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Abstract
Whenever a system needs to be operated by a central decision making authority in the pres-
ence of two or more conflicting goals, methods from multi-criteria decision making can
help to resolve the trade-offs between these goals. In this work, we devise an interactive
simulation-based methodology for planning and deciding in complex dynamic systems sub-
ject to multiple objectives and parameter uncertainty. The outline intermittently employs
simulation models and global sensitivity analysis methods in order to facilitate the acquisi-
tion of system-related knowledge throughout the iterations. Moreover, the decision maker
participates in the decision making process by interactively adjusting control variables and
system parameters according to a guiding analysis question posed for each iteration. As a
result, the overall decision making process is backed up by sensitivity analysis results pro-
viding increased confidence in terms of reliability of considered decision alternatives. Using
the efficiency concept of Pareto optimality and the sensitivity analysis method of Sobol’ sen-
sitivity indices, the methodology is then instantiated in a case study on planning and deciding
in an infectious disease epidemic situation similar to the 2020 coronavirus pandemic. Results
show that the presented simulation-based methodology is capable of successfully addressing
issues such as system dynamics, parameter uncertainty, and multi-criteria decision making.
Hence, it represents a viable tool for supporting decision makers in situations characterized
by time dynamics, uncertainty, and multiple objectives.
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1 Introduction

A simulation model is an executable model of a real world system which can be utilized to
elicit information about future system behavior (Law and Kelton 2000). Therefore, a crucial
function of simulation is to support decision makers with prescriptive guidance concerning
future system trajectories. However, the role of simulation as part of model-driven decision
support systems is rather perceived as that of a separated assistance system (Power and Sharda
2007). Neither a systematic integration nor a formalized feedback mechanism between these
tools for computerized decision making is yet established on a general level, but rather in
problem-specific settings (Hopfe 2009; Heilala et al. 2010; Mahdavi et al. 2010; Kadri et al.
2014a; Fanti et al. 2015). Apart from the technological perspective, many real world systems
exhibit a number of challenging characteristics: Uncertainty in system parameters, com-
plexity in terms of size and relations between entities, involvement of multiple conflicting
objectives, large degree of time dynamic system elements (Anderson 1999; Grösser 2017).
As a major advantage, simulation inherently addresses the latter three of these challenges:
No global analytical formula is required to describe the overall system behavior; instead,
individual specifications of system elements collectively cause a system trajectory to occur
(Banks 2010; Cassandras and Lafortune 2010). Concerning the consideration of two or more
goals in a setting of multi-criteria decision making, simulation benefits from the possibil-
ity to track an arbitrary number of performance measures with virtually no computational
cost. Nonetheless, uncertainty handling cannot be tackled by simulation as a standalone tool.
Therefore, various frameworks have been proposed in the form of parameter variation, sen-
sitivity analysis, or simulation optimization. According to Dellino and Meloni (2015), these
approaches are intrinsically related to each other when simulation is seen as an underlying
method to evaluate the quality of specific system parameter and control variable settings.

As an application, consider an infectious disease epidemic comparable to the 2020 coro-
navirus pandemic. Political decision makers have to weigh health, societal, and economic
impacts of their decisions influencing the course of the epidemic, e.g., by shutting down
the economy temporarily (Raboisson and Lhermie 2020; Malmir and Zobel 2021; Pamučar
et al. 2020). This setting is coined by the need for sophisticated decision making amidst
uncertainty, time dynamics, and multiple objectives. Since the population to be considered
is large, a system dynamics simulation is adequate to model infections within the population
over time. The model can then be deployed in a feedback loop with sensitivity analysis meth-
ods to evaluate alternative courses of action. As the output of the entire process, decision
makers learn about the sensitivity of system parameters (which cannot be changed suddenly,
but maybe present opportunities for changes in the long run) and control variables (which
allow for immediately influencing the course of events), guiding them towards an informed
overall decision. In this sense, decisionmakers gain confidence in their decisions and develop
a better overall understanding of the system with respect to the different objectives.

The main contribution of the paper consists of a holistic methodological outline for the
analysis of decision making tasks in real-world complex dynamic systems subject to uncer-
tainty, time dynamics, and multiple objectives. As shown in Fig. 1, this is achieved through
a combination of simulation models, sensitivity analysis, and multi-criteria decision making
addressing the mentioned challenges jointly. Used over several iterations, the updating step
leads to increased confidence with respect to the final decision. This is particularly favorable
in applications exhibiting uncertainty in critical parameters and strong sensitivity of model
outputs to these parameters. As a result, the decision maker is not only in a position to make a
well-informed decision once, but also understands the system more deeply acquiring knowl-
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Fig. 1 Algorithmic outline for simulation-based multi-criteria decision making

edge to be used in similar future situations. Methodologically, this conclusion can be drawn
from the detailed sensitivity analysis which is deployed upon system parameters and con-
trol variables throughout the overall process. Moreover, the method represents an adjustable
approach to sequential decision making under uncertainty as it allows to adaptively warm-
start a simulation model with the currently observed system state. In this sense, not only
parameter uncertainty is considered, but also decision adaptability. Finally, the case study
on infectious disease epidemics provides a template for using the methodology in a concrete
practical problem setting. We remark that the goal of the paper is not to provide a perfect
simulation model for the 2020 coronavirus outbreak, but to develop a framework supporting
decision makers in similar situations amenable to simulation-based decision making.

The remainder of the paper is organized as follows: Sect. 2 discusses research on topics
of methodological interest (such as multi-criteria decision making, simulation and optimiza-
tion, sensitivity analysis) and on topics of practical interest (such as epidemics simulation).
The main contribution of the paper is found in Sect. 3: Combining approaches from multi-
criteria decisionmaking and sensitivity analysis,we introduce an interactive simulation-based
methodology for planning and deciding in complex dynamic systems which are character-
ized by uncertainty and multiple objectives. The case study in Sect. 4 yields experimental
evidence on how the methodology can support decision makers in an infectious disease
epidemic. Finally, Sect. 5 presents challenging areas for future research.

2 Related work

We discuss existing literature on the different topics combined in this paper. The presentation
has a converging character with respect to these topics in order to showhow simulation,multi-
criteria decision making, sensitivity analysis are interrelated.
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2.1 Simulation and optimization

Simulation models reproduce the behavior of a real world system in a computerized model to
gain insight into ruling causes and effects relations of the system. Depending on the system,
different modeling paradigms with different abstraction levels are used (Siebers et al. 2010;
Sumari et al. 2013; Tako and Robinson 2018). Discrete-event models proceed based on a
detailed resolution of events. System dynamics are appropriate when large populations are
considered in an aggregated perspective. Recently, agent-based models have gained impor-
tance. They allow to model individual behavior and interactions as the autonomous driving
force of the simulation. This is in contrast to discrete-event models and system dynamics
with their bottom-up and top-down perspectives, respectively (Macal 2010). Multi-method
simulation mixes these approaches when different types of granularity are required (Brails-
ford et al. 2010). Frameworks to streamline multi-method model development are introduced
by Morgan et al. (2017), Mykoniatis (2015). Applications of simulation modeling relevant
to this paper are found for health care including infectious disease treatment in Djanatliev
and German (2013), Gunal (2012), Mustafee et al. (2013), Viana et al. (2014).

Themost frequent combination of simulation and optimization comprises the optimization
of parameters of a simulation model with respect to the model output. System parameters are
considered as strategic control variables, and simulation is used as an evaluation function of a
parameter setting (Fu 1994). Since not all parameter settings may be evaluated, optimization
becomes necessary, ranging from meta-heuristics to simulation metamodeling (Carson and
Maria 1997). Reviews focus on different parameter domains (continuous vs. discrete), lead-
ing to methods from ranking and selection to stochastic approximation; metaheuristics are
explicitly discussed to facilitate global optimization (Amaran et al. 2016; Tekin and Sabun-
cuoglu 2004). However, these methods consider single objectives. Methods for parameter
optimization in simulations with multiple objectives are missing except for Zakerifar et al.
(2011) who introduce a kriging simulation metamodel which can be used for parameter
tuning under multiple objectives.

2.2 Sensitivity analysis

Sensitivity analysis provides information on how the output of a model varies depending
on its inputs. Model inputs (factors) can be subdivided into system parameters and control
(or design) variables. Comprehensive overviews are given by Iooss and Lemaître (2015),
Pianosi et al. (2016). A main goal lies in the determination of robust solutions accounting for
parameter uncertainty. It is distinguished between local and global sensitivity analysis; the
former/latter considers variation of one/several parameter(s). Borgonovo and Plischke (2016)
concludes that sensitivity analysis is a prerequisite to align communication betweenmodelers,
analysts, and decision makers leading to a profound system understanding. In the context
of simulation models, the design of experiments (DoE) prescribes the experimental outline
with respect to the input factor variation according to which model executions are carried
out (Kleijnen 2007). DoE is concerned with limiting computational efforts. Montevechi et al.
(2010) shows how a full factorial design can be reduced to a fractional design by intermediate
screening factor influences. Gutenschwager et al. (2017) distinguishes between static and
dynamic factor design; the former prescribes a list of factor combinations to be examined,
while the latter allows for dynamic guidance based on sensitivities found previously.

