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1 Introduction

Process Mining is a novel technology that helps enterprises

to better understand their business processes. Over the last

20 years, intensive research has been conducted into vari-

ous process mining techniques. These techniques support

the automatic discovery of business process models from

event log data, the checking of conformance between

specified and observed behavior, the identification of var-

ious variants of a business process, non-compliant behav-

ior, performance-relevant insights, and so forth.

Research on process mining has mostly focused on

devising new or better algorithms (see van der Aalst 2016;

Augusto et al. 2019a). There are a few exceptions, among

others the following. van der Aalst et al. (2007) were the

first to discuss process mining from the perspective of

applications in industrial practice. Jans et al. (2014) applied

process mining techniques to enrich audit evidence during

a financial statement audit. vom Brocke and Mendling

(2018) and vom Brocke et al. (2021) present various

applications of process mining in hospitals, insurances,

software usability analysis, and logistics.

In recent years, process mining has seen an increasing

uptake in enterprises (Dumas et al. 2018), and has thus

become an integral part of their daily business process

management. Companies like Celonis, Fluxicon, Signavio,

and Software AG are among the roughly 20 companies that

Gartner monitors. As Kerremans (2019) from Gartner

states, enterprises adopt process mining tools in order to

support business process improvement, auditing and com-

pliance, process automation, digital transformation, and IT

operations (in order of decreasing importance).

Some contributions have been made towards under-

standing how process mining has an impact in an enterprise

setting. Much of this research focuses on methodology and

application domains. For instance, van Eck et al. (2015)

and Aguirre et al. (2017) describe methodologies how

process mining projects can be conducted, and Maruster

and van Beest (2009) provide a methodology how business

processes can be redesigned with the help of process

mining. Mans et al. (2013) discuss success factors for such

process mining projects. Examples of domain-specific

proposals in healthcare are Rebuge and Ferreira (2012) and

Fernández-Llatas et al. (2015). Thiede et al. (2018) find

applications for digital as well as for physical processes,

which are investigated using data from single systems,

across systems, and across boundaries. Process mining has

even been identified as a strategy of inquiry for studying

organizational change (Grisold et al. 2020).

What is largely missing so far is research on how

enterprises adopt process mining technology, how they

integrate it into their information systems landscape, and

which kind of effects emerge from this adoption. Effects

are complex and unfold at different levels of the organi-

zation (Grisold et al. 2021). They are connected with

organizational culture and the governance structures, to

name but a few. Leonardi and Treem (2020) have coined
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the term behavioral visibility, a term that nicely empha-

sizes what process mining affords. The ‘‘datafication’’ of

private and professional lives creates digital traces in var-

ious systems which can be analyzed by means of process

mining techniques. In this way, process miming has the

potential to afford behavioral visibility of various actions

not only inside but also outside an organization. Obviously,

many challenges arise from such large-scale behavioral

visibility, including ethical ones. Therefore, more inter-

disciplinary research on the application of process mining

from an enterprise perspective is needed.

In this editorial, we develop a framework for system-

atically discussing many of the associated concerns that

emerge from adopting process mining in an enterprise

setting. Our framework can be used to analyze the effects

of process mining at different levels of investigation. In the

following, we first provide a brief overview of process

mining and its essential concepts. Then, we introduce our

framework and discuss potential relevant research per-

spectives for each of its five levels.

2 Techniques, Tasks and Parties Involved in Process

Mining

Enterprise information systems automatically log data

during daily process executions. Process mining is a family

of techniques that extract process knowledge from this

logged process data. These techniques integrate concepts

and ideas from machine learning and data mining on the

one hand and process modeling and process analysis on the

other hand (van der Aalst 2016).

In essence, process mining techniques support process

discovery, conformance checking, process variant analysis,

and process performance analysis (Dumas et al. 2018).

Process discovery is the act of discovering a process model

from event log data. This process model represents the real,

observed behavior. Conformance checking focuses on the

relation between a process model and the observed

behavior (Carmona et al. 2018). Conformance checking

techniques identify and measure the discrepancies between

model and log. Researchers mainly use conformance

checking to assure the quality of the discovered process

model, i.e., to which extent this model accurately repre-

sents the logged behavior. In this context, the event log is

taken as reference against which conformance is checked.

Practitioners are more often interested in identifying which

cases violate the behavior prescribed by the model. This

means that the process model is taken as the norm to check

conformance against. Process variant analysis addresses

the question which variants of the process exist and which

characteristics they are correlated with. Corresponding

techniques build for instance on clustering and the analysis

of factors. Process performance analysis is concerned with

the analysis of time, costs, quality and flexibility of a

business process based on event log data. In this way,

measures can be identified to speed up the process, save

costs, improve quality, and extend flexibility.

