
Bock, Alexander C.; Frank, Ulrich

Article — Published Version

Low-Code Platform

Business & Information Systems Engineering

Provided in Cooperation with:
Springer Nature

Suggested Citation: Bock, Alexander C.; Frank, Ulrich (2021) : Low-Code Platform, Business
& Information Systems Engineering, ISSN 1867-0202, Springer Fachmedien Wiesbaden,
Wiesbaden, Vol. 63, Iss. 6, pp. 733-740,
https://doi.org/10.1007/s12599-021-00726-8

This Version is available at:
https://hdl.handle.net/10419/287096

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s12599-021-00726-8%0A
https://hdl.handle.net/10419/287096
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

DISCUSSION

Low-Code Platform

Alexander C. Bock • Ulrich Frank

Received: 5 February 2021 / Accepted: 10 September 2021 / Published online: 15 November 2021

� The Author(s) 2021

Keywords Low-code � Software development

environment � Citizen developer � Organizational agility �
Conceptual modeling � Software development productivity

1 Introduction

Under the heading of ‘low-code’, a new class of software

development environments has emerged in recent years

which is not only said to afford the prospect of a substantial

increase in software development productivity, but also to

yield new ways of promoting business IT alignment and

user empowerment. These platforms now go by the names

of low-code platform (LCP), low-code application platform

(LCAP), and low-code development platform (LCDP).

Presumably coined by a market research company in

2014 (Forrester) (Richardson and Rymer 2014), several

indicators suggest that a major trend has by now evolved

around the label ‘low-code’. Large software vendors,

including IBM, Microsoft, and Oracle, have begun to

incorporate low-code solutions into their product portfo-

lios. Market research companies have forecast a consider-

able market potential for LCPs (e.g., Rymer and Koplowitz

2019; Vincent et al. 2020). These assessments, together

with the promises of vendors, have attracted the interest of

corporate investors (Shah 2020). For example, Siemens

recently bought a leading LCP vendor, reportedly at a

significant price.1 Moreover, the discussion and

presentation of LCPs thrives on, and itself perpetuates, the

trends surrounding other current buzzwords such as ‘citizen

developer’, ‘robotic process automation’ (RPA), ‘user

experience’, and ‘microservices’.

Unfortunately, the rise in attention has not been paral-

leled by similar advances in the conceptualization of LCPs.

For initial reference and for later comparison we cite, at

this stage, a definition proposed by a market research firm:

‘‘An LCAP is an application platform that supports

rapid application development, deployment, execu-

tion and management using declarative, high-level

programming abstractions such as model-driven and

metadata-based programming languages, and one-

step deployments. LCAPs provide and support user

interfaces (Uls), business processes and data ser-

vices.’’ (Vincent et al. 2020, p. 1)

An analysis of this tentative characterization of LCPs

suggests two conclusions. First, LCPs are intended to help

achieve objectives which have been at the core of business

information systems research for a long time. Among these

are increasing productivity and reducing costs of devel-

oping and maintaining enterprise software systems,

improving organizations’ ability to adapt software systems

to rapidly changing requirements, and empowering users.

Second, however, it is not at all clear what distinguishes

LCPs from existing software development facilities, such

as classical integrated development environments (IDEs)

and tools for model-driven development (MDD). Taken

together, the low-code trend presents itself as a

Accepted after one revision by Christof Weinhardt.

A. C. Bock (&) � U. Frank

Research Group for Business Informatics and Enterprise

Modeling, University of Duisburg-Essen, Essen, Germany

e-mail: alexander.bock@uni-due.de

1 https://www.forbes.com/sites/adrianbridgwater/2018/08/06/sie

mens-buys-low-code-mendix-the-digital-factory-race-climbs-higher/.

Accessed 12 Sep 2021.

123

Bus Inf Syst Eng 63(6):733–740 (2021)

https://doi.org/10.1007/s12599-021-00726-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-021-00726-8&domain=pdf
https://www.forbes.com/sites/adrianbridgwater/2018/08/06/siemens-buys-low-code-mendix-the-digital-factory-race-climbs-higher/
https://www.forbes.com/sites/adrianbridgwater/2018/08/06/siemens-buys-low-code-mendix-the-digital-factory-race-climbs-higher/
https://doi.org/10.1007/s12599-021-00726-8

contribution to goals at the heart of business information

systems research, but is in dire need of clarification.

With this in mind, the goal of this paper is to give a

balanced account of the current trend of low-code devel-

opment, and to place the topic in the broader context of

business information systems research. Specifically, we

address three questions:

1. What are the characteristic features of low-code

platforms?