Global sensitivity analysis comprehensively determines single and joint factor influences
as it allows for simultaneous variations over the entire parameter space (Iooss and Lemaître
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2015). Variance-based sensitivity analysis is rooted in the decomposition of the overall vari-
ance breaking it down to components attributable to factor groups (Prieur andTarantola 2016).
Compared to the classical analysis of variance in a factorial design, the Sobol’method consid-
ers input parameters as randomvariables (Archer et al. 1997). Numerically, Sobol’ indices are
computed throughMonte Carlo simulation. In the simulation context, Chan et al. (1997) find
the Sobol’ method effective to attribute factor contributions to output variability, eliminating
insignificant parameters, determining interactions between factor subgroups, and guiding the
search for optimal regions of the parameter space. Chen et al. (2005) further recommends to
use simulation metamodels to diminish computational efforts. A comparison of the Sobol’
method to other sensitivity analysis techniques is presented in Yang (2011).

2.3 Multi-criteria decisionmaking

Multi-criteria decision making (MCDM) deals with making decisions in the presence of
multiple conflicting objectives. Depending on the domains of decision alternatives and their
level of measurement, different methods are available. Greco et al. (2016) compiles surveys
on different settings resulting from decision and attribute types including, e.g., preference
modeling, intangible criteria, utility theory. Extensions to uncertainty are found in Durbach
(2014), Mareschal (1986). An overview on multi-criteria optimization for numerical inputs
and objectives with interval scale measurement is discussed in Ehrgott (2005) for various
solution concepts such as dominance, efficiency, lexicographic ordering, or scalarization.
Efficiency concepts for MCDM problems under uncertainty are presented in Abdelaziz et al.
(1999). As dealing with uncertainty is intractable for realistic multi-criteria problems, several
frameworks connecting simulation and uncertainty are proposed bringing the topic closer
to sensitivity analysis. An overview is given in Broekhuizen et al. (2015) suggesting that
different types of uncertainty could be examined by simulation-based sensitivity analysis.

Various frameworks combine simulation and MCDM. In Aickelin et al. (2018), simu-
lation guides the multi-criteria analysis dynamically by evaluating the quality of different
decision options. A combination of discrete-event simulation, genetic algorithms, Taguchi
robustness and utility-function-based MCDM is established in Al-Aomar (2002) to provide
robust parameter settings in a multi-objective environment. A simulation-guided approach to
conduct a sensitivity analysis of utility function weights of a multi-criteria objective is given
by Butler et al. (1997) who employ random-weighting, rank-order weighting, and assessed-
weightings in simulation models to infer knowledge about effects of simultaneous weight
changes.

Broekhuizen et al. (2015) reviews MCDM under uncertainty in health care by distin-
guishing different approaches including deterministic and probabilistic sensitivity analysis.
Deterministic sensitivity analysis is by far the most popular approach, although for multiple
uncertainty sources sophisticated methods are more recommendable. Marsh et al. (2014)
surveys different MCDM methods to improve health care interventions. Different possibil-
ities for health technology assessment under multiple criteria are compared in Thokala and
Duenas (2012). Jun et al. (1999) point out that due to multiple objectives prevalent in health
care, simulation models are particularly viable to decision making.

2.4 Decision support systems

Decision support systems (DSS) are computerized tools and models which assist decision
makers to derive “better” decisions. They build upon existing methods like simulation or
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MCDM and refine them with additional decision-relevant aspects like, e.g., expert opinions,
interactive visualization, databases. A historical overview is given by Power (2008). The
overviewSiskos and Spyridakos (1999) emphasizes the future need for integration of artificial
intelligence. Accordingly, recent research is headed in this direction (Delen and Sharda
2008; Li et al. 2010), e.g., through metamodeling by artificial neural networks, kriging, or
multivariate adaptive regression splines. From the categorization ofDSS into communication-
driven, data-driven, document-driven, knowledge-driven, and model-driven DSS (Power and
Sharda 2007), we are concerned with the latter one due to the combination of simulation,
optimization, and sensitivity analysis. Future research is seen in the integration of behavioral
components (e.g., agent-based models) and technological components (e.g., user interfaces).
A particular consideration of multiple criteria is outlined in Korhonen et al. (1992) who
describe how decision makers can be supported in structuring and solving multi-criteria
problems. A framework for integrating uncertainty in trade-offs between different criteria
into a DSS is elaborated in Podinovski (1999). Guariso et al. (1996) suggests to build a DSS
around an integrated simulation and optimization environment to conduct the optimization of
simulationmodel parameters in a seamless environment.Chatha andWeston (2006) combines
discrete-event simulation, systems thinking, and enterprise modeling to obtain an integrated
DSS for decision making amidst the complexity of manufacturing organizations. General
principles and foundations to be followed in designing DSS based on simulation models are
derived in Page (1994). Related to health care, Everett (2002), Kadri et al. (2014b) provide
examples dealing with patient flow and patient scheduling, respectively.

2.5 Epidemics simulation

An overwhelming amount of research is available for epidemiology modeling and analysis.
As surveyed in Brauer et al. (2008), many extensions are available (e.g., stochasticity, pop-
ulation heterogeneity, or aging) for the most basic model for epidemiology dynamics, the
SIR model which subdivides the population into susceptible, infectious, and recovered indi-
viduals. Many case studies using extensions of this model are available such as for diseases
arising from pathogens in water distribution systems (Fajdek et al. 2019) or anthrax attacks
(Chen et al. 2006). In epidemiology, decision making is subsumed under prevention and
intervention measures. Ma et al. (2011) emphasize that streamlined methodologies are nec-
essary to grant fast development once an epidemic arises. Consequently, a database-supported
high-performance epidemic simulation framework is presented. In a similar fashion, but with
focus on the network character, an architecture based on demo- and geographic properties is
developed in Huang et al. (2010). An intervention simulation study related to social distanc-
ing is given in Kelso et al. (2009). Especially in epidemic simulation studies, data and model
assumptions are crucial in terms of decision quality as concluded in Orbann et al. (2017) for
data definitions and in Özmen et al. (2016) for model assumptions. Accordingly, simulation-
based decision making and sensitivity analysis have to be combined for model validation.
However, no unified outline is available and the spectrum ofmethods is vast. Rao et al. (2009)
derive implications through case studies where each one answers a specific research question
on the avian influenza outbreak. A sensitivity analysis environment based on Monte Carlo
simulations is applied in Ma and Ackerman (1993), Ma et al. (1993) for multiple objectives
in viral epidemics (illness attack rates, durations, peaks). Parameter variations are carried
out for influenza (Nsoesie et al. 2012) and Ebola epidemics (Legrand et al. 2007) to gain
knowledge on root causes and effects. Recent topics of epidemics simulations consider the
integration of real world aspects such as mobility patterns (Kopman et al. 2012), integra-
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tion between epidemics and hospital processes (Nikakhtar and Hsiang 2014), and impacts of
epidemics on global supply chains under multiple objectives (Ivanov 2020).

2.6 Research gap and research questions

As shownby the literature review, no comprehensive framework exists for supporting decision
makers in setting control variable values in a dynamic system subject to uncertain data
and several conflicting objectives. In particular, methods from different related disciplines
(such as simulation optimization, sensitivity analysis, or multi-criteria decision making)
appear segregated from each other and come with their individual flaws when considered as
part of an integrated approach (such as consideration of single objective only, insufficient
consideration of data assumptions, or dependence on substitute optimality concepts). Hence,
a required initial step for closing this research gap consists of devising a general architecture
of a model-based decision support framework assisting in the selection of control variable
values in dynamic systems under uncertain system parameter values and multiple objectives.
The urgent necessity for such an overarching methodology has become apparent during the
outbreak of the pandemic due to the coronavirus in early 2020. As typical for such novel
situations, vastly no reliable data is available and information is vague. Hence, for such cases
we identify the need for an interactive character of a decision support methodology. Overall,
the research questions can be summarized as follows:

• What is the general structure of a framework for model-based decision support in the
presence of multiple conflicting objectives and data uncertainty?

• What is an instantiation of this general outline with respect to a specific composition of
involved methodological components?

• How can this framework be applied practically?

Section 3 provides answers to the first two questions on a methodological level, whereas
the case study on an infectious disease epidemic in Sect. 4 addresses the third question from
a practical perspective.