Technical research on process mining has primarily

focused on process discovery and conformance checking.

Different algorithms have been proposed for both tasks at

hand. For process discovery, the Inductive Miner (Leemans

et al. 2014), the Evolutionary Tree Miner (Buijs et al.

2014), the Split Miner (Augusto et al. 2019b) and the ILP

miner (van Zelst et al. 2018) are examples of recent tech-

niques. For conformance checking, techniques can be

divided into three types of approaches. Some techniques

rely on checking whether the observed behavior is com-

pliant with a set of rules (e.g., Maggi et al. 2011). These

rules function as a norm to check against, similar to con-

trolling functions in organizations. Other techniques are

based on the replay of the logged behavior on the process

model (e.g., Rozinat and van der Aalst 2008). Finally,

techniques based on alignments build on aligning the

process executions with the closest path in the process

model, which provides basis for calculating a notion of

distance (e.g., De Leoni and van der Aalst 2013).

When organizations apply process mining, they do it by

using a software tool from one of the numerous vendors. A

process mining tool offers a set of analysis techniques for

process analysts in a user-friendly way. The selection of the

tool should reflect the requirements of the users. Often,

these process mining users are process analysts who have

the required skill set. Not only are they familiar with the

field of process mining, but they also have expertise in an

application domain. An experienced process analyst is a

person who understands the organization’s challenges, gets

the right people on board, and is then capable of translating

the business needs into specific analysis questions.

Regarding process mining, process analysts have to

develop an understanding which questions could be

answered based on process event data. To this end, they

interact with process participants, process stakeholders, and

external partners. Process participants are those who work

on individual tasks that collectively define overarching

business processes. Their coordination and collaboration is

logged by enterprise information systems, establishing the

basis for applying process mining. Process stakeholders

essentially include managers who have an interest in

business processes operating well. They set the agenda for

analyzing and improving business processes. Finally, sys-

tem engineers provide expertise in which data enterprise

information systems store and how event logs can be

extracted.

A last, related party in the context of process mining is

the group of external partners. These are the parties that
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are not directly involved in the process mining project, but

are often considered in process analyses. The two most

often analyzed business processes are order-to-cash and

procure-to-pay. Both directly relate to external partners,

namely customers and suppliers.

The described techniques, their corresponding analysis

tasks, and the parties involved in process mining influence

its success.

3 A Framework for Research on Process Mining

Process mining unfolds effects at different levels. For our

framework we take Hevner et al. (2004) as a starting point,

who describe a technical, a people and an organizational

level of analysis. We refine this set to five levels, distin-

guishing an individual and a group level, and adding an

ecosystem level (see Fig. 1).

At each level of the research framework, we identify

specific phenomena of interest, key candidate theories to

apply and further develop, and we pose a set of tangible

research questions to be addressed as part of an agenda for

future research. Please note that the separation of different

levels is conceptual and, therefore, artificial. Even though

effects span across these levels, the distinction of different

levels can help to provide conceptual clarity.

3.1 Technical Level

Various concerns apply to researching process mining at

the technical level. Much of the contributions at this level

can be understood as pieces of engineering, and most of

this engineering is focused on developing novel algorithms

for different process mining tasks. These algorithms

support the essential sets of various process mining tech-

niques. Research on process mining at the technical level

can be framed as a specific category of algorithm

engineering.

Mendling et al. (2021) distinguish both design and

knowledge contributions in the context of algorithm

engineering:

Design contributions can be either design improvements

or design exaptations. Design improvements present algo-

rithms that perform better in at least one of the important

performance dimensions such as execution time or output

accuracy. For instance, the Split Miner (Augusto et al.

2019b) was presented as a design improvement providing

high and balanced fitness and precision. Design exaptations

demonstrate the applicability of established algorithmic

designs for newly described tasks. An example is the work

by van der Aa et al. (2018), which presents a conformance

checking technique that is able to use text descriptions as

normative specifications.

Knowledge contributions can be either performance

propositions, sensitivity propositions, or explanatory

propositions. The survey and comparison of state-of-the-art

algorithms by Augusto et al. (2019a) focuses on perfor-

mance propositions. Sensitivity propositions can be inves-

tigated with internal, design-related variations and external

conditions as factors. The research by Di Ciccio et al.

