data is employed. Resulting from
this, four hidden layers with 2048, 1024, 512 and 256 neurons are used. To optimally
train the ANN, we use the Adam optimizer and Relu activation function. As described
above, we do not use any dropout layer or early stopping criterion. To ensure conver-
gence with the TS model, we train the ANN with 5000 epochs. An overview of the
hyper parameters is illustrated in Table 3.

For illustration, we also employed and validated the hyper parameter setting pro-
posed by Liu et al. (2019) with 200 neurons in each of the four hidden layers. The
accuracy in terms of mean squared error is 10 times worse than with our architecture.
This gives rise to the conjecture that any calibration framework needs a tailored set
of hyper parameters to provide the a sufficiently accurate estimation of model prices.
This also suggests, that the model complexity of the ANN should increase with the
complexity of the IR dynamics.14 To train the ANN, we randomly split the 12,000

14 In unreported results, we employed a hyper parameter search only for ATM options, and found the
same tendency towards more complex and deeper neural networks. This gives rise to the conjecture that the
complexity of the ANN is by a large part determined by the complexity of the IR dynamics, and the number
of instruments plays only a minor role. This is plausible, as all instruments share the same yield curve and
TS model parameters at a specific trading day, which accounts for a large number of the input parameters.
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Table 4 Results of ANN
training

CaNN MSE MAE RMSE

Training 1.47e−07 2.38e−04 3.52e−04

Testing 1.80e−07 2.45e−04 4.24e−04

This table provides the performance measures for the ANN training.
As all six measures are quite low, we are confident that the ANN
approximates the TS model very well

Fig. 4 The CaNN framework | Validation of the forward pass. Note: Step 2.2 is an important validation
step. We put the historic values of �BM

t , which are calibrated by the benchmark implementation into

the trained neural network and compare the squared difference between the p̂(model)
j

(
�BM
t , τ j , �t

)
and

p̂(ANN )
j

(
�BM
t , τ j , �t

)
. The smaller the value, the better our ANN approximates the semi-analytical

pricing function used in the benchmark implementation.

synthetic trading days into a training set (7.68 million swaptions) and a test set (1.92
million swaptions). Table 4 shows key evaluation metrics in the train and test sample.

We observe only small differences, when comparing the results for the train and
test set. This may imply that the ANN generalizes well and we do not encounter
overfitting. Furthermore, the metrices are well in line with results of previous studies,
see e.g. Liu et al. (2019) or Horvath et al. (2021). The very similar performance for the
train and test data may also be attributed to the comparatively large training sample,
which is imminent to approximate the mapping function accurately. After training the
neural network, we validate our results against an implementation of a large financial
institution in step 2.2, see Fig. 4:

In contrast to most other papers on the application of ANNs for pricing and calibra-
tion, we perform an additional validation of the forward pass based on historic pricing
data obtained from a benchmark implementation (BM). We call this step the “out-
of-simulation validation“, as the data used to assess the ANN’s pricing performance
has not been generated with the same process as the train and test sample, but histori-
cally based on real-life market data. Thereby, we ensure that the ANN has learned the
TS pricing function correctly and performs well in a true out-of-sample evaluation.
From our point of view, the validation based on results from a benchmark model is
a prerequisite for the practical application of an ANN based calibration framework.
To perform the out-of-simulation validation, we pass the observed parameters esti-
mated by the benchmark implementation (�(BM)) together with the historic market
data for the respective trading day through the ANN for all swaptions across avail-
able trading days. Afterwards, we compare the predicted prices of the trained ANN
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Table 5 Results of ANN training

CaNN MSE MAE RMSE

Out-of-simulation (Jan 2019–Apr 2020) 5.47e−07 2.98e−04 7.24e−04

Out-of-simulation (May 2020–Sept 2020) 2.48e−07 2.65e−04 4.98e−04

This table show key evaluation metrics in the out-of-simulation validation. We divide the samples into data
building the basis of our training (January 2019 to April 2020) and true out-of-time data (May to September
2020)

with the model prices generated by the benchmark implementation (see Eq. 10 for
mathematical illustration).