3 Simulation-basedmulti-criteria decision support with sensitivity
analysis feedback

Initial phases of a simulation study comprise the statement of the overall mission, specifica-
tions of study requirements and required data, as well as the formation of a conceptual and
an executable model of the dynamic system (Gutenschwager et al. 2017). The first two steps
determine which factors are control variables and which are system parameters. Control vari-
ables can be used directly for influencing the system behavior, whereas system parameters
influence the system, but cannot be changed in the short term. Uncertain system parameters
require an explicit analysis to increase confidence in decisions on control variables.

We introduce a new interactive methodology for the analysis of complex dynamic systems
under multiple objectives and parameter uncertainty. The analysis is directed at determining
themost favorable values for control variables, accounting for themulti-criteria character and
enriching decisions with sensitivity information on system parameters and control variables.
While several methods are available and viable for the simulation-based one-dimensional
optimization of system parameters or control variables (such as metaheuristics, gradient-
descent, simultaneous perturbation; see Gosavi (2015); Amaran et al. (2016)), the case of
multiple objectives has experienced considerably less attention yet. As outlined in Sect. 1 and
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Step 1
Simulation (control
variables variation)
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analysis question of iteration
System parameters configuration S
Set of control variables configurations C

Step 2
Multi-criteria

decision making

Step 3
Simulation (system

parameters perturbation)

Step 4
Sensitivity
Analysis

Step U Updates of S and C

Fig. 2 Iterative step in the interactive methodology for simulation-based multi-criteria decision support with
sensitivity analysis feedback

displayed in Fig. 1, the methodology proceeds iteratively and allows the decision maker to
interact with the method to cover different topics of interest concerning the system behavior.
Each iteration is based on a guiding analysis question, system parameters configuration, and
set of control variables configurations to be examined. In each iteration, the following steps
can be used in a customized fashion to answer the current analysis question.

1 SimulationVariation experimentwith control variables: For the current systemparameters
configuration, collect information on the performance achievable for the current set of
control variables configurations with respect to the multiple objectives.

2 Multi-criteria decision making Determination of efficient control variables configura-
tions: From all control variables configurations considered in step 1, determine which of
them are efficient according to a prescribed criterion of efficiency.

3 Simulation Perturbation experiment with system parameters: Perturb the current system
parameters configuration from step 1 and record the effect on the multiple objectives
resulting from the efficient control variables configurations from step 2.

4 Sensitivity analysis Detection of critical control variables and system parameters: Apply
a sensitivity measure upon the multi-criteria decision making results from step 2 and
the perturbation results from step 3 to identify sensitive control variables and system
parameters, respectively.

U Update Re-select the current guiding analysis question, control variables configurations
and systemparameters configuration for the next iteration based on the sensitivity analysis
results from step 4.

Figure 2 illustrates the outline of one iteration.Due to the update step, the overall procedure
becomes interactive allowing the decisionmaker to impute a certain setting of special interest
upon each iteration such that steps 1 to 4 can be tailored towards answering the current analysis
question. Over the course of the iterations, the decision maker accumulates an information
pool representing the acquired knowledge on the system behavior.

After introducing the terminology and notation in Sect. 3.1, details on the individual steps
are given in Sects. 3.2 to 3.6. The number of iterations is rather limited as each iteration
answers a specific analysis question posed by the decision maker to understand the sys-
tem more thoroughly. Therefore, whilst steps 1 to 4 are executed in automated fashion, the
updating step is implemented in interaction with the decision maker.
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3.1 Terminology and notation

We denote a control variables configuration, i.e., a tuple of control variable values, by
C := (c1, c2, . . . , cnc ) where nc ∈ N is the number of control variables and ci with
i ∈ {1, 2, . . . , nc} is the value of the i th control variable. A set of control variables con-
figurations is referred to by C. Likewise, we denote a system parameters configuration, i.e.,
a tuple of system parameter values, by S := (s1, s2, . . . , sns ) where ns ∈ N is the number of
system parameters and si with i ∈ {1, 2, . . . , ns} is the value of the i th system parameter. A
set of system parameters configurations is referred to by S. As a generalization, the value of
a factor f can either be the value of a control variable or the value of a system parameter. We
denote a factors configuration, i.e., a tuple of factor values, by F := ( f1, f2, . . . , fn f )where
n f ∈ Nwith n f ≤ nc+ns is the number of considered factors and fi with i ∈ {1, 2, . . . , n f }
is the value of the i th considered factor. A set of factors configurations is referred to byF . The
system performance achieved with control variable configurationC under system parameters
configuration S is indicated by the objectives configuration O(C, S) := (o1, o2, . . . , ono)
where no ∈ N is the number of objectives and oi with i ∈ {1, 2, . . . , no} is the value of the i th
objective. A set of objectives configurations is referred to byO. The objectives configurations
obtained by combinations of control variables configurations from set C and system param-
eters configurations from set S can be recorded in a performance table O(C,S) consisting
of triples (C, S, O(C, S)) with C ∈ C and S ∈ S.

3.2 Step 1: Simulation—Variation experiment with control variables

For the current system parameters configuration S, the system performance is evaluated over
all possible control variables configurations in C. Typically, in the first iterations, S represents
a system parameters configuration which is considered most probable or which represents
a configuration of interest; C contains those control variables configurations that comply
with the degrees of freedom given to the decision maker for the control variables. To obtain
information on the system performance, a simulation model is utilized as a proxy for the
dynamic system. The variation experiment then executes the simulation model for each pair
(C, S)withC ∈ C and records the obtainedperformanceO(C, S) inO(C, {S}).Algorithm3.1
provides the computational steps to obtain this performance table. With an upper bound T sim

on the runtime for a simulation replication, the algorithm runs in O(|C| · T sim) time. We
remark that in case of prohibitive computational effort for executing individual simulation
replications, simulation metamodels can serve as surrogate models for approximating the
simulation outcome in a computationally efficient manner (Barton andMeckesheimer 2006).
In contrast to the sensitivity analysis based on perturbations of S (cf. step 3), step 1 considers
variation of control variables configurations in C in order to collect data upon achievable
objectives configurations for given S. The performance table O(C, {S}) is the input for the
determination of efficient control variables configurations in step 2.

3.3 Step 2: Multi-criteria decisionmaking—Determination of efficient control
variables configurations

To cover a wide array of different approaches to multi-criteria decision making, we introduce
the general notion of an efficiency criterion. An efficiency criterion is defined as a property
of a control variables configuration that can either be fulfilled or not fulfilled. A control
variables configuration is called efficient if and only if it fulfills the efficiency criterion. The
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Algorithm 3.1 controlVariablesVariation
Input: current system parameters configuration S, set of control variables configurations C, simulation model

1: initialize O(C, {S}) as an empty table
2: for all C ∈ C do
3: apply simulation model to obtain O(C, S)
4: add (C, S, O(C, S)) to O(C, {S})
5: end for

Output: performance table O(C, {S})

efficiency criterion can be formulated verbally or mathematically as long as its validity for a
control variables configuration can be evaluated computationally.

Step 2 then consists of determining for the current system parameters configuration S
the set of efficient control variables configurations C∗(S) containing all control variables
configurations in the performance table O(C, {S}) fulfilling the efficiency criterion. Algo-
rithm 3.2 summarizes the computational steps for efficiency criterion E and performance
table O(C, {S}). With an upper bound T ef f on the runtime for an efficiency check of a con-
trol variables configuration, the algorithm runs in O(|C| · T ef f ) time. The algorithm output
yields those efficient control variables configurations whose sensitivity with respect to vari-
ations in control variables shall be considered in step 4 and whose sensitivity with respect to
variations in system parameters shall be considered in step 4 after first perturbing the current
system parameters configuration S in step 3.

