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Abstract
About 23% of the German energy demand is supplied by natural gas. Additionally, 
for about the same amount Germany serves as a transit country. Thereby, the Ger-
man network represents a central hub in the European natural gas transport network. 
The transport infrastructure is operated by transmissions system operators (TSOs). 
The number one priority of the TSOs is to ensure the security of supply. However, 
the TSOs have only very limited knowledge about the intentions and planned actions 
of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, 
operates a high-pressure transport network of about 12,000 km length. With the 
introduction of peak-load gas power stations, it is of great importance to predict in- 
and out-flow of the network to ensure the necessary flexibility and security of supply 
for the German Energy Transition (“Energiewende”). In this paper, we introduce a 
novel hybrid forecast method applied to gas flows at the boundary nodes of a trans-
port network. This method employs an optimized feature selection and minimiza-
tion. We use a combination of a FAR, LSTM and mathematical programming to 
achieve robust high-quality forecasts on real-world data for different types of net-
work nodes.
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1 Introduction

About 23% of the German (and European) energy demand is met by natural gas 
[2]. Additionally, for about the same amount Germany serves as a transit country. 
Thereby, the German network represents a central hub in the European natural gas 
transport network. In light of the German Energy transition (“Energiewende”) with 
an increasing share of renewable energy sources as well as the envisioned interna-
tional transition towards substantially less fossil fuels and related greenhouse gas 
emissions, the importance of natural gas will increase even more. A critical task 
of gas power plants is to deliver electricity in peak load situations when electricity 
from renewable energy sources is not sufficient to cope with the demands. From the 
gas network point of view, this leads to huge gas demands on very short notice.

The gas transmission network is run by transmission system operator, hereinaf-
ter referred to as TSOs. An integrated organization would conduct jointly opera-
tions including gas trading, running storage facilities and operating the transmis-
sion network. Thereby, the network capacities could affect transport requirements. 
However, TSOs face novel challenges to ensure the security of supply caused by 
the liberalization of the European gas markets [1], which makes TSOs no longer 
allowed to own, trade or store gas. Instead, trading will be conducted by inde-
pendent companies to ensure discriminatory-free access to the transport network 
for all traders. Therefore, natural gas forecasting has become a fundamental input 
to the TSOs’ decision-making mechanisms. Meanwhile, the natural gas market 
is becoming more and more competitive and is moving towards more short-term 
planning, e.g., day-ahead contracts, which makes the dispatch of natural gas in 
the pipeline network even more challenging [12]. Therefore, a high-accuracy and 
high-frequency forecasting of local supplies and demands of natural gas con-
sumption is essential for efficient network operation of TSOs.

Although on the contractual level all gas transports of a market area have to 
be balanced, this needs only to be achieved on average over time. Some outflow 
might actually only be balanced by an inflow at a later time.

Despite these challenges for the TSOs they need to meet all transport demands. 
The TSO has the obligation to monitor the situation, foresee possible shortages 
and react accordingly to ensure the safety of supply. Since changes in gas net-
works happen rather slowly it is therefore extremely important to have accurate 
forecasts on the demands and supply of the network to be able to react on time.

We collaborated with one of the biggest German TSOs, operating a gas net-
work with a pipe length of about 12,000 km in total (see Fig. 1), to improve their 
hourly forecasts for demand and supply. We aim to:

• Predict as precisely as possible the average hourly gas flows for the upcoming 
gas day, i.e., from 6 am to 6 am, just before the start of the gas day (at about 
5:59 am);

• The prediction needs to be appropriate for all different types of nodes ranging 
from connections to other networks or countries to industrial users or munici-
pal consumers, leading to very diverse data characteristics;
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To reach these goals, we investigated real data from the transport network operated 
by Open Grid Europe. We propose a powerful and robust hybrid forecast model that 
benefits from the combination of state of the art forecasting approaches and optimi-
sation, leading to improved forecast accuracy. We interpreted the most important 
features that our model automatically selects.

In the following, the next subsections present nomenclature and an overview of 
related work. Section  2 describes the data we used in this study. Section  3 gives 

Fig. 1  Map of the gas transmission network operated by Open Grid Europe
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details on the proposed models. Section 4 describes the evaluation methodology and 
the evaluation of computational experiments. Finally, we draw some conclusions.