MSE = 1

T

T∑

t=1

∑

j∈F t

(
p̂(model)
j

(
�

(BM)
t | τ j ,�t

)
− p̂(ANN )

j

(
�

(BM)
t | τ j ,�t ,W , b

))2

(10)
The results of this validation step are displayed in Table 5. First, we check the per-
formance for the time period from January 2019 to April 2020. The swaption data
from this period was used for setting the parameter ranges and yield curves for the
simulation of synthetic swaptions. As the evaluation metrics are close to the results
obtained in the training and testing, we may conclude that the ANN is robust in
real-life market situations. As a next step, we use the benchmark parameters from
the out-of-time period (May 2020–September 2020). Data and information from this
period, such as parameter values and yield curves, have not been used in the previous
steps and is therefore completely new to the framework. The results for this period
of time indicate that we achieved generalization even in an out-of-time perspective
with unseen circumstances. These results may serve as a first proof of concept for a
practical implementation.

Figure 5 provides real fit plots for selected trading days taken from the out-of-
time period. The plots compare the prices estimated by the ANN (x-axis) with model
prices from the benchmark implementation (y-axis). As we can see, the points are on
the bisecting line which implies a very good convergence of the ANN prices to BM
model prices. To each real fit plot, the MSE for the respective trading day is added.
For some days, we obtain much better results than in training, whereas for other days
we are slightly worse. In summary, we find sufficient evidence that the trained ANN
generalizes very well even if confronted with unseen data. Hence, the ANN provides
a very good approximation of the TS pricing function for swaptions.

4.3 The backward pass (calibration)

For the rest of the section, we are now concerned with the calibration task frequently
performed by the given benchmark implementation. For step 3.1 of the calibration
framework, we utilize the trained ANN to calibrate the TS model parameters to a
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Fig. 5 Real fit plots for selected trading days. Note: These figures show the real fit plots of selected
historic trading days. Furthermore, the day specific MSE is displayed. The price estimations of the ANN
are displayed on the x-axis, whereas the model prices of the benchmark implementation is shown on the
y-axis.

Fig. 6 The CaNN framework | The backward pass. Note: In step 3.1 we put the observed market prices of
each trading day into the neural network and try to find the values of �ANN

t which produces the smallest

deviations of p̂(ANN )
j

(
�ANN
t , τ j , �t

)
and p(market)

j for all observable swaptions for a given trading day.

daily set of observable swaption prices, see Fig. 6. Furthermore, we validate our
results against the real-life benchmark implementation of a large financial institution.

For each of the 439 trading days, we obtain two calibrated parameter sets. One
parameter set is returned from the benchmark implementation (�(BM)

t ), while the
other parameter set results from the ANN based calibration framework (�(ANN )

t ).
For clarification, we restate and concretize the general formulation of the calibration
problem in Eq. (9) and provide a specific notation for both calibration processes:

argmin
�

(BM)
t

∑

j∈Ft

(
p(market)
j − p̂(model)

j (�
(BM)
t | τ j ,�t )

)2
(11a)

argmin
�

(ANN )
t

∑

j∈Ft

(
p(market)
j − p̂(ANN )

j (�
(ANN )
t | τ j ,�t ,W , b)

)2
(11b)

Both calibration approaches aim to minimize the sum of squared errors for each
trading day. Byminimizing the loss function, an optimal set of TSmodel parameters is
selected. The benchmark implementation performs the calibration by applying a local
optimization algorithm (Levenberg–Marquardt) and repeatedly calls the traditional
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Table 6 Calibration results

Period Daily MSE (BM) Daily MSE (ANN) Daily SSE (BM) Daily SSE (ANN)

Jan 2019–Apr 2020 1.36e−06 1.29e−06 1.11e−03 1.10e−03

May 2020–Sept 2020 1.61e−06 1.63e−06 1.13e−03 1.13e−03

This table show key evaluation metrics of the ANN and benchmark calibration result. We divide the samples
into data building the basis of our training (January 2019 to April 2020) and true out-of-time data (May to
September 2020)

implementation of the semi-analytic pricing formula (see Eq. 11a) and sets parameter
restrictions for the TS parameters to ensure that the optimizer returns a result. For this
empirical analysis, the benchmark model parameters (�(BM)

t ) are obtained from the
historical calibration results of the benchmark implementation. The CaNN framework
utilizes the forward pass by frequently estimating swaption prices based on the trained
neural network for different parameter settings (see Eq. 11b). Please note that the
weights and biases of the ANN have already been set in the training phase (forward
pass) and are not altered during the calibration procedure.