Algorithm 3.2 multiCriteriaDecisionMaking
Input: efficiency criterion E , performance tableO(C, {S}), evaluation method for E

1: initialize C∗(S) := ∅
2: for all (C, S, O(C, S)) ∈ O(C, {S}) do
3: if E is true for C then
4: set C∗(S) := C∗(S) ∪ {C}
5: end if
6: end for

Output: set C∗(S) of efficient control variables configurations

We now instantiate step 2 for the case where the efficiency criterion E amounts to Pareto
optimality. We emphasize that this just represents one option for determining efficient con-
trol variables configurations. Other methods for multi-criteria optimization as presented in
Ehrgott (2005); Greco et al. (2016) can be applied similarly. We give the definition of Pareto
optimality using the notation introduced previously as follows: A control variables configu-
ration C is Pareto optimal with respect to a given performance table O(C, {S}) if and only
if there is no control variables configuration C ′ ∈ C with O(C ′, S)i ≤ O(C, S)i for all
i = 1, . . . , no and O(C ′, S)i < O(C, S)i for at least one i ∈ {1, . . . , no}. Algorithm 3.3
represents the subroutine to check whether E is true for control variables configuration C
under the efficiency criterion of Pareto optimality. Without loss of generality, the algorithm
assumes that smaller values are preferred over larger values for each objective.
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Algorithm 3.3 checkParetoOptimality
Input: control variables configuration C , performance table O(C, {S})
1: pareto := true
2: for all (C ′, S, O(C ′, S)) ∈ O(C, {S}) do
3: if O(C ′, S) = O(C, S) then
4: dominated = f alse
5: else
6: dominated := true
7: for i := 1 to no do
8: if O(C, S)i < O(C ′, S)i then
9: dominated := f alse
10: end if
11: end for
12: end if
13: if dominated == true then
14: pareto := f alse
15: end if
16: end for

Output: indication pareto about Pareto optimality of C in C

3.4 Step 3: Simulation—Perturbation experiment with system parameters

For each efficient control variables configuration C ∈ C∗(S), we examine how the objectives
configuration O(C, S) changes when up to ns elements of the current system parameters
configuration S = (s1, s2, . . . , sns ) are varied slightly. The set of system parameters config-
urations which results from perturbing S is subsequently denoted by S(S). We record the
obtained values of O(C, S′) for all S′ ∈ S(S) in performance tables O({C},S(S)). Hence,
this step serves as a preparatory data collection step for the sensitivity analysis in step 4.
Typically, S(S) shall contain variations in those system parameters of S which present them-
selves to the decision maker with a high degree of uncertainty. As explained in Sect. 3.2, the
use of simulation metamodels can be considered in case of substantial computational effort
for executing individual simulation replications. As an alternative for the two for all-loops
(which can be interpreted as a full factorial design considering the candidate system parame-
ters configurations and the efficient control variables configurations), computational effort in
the generation of the array of performance tablesO({C},S(S))withC ∈ C∗(S) can be dimin-
ished through employing an alternative experimental design. Such an experimental design
should be capable of providing a suitable representation of the system parameters and/or
control variables configuration space (Vu et al. 2016). Algorithm 3.4 outlines the procedure
to collect the data subsequently needed for the sensitivity analysis.With an upper bound T sim

on the runtime for a simulation replication, the algorithm runs in O(|C∗(S)| · |S(S)| · T sim)

time. The array of performance tables O({C},S(S)) with C ∈ C∗(S) is used in step 4 in
order to analyze (in an aggregated form) the sensitivity of the objectives configurations with
respect to perturbations in S as observed over C∗(S).
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Algorithm 3.4 systemParametersVariation
Input: current system parameters configuration S, set of efficient control variables configurations C∗(S),

simulation model

1: define the set of perturbed system parameters configurations S(S)
2: for all C ∈ C∗(S) do
3: initialize O({C},S(S)) as an empty table
4: for all S′ ∈ S(S) do
5: apply simulation model to obtain O(C, S′)
6: append (C, S′, O(C, S′)) toO({C},S(S))
7: end for
8: end for

Output: array of performance tables O({C},S(S)) with C ∈ C∗(S)

3.5 Step 4: Sensitivity analysis—Detection of critical control variables and system
parameters

To obtain sensitivity information on control variables and system parameters, we carry out
two types of sensitivity analysis using the results from step 2 (efficient control variables
configurations C∗(S)) and step 3 (array of performance tablesO({C},S(S))withC ∈ C∗(S)):
type 1 Sensitivity of control variables over C∗(S),
type 2 Sensitivity of system parameters over S(S) in an aggregated form over C∗(S).

Since—apart from the aggregation for type 2—sensitivity analysis is carried out in the
same fashion for types 1 and 2, from now on we commonly refer to a factor which can
be either a control variable or a system parameter (cf. Sect. 3.1). Considering the output
variability of simulation models, the goal of the sensitivity analysis is to distinguish between
influential and non-influential factors as well as to identify interactions between them.

Algorithm 3.5 sensitivityAnalysis
Input: current system parameters configuration S, set of efficient control variables configurations C∗(S),

array of performance tables O(C,S(S)) with C ∈ C∗(S), sensitivity measure R

1: for i := 1 to no do
2: for all control variables c varied in C∗(S) do {type 1 sensitivity analysis}
3: compute Ri (c) over C∗(S)
4: end for
5: for all system parameters s varied in S(S) do {type 2 sensitivity analysis}
6: for C ∈ C∗(S) do
7: compute RCi (s) over S(S)
8: end for

9: aggregate RCi (s) in Ri (s), e.g., by averaging over C∗(S), i.e., Ri (s) :=
∑

C∈C∗(S) RCi (s)
|C∗(S)|

10: end for
11: end for

Output: sensitivity measures (R(c))i=1,...,no for control variables c varied over C∗(S) and (R(s))i=1,...,no
for system parameters s varied over S(S)

We analyze the sensitivity of a factors configuration F over a set of factors configurations
F . For the sensitivity analysis of type 1, F consists of pairs F = (C, S) with varying
C ∈ C∗(S) and fixed S; for the sensitivity analysis of type 2, we first proceed for each
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C ∈ C∗(S) individually and afterward aggregate the results. Before aggregation, F consists
of pairs F = (C, S′) with fixed C ∈ C∗(S) and varying S′ ∈ S(S).

The decision maker is free to define a sensitivity measure deemed most suitable to convey
the sensitivity of O(C, S) upon variation of C and/or S as prescribed in F . A specific
sensitivity measure instantiation will be given below in the form of Sobol’ sensitivity indices.
Subsequently, we will denote the sensitivity measure of factor f by R( f ). The sensitivity
analysis is then carried out according to Algorithm 3.5 to capture sensitivities for control
variables as found over C∗(S) and for system parameters as found over S(S). Sensitivities
are analyzed for each of the no objectives on an individual basis. If only a subset of system
parameters, control variables, or objectives is of interest, then clearly the computation of
sensitivity measures can be restricted accordingly. Resulting sensitivity measures are the
basis for deciding upon changes in S, C and the guiding analysis question of the next iteration:
When a factor f is rather sensitive, then it may be worthwhile to consider a change in f ;
vice versa, when a rather insensitive factor f is identified, then the value of f can be fixed.

We now instantiate step 4 for the case where the sensitivity measure R( f ) amounts to the
Sobol’ sensitivity indices. These indices result from theSobol’method as a quantitative global
sensitivity analysis method allowing for simultaneous changes in factors (Saltelli et al. 2004;
Sobol 1993). We emphasize that this represents one option for determining the model output
sensitivity upon changes in factors. Other global sensitivity analysis methods as presented
in Iooss and Lemaître (2015); Saltelli et al. (2004) can be applied similarly. For each factor
f , we consider the first-order Sobol’ index Sob(f) and the total-effect Sobol’ index Sobt( f ),
i.e., we have R( f ) := (R1( f ), R2( f )) with R1( f ) := Sob( f ), R2( f ) := Sobt( f ).

Let Y := O(F) = g(F) be the objectives configuration obtained from running the
simulationmodel with factors configuration F where g is a (vector-valued) function returning
the output of the simulation model under factors configuration F . It is easier to understand
the following explanations by thinking of Y as being scalar-valued and recognizing that the
analysis can be adopted for each of the no objectives in the multi-criteria setting.

The Sobol’ method is based on the variance decomposition known also from the analysis
of variance in classical factorial design. The variance is decomposed into components of
increasing dimensionality with respect to the factors involved, hereby reflecting the 2n f − 1
non-empty subsets of F = ( f1, f2, . . . , fn f ). In case of statistically independent factors,
g(F) can be written as a sum of terms gi , gi j , . . . , gi j ...n f with increasing dimensionality:

g(F) = g0 +
n f∑

i=1

gi ( fi ) +
n f∑

i=1

∑

j>i

gi j ( fi , f j ) + . . . + gi jk...n f ( fi , f j , fk, . . . , fn f ).

Let the expectation and variance of Y be denoted by E(Y ) and Var(Y ), respectively. By
squaring and integrating, the variance can be computed as

Var(Y ) = Var(g(F)) =
∫

Kn f
g2(F)dF − g20

where Kn f is the n f -dimensional space of factors configurations. Hence, in case of mutual
independence between factors, Var(Y ) can further be decomposed into a sum of subset
variances reflecting interactions between factors of the respective subsets by

Var(Y ) := D =
n f∑

i=1

Di +
n f∑

i=1

∑

j>i

Di j +
n f∑

i=1

∑

j>i

∑

k> j

Di jk + . . . + Di jk...n f

with Di = Varsi (EF−{ fi }(Y | fi )), Di j = Var fi , f j (EF−{ fi , f j }(Y | fi , f j )) − Di − Dj , . . .
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Fig. 3 Exemplary illustration of Sobol’ indices for N = 3 factors

The first-order Sobol’ index of factor fi and the second-order Sobol’ index of factors
fi , f j are defined as

Sob( fi ) := Di

D
= Var fi (EF−{ fi }(Y | fi ))

D
,

Sob( fi , f j ) := Di j

D
= Var fi , f j (EF−{ fi , f j }(Y | fi , f j ))

D
− Sob( fi ) − Sob( f j ).