2. How do low-code platforms compare with the current

status of research, and what, if any, technological

innovations are realized by these platforms?

3. What opportunities for future research arise from the

present attention to low-code development?

The paper is structured as follows. We begin with a brief

survey of the reception of the low-code trend in practice

and academia (Sect. 2). Subsequently, we present an

answer to the first question, drawing on a detailed study of

ours of selected LCPs available on the current market

(Sect. 3). The study was decidedly exploratory and, given

the limited number of systems considered, cannot claim to

be representative, but the obtained results nonetheless

throw light on the characteristic features of a variety of

LCPs. Thereafter, we turn to the second question, formu-

lating several general findings and contrasting them with

existing approaches from research on software develop-

ment productivity (Sect. 4). These findings, in turn, provide

the basis for examining the third question, leading us to

suggest a variety of attractive research opportunities for the

field of business information systems (Sect. 5).

2 Aspects of the Trend: Promises and Reception

The trend surrounding low-code development is carried by

an appealing story. It is widely known that the lack of

professional software developers is a major obstacle for

many companies in successfully dealing with the digital

transformation. Moreover, there is the perennial problem

that software development projects often suffer from poor

efficiency, or fail altogether. Portrayals of LCPs by vendors

and market research firm tie in with these problems and

promise relief:

‘‘When you can visually create new business appli-

cations with minimal hand-coding – when your

developers can do more of greater value, faster –

that’s low-code.’’2

‘‘That’s where the power of citizen development

comes in – with no-code/low-code platforms, anyone

can build applications without software expertise,

significantly faster, and at a fraction of the cost.’’3

‘‘Enterprise low-code application platforms deliver

high-productivity and multifunction capabilities

across central, departmental and citizen IT func-

tions.’’ (Vincent et al. 2020, p. 1).

The enthusiasm and hopes engendered by claims such as

these are further nurtured by reports of successful appli-

cations of low-code solutions in industry (e.g., Shah 2020),

and by optimistic assessments of the future economic

potential of the low-code sector. For example, Gartner has

predicted that by ‘‘2023, over 50% of medium to large

enterprises will have adopted an LCAP as one of their

strategic application platforms’’ (Vincent et al. 2020, p. 1).

It was only after some years that academic investigators

took notice of this trend (e.g., Henriques et al. 2018;

Zolotas et al. 2018). But now there is growing awareness of

low-code in the research community. For example, the

workshop on low-code development at the Models con-

ference in 2020 attracted the highest number of submis-

sions of all workshops.4

Regrettably, much work on low-code development to

date has assumed a relatively uncritical attitude, and all too

little effort has been spent on developing a clear and dis-

tinct concept of these systems. For example, one author has

defined LCPs thus: ‘‘The low-code platform is a set of tools

for programmers and non-programmers. It enables quick

generation and delivery of business applications with

minimum effort to write in a coding language and requires

the least possible effort for the installation and configura-

tion of environments, and training and implementation’’

(Waszkowski 2019, p. 376). The favorable, even euphoric,

tone and the conceptual ambiguity of this statement are

characteristic of many descriptions found in the field (cf.,

e.g., Chang and Ko 2017; Ihirwe et al. 2020; Sanchis et al.

2020). That said, a modicum of work towards a more

nuanced view of low-code development is scattered in the

literature. For example, Sahay et al. (2020) have conducted

a study of eight LCPs with the aim of clarifying and

comparing the functionalities of these systems. Moreover,

there are a few critical voices that question the supposed

novelty of low-code environments. The most notable ex-

ample is Cabot (2020); we will return to a verdict of his

later on.

This brief outline of the reception of low-code in prac-

tice and in academia indicates a propensity toward mar-

keting jargon, terminological inexactitude, and inflated

promises. Meanwhile, profit and non-profit organizations

face the question of whether, and under what conditions,

2 https://www.ibm.com/uk-en/automation/low-code. Accessed 12

Sep 2021.

3 https://www.pmi.org/citizen-developer. Accessed 12 Sep 2021.
4 https://lowcode-workshop.github.io/. Accessed Sep 12 2021.

123

734 A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021)

https://www.ibm.com/uk-en/automation/low-code
https://www.pmi.org/citizen-developer
https://lowcode-workshop.github.io/

investments into low-code development projects are justi-

fied. The need to support these decisions is a further reason

for business information systems research to analyze the

subject and to contribute to a clarification of the term.