With respect to the substantial acceleration using the ANN, a global optimization
algorithm (differential evolution) can be used to minimize the loss function given by
Eq. (11b). Due to time constraints in the productive workflow of the financial insti-
tution, only a local optimizer is used in the benchmark setup. The application of the
differential evolution (DE) algorithm shall avoid the problem of stopping at local min-
ima and offers the advantage that no starting values are required (see Liu et al. 2019).
However, we use the parameter values of the previous trading day as starting values
for the DE algorithm. We observe that using starting values leads to a faster conver-
gence and significantly accelerates the calibration process. In practical applications,
such as the referred benchmark implementation, the parameter values of the previous
trading day are commonly used as starting point for the optimization process. This
could potentially lead to a deterioration of the minimization, when applying local
optimizers, but should not be an issue for global optimization algorithms. Hence, we
are confident that there is no downside in setting starting values for the DE algorithm
in the CaNN framework. On the contrary, we observed that setting starting values
speeds up the ANN calibration by roughly 50 times. Thereby, the calibration for each
trading day can be performed in about 30 s. This is roughly four times faster than
the benchmark implementation, although it uses a local optimizer and 72 CPU cores.
This means, that our approach, i.e. using a global optimizer and only 8 CPU cores, is
faster than the benchmark implementation. Summarizing, we can achieve a very sim-
ilar calibration error, see Table 6, but are faster, require less computational resources
and are able to use a global optimizer. Even more benefits could be realized if the
financial institutions use financial models without analytical solutions, i.e. the prices
can only be determined via Monte Carlo simulations. However, this would increase
the computational burden of the first step greatly, as the generation of enough training
data could take extremely long.

Table 6 provides an overview of the calibration results equal to the average daily
values of the loss function calculated by Eqs. (11a) and (11b) as well as the daily
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Fig. 7 The CaNN framework | Validation of the backward pass. Note: To ensure that the parameter combi-
nation �ANN

t is also a valid solution in the true Trolle-Schwartz model, we put in the values �ANN
t into

the Trolle-Schwartz model in step 3.2 and compare the differences between p̂(model)
j

(
�ANN
t , τ j ,�t

)
and

p(market)
j .

mean squared error (MSE) for both calibration approaches. The results show that the
CaNN framework provides calibration results that are very close to the benchmark
implementation for both time periods.

Nevertheless, there might be a concern that these results do not provide sufficient
evidence for the practical applicability of the CaNN framework. We expect that super-
visory authorities will have a critical view on the application of ANNs for pricing
and calibration as the ANN pricing function constructed in the forward pass is not
considered traceable given the high amount of parameters in the neural network.

To prove that the CaNN provides reliable parameter values, the calibration frame-
work involves an additional validation step 3.2. Hence, the CaNN parameter set
(�(ANN )

t ) is used as input for the semi-analytical pricing formula for swaptions under
the TS model. By comparing the resulting prices with observable market prices, we
are able to prove that the CaNN calibration results hold true in the Trolle–Schwartz
model framework, see Fig. 7:

Hence, we apply Eq. (12b) to validate the ANN solution for each trading day. The
result will provide insights with respect to the true quality of the CaNN calibration
results.

SSE (BM)(t) =
∑

j∈Ft

(
p(market)
j − p̂(model)

j (�
(BM)
t | τ j ,�t )

)2
(12a)

SSE (ANN )(t) =
∑

j∈Ft

(
p(market)
j − p̂(model)

j (�
(ANN )
t | τ j ,�t )

)2
(12b)

Figure 8 illustrates the daily performance measure (SSE) for both calibration
approaches over time. The black line represents the benchmark result (Eq. 12a), while
the grey line represents the performance measure for the CaNN framework (Eq. 12b).
In general, we find that the performance of both calibration approaches significantly
varies over time. In the early months of 2019 the losses are comparatively lowwhereas
in the fourth quarter of 2019, we observe a considerable increase. A remarkable spike
can be observed after the break-out of the COVID-19 pandemic, meaning that the
calibrated TS model prices strongly deviates frommarket prices. These results clearly
indicate that a thorough assessment of ANN calibration approaches should be done in
different market environments to ensure their practical applicability.