(1)

Sobol’ indices of higher order are defined analogously. In terms of contribution to the
total variance, these Sobol’ indices indicate the importance of the i th factor, the i th and j th
factor combined, and so on. Note that through normalization by D it holds that

n f∑

i=1

Sob( fi ) +
n f∑

i=1

∑

j>i

Sob( fi , f j ) + . . . + Sob( fi , f j , . . . , fn f ) = 1.

The total-effect Sobol’ index Sobt( fi ) gives the overall contribution of factor fi to the total
variance over all possible interactions and it is defined as

Sobt( fi ) := Sob( fi ) +
∑

j>i

Sob( fi , f j ) + . . . + Sob( fi , f j , . . . , fn f ) = 1 − D−i

D

= 1 − VarF−{ fi }(E fi (Y | F − { fi }))
D

= EF−{ fi }(Var fi (Y | F − { fi }))
D

(2)

with D−i = VarF−{ fi }(E fi (Y | F − { fi })). Observe that the last equation is a direct conse-
quence of the law of total variance. Due to the normalization to 100 % for all Sobol’ indices,
the contribution of each factor to the output variability—either due to itself only or due to
interaction with other factors—can be illustrated graphically as shown in Fig. 3.

In applications, it is common practice to compute first-order and total-effect Sobol’ indices
to evaluate factor sensitivity (Cosenza et al. 2014; Nossent et al. 2011, Quaglietta and Punzo
(2013), Song et al. (2012)). In particular, Sobol’ indices can also be utilized in the case of
dependent system parameters: According to Saltelli et al. (2004), these measures are still
sufficient to rank factors according to importance whilst acknowledging quantitative inac-
curacies. Total-effect Sobol’ indices equal to 0 provide a sufficient and necessary condition
for the non-influence of a factor. For this reason, statistical software such as IBM SPSS use
Sobol’ indices in predictor importance algorithms (IBM 2015).

We now illustrate how first-order and total-effect Sobol’ indices can be obtained numeri-
cally. For higher-order Sobol’ indices, we refer to Homma and Saltelli (1996). The first part of
the discussion deals with the case where Monte Carlo sampling of factors is possible. In this
case, a probabilistic model is required to reflect factor combination probabilities. However, in
a simulation model for predicting the behavior of a system which is yet unknown even from
a probabilistic perspective, sampling according to the distribution of factors is impossible.
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For this case, we introduce another option which calculates approximations of the Sobol’
indices based on a locally assumed uniform distribution over the factors configurations.
Probabilistic information available For the numerical realization through Monte Carlo sam-
pling, observe that factors configurations samples in a sufficient quantity N are necessary. A
drawback of the numerical method clearly lies in the unavailability of information concerning
the suitability of a chosen number of samples and the possibility of excessive computational
effort required to execute the simulation model for all samples. In Saltelli et al. (2010), best
practices for the computation of Sob( fi ) and Sobt( fi ) are given relying on two matrices of
size N × n f structured as follows:

A =

⎛

⎜
⎜
⎝

f (A,1)1 f (A,1)2 · · · f (A,1)n f

...
...

...
...

f (A,N )
1 f (A,N )

2 · · · f (A,N )
n f

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

f (B,1)1 f (B,1)2 · · · f (B,1)n f

...
...

...
...

f (B,N )
1 f (B,N )

2 · · · f (B,N )
n f

⎞

⎟
⎟
⎠ .

Eachmatrix holds N factors configurations because each line corresponds to a factors configu-
ration. Matrix A is the original sampling matrix holding N samples of factors configurations.
Matrix B can be understood as the basis for resampling, because with A and B, we can
construct n f additional matrices of the form

ABi =

⎛

⎜
⎜
⎝

f (A,1)1 f (A,1)2 · · · f (B,1)i · · · f (A,1)n f

...
...

...
...

...
...

f (A,M)
1 f (A,N )

2 · · · f (B,N )
i · · · f (A,N )

n f

⎞

⎟
⎟
⎠

for i = 1, 2, . . . , n f . The simulation model is then carried out for the N · (2 + n f ) fac-
tors configurations as recorded in A, B, ABi with i = 1, 2, . . . , n f . Denote by g(A) :=
(
g( f (A,1)1 , . . . , f (A,1)n f )

)
j=1,...,N the objectives vector found by the simulation model on the

N factors configurations given through the rows of A, and define g(B), g(ABi ) analogously.
Then, for instance, the following estimators for Sob( fi ) and Sobt( fi ) can be used according
to Saltelli et al. (2010):

Sob( fi ) =
1
N

∑N
j=1 g(A) j g(ABi ) j − g20

Var(Y )
, Sobt( fi ) =

1
2N

∑N
j=1(g(A) j − g(ABi ) j )

2

Var(Y )
.

For g0 and Var(Y ) the estimators g0 = 1
N

∑N
j=1 g(F

j ) and Var(Y ) = 1
N

∑N
j=1 g

2(F j )− g20
can be used from any of the matrices with rows (F j ) j=1,2,...,N .
Probabilistic information not available This case occurs when the sensitivity of factors of an
unknown system is to be considered and when there is no probabilistic information available
for the factors. For control variables, this is natural as the decision maker actively sets control
variable values. Yet, the decision maker may be interested in knowing the sensitivity of
control variables. To this end, the following outline provides a natural approach to sensitivity
analysis not only for system parameters where no probabilistic information is available, but
also for control variables in general.

Given empirical data about objectives configurations achieved upon varying a factors
configuration in a simulationmodel, empirical versions of the Sobol’ indices can be computed
with Eqs. 1 and 2. Since nothing is known about probabilities for factor realizations, the factor
whose sensitivity is to be considered represents a random variable with unknown distribution.
Yet, we can specify the support of this random variable in terms of plausible values for the
factor. As a general principle, choosing the maximum entropy distribution emulates the state
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of informational nescience as this approach minimizes the amount of a-priori information in
the distribution (Jaynes 1957a, b). The uniformdistribution over a set of factors configurations
F is themaximumentropy distribution among all distributionswith supportF (which follows
from Langrangian relaxation by the definition of the entropy together with the constraint that
the sum over all probabilities equals 1). Hence, computing approximations of Sobol’ indices
in this way represents a viable substitute concept. It is based on the absence of probabilistic
information and instead requires a specification of the support of factor values for which
then locally a uniform distribution is imputed. Algorithm 3.6 summarizes the computation
of empirical first-order and total-effect Sobol’ indices for a specific objective and variations
in the set of factors configurations F .

Algorithm 3.6 computeEmpricialSobolIndices
Input: set of factors configurations F , performance tableO(F), objective i ∈ {1, 2, . . . , no}
1: let F be the set of factors varied in F , let Y be the random variable for objective i
2: compute D := Var(Y) empirically from the values for objective i in O(F)

3: for all f ∈ F do
4: compute D( f ) := Var f (EF−{ f }(Y | f )) and D−( f ) := EF−{ f }(Var f (Y | F−{ f })) empirically from

the values for objective i inO(F)

5: compute Sob( f ) := D( f )
D and Sobt( f ) := D−( f )

D
6: end for

Output: first-order Sobol’ indices Sob( f ) and total-effect Sobol’ indices Sobt( f ) with respect to objective i
for factors f varied in F

3.6 Step U: Update—Preparation of next iteration

Sensitivity measures (R(c))i=1,...,no for control variables c varied over C∗(S) and
(R(s))i=1,...,no for system parameters s varied over S(S) yield information on which control
variables and/or system parameters are especially sensitive or insensitive. This knowledge
is used interactively in the update step as a preparation to answering a new guiding analysis
question in the next iteration. This analysis question can be derived from the need of collect-
ing further information upon the system behavior when volatile system behavior has been
observed and can be attributed to specific control variables and/or system parameters.

The idea of updating the current system parameters configuration S amounts to selecting a
new current system parameters configuration of particular interest. It should display changed
values for those system parameters si (i ∈ {1, 2, . . . , ns}) which were identified as rather
sensitive for at least one of the no objectives; system parameters si (i ∈ {1, 2, . . . , ns}) which
were identified as rather insensitive for all objectives can be fixed to a reasonable value and
be excluded from further consideration. The sensitivity analysis results (R(s))i=1,...,no for
system parameters s varied over S(S) can be added to an information pool representing the
decision maker’s knowledge on system parameter sensitivities.