3 In Search of a Conceptualization: Results

from an Exploratory Study

In want of informative and consistent descriptions of LCPs,

the only way to obtain a concept or even an idea of LCPs is

an analysis of the actual platforms offered under this label

on the current market. If these platforms have common

features, it may become possible to derive inductively from

them a possible conceptualization of low-code develop-

ment. With this aim in mind, we conducted an explorative

study of ten LCPs, which has been published separately

(for a synopsis with a technical focus, see Bock and Frank

2021; for the full study, see Frank et al. 2021). The purpose

of this section is to summarize the central results of this

study. The reader interested in further details is referred to

the references cited.

There are now between about twenty and several dozen

vendors selling products under the label ‘low-code.’ It was,

of course, beyond our scope to undertake an exhaustive

review of all these solutions, so that a limited number of

LCPs had to be selected for study. Accordingly, no claim

of representativeness can be made. Because the study is

intended to be explorative in nature, however, we argue

that this restriction is justifiable. A number of criteria were

considered in the selection of LCPs. The overriding intent

was to cover a spectrum as broad as possible. We therefore

began with a preliminary market study, grouping existing

LCPs into four rough categories according to their general

character and purpose (cf. below). Afterwards, we chose

the LCPs so that at least one candidate from each category

was considered. Moreover, we made sure to cover vendors

of different size and market influence, as well as LCPs

intended for different target audiences. In case of doubt,

large vendors were given the priority, based on the

assumption that these figure prominently in shaping the

concept of LCPs. More details on the selection process are

found in the original study. Limitations of the analysis and

related work are indicated at the end of this section; and for

the complete details, again, see the references cited above.

3.1 Historical Background and Product Positioning

A striking fact about almost all considered low-code

products is they have existed, in one form or another, be-

fore the label ‘low-code’ was invented. With the exception

of one platform, the solutions now marketed as LCPs have

been the single or primary products of the offering

companies for years, if not decades. An analysis of

archived versions of the vendors’ homepages revealed that

most products have been further developed and reposi-

tioned over the years. For example, some systems have

previously been offered as solutions for ‘rapid application

development’, ‘platform as a service’ (PaaS), and, in one

case, as a ‘model-driven application platform’. Another

platform has a history as a tool for ‘business process

management’ (BPM) in general, and as a tool for ‘mobile’

BPM and ‘human-centric’ BPM in particular. The bottom

line is that present-day low-code solutions are rarely new

products; more often than not, they have a long history on

the market and have simply been rebranded.

Another significant finding is that platforms available in

the low-code sector vary drastically in several dimensions.

Although certain technical features are common to many

LCPs, as will be discussed in the next subsection, the

studied environments differ substantially in functional

scope, primary purpose, range of technologies involved,

breadth of applicability, means of design and specification,

and other respects. For example, the four rough categories

of LCPs we distinguished in the pre-study included

(1) simple data management platforms, (2) classical

workflow management systems (WfMS), (3) extended,

graphical user interface (GUI)- and data-centric IDEs, and

(4) complex multi-use platforms for business application

configuration, integration, and development (for a fuller

description, see Bock and Frank 2021). The upshot is that

platforms offered under the label ‘low-code’ are exceed-

ingly heterogeneous and do not constitute a well-defined

class of technological environments.

3.2 Features of Low-Code Platforms

We now turn to the identified features of the studied LCPs,

which we will present according to their frequency of

occurrence, distinguishing between common, occasional,

and rare features. Where relevant, we will assign these

features to the traditional perspectives of systems devel-

opment – the static, the functional, and the dynamic per-

spective. A summary is given in Fig. 1.

Common features. Most common features of LCPs fall

into the static perspective. Every considered product fea-

tures a component for the definition of data structures. This

component is almost always offered in the form of a con-

ceptual modeling tool, implementing either a classical data

modeling language (i.e., a variant of the Entity-Relation-

ship Model) or a simplified proprietary language. Some-

times, data structures can only be defined in UI-based

dialogs or lists. A related common feature is the capacity to

access external data sources using a variety of application

programming interfaces (APIs). For example, the platforms

all permit using standard APIs like JDBC, as well as

123

A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021) 735

various connectors to other types of files and systems. As a

rule, the platforms are designed so that data may be stored

either in an internal database system, or in existing ex-

ternal systems.

Another feature provided by every studied low-code

platform is a GUI designer. Without exception, the studied

platforms incorporate a component to develop graphical

user interfaces and to integrate them with other imple-

mentation artifacts. All reviewed GUI designers bring

palettes of pre-defined widgets, although their scope varies

widely. Defining the coupling of GUIs and data structures

is fairly convenient in most environments, as it is not

necessary to implement the model-view-controller (MVC)

pattern manually. Furthermore, most systems provide dis-

tinct support in adapting the GUIs to different target

environments (e.g., desktop browsers, tablets, and

smartphones).