(2013), which studies the effect of noise on declarative

process discovery, belongs to this category. Finally, ex-

planatory propositions bring to the foreground the mech-

anisms of how design characteristics affect performance.

For example, the study by Augusto et al. (2021), which

investigates log complexity measures as predictors for the

accuracy of process discovery, is in this category.

Organiza�onal

Individual

Ecosystem

Group

Technical The design of process mining technology, e.g., algorithm 
engineering.

The effects of process mining  on people’s percep�on 
and behavior, e.g., users.

Level Focus

The effects of process mining on people’s interac�on 
and mode of work, e.g., teams.

The effect of process mining on opera�ons and value 
crea�on in organiza�ons,  e.g., organiza�onal success.

The effects of process mining on inter-organiza�onal 
rela�ons, e.g., value chains and networks.

Fig.1 Process mining research

framework
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Much of the research on process mining at the technical

level emphasizes design contributions and provides some

knowledge contribution as an evaluation of the design

work. Mendling et al. (2021) stress that various validity

concerns have to be considered for such evaluations of

process mining design contributions: algorithm engineering

in general is subject to threats that relate to ecological

validity, implementation validity, justification validity,

logical validity, internal validity, external validity, con-

struct validity, and conclusion validity.

3.2 Individual Level

Different categories of users work with process mining

tools and their implemented algorithms and analysis tech-

niques. We have identified users such as process analysts,

process participants, process stakeholders, and external

partners (Grisold et al. 2021). They use these tools in order

to accomplish goals that are associated with process-min-

ing-related tasks. Often, these tasks are not isolated, but

embedded in BPM projects (Dumas et al. 2018) and BPM

programs (vom Brocke et al. 2021). Some of the method-

ological specifics of these projects have been highlighted

by van Eck et al. (2015), Aguirre et al. (2017), Maruster

and van Beest (2009) and Mans et al. (2013), partially

inspired by the CRISP-DM procedure (Martı́nez-Plumed

et al. 2019). Ailenei et al. (2011) describe a set of 19 dif-

ferent analysis tasks including discovering the distribution

of cases over paths, checking exceptions from the normal

path, resources involved in cases, longest waiting times,

identification of business rules. All of them can be directly

supported by analysis based on process mining.

The task perspective plays a role for understanding why

users adopt and use technology such as process mining

tools. Seminal work towards the technology acceptance

model emphasizes that perceptions about usefulness and

ease of use are central for usage (Davis 1989; Davis et al.

1989). On the one hand, this is a question of how clear,

understandable and easy to learn a technology is. On the

other hand, different dimensions of usefulness such as job

performance, work productivity, and overall effectiveness

are equally important. Acceptance is indeed an issue for

process mining (Grisold et al. 2021). According to the

technology acceptance model, users are most likely to

adopt process mining tools when they are easy to use and at

the same time improve their effectiveness when working

on process analysis tasks.

While the technology acceptance model explains when

users are inclined to use a software tool, the task-technol-

ogy fit model puts more emphasis on the actual task per-

formance. Goodhue and Thompson (1995) stress that task

characteristics and technology characteristics have to fit

one another in order to provide a positive impact on

performance. Applied to process mining, the fit model

suggests that the analysis capabilities of a process mining

tool should meet the demands of the tasks that a process

analyst and other users are confronted with in the context

of a BPM project. The tasks described by Ailenei et al.

(2011) or the BPM use cases by van der Aalst (2013) could

serve as basis for assessing such a fit.

Several additional perspectives on technology use have

been integrated into the most recent version of the unified

theory of acceptance and use of technology by Venkatesh

et al. (2003, 2016). In essence, this theory posits that

behavioural intentions are influenced by performance and

effort expectancies, as well as social influence. These

intentions materialize into actual technology usage under

consideration of additional facilitating conditions. For

process mining, social influence is a particularly interesting

construct that can potentially play into different directions:

from bottom up, it can produce resistance against creating

transparency, eventually hampering adoption and use; from

top down, social pressure can be imposed to make use of

analysis capabilities of process mining. Such forces rep-

resent higher-level contextual factors (Venkatesh et al.

2016) that together with individual-level contextual factors

influence acceptance, use, and eventually outcomes.

3.3 Group Level

We have described several groups of actors that are

involved with business processes and corresponding BPM

projects, namely process participants, process owners,

process managers and process experts of multiple local

teams. Notably, process participants and process managers

are the largest and most diverse of these groups. A single

business process can involve several departments and their

corresponding managers and process participants who

might not even be in the same reporting line. This setting

provides various challenges for any initiative to improve

such business processes (Markus and Jacobson 2015).