The set of control variables configurations C can be adapted as follows: When efficient
control variables configurations result only from a specific value for a control variable ci
(i ∈ {1, 2, . . . , nc}) or when negligible sensitivity is found for ci , then ci can be fixed to
a reasonable value or restricted to fewer options; a control variable ci (i ∈ {1, 2, . . . , nc})
exhibiting a high degree of sensitivity needs further inspection as achieved by increasing the
number of potential values for ci in the updated C, e.g., in terms of a finer resolution for ci .
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The sensitivity analysis results (R(c))i=1,...,no for control variable c varied over C∗(S) can
be added to an information pool representing the decision maker’s knowledge on control
variable sensitivities.

We emphasize that there is no standard recipe for updating the guiding analysis question,
the current system parameters configuration S, and the set of control variables configuration
C. Therefore, it is recommended to conduct this step interactively with the decision maker
upon inspection of sensitivity analysis results and knowledge acquired throughout previous
iterations. As a consequence, remaining gaps of knowledge are closed gradually.

4 Case study: Simulation-basedmulti-criteria decisionmaking in
infectious disease epidemics

Wepresent the results of a case study on themanagement of infectious disease epidemics. The
goal of the case study is to illustrate how the methodology from Sect. 3 can be used to derive
knowledge on ruling mechanisms and principles on the macro-level. Such an outline can
be consulted by decision and policy makers to base their decisions on traceable causes-and-
effects relations from the simulation-based analysis. We remark that the case study neither
claims nor intends to reproduce the real-world dynamics of the 2020 coronavirus pandemic.
The dynamic system comprises the population (80 million individuals) of a nation over the
course of an infectious disease epidemic (366 days); the goal is threefold: (1) minimize
the total number of deaths, (2) minimize the maximum number of critical cases requiring
intensive care, (3) minimize economic loss. While the first two objectives directly refer to
the number of people reaching the respective states of the dynamic system over the course
of the epidemic, the value of the overall economic loss can be computed as the sum of the
daily economic losses. Daily economic losses result from the regimes of the economy which
are announced by the decision makers. The succession of economic regimes is assumed as
follows: (1) full activity, (2) reduced activity, (3) shutdown activity, (4) resumed activity,
(5) full activity. For each regime, the corresponding economic loss is estimated as a fixed
percentage of the full economic activity which is irreplaceably lost. The system can be
controlled by the decision maker by selecting start and end dates of periods of diminished
economic activity as well as by selecting the number of intensive care units. The health state
of individuals is influenced by epidemiological and medical parameters; economic losses are
influenced by economic data. Table 1 summarizes system parameters, control variables, and
objectives.

With respect to the modeling paradigm, we take on a system dynamics perspective due
to the population size. Hence, information is processed in an aggregated form in terms
of average values of population flows over time as opposed to an event- or agent-behavior-
based approachwhich is computationally intractable for millions of inhabitants. In particular,
rational behavior of humans cannot be prescribed as opposed to purely industrial settings
where agents are expected to obey goal-oriented processing rules (algorithms). Apart from
patient zero, each inhabitant starts in a healthy state with respect to the infectious disease.
Over the course of the epidemic, a person may become infected and sick. Once this happens,
there are three further paths for a person: Direct recovery, indirect recovery (becoming critical
first and then recover), or death (becoming critical first and then die). Transitions between
states in the form of person flows are driven by the system parameters.

Computational experiments are performed on a computer with Intel Xeon 2.60 GHz
processor and 48 GB RAM under Microsoft Windows 10 (64-bit). The system is modeled
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Table 1 System parameters, control variables, and objectives for the simulation model

System parameters

Infection rate data

• Initial infection rate under full economic activity (default value: 3 per person, cf. Table 4)

• Infection rate under reduced economic activity(default value: 1.5 per person, cf. Table 4)

• Infection rate in shutdown economy (default value: 0.7 per person, cf. Table 4)

• Infection rate under resumed economic activity (default value: 1.2 per person, cf. Table 4)

• Final infection rate under full economic activity (default value: 0.4 per person, cf. Table 4)

Medical data

• Infectious time of an infected person (default value: 5 days, cf. Table 5)

• Incubation time of the disease (default value: 6 days, cf. Table 5)

• Time between sickness and criticality (default value: 4 days, cf. Table 5)

• Time between criticality and death (default value: 3 days, cf. Table 5)

• Percentage of sick people reaching criticality (default value: 25 %, cf. Table 5)

• Percentage of critical people reaching death (default value: 25 %, cf. Table 5)

Economic data

• Economic loss under reduced economic activity (default value: 60 %, cf. Table 6)

• Economic loss in shutdown economy (default value: 90 %, cf. Table 6)

• Economic loss under resumed economic activity (default value: 50 %, cf. Table 6)

Control variables

Economic controls

• Beginning of reduced economic activity (cf. Tables 2, 3)

• Beginning of economy shutdown (cf. Tables 2, 3)

• Beginning of resumed economic activity (cf. Tables 2, 3)

• Beginning of full economic activity (cf. Tables 2, 3)

Medical controls

• Number of intensive care units (cf. Tables 2, 3)

Objectives

• Minimize total deaths (depending on infection rate data, medical data, economic controls, medical controls)

• Minimize maximum criticalities (depending on infection rate data, medical data, economic controls,
medical controls)

• Minimize total economic loss (depending on economic data, economic controls)

and executed in the simulation modeling tool AnyLogic 8.5.2 University Researcher Edition
as illustrated in Fig. 4. Variation and perturbation experiments of the simulation model are
implemented using the custom experimentation environment allowing to set control variables
and system parameters programmatically as required in each iteration. Interaction with the
decisionmaker is accomplished by prompting the user to enter changes upon control variables
and system parameters into the console during the update step after each iteration. Since
no optimization algorithms are carried out, runtimes of simulation replications are in the
milliseconds allowing for the evaluation of a high number of factors configurations.
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Fig. 4 System dynamics simulation model for an infectious disease epidemic in AnyLogic

4.1 Experimental design

According to the interactive character of the methodology, the case study incrementally
improves the decision maker’s understanding of the epidemics dynamics, leading to substan-
tial confidence about decisions on timings of economic regimes and number of intensive care
units. The following designs and guiding analysis questions are chosen as a work breakdown.

1. Focus on control variables
Which control variables are most influential upon system behavior and to what extent?

2. Focus on critical control variables
How does system behavior change when influential control variables are varied?

3. Focus on system parameters
Which infection rates are most influential upon system behavior and to what extent?

4. Focus on system parameters
Which medical data are most influential upon system behavior and to what extent?

5. Focus on system parameters
Which economic data are most influential upon system behavior and to what extent?

6. Focus on critical system parameters
How does system behavior change when influential infection rates are changed?

7. Focus on critical system parameters
How does system behavior change when influential medical data is changed?

8. Focus on critical system parameters
How does system behavior change when influential economic data is changed?

Observe that this experimental design is pre-specified in advance as it generically covers
different elements of the system in the form of control variables and system parameters
groups. The interactive component then allows to decide which control variables and system
parameters specifically are to be examined inmore detail according to the knowledge acquired
over previous iterations. We note that another experimental design could start with a single
analysis question only, allowing the rest of the experimental design to unfold dynamically.
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Table 2 Control variables options and total-effect Sobol’ indices in iteration 1

Control variables options

• Beginning of reduced economic activity After {21, 28, 35, 42} days
• Beginning of economy shutdown {28, 35, 42, 49} days
• Beginning of resumed economic activity After {63, 77, 91, 105} days
• Beginning of full economic activity After {77, 98, 119, 140} days
• Number of intensive care units {25, 000, 30, 000, 35, 000, 40, 000} beds
Control variables sensitivities

Total-effect Sobol’ indices for maximum criticalities/total deaths/economic loss

• Beginning of reduced economic activity 0.73/0.74/0.22

• Beginning of economy shutdown 0.22/0.20/0.07

• Beginning of resumed economic activity 0.01/0.01/0.40

• Beginning of full economic activity 0.00/0.00/0.00

• Number of intensive care units 0.08/0.08/0.30

4.2 Computational results

For the country of Germany with 80 million inhabitants, initial guesses on system parameters
are gathered from public discussion and represent the base system parameters configuration
as depicted by the values printed in Fig. 4.

4.2.1 Iteration 1: Influential control variables

Control variables options for step 1 are pre-specified as shown in Table 2 and executed in a
simulation model for any feasible control variables configuration resulting from these values.

Step 2 then outputs 29 efficient control variables configurations. All of them exhibit a
beginning of full economic activity after 77 days, 25 of themabeginning of resumed economic
activity after 63 days. Overall deaths range between 8509 (leading to the worst economic
loss) and 43 million individuals (leading to the best economic loss). Clearly, decision makers
will not take into account solutions with large death tolls. Therefore, the beginning of the
economy shutdown has to be restricted to be no later than 42 days after the beginning of
the epidemic, leading to an upper bound of 85,173 deaths. The related maximum number of
intensive care units amounts to 22,799.