Low-Code Pla�orm
St

a�
c

Pe
rs

pe
c�

ve

Components for data structure
specifica�on

Mechanisms to access external data
sources via APIs

Mechanisms to access external
services/func�ons via APIs

External data sources
(RDBMS, XML documents,

CSV files, individual
systems such as ERP or

CRM systems, ...)

External services
(Web services, RESTful

services, individual
interfaces of large

technology pla�orms, ...)

Explana�on

GUI designer Mechanisms for coupling GUI forms
and data instances (MVC)

Domain-specific data reference
models

Frequency (common, occasional,
rare, not iden�fied)Feature External system or

service

Mechanisms for basic func�onal
specifica�ons (business rules, …)

Standard func�ons for generic
purposes (mathema�cal, …)

Domain-specific reference func-
�ons or reference implementa�ons

Fu
nc

�o
na

l P
er

sp
ec

�v
e

Dy
na

m
ic

Pe

rs
pe

c�
ve

In
te

ra
c�

on
Pe

rs
pe

c�
ve

Generic systems for state/UI page
transi�ons

Conceptual process modeling
component

Workflow management system and
engine

Domain-specific reference process
models

Internal database management
system

instances
retrieved/
stored via

may be adapted in

access

Conceptual data modeling
component

usually involves

usually involves

may be used in

operate on
instances

defined via

access

usually involves

integrated with

some�mes
involve

govern the use of GUIs created via

O
th

er
 A

sp
ec

ts Roles and user rights system Deployment and export
mechanisms

o�en becomes
part of solu�on

deployed via

Building block-like applica�on units
for varied purposes (BI, AI, RPA, ...)

Advanced/tradi�onal coding
components

Web/Applica�on Server
(on-premise or off-

premise, as part of the
low-code pla�orm)

End-user devices
(local machines/

computers, smart-
phones, tablets, ...)

Mechanisms for preparing GUI
rendering on different devices

usually involves

used/rendered on

Deployed applica�ons
will be access via

deployed to
either

GUIs become part of solu�ons deployed via

fu
nc

�o
ns

 a
re

 in
vo

ke
d

in
 G

U
Is

de
fin

ed
 v

ia

become part of solu�on deployed via

Fig. 1 Features of low-code platforms

123

736 A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021)

Furthermore, all systems afford basic functional speci-

fications. The most common approach here are simple

expression languages for decision rules and dialog-based

ways of specifying program flow conditions. Similarly,

each solution provides a library of generic standard oper-

ations, such as mathematical functions. Also, all solutions

enable, in varying ways, to invoke and integrate external

functions via APIs. For example, almost every system

allows to use standard approaches such as web services and

RESTful (representational state transfer) services; and

many systems make it possible to use a long list of APIs of

individual providers, such as Google APIs and other social

media APIs.

Moving on to a different area, almost all considered

solutions offer advanced support in the deployment of the

applications, although this takes quite different forms. For

example, some systems require to install the environment

of the low-code platform on a web server, so that indi-

vidual applications can be deployed there. Other systems,

in contrast, allow to deploy the developed solutions as self-

contained applications on various devices and machines.

Finally, another common feature is that almost all con-

sidered solutions came with a component to define roles

and user rights. The roles and user system is usually

contained in the governing architecture of the platform,

which will be deployed together with the custom

application.

Occasional features. Many less common features fall

into the dynamic perspective. One occasional feature is the

availability of a workflow modeling component and a

workflow engine. Several of the larger and more complex

LCPs incorporate a WfMS at their architectural core; other

systems now branded as LCPs, as previously indicated,

really are classical WfMS. The platforms either use a

conceptual modeling language like Business Process

Model and Notation (BPMN), or a proprietary representa-

tional structure. In other systems, the perspective is more

generic and technical. These platforms mainly provide

components to define the interaction with, and transition

between, user-defined UI forms. Some platforms rely on

proprietary process modeling component for this purpose,

others on basic menus and event-catching scripts.

Another occasional feature is the availability of

advanced or traditional coding components. Some systems,

involve one or several explicit components where proce-

dural specifications can be made using traditional pro-

gramming languages and related technologies. Most

frequently, the systems use Java and JavaScript. Indeed, at

some more or less hidden level of the architecture, almost

all low-code platforms grant recourse to traditional pro-

gramming code. Finally, the studied platforms of major

vendors offer a variety of configurable, building block-like

application units. For example, these units provide, in

limited scope, pre-implemented functionalities for the

areas of business intelligence (BI), artificial intelligence

(AI), and RPA.