Before any improvements can be achieved, a shared

understanding of the business process by all of the involved

persons has to be established. In their work on the princi-

ples for good BPM, vom Brocke et al (2014) have for-

mulated the principle of a joint understanding, meaning

that BPM should not be the language of experts but create

shared meaning. The BPM lifecycle addresses this point by

stressing the need to discover and analyze the as-is process.

Work on knowledge management in information systems

research emphasizes this point, too. Nelson and Cooprider

(1996) demonstrate that information system related activ-

ities require mutual trust and mutual influence, and that

shared understanding and appreciation is key for translat-

ing mutual trust and influence into good performance.

Process mining, in turn, might presumably help to increase
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both mutual trust and influence thanks to evidence-based

insights into the process, as well as shared understanding

by providing process representations that span the bound-

aries and the lines of visibility of the groups involved.

One of the relevant mechanisms for explaining the

impact of process mining in this context are boundary

objects. Star and Griesemer (1989) discuss cooperation

without central control. They observe that boundary objects

facilitate this cooperation thanks to three properties:

interpretive flexibility, the needs of information and work

processes, and dynamics of usage. Process mining tools can

be analyzed using this lens, surfacing this facilitating role

for the cooperation between, among others, process ana-

lysts, participants, and managers. The information needs of

these groups differ such as the interpretations of repre-

sentations generated by process mining tools, but they are

not arbitrary. In this way, dynamic usage can converge

towards standardized objects or systems (Star 2010), where

boundary spanners-in-practice and boundary objects-in-use

leverage cooperation (Levina and Vaast 2005).

Another relevant mechanism associated with process

mining is behavioural visibility (Leonardi and Treem

2020). The digitalization of the work place has provided

the means for tracking and analyzing behavior. An

important observation regarding this digitalization is that

the effort for obtaining behavior-related information has

drastically declined as has the potential to analyze patterns

(Leonardi and Treem 2020). Process mining tools leverage

this behavioral visibility into work processes in organiza-

tions, revealing patterns, causes and motives (Leonardi and

Treem 2020) by corresponding analysis functionality. In

this way, new affordances and constraints (Norman 1999)

are introduced into the way in which BPM projects are

conducted. The article by Eggers et al. (2021) in this spe-

cial issue discusses the mechanisms by which behavioral

visibility increases process awareness, and eventually fos-

ters process change.

We envision process mining in an enterprise setting to

change the governance models for process management.

Given the capacity to generate process knowledge quickly

and continuously, based on real-time process data, process

work will be less concerned with inquiring about processes

and manually crafting processes models. Process mining

will lead to more ad hoc investigations into processes and

more real-time and data-driven decision making. Instead of

working on processes in large teams of process analysts,

investigations into processes could be organized in cross-

departmental meetings, e.g., held on a weekly basis and

taking immediate action. Hence, process mining also

stimulates research on the organization of the process

work.

3.4 Organization Level

Technical implementation, individual adoption, and actual

use of process mining tools are a prerequisite for any

impact at the level of organizational performance. The

mechanisms at the group level reveal how process mining

can unfold its impact at the level of the larger organization.

The information systems success model makes exactly this

point by highlighting the impact of system quality, infor-

mation quality, and service quality on individual use and

usage satisfaction; these eventually translate into net ben-

efits at the individual and at the organizational level

(DeLone and McLean 1992, 2003; Petter et al. 2008).

The theory of effective use drills down into the mech-

anisms surrounding information quality. In essence,

effective use builds on a chain of transparent interaction,

representational fidelity and informed action, which all

contribute to efficient and effective performance (Burton-

Jones and Grange 2013). Trieu et al. (2022) contextualize

effective use in a business intelligence context and fore-

ground business intelligence system quality, data integra-

tion, and an evidence-based management culture. For

process mining, these constructs might serve as potential

constraints to the affordances a process mining tool

provides.

What is partially hidden behind the service quality

construct in the success model is a capability perspective.

BPM-related capabilities have often been described as

dynamic capabilities, which are directed towards organi-

zational problem solving (Niehaves et al. 2014). The BPM-

related capability areas presented by Rosemann and vom

Brocke (2015) are specifically relevant in this context. The

Delphi study by Martin et al. (2021) in this special issue

uses them as a framework for identifying challenges and

opportunities arising from process mining. The experts in

this study describe more opportunities related to strategic

alignment, methods and information technology, while

more challenges are identified for governance, people and

culture. Also in this special issue, Eggers et al. (2021)

emphasize that the benefits that process mining offers are

contingent to governance and implementation approaches.