Step 3 is omitted in the first iteration which focuses on sensitivities of control variables
only. In step 4, first-order and total-effect Sobol’ indices over the 29 efficient control variables
configurations are calculated for the three objectives. Total-effect Sobol’ indices are summa-
rized in Table 2. In terms of better readability, first-order Sobol’ indices are omitted. Since
resumed economic activity begins after 63 days for the most favorable efficient solutions,
we find that only the beginning of the reduced economic activity and the beginning of the
economy shutdown is worthwhile to be examined in further detail.

From the efficient control configurations, we select the following as the incumbent solu-
tion: beginning of reduced economic activity, economy shutdown, resumed economic activity,
full economic activity after 21, 35, 63, 77 days, respectively; number of intensive care units
of 40,000. The objectives configuration for this control variables configuration amounts to a
maximumof 7439 criticalities, 32,080 deaths, and 40.6% economic loss. The same objectives
configuration is found for 25,000, 30,000, 35,000 intensive care units. Nonetheless, policy
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Table 3 Control variables options and total-effect Sobol’ indices in iteration 2

Control variables options

• Beginning of reduced economic activity After {17, 19, 21, 23, 25} days
• Beginning of economy shutdown {24, 26, 28, 30, 32} days
• Beginning of resumed economic activity After 63 days

• Beginning of full economic activity After 77 days

• Number of intensive care units 40 000 beds

Control variables sensitivities

Total-effect Sobol’ indices for maximum criticalities/total deaths/economic loss

• Beginning of reduced economic activity 0.79/0.81/0.78

• Beginning of economy shutdown 0.26/0.23/0.17

• Beginning of resumed economic activity 0.00/0.00/0.00

• Beginning of full economic activity 0.00/0.00/0.00

• Number of intensive care units 0.00/0.00/0.00

makers are inclined to offer as much intensive care units as possible to prevent emergencies
with respect to medical equipment. In particular, with respect to the three objectives consid-
ered, there is no influence as long as the number of maximum criticalities is below the lowest
option for the number of intensive care units.

4.2.2 Iteration 2: Degree of control variables influence

For the most influential control variables found in iteration 1 (beginning of reduced economic
activity, beginning of economy shutdown), we increase the number of options for step 1 in
both directions as shown in Table 3. Due to minor contribution to objectives variations, the
remaining control variables are fixed according to the current favorable efficient solution.

Step 2 finds 22 efficient control variables configurations with the key insight that in order
to keep the number of deaths down it is vital to set both the beginning of reduced economic
activity and the beginning of the economy shutdown as early as possible. For instance, if
beginnings of reduced economic activity and economy shutdown occur 17 and 24 days,
respectively, after the epidemics starts, then the total deaths can be reduced to 2081 with the
worst economic loss of 46.3%. Considering the trade-off of an additional economic loss of
5.7% and nearly 32,000 lives saved compared to the solution in iteration 1, decision makers
are urged to close the economy as soon as possible. Due to the focus on the control variables
configurations, step 3 is omitted. Control variables sensitivities from step 4 confirm the large
influence of starting dates of economy closing as seen in Table 3.

We acknowledge that the earliest possible closing options as considered in this iteration
are unlikely to be achieved in practice alone by the novelty of the situation and the lack of
simulationmodelswhich decisionmakers could have been consulted employed in themidst of
a real-world setting coined by a large degree of uncertainty. Additionally, the implementation
of measures such as an economy closing takes time and it is arguable whether a full shutdown
could have been achieved only one week after the partial closing of the economy.
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Table 4 System parameters options and total-effect Sobol’ indices in iteration 3

System parameters options

• Initial infection rate under full economic activity {2.5, 3, 3.5}
• Infection rate under reduced economic activity {1.3, 1.5, 1.7}
• Infection rate in shutdown economy {0.5, 0.7, 0.9}
• Infection rate under resumed economic activity {1.0, 1.2, 1.4}
• Final infection rate under full economic activity {0.3, 0.4, 0.5}
System parameters sensitivities

Total-effect Sobol’ indices for maximum criticalities/total deaths/economic loss

• Initial infection rate under full economic activity 0.79/0.79/0.00

• Infection rate under reduced economic activity 0.14/0.18/0.00

• Infection rate in shutdown economy 0.36/0.38/0.00

• Infection rate under resumed economic activity 0.12/0.08/0.00

• Final infection rate under full economic activity 0.00/0.01/0.00

4.2.3 Iteration 3: Influential infection rates

In iterations 3 to 5, system parameter sensitivities are checked group-wise starting with the
infection rates. Steps 1 and 2 are first carried out to obtain a set of efficient control variables
configurations for the current system parameters configuration as shown in Fig. 4. Table 4
displays the system parameters options which are used in the perturbation experiment in step
3 resulting from perturbing the current system parameters configuration.

As seen from the total-effect Sobol’ indices in Table 4 (representing averages over all
efficient control variables configurations), the initial infection rate under full economic activ-
ity and the infection rate in the shutdown economy have the largest impact on objectives
variability. This can be explained from the fact that the former infection rate determines the
degree of disease spread in the crucial time before economy closings and the latter deter-
mines the best case in terms of infection reductions achieved through the shutdown. We
will recur to different settings for these two system parameters in iterations 6 to 9 in order
to analyze whether previously determined efficient control variables configurations remain
efficient upon changes in infection rates.

4.2.4 Iteration 4: Influential medical data

For the medically related system parameters, we carry out the same analysis as outlined
in iteration 3. Parameter options and sensitivities are summarized in Table 5. From these
parameters, the infectious time of an infected person and the incubation time of the disease
play a significant role. This becomes clear as the infectious time inversely correlates with the
velocity of infection of healthy individuals. On the other hand, the incubation time prescribes
how long an infected person remains in the stock of infected individuals representing a threat
for healthy people as long as the infectious time is not over. Hence, both times set the outset
for the further course of the epidemic situation, although by different mechanisms. Times
between sickness and criticality as well as between criticality and death do not matter for
the three objectives. This is due to the fact that resulting maximum criticalities and total
deaths are not influenced by the amount of time lying between different health states once
a person has reached sickness. Trivially, both rates with respect to criticality and death have
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Table 5 System parameters options and total-effect Sobol’ indices in iteration 4

System parameters options

• Infectious time of an infected person {4, 5, 6}
• Incubation time of the disease {5, 6, 7}
• Time between sickness and criticality {3, 4, 5}
• Time between criticality and death {2, 3, 4}
• Percentage of sick people reaching criticality {0.15, 0.25, 0.35}
• Percentage of critical people reaching death {0.15, 0.25, 0.35}
System parameters sensitivities

Total-effect Sobol’ indices for maximum criticalities/total deaths/economic loss

• Infectious time of an infected person 0.80/0.81/0.00

• Incubation time of the disease 0.54/0.52/0.00

• Time between sickness and criticality 0.00/0.00/0.00

• Time between criticality and death 0.00/0.00/0.00

• Percentage of sick people reaching criticality 0.09/0.08/0.00

• Percentage of critical people reaching death 0.06/0.06/0.00

a direct influence upon criticalities and deaths. However, influences by the infectious time
and the incubation time are much stronger in causing changes in total deaths and maximum
criticalities as these quantities are in the first place determined by the disease outbreak. We
will recur to different settings for these two system parameters in iterations 10 to 13 in order
to analyze whether previously determined efficient control variables configurations remain
efficient upon changes in infectious times and incubation times.

4.2.5 Iteration 5: Influential economic data

For the economically related system parameters, we carry out the same analysis as outlined
in iteration 3. Parameters options and sensitivities are summarized in Table 6. From the
linear relations between loss levels and control variables (beginning of reduced economic
activity, beginning of economy shutdown, beginning of resumed economic activity)—each
one resulting in a specific amount of days of an economic regime—each economic loss data
demonstrates a significant influence upon the overall economic loss. Clearly, the economic
loss parameters do not affect the two medically related objectives. Because of the linear
relation, the economic loss objective is well-understood in terms of its dependency on the
economic parameters. Thus, a more detailed analysis is not necessary.