Rare features. Notably, domain-specific reference

implementation artifacts were identified only on rare

occasions. Only one large-scale platform provides a con-

siderable library of domain-specific reference data models,

addressing common business and communication concepts,

such as ‘customer’, ‘address’, and ‘email’. Some other

systems offer small sets of simple reference structures, and

most reviewed LCPs do not bring with them any data

reference models at all. When it comes to domain-specific

reference functions and reusable artifacts of a dynamic

nature, still fewer artifacts are found. One large-scale

platform makes it possible to reuse a number of ready-

made functions from various business applications of the

same vendor. Most other studied systems offer catalogs of

reusable functions or examples of predefined processes, but

these are mostly generic in nature, or very limited in scope

and depth.

3.3 Limitations and Related Work

A number of limitations apply to our study. The most

important one has already been emphasized at the outset:

because of the limited sample size, no claim to represen-

tativeness can be defended. Another general limitation is

that besides the various features highlighted above, every

solution has, of course, a range of individual features,

which cannot be enumerated here. Several more specific

limitations concern the fact that there are a number of

criteria whose analysis was unfeasible for us. This includes,

for example, the behavior of the LCPs in the deployment

and scalability of large projects, as well as cost-efficiency

analyses. To our knowledge, the only other study of

available LCPs is that of Sahay et al. (2020). The aims and

results of that study are similar to ours, but Sahay et al.

(2020) concentrate on comparing particular LCPs, whereas

our interest is to reveal and critically discuss the main

features of LCPs in the context of business information

systems research. For a more detailed discussion of the

results and limitations of our analysis, see Bock and Frank

(2021) and Frank et al. (2021).

4 Discussion and Assessment

Our exploratory analysis of existing low-code platforms

has revealed a number of features found in these systems,

and it has occasioned several general observations. We will

now discuss the main findings of our analysis, offering a

critical assessment of the trend.

123

A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021) 737

Low-code platforms integrate various classical devel-

opment components in one environment. The most impor-

tant way in which the examined LCPs differ from classical

software development infrastructures is that they incorpo-

rate all or most tools and components required for a limited

class of software development projects in a single envi-

ronment. When using a classical software development

infrastructure, one has to deal with a sizeable array of

separate tools, such as IDEs, modeling tools, database

management systems (DBMS), object-relational (O-R)

mapping frameworks, GUI editors, deployment and com-

pilation assistants, and so on. In LCPs, these tools are

integrated into one system, so that there is less need to

switch between different systems and, more importantly,

less need to keep consistent and integrate the implemen-

tation artifacts produced by the distinct technologies.

Reuse is addressed at a generic architectural level, not

at a domain-specific level. The investigated low-code

platforms rarely offer reusable artifacts at a domain-

specific level. Rather, what is reused by these platforms are

fairly generic, and often implicit, architectural frameworks

for certain classes of application systems. This involves

reference implementations for such areas as GUI design,

O-R mappings, MVC operations, access to external data

sources and other services, and so on. Within these

frameworks, then, individual solutions can be configured

and developed.

Productivity gains mainly ensue from reducing the

efforts of routine tasks. LCPs produce productivity gains

primarily by reducing the efforts of routine tasks in soft-

ware development projects of low to moderate complexity.

This applies in several ways. One is that through the pro-

vision of a pre-defined, integrated environment, there is

less effort in synchronizing the artifacts produced by pre-

viously separate development components. Productivity is

also promoted by the aforementioned reference imple-

mentations for such generic tasks as GUI design, O-R

mapping, MVC implementation, and deployment in dif-

ferent environments.

No new technology. Summing up the previous points,

we arrive at the finding that most components of LCPs are,

in and of themselves, neither radically new nor innovative

in any way. To the contrary, what is actually provided in

these environments are well-known tools and components

for software development which have been used, in varying

forms, for decades. Also, many low-code products have, in

fact, existed for many years, and are now merely rebran-

ded. In this respect, we therefore agree with Cabot who

concluded: ‘‘I do not believe there is any fundamental

technical contribution in low-code trend’’ (Cabot 2020,

p. 536).