The results presented in Fig. 8 show that the CaNN framework produces competi-
tive results compared to the benchmark implementation in terms of daily performance.
For some market periods we can even find better solution for the parameters, see e.g.
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Fig. 8 Sum of squared errors over trading days. Note: This figure shows the sum of squared errors of trading
days for the whole time span. The grey line corresponds to the SSE using the CaNN approach, whereas the
black line coincides with the SSE of the benchmark implementation.

the period from June 2019 to August 2019 or the early months of 2019. The largest
deviation between the CaNN and the benchmark implementation can be observed
during the COVID-19 period in the March 2020. Nevertheless, the daily performance
of both approaches does not differ significantly even in this stressed market envi-
ronment. Hence, the CaNN framework does provide comparable calibration results
even in extreme and unusual market situations in a faster and computationally more
efficient manner. Furthermore, the very good results for the out-of-time period (May
to September 2020) indicate that the performance of the CaNN framework does not
depend on including current market data during training.

In addition to analyzing the performance of the CaNN framework, we are interested
in a comparison of the parameter estimates for both calibration approaches. Figure
9 illustrates the different estimates for all elements of �t over time. The black line
represents the parameter estimated by the benchmark implementation, while the grey
line represents the respective element of �

(ANN )
t .

Overall, the analysis reveals that parameter estimates from both calibration proce-
dures are quite close to each other and have a similar evolution over time. However,
the results indicate that the CaNN parameters are more stable over time and therefore
more robust against taking extreme values.15 For example the BM estimates for θ

show four considerable peaks in the analyzed period, while the CaNN estimates show
a relatively smooth evolution over time. On some days, the benchmark implemen-
tation obtains extreme values for certain parameters, which are equal to a boundary
of the parameter restrictions. This may imply that the local optimizer used by the
benchmark implementation ended up in a different local minimum on the respective
trading days, leading to a compensation of the high θ value by extreme settings for
other parameters. As the parameters in the TS model are not completely “indepen-

15 In both calibration frameworks the respective calibrated parameter values of the previous day are used as
starting values for the next day. Hence, the more stable results of the CaNN approach may not be attributed
to the way the staring values are set.
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Fig. 9 Calibrated parameters over trading days. Note: These figures show the calibrated values of �
(BM)
t

and �
(ANN )
t . The black line represents the values gathered form the benchmark implementation, whereas

the grey line illustrates �
(ANN )
t . For details on the parameters, please refer to section 2.

dent”, in the sense that different combinations of parameter values may result in the
more or less same calibration loss, we achieve much less fluctuating parameters while
maintaining a similar calibration result. This can be seen for example in the period
around July 2019, where we observe simultaneous peaks respectively lows in θ and
γ values, whereas our parameter values are more or less stable trough this period.

A similar issue can be observed for the parameter κ . In the period from September
2019 to mid January 2020, the estimated parameter of the benchmark implementation
starts with values from 0.777 to 2.11 in early September, decrease to 0.56mid Septem-
ber and then plumbs to 0.04 in mid January 2020 and increases sharply afterwards to
2.5 in spring 2020. In contrast, the CaNN parameter fluctuates from September 2019
with values around 1.5 to end of January 2020 with values of 1.07 with considerably
less fluctuations within this period. The same behavior can be observed for σ in the
aforementioned time period. The evolution of CaNN estimates for different parame-
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ters show significantly lower fluctuation and that the parameters are less likely to take
extreme values.

Based on these observations, we conclude that the CaNN framework generally pro-
vides more stable parameter estimates over time. From our point of view, the stability
of parameter estimates over time is a desirable property of a calibration procedure. The
estimated model parameters are not only required as inputs for the pricing function,
but also to specify stochastic processes in Monte-Carlo simulations for the purpose of
calculating P&L components, such as Credit Valuation Adjustments (CVA), and risk
measures. Hence, more stable parameters might significantly contribute to a reduction
of day-to-day P&L volatility and costs of hedging in the trading business. Further-
more, more stable calibration results will lead to less volatile and more reliable risk
measures, which enables managers to take more profound business decisions. This
makes the CaNN approach highly relevant for risk managers of financial institutions.