Process mining can also be understood as a specific big

data analytics capability. The framework by Grover et al.

(2018) offers insights into how such capabilities along with

an underlying infrastructure unfold an impact in different

value dimensions. They describe that different value cre-

ation mechanisms are key to the capability realization

process, including organization performance, business

process improvement, product and service innovation, and

consumer experience as much as market enhancement

(Grover et al. 2018). Finally, Grover et al. (2018) point to

various other theoretical logics that can be useful for

studying big data analytics, namely resources, alignment,
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real options, dynamics, and absorptive capacity. These

might be equally relevant for process mining.

3.5 Digital Ecosystem Level

So far, process mining has largely been restricted to the

boundaries of central organizations. Martin et al. (2021)

identify opportunities and challenges for process mining,

and several of these directly relate to the ecosystem in

which a company operates. The opportunities described by

experts of their Delphi study relate to how process mining

can facilitate value creation by fostering collaboration

across organizational boundaries.

At this point, some research has been conducted on how

process mining can be implemented at an inter-organiza-

tional level. Before organizational and strategic challenges

can be addressed, various conceptual challenges have been

overcome for constructing an integrated coherent data

representation of the process across involved organizations

(Gerke et al. 2009; Dumas et al. 2018, Chapter 11).

Opportunities arise from the increasing uptake of block-

chain technology for business processes (Mendling et al.

2018; Pufahl et al. 2021). Specific technical solutions such

as the extraction of blockchain data for processes have

been devised (e.g., Klinkmüller et al. 2019; Mühlberger

et al. 2019). Hobeck et al. (2021) demonstrate which kind

of insights can be derived by help of their case study with

Augur.

Grover emphasizes in his interview with Mendling and

Jans (2021) in this special issue that ‘‘the digital’’ defines

new challenges for researching business processes. In this

context, also new challenges arise. For instance, privacy is

a concern once data is analyzed that is related to people

who are not part of the same organization as the one in

which the data is analyzed or where the generated insights

are used (see Mannhardt et al. 2019). This is particularly

relevant for mining data from the Internet of Things

(Michael et al. 2019) and applications in healthcare (Pika

et al. 2020).

4 Future Research Directions

In this editorial, we have identified connections between

process mining and many established concepts and theories

on information systems. We described a five-level frame-

work including a technical, individual, group, organization,

and ecosystem level. The impact of process mining can be

investigated at each of these levels and across them.

In our call for papers for this special issue, we raised

several research questions (vom Brocke et al. 2020a, b):

• How is process mining used and adopted at the

enterprise level?

• What is the potential of using various types of data in

process mining?

• How does process mining complement other

approaches and technologies?

• How do enterprises build suitable data sets?

• What are the implications for management of using

process mining?

• Which governance structures do enterprises develop for

process mining?

• How do enterprises calculate the business case of

process mining?

• How does process mining change organizational

culture?

• How does process mining change the required skill sets

of tool users?

• How is process mining integrated into the IT

landscape?

• How is process mining integrated with existing busi-

ness process methodologies?

• How is process mining adopted in specific application

domains, e.g., accounting, health, finance, HR, tax,

etc.?

• How is process mining used to support digital trans-

formation initiatives?

• What strategic implications for enterprises emerge from

process mining usage?

• What is the business impact of adopting process

mining?

• What is the overall business value of process mining?

• What is the transformative nature of process mining at

the enterprise level?

The two research articles (Eggers et al. 2021; Martin et al.

2021) and the interview (Mendling and Jans 2021) pub-

lished in this special issue answer some of these questions.

Many of the questions, however, remain open.

The process mining research framework also shows that

contributions from different disciplines are needed to fur-

ther understand and develop the potential of process min-

ing. On a technical level, for instance, computer science

makes important contributions to algorithm engineering.

Information systems research, in addition, has a great

opportunity to cover the many socio-technical aspects

related to process mining use on the individual, group,

organizational and ecosystem level.

Specifically, both behavioral and design-oriented con-

tributions are needed (Hevner et al. 2004). Based on a

better understanding of process mining use in an enterprise

setting, prescriptive knowledge can be gained to support

interventions in practice (vom Brocke et al. 2020a, b), e.g.,

by models and methods for value identification and value
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realization through process mining. We hope that this

special issue will trigger a range of research activities to

address many of these research questions.
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