Conceptual modeling is not at the core of marketing, but

at the core of the platforms. Another key finding concerns

not the technology itself, but the way in which it is sold. As

our analysis has indicated, conceptual modeling compo-

nents are among the most important components of low-

code platforms and one of the principal ways in which they

are able to decrease the need for traditional coding. This is

the exact approach of the field of MDD, where the vision

has been that conceptual models are used to ‘‘reduce the

gap between problem and software implementation

domains through the use of technologies that support sys-

tematic transformation of problem-level abstractions to

software implementations’’ (France and Rumpe 2007,

p. 37). The modeling languages provided by the LCPs,

however, are rather simplistic, lagging behind the state of

the art in research on conceptual modeling.

Incomplete account of related research. The design of

available LCPs has, evidently, derived inspiration from

several lines of research on IS design and implementation,

but, surprisingly, ignored others. A field from which most

LCP vendors have drawn quite extensively is, as under-

lined above, that of model-driven development. There are

also more or less pronounced similarities to other research-

based approaches, although the exact technical concepts

and procedures are not usually adopted. This is true, for

example, of design constructs from research on ‘visual

programming’ (e.g., Costagliola et al. 2004; Ingalls et al.

1988), technical concepts to support ‘weaving’ reusable

services into customized ones (e.g., Besova et al. 2012;

Bergel and Fabry 2009), and the more recent vision of ‘on-

the-fly computing’ (Karl et al. 2020). Remarkably, other

well-known lines of investigation have been ignored alto-

gether. Most importantly, as already stressed, this concerns

work on reference models (e.g., Becker and Delfmann

2007; Fettke and Loos 2007) as well as work on domain-

specific modeling languages (e.g., Kelly and Tolvanen

2008; Frank 2013). Both reference models and DSMLs can

promote the productivity of systems design significantly, as

they incorporate domain knowledge.

Risk of lock-in effects. In most cases, the representations

generated in one LCP cannot be used in another. This

presents a serious threat to the protection of investment and

may lead to dead ends when a vendor stops supporting a

platform (as is the case with AppMaker, which Google has

recently abandoned).

5 Opportunities for Future Research

A number of opportunities for research are tied to the

emergence of low-code development platforms. One rea-

son is that methods and theories for the construction and

adaptation of organizational information systems are at the

very core of business information systems research.

Another reason is that all areas of our social reality

123

738 A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021)

continue to be permeated by software. Thus, much in the

spirit of low-code development, approaches are needed to

empower people – not just the traditional ‘‘user’’ – to

understand and modify the software shaping their work

environment and, more and more, their entire lives. The

following list of research opportunities is intended to

illustrate the scope of inspiring research topics related to

the low-code trend.

Support for the evaluation and economic use of low-

code platforms. As has become clear, LCPs are no silver

bullets, but, under the appropriate circumstances, the use of

these platforms can help organizations improve produc-

tivity and agility in software design and development. It is,

however, far from trivial to judge the economics of LCPs.

Research is needed to identify problem classes which can

be effectively addressed by the typical functions of LCPs –

and those which cannot. It is also essential to investigate

whether and how LCPs can serve as a supplement to, rather

than a replacement of, traditional software development

infrastructures. Furthermore, the support of organizational

decision makers calls for research on the training required

for employees with no or little programming skills to use

LCPs effectively, as well as on the costs and risks of this

sort of institutionalized lay development. Following on

from this, another line of research could be directed toward

the design and evaluation of methods for the economic

analysis of LCPs, as well as (modeling) methods for

guiding lay developers in the use of LCPs and classical

software development facilities.

New approaches to study the possibilities and limita-

tions of domain-specific reference models: As our analysis

has shown, domain-specific reference models and equiva-

lent implementation artifacts are rarely provided in low-

code platforms. This raises the question of why this is so,

as reference models could easily be integrated into these

environments. Reference models may not only reduce

development costs and enable a higher quality of infor-

mation systems, they may also promote (cross-organiza-

tional) integration. But it is also true that domain-specific

reference models, despite some enthusiasm a few decades

ago, did not become the game changers they were supposed

to be. The emergence of LCPs is a welcome occasion for

business information systems research to (re-)address itself

to the obstacles preventing the use of reference models and

the design of strategies to overcome them.

Cognitive fit of representations: Although LCPs address

both professional software developers and ‘citizen devel-

opers’, it remains unclear what kind of user models they

employ. Such models are needed to make representations

of software fit cognitive capabilities and personal working

styles. The investigation of this topic opens a wide range of

research questions whose investigation may involve fields

such as cognitive psychology, and modeling and pro-

gramming language design.