4.4 Discussion and additional results

In summary, the results of our empirical study give rise to the conjecture that an ANN
based calibration framework does not only provide competitive results compared to
traditional approaches, but also offers further benefits and advantages with respect
to the stability and reliability of resulting parameter values. Hence, we conclude that
there is indeed a practical applicability for ANN based calibration frameworks. How-
ever, we recognize that the practical application of a CaNN framework might involve
challenges with respect to the fulfilment of regulatory requirements. Especially, with
respect to risk management there are extensive regulatory requirements for the appli-
cation of internal models (e.g. ECB 2019; OCC et al. 2011). Amongst others, the
European Central Bank’s guide on internal models (ECB 2019) introduces regulatory
requirements and expectations for the validation of pricing functions and calibration
procedures. As an example, ECB (2019) defines a pricing function in the context of
an internal Counterparty Credit Risk (CCR) model as the dedicated implementation
of a pricing model also taking into account its method for calibration. Furthermore, it
requires the inclusion of pricing functions used for calculating or calibrating exposure
methods into the model’s framework and governance. Based on this definition, insti-
tutions are required to implement a framework that allows for a granular identification
of pricing deficiencies (on transaction level). According to ECB (2019) the validation
framework needs to include all pricing functions used in the internal model. Hence,
we argue that methods and pricing functions used for calibration are subject to the
same requirements as pricing functions applied for valuation of derivatives within the
exposure simulation.

The proposed calibration framework is a two-step approach, where pricing and
calibration are separated. The pricing function is approximated explicitly via an ANN
before the actual calibration step. In contrast, a one-step approach calibrates param-
eters of a dedicated pricing model from market prices directly. Nevertheless, the
one-step approach involves an implicit approximation of the model’s pricing func-
tion that should be validated according to regulatory requirements. This might be
challenging as no explicit pricing function is available in the calibration process and
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the parameters of the ANN are hard to interpret. In a two-step approach, the validation
of the pricing function used within the calibration procedure is straightforward.We are
able to identify deviations of ANN prices to the traditional pricing function andmarket
prices on transaction level. Furthermore, the validation of the ANN’s approximation
of the pricing function as well as the results of the calibration process can easily be
integrated in the validation framework including various materiality thresholds for
deviations. Hence, a two-step approach might allow for a straightforward fulfilment
of the aforementioned regulatory requirements. In our opinion, the framework pro-
posed in this paper is generally compliant with supervisory expectations as we offer a
staggered approach involving additional and separate validation steps 2.2 and 3.2 for
the ANN based pricing as well as calibration procedure.

Neural networks are often considered black boxes as it is somewhat difficult to
explain and track the mapping function due to the high complexity and high amount
of parameters. Hence, regulators may not be fully convinced of a full replacement
of traditional calibration frameworks with ANN based calibration procedures. But in
contrast to other use cases of machine learning algorithms, such as prediction of future
stock returns or risk figures, we know the ground truth of themapping functionwewant
to approximate, i.e. the TS model. Hence, it is possible to validate our pricing results,
in step 2.2, and our calibration results as outlined in step 3.2. These, to some extend
unique validation steps of this framework, are strong arguments in the discussion with
regulators.

Moreover, we argue that this framework can be utilized to generate initial values
for the currently implemented calibration procedures, which should lead to a faster
and more robust calibration process. As the initial calibration is performed by calling
the ANN, financial institutions are able to reduce dependencies between pricing and
calibration procedures in daily production, especially if the solution of the financial
model can only be determined by Monte Carlo simulations. Hence, financial institu-
tions could be able tomonetize the benefits ofANNbased calibrationwithout replacing
traditional approaches for now. Based on our results this could increase the stability
of results over time and reduce the probability of a local optimizer getting stuck in a
local minimum. Additionally, we find that the number of function evaluations required
for the local optimizer can be reduced by more than one third using the start values
obtained from the CaNN calibration instead of values of the previous day. We are able
to provide empirical evidence for the latter aspect in the following case study, where
we repeat the calibration process of Sect. 4.3 in two different settings.
In the first setting we only use the local Levenberg–Marquardt (LM) optimization
algorithm (see Levenberg 1944; Marquardt 1963) to calibrate the parameters. In the
second setting, we first use the differential evolution algorithm and afterwards pass
these values to the LM optimization as initial values. We measure the performance
over the out-of-time period based on the function evaluations required by the LM
algorithm to arrive at the optimum on each day. Both optimizations are performed in
the CaNN framework and on the same hardware to ensure comparability. On average
the stand-alone LM algorithm (with previous day start values) requires 253 evalua-
tions per trading day, while the combined optimization only requires 161 evaluations.
Hence, we were able to decrease the number of function evaluations by about 36%,
while keeping the level of accuracy. This is a considerable reduction leading to a faster
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calibration process and reduces the computational capacities required and additionally
lead to more robust parameter values over time. Furthermore, it is a cheap and efficient
way for financial institutions to use a global optimizer, without altering their actual
calibration framework. The generation of the daily start values with the DE algorithm
does not take longer than 30 s, which probably is considerably less than the potential
speed up due to less function evaluations. These results support our conclusion that
the implementation of a CaNN framework provides added value, even if traditional
calibration procedures are not fully replaced yet.