4.2.6 Iteration 6–9: Critical infection rates

In the current system parameters configuration of iteration 6 and 7 (8 and 9), we vary the
initial infection rate under full economic activity (infection rate in shutdown economy) in the
set {2.5, 3.5} ({0.5, 0.9}) as opposed to iteration 1 with a value of 3 (0.7). In each iteration,
we inspect the set of efficient control variables configurations to check whether and how the
objectives change and whether the currently favorable efficient configuration (beginning of
reduced economic activity, economy shutdown, resumed economic activity, full economic
activity after 21, 35, 63, 77 days, respectively; number of intensive care units of 40000)
remains efficient. Therefore, steps 1 and 2 are carried out, but steps 3 and 4 are bypassed.
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Table 6 System parameters options and total-effect Sobol’ indices in iteration 5

System parameters options

• Economic loss under reduced economic activity {0.4, 0.6, 0.8}
• Economic loss in shutdown economy {0.85, 0.9, 0.95}
• Economic loss under resumed economic activity {0.4, 0.5, 0.6}
System parameters sensitivities

Total-effect Sobol’ indices for maximum criticalities/total deaths/economic loss

• Economic loss under reduced economic activity 0.00/0.00/0.31

• Economic loss in shutdown economy 0.00/0.00/0.42

• Economic loss under resumed economic activity 0.00/0.00/0.27

In iterations 6 and 7, efficiency of the incumbent solution is maintained both for infection
rates under full economic activity of 2.5 and 3.5. However, as known also from iteration 3,
sensitivity is high leading to 3939 deaths and 340,725 deaths, respectively, as opposed to the
base case setting with 32,080 deaths. We conclude that the initial infection rate is a crucial
quantity with respect to the overall outcome of the epidemic. However, it is evidently difficult
to determine precise values for this parameter as it may vary from region to region and also
depend on other unknown factors. Clearly, high sensitivity to any uncertain parameter makes
decision making under uncertainty inherently difficult as confirmed by the fact that during
the 2020 coronavirus pandemic different models came to substantially different conclusions
with respect to expected trajectories of the total number of infections and deaths.

In iterations 8 and 9, efficiency of the incumbent solution is maintained both for infection
rates in the shutdown economy of 0.5 and 0.9. However, as known also from iteration 3,
sensitivity is medium to high leading to 16,944 deaths and 74,025 deaths, respectively, as
opposed to the base case setting with 32,080 deaths. Albeit the sensitivity is much smaller
than for the infection rate under full economic activity, also the infection rate in the shutdown
economy has a major impact on the objectives configuration that will realize in the epidemic.
In particular, it is impossible to know the value of this system parameter in advance as its
true value realizes during the crisis which is coined by the lack of historic medical data.

4.2.7 Iteration 10–13: Critical medical data

Iterations 10 to 13 are carried out following the same outline as discussed for iterations 6 to
9, but with a focus on the two most sensitive medical system parameters (infectious time of
a person, incubation time of the disease). In the current system parameters configuration of
iteration 10 and 11 (12 and 13), we vary the infectious time of an infected person (incubation
time of the disease) in the set {4, 6} ({5, 7}) as opposed to iteration 1 with a value of 5 (6).
In all iterations, we find that the currently favorable efficient configuration (beginning of
reduced economic activity, economy shutdown, resumed economic activity, full economic
activity after 21, 35, 63, 77 days, respectively; number of intensive care units of 40,000)
remains efficient. More interesting are the observed changes in the objective values.

We find from iterations 10 and 11 that the infectious time of a person is the most critical
system parameter. In case of an infectious time of 4 days under a constant infection rate of 3
infections per person on average, the outbreak velocity explodes leading to 3,231,1134 deaths
as opposed to the base case setting with 32,080 deaths. Likewise, in case of an infectious
time of 6 days, the disease is under control with 1194 total deaths. The exorbitant sensitivity
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with respect to the infectious time also explains why in early phases of the 2020 coronavirus
pandemic, several models projected millions of deaths. Similar results, albeit not that drastic,
are found in iterations 12 and 13 on the incubation time of the disease leading to 6286 deaths
in case of an incubation time of 5 days and 139,582 deaths in case of an incubation time of 7
days as opposed to the base case setting with 32,080 deaths. In contrast to the infection rates,
uncertainty with respect to incubation times could be reduced through data from hospitalized
patients. Similarly, medical research should be directed towards determining the infectious
time of a person to reduce uncertainty in future situations.

4.3 Conclusion from computational results

Combining the knowledge from iterations 1 to 13, we resume the following key findings with
respect to choosing a most favorable efficient control variables configuration:

• Iteration 1 suggests 29 efficient control variables configurations. A reasonable choice
is to set the beginning of reduced economic activity, economy shutdown, resumed eco-
nomic activity, full economic activity after 21, 35, 63, 77 days, respectively, leading to
a maximum of 7439 criticalities, 32,080 deaths, 39.2% economic loss. The available
number of intensive care units is not reached. Nonetheless, to hedge against uncertain
parameters (as seen in iteration 6 to 13) it may be advisable to select the highest number
of intensive care units precautiously.

• Iteration 2 shows that the most critical control variables (beginning of reduced economic
activity, economy shutdown) should be selected as early as possible because they pre-
determine the further course of the epidemic. Closing the economy partially after 17
days and shutting it down after 24 days could decrease the number of deaths to 2081.
However, we acknowledge that quick economy closings may be unrealistic due to the
high degree of uncertainty and dynamics in a real world epidemic situation.

• Iterations 3 to 5 analyze the sensitivity of different system parameter groups and find that
infection rates, infectious times, and incubation times are most critical. Economic data
is uncritical due to the clear effect upon economic overall loss only.

• Iterations 6 to 9 demonstrate that the initial infection rate before any reduction of eco-
nomical activity is the most sensitive infection rate parameter due to the determining
effect on infections during the initial phase of the outbreak.

• Iterations 10 to 13 emphasize the importance for good estimates of infectious times and
incubation times. Especially the average infectious time of a person directly determines
the velocity of the outbreak, thereby setting the course for the entire epidemic.

Overall, the following recommendations are given for the control variables: the beginning
of the reduced economic activity and of the economy shutdown should occur after 21 and
28 days, respectively. If possible, earlier closing actions are beneficial to suppress the crucial
initial spread of the disease. Economic activity can be resumed partially after 63 and fully
after 77 days because infection events are under control such that further economic loss is
avoided due to efficiency considerations. Although uncritical under the system parameters
base scenario with the recommended control variables configuration, the number of intensive
care units should be selected as high as possible to hedge against parameter uncertainty.

The sensitivity analysis carried out in iterations 1 to 5 and the subsequently refined anal-
ysis in iteration 6 to 13 emphasize the strong dependency of the model output on infection
rates, infectious times, and incubation times. Hence, the integration of sensitivities into the
methodology is an effective way of supporting decision makers in reducing uncertainties as
typical for infectious disease epidemics. Difficulties in forecasting the epidemics trajectory
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arise when critical system parameters are related to properties of a largely unexplored dis-
ease. Therefore, the knowledge collected over the iterations helped to gain confidence in the
decisions derived over the iterations. Finally, we remark that the observed sensitivities also
explain why during the 2020 coronavirus pandemic many models came to different conclu-
sions and some of them excessively overestimated the number of deaths and infections.

5 Conclusion and outlook

In this paper, we introduced a comprehensive framework for the simulation-based analysis of
dynamic systems under multiple objectives and parameter uncertainty. The methodology is
based on a clear distinction between control variables and system parameters as influencing
system factors. As a result of the interaction possibilities, decision makers are in a position
to examine the system along with factor sensitivities according to a sequence of customized
analysis questions over several iterations. Overall, this outline aims at steadily increasing
the amount of knowledge that the decision maker possesses concerning the behavior of the
system. In a case study on an infectious disease epidemic, the methodology was successfully
instantiated in order to determine economically andmedically related control variables taking
into account sensitivity information on medical and economic objectives. High sensitivity
was observed for infection rates, infection time, and incubation time.We believe that the large
degree of uncertainty with respect to these parameters plays a major role why during the 2020
coronavirus pandemic different models came to drastically different conclusions. Hence,
due to the consideration of sensitivity information, the introduced methodology becomes
a reliable tool to hedge against parameter uncertainty arising in complex dynamic systems
where causes and effects relationships are still largely unexplored. However, we note that the
goal of the case study is not to reproduce the coronavirus pandemic, but rather to give a tool
for understanding basic ruling principles of the spread of the disease and to elicit knowledge
on the influence of control variables configurations on objectives configurations.

Several directions for future research are suggested: First, integrating model validation
would increase the framework reliability, especially when it is unclear whether the simula-
tion model correctly reproduces the real world system behavior. For instance, running one
simulationmodel could be replaced by running a set of simulationmodels taking into account
several possible relations betweenmodel entities. A second line of future research regards the
use of the framework as an accompanying tool for real world decision making under uncer-
tainty. A systematic approach is needed to adaptively integrate updated corridors for future
parameter realizations and to fix past parameter realizations. In this way, the framework and
simulation model can be warm-started whenever a decision is required and provide up-to-
date decisions. A third line of research represents the use of simulation metamodels as part
of the proposed methodology. In case of time-consuming simulation replications (e.g., when
operational optimization routines are embedded into the model), metamodeling techniques
such as artificial neural networks can be utilized to predict model outputs based on input
factors. Finally, apart from the concepts of Pareto optimality and Sobol’ sensitivity indices as
presented for steps 2 and 4 in Sect. 3, respectively, further methods for multi-criteria decision
making and global sensitivity analysis can be integrated in the framework and assessed in
applications to further broaden the scope of the methodology.
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