Effects on organizational behavior: Approaches to fos-

ter end-user computing effectively blur the traditional

boundaries between developers and users. This is likely to

affect organizational decision processes, patterns of col-

laboration, and roles surrounding IS design and use. While

these matters have been the subject of early studies on end-

user computing (Amoroso, 1988), the digitization of work

environments as well as the average levels of computer

literacy have changed considerably since then. This leads

to research questions concerning the future conception of

IT management in general, and the organization of soft-

ware projects in particular.

6 Conclusion

Our analysis of low-code platforms did not produce evi-

dence that the individual components of low-code solutions

are radical innovations. In many ways, they lag behind the

frontiers of research on software design, implementation,

and maintenance. What distinguishes these platforms is

that they integrate, in one environment, multiple well-

known and traditional system design components so as to

reduce the efforts of routine tasks in implementing business

applications within the confines of certain, more or less

restrictive frameworks. As such, LCPs can promote soft-

ware development productivity if all the requirements of a

given project can be satisfied within the predefined,

immutable framework of a certain LCP and all other per-

tinent technical and economic conditions are fulfilled, too.

Developing methods for the careful assessment of these

conditions is an important subject for future research.

Moreover, the momentum generated by the low-code

trend gives rise to various other inspiring research oppor-

tunities lying not only at the core of our discipline, but also

at the cross-sections with other disciplines. A most

notable opportunity lies in the fact that the attention

directed at low-code platforms may contribute to the

revival of conceptual modeling. As we have shown, con-

ceptual modeling is one of, if not the single most important

ingredient of present-day low-code platforms – even

though vendors rarely declare themselves as offering

modeling environments. Business information systems

research is well positioned to seize this opportunity, since it

is the only discipline that takes the design and analysis of

domain-specific conceptual models as one of its funda-

mental tasks.

The term ‘low-code’, however, is problematic. It is

currently used in an inconsistent manner, being deployed to

sell vastly heterogeneous development environments.

While we do not think it is advisable to prescribe

123

A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021) 739

practitioners what terminology to use, we believe that it is

our responsibility to critically reflect on whether terms are

suitable for incorporation into a proper technical termi-

nology. We do not think the term ‘low-code’ at present

satisfies the criteria required of a scientific concept. After

all, language is our most important tool, and we should

beware of compromising it.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Amoroso DL (1988) Organizational issues of end-user computing.

SIGMIS Database 19(3–4):49–58. https://doi.org/10.1145/

65766.65773

Becker J, Delfmann P (eds) (2007) Reference modeling: efficient

information systems design through reuse of information models.

Physica, Heidelberg

Bergel A, Fabry J (eds) (2009) Software composition. In: Proceed-

ings 8th international conference on software composition,

Zurich. Springer, Heidelberg

Besova G, Walther S, Wehrheim H, Becker S (2012) Weaving-based

configuration and modular transformation of multi-layer sys-

tems. In: France RB et al (eds) 15th international conference on

model driven engineering languages and systems, innsbruck.

Springer, Heidelberg, pp 776–792

Bock AC, Frank U (2021). In search of the essence of low-code: an

exploratory study of seven development platforms. In: Proceed-

ings of the 24th ACM/IEEE international conference on model

driven engineering languages and systems: companion proceed-

ings. ACM and IEEE, New York

Cabot J (2020). Positioning of the low-code movement within the

field of model-driven engineering. In: Proceedings of the 24th

ACM/IEEE international conference on model driven engineer-

ing languages and systems: companion proceedings. ACM and

IEEE, New York, pp 535–538. https://doi.org/10.1145/3417990.

3420210

Chang YH, Ko CB (2017) A study on the design of low-code and no

code platform for mobile application development. Int J Adv

Smart Convergence 6(4):50–55. https://doi.org/10.7236/IJASC.

2017.6.4.7

Costagliola G, Deufemia V, Polese G (2004) A framework for

modeling and implementing visual notations with applications to

software engineering. ACM Trans Softw Eng Meth

13(4):431–487. https://doi.org/10.1145/1040291.1040293

France RB, Rumpe B (2007) Model-driven development of complex

software: a research roadmap. In: Briand LC, Wolf AL (eds)

Workshop on the Future of Software Engineering. IEEE, New

York, pp 37–54. https://doi.org/10.1109/FOSE.2007.14

Frank U (2013) Domain-specific modeling languages – requirements

analysis and design guidelines. In: Reinhartz-Berger I et al (eds)

Domain engineering: product lines, conceptual models, and

languages. Springer, Heidelberg, pp 133–157

Frank U, Maier P, Bock AC (2021) Low code platforms: promises,

concepts and prospects. A comparative study of ten systems. ICB

Research Report 70. University of Duisburg-Essen, Essen

Henriques H, Lourenço H, Amaral V, Goulão M (2018) Improving

the developer experience with a low-code process modelling

language. In: Proceedings of the 21st ACM/IEEE international

conference on model driven engineering languages and systems.