5 Conclusion

This paper provides the first comprehensive proof of concept regarding the practical
application of artificial neural networks (ANNs) for the calibration of asset pricing
models. We propose additional steps for the CaNN framework based on Liu et al.
(2019) to accelerate practical applicability and counteract regulatory concerns for the
practical implementation. First, we provide a blended concept for the generation of
train and test data. Second, we introduce additional validation procedures based on
real-life historic market data to ensure that results of the CaNN are conform with
observed pricing and calibration results. Third, we perform a real out-of-time valida-
tion to provide evidence that the CaNN framework can cope with unseen data.

Based on a comprehensive time series of historic market data, we are able to show
that the calibration framework produces competitive calibration results for a complex
IR term structure model compared to a benchmark implementation of a large finan-
cial institution. Our empirical analysis covers 1.75 years of swaption data, including
the stressed market environment following the break-out of the COVID-19 pandemic.
Hence, the calibration approach is suitable for real-life calibration problems and the
CaNN framework performs well in different market environments. Given the substan-
tial acceleration of the calibration process by using the CaNN framework, the efficient
application of a global optimizer is feasible. As shown in the empirical analysis, the
global optimizer is less likely to adopt boundary solutions, leading to more stable
parameter results over time compared to the benchmark implementation. At the same
time the CaNN framework is able to cope with changing market environments, while
maintaining a comparable level of calibration error. The more stable parameter esti-
mates from the CaNN framework might help to reduce the P&L volatility over time,
while still ensuring that the model is consistent with the risk-neutral expectations of
market participants. Hence, a CaNN framework will provided added value, beyond
a potential acceleration of the calibration process. The assessment of the potential
benefit with respect to P&L volatility is complex and subject to further analysis.

Further conclusions for the practical implementation of an ANN based calibration
framework are as follows. First, the composition and quality of train and test data is a
major driver of the CaNN’s performance. Historic swaption data should not be used
for training and testing as the data is more valuable for validation. Hence, we propose
a blended approach, which produces synthetic data by combining information from
historic market data with an algorithm that simulates synthetic datasets. Second, we
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recommend to set start values for the global optimizer based on the previous day’s
results as this significantly accelerates the CaNN calibration process.

We are aware that our empirical analysis is limited to one IR term structure model
for a single currency (EUR). The decision to use the Trolle–Schwartz model was
based on the aspiration to analyze the performance of the calibration framework for
a rather complex, but practically implemented model. Hence, this is the first study to
investigate whether ANNs are faster and more robust compared to an implementation
of a large financial institution. Furthermore, the TS model can be easily reduced to
more simplistic term structure models. However, we believe that the application of this
framework to further currencies, models and asset classes will provide further findings
regarding the performance of ANN based calibration frameworks. Future work may
also focus on obtaining additional insights with respect to the calibration procedure
from the CaNN framework, such as information on parameter sensitivity or impor-
tance of different inputs.
Although we believe that the framework generally adheres to regulatory requirements,
its practical applicationmight be viewed critical by supervisory authorities as the train-
ing process and resulting ANN pricing function may seen as not fully traceable. To
counteract this, we offer a staggered approach involving additional and separate val-
idation steps for the ANN based pricing as well as calibration procedure. However,
regulators might still have concerns about the replacement of traditional implementa-
tions with the CaNN framework. Nevertheless, the implementation of this framework
and the subsequent integration of its results could significantly improve traditional
calibration procedures in terms of accuracy, robustness, speed and provide additional
insights for validation processes. These aspects give rise to the conjecture that the
CaNN framework is of high practical relevance and has the potential to improve
model calibration, risk assessment and business decisions.
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