ACM, pp 200–210. https://doi.org/10.1145/3239372.3239387

Ihirwe F, Di Ruscio D, Mazzini S, Pierini P, Pierantonio A (2020)

Low-code engineering for internet of things. In: Proceedings of

the 23rd ACM/IEEE international conference on model driven

engineering languages and systems: companion proceedings.

ACM, pp 522–529. https://doi.org/10.1145/3417990.3420208

Ingalls D, Wallace S, Chow YY, Ludolph F, Doyle K (1988) Fabrik: a

visual programming environment. SIGPLAN Not

23(11):176–190. https://doi.org/10.1145/62083.62100

Karl H, Kundisch D, Meyer auf der Heide F, Wehrheim H (2020) A

case for a new IT ecosystem: on-the-fly computing. Bus Inf Syst

Eng 62(6):467–481. https://doi.org/10.1007/s12599-019-00627-

x

Kelly S, Tolvanen JP (2008) Domain-specific modeling. enabling full

code generation. Wiley, Hoboken

Fettke P, Loos P (eds) (2007) Reference modeling for business

systems analysis. Idea, Hershey

Richardson C, Rymer JR (2014) New development platforms emerge

for customer-facing applications. Forrester Report, Forrester

Rymer JR, Koplowitz R (2019) The Forrester wave: low-code

development platforms For AD&D professionals, Q1 2019.

Forrester Report, Forrester.

Sahay A, Indamutsa A, Di Ruscio D, Pierantonio A (2020) Support-

ing the understanding and comparison of low-code development

platforms. In: Proceedings of the 46th Euromicro conference on

software engineering and advanced applications. IEEE, New

York, pp 171–178. https://doi.org/10.1109/SEAA51224.2020.

00036

Sanchis R, Garcı́a-Perales Ó, Fraile F, Poler R (2020) Low-code as

enabler of digital transformation in manufacturing industry. Appl

Sci 10(1):12. https://doi.org/10.3390/app10010012

Shah A (2020). Emptying offices prompt adoption of low-code to

build work apps. In: The Wall Street Journal, 15 May 2020.

https://www.wsj.com/articles/emptying-offices-prompt-adop

tion-of-low-code-to-build-work-apps-11589535001. Accessed

12 Sep 2021.

Vincent P, Natis Y, Iijima K, Wong J, Ray S, Jain A, Leow A (2020)

Magic quadrant for enterprise low-code application platforms.

Gartner Report September 2020, Gartner

Waszkowski R (2019) Low-code platform for automating business

processes in manufacturing. IFAC-PapersOnLine

52(10):376–381. https://doi.org/10.1016/j.ifacol.2019.10.060

Zolotas C, Chatzidimitriou KC, Symeonidis AL (2018) RESTsec: a

low-code platform for generating secure by design enterprise

services. Enterp Inf Syst 12(8–9):1007–1033. https://doi.org/10.

1080/17517575.2018.1462403

123

740 A. C. Bock, U. Frank: Low-Code Platform, Bus Inf Syst Eng 63(6):733–740 (2021)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/65766.65773
https://doi.org/10.1145/65766.65773
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.7236/IJASC.2017.6.4.7
https://doi.org/10.7236/IJASC.2017.6.4.7
https://doi.org/10.1145/1040291.1040293
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1145/3239372.3239387
https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1145/62083.62100
https://doi.org/10.1007/s12599-019-00627-x
https://doi.org/10.1007/s12599-019-00627-x
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.3390/app10010012
https://www.wsj.com/articles/emptying-offices-prompt-adoption-of-low-code-to-build-work-apps-11589535001
https://www.wsj.com/articles/emptying-offices-prompt-adoption-of-low-code-to-build-work-apps-11589535001
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1080/17517575.2018.1462403
https://doi.org/10.1080/17517575.2018.1462403

	Low-Code Platform
	Introduction
	Aspects of the Trend: Promises and Reception
	In Search of a Conceptualization: Results from an Exploratory Study
	Historical Background and Product Positioning
	Features of Low-Code Platforms
	Limitations and Related Work

	Discussion and Assessment
	Opportunities for Future Research
	Conclusion
	Open Access
	References