1.1  Nomenclature

Open Grid Europe GmbH OGE
Municipal power stations MUN
Power stations and industry IND
Storage STO
Transfer points to other networks NET
Mathematical programming MP
Linear program LP
Mixed integer linear programming MILP
Functional autoregressive FAR
Long short term memory LSTM
Hybrid model HYB
Heating day degree HDD
Baseline forecast (persistance) BAS

1.2  Related work

Models on natural gas demand forecasting are mainly focused on long term issues. 
There are quite some publications regarding electricity demand forecasting, (see, 
e.g. [3, 30, 32, 47]) but electricity behaves very differently from gas.

A survey on models to predict natural gas consumption published between 1949 
and 2010 is presented by [42] who evidences that only a few works are focused on 
hourly gas flow prediction. A more recent survey [51] considers 187 papers pub-
lished between 2002 and 2017. The authors point out that the majority of works pro-
vide daily predictions and recognize that neural networks are the most used models. 
The authors also show that, on the considered period, most of the works were per-
formed at an aggregated level (i.e. country or city) and only three papers proposed 
models to forecast the hourly gas consumption.

In [49], two neural networks were tested to forecast natural gas consumption 
based on historical data and environmental variables. The authors found a better pre-
diction accuracy when using the multi-layer perceptron compared to the radial basis 
function. In [48], a model similar to radial basis neural network was proposed to 
predict gas consumption in a distribution system. In this work, input variables were 
selected using a genetic algorithm. Residential hourly gas consumption was pre-
dicted with neural networks by [17]. In this work, the heating degree-hour method 
which considers the gap between outdoor and indoor temperature was considered. 
The best hyper-parameters configuration consisted of 29 neurons, a feed-forward 
backpropagation algorithm and tangent, sigmoid and linear functions for the input, 



387

1 3

A hybrid approach for high precision prediction of gas flows  

hidden and output layers respectively. Similarly, [45] proposed neural networks to 
forecast residential natural gas demand. The proposed network consisted of a multi-
layer perceptron with one hidden layer. The input features included calendar (i.e. 
month, day of the month, day of the week, hour) and weather (temperature) infor-
mation. The authors found that the average prediction error was higher during the 
winter months because gas flow was higher. More recently, [23] compared several 
machine learning models to predict residential natural gas hourly demand and found 
that recurrent neural network and linear regression were the most accurate models. 
The prediction results of monthly gas consumption of residential buildings using 
Extreme Learning Machine (ELM), artificial neural networks (ANNs) and genetic 
programming (GP) were presented by [24]. The ELM is characterized by higher 
training speed compared to backpropagation and it was found to perform better, in 
terms of RMSE, compared to the other two techniques. In [26] the authors set up a 
two stages methodology to predict daily gas consumption of utility companies. In 
the first stage, two NNs are run in parallel to produce daily forecasts; in the second 
stage, a nonlinear transformation of some features of the input vector is performed. 
The combination of the two stages is based on several methods such as average fore-
cast, recursive least squares, etc. The results show that the mix between the two fore-
casters has higher accuracy although the combination of the two models increases 
the complexity. Overall, these works show that the consumer profile is very impor-
tant when forecasting gas flow. In this regard, [38] identified seventeen groups pro-
files, based on their historical consumption and predicted daily gas demand. The 
overall prediction was obtained from the combination of single predictions.

The backpropagation algorithm optimized with a genetic algorithm was imple-
mented by [54] to increase the training speed and to achieve a global minimum. The 
authors predict next day gas loads based on temperature and weather conditions. 
Furthermore, the authors tested the algorithm on a three years real dataset recorded 
in Shanghai to predict one month and a half gas load. Similarly, [55] propose a 
recurrent neural network to predict daily gas flow. The Output-Input-Hidden Feed-
back-Elman neural network takes into account, not only the hidden nodes’ feedbacks 
but also considers the output nodes’ feedbacks. The results improved compared to 
these obtained with the standard Elman network. However, the authors recognize 
that further research is needed to forecast gas demand during holidays. In [4], an 
adaptive network-based fuzzy inference system (ANFIS) consisting of a neural net-
work integrated with fuzzy logic was proposed to forecast short term natural gas 
demand. The main advantage of this model was its ability to handle uncertainty, 
noise and non-linearity in the data and, compared to standard neural network mod-
els, provided more accurate results. Wavelet transform has been deployed by [44] to 
decompose the hourly gas demand time series and Bi-LSTM and LSTM are opti-
mized using genetic algorithm. The model was applied to winter data on which it 
has shown good prediction accuracy.

Several static and adaptive models have been tested by [37] for short-term gas 
consumption forecast (random-walk, temperature correlation model, linear regres-
sion model, ARX, adaptive (recursive) linear auto-regressive model (RARX), neural 
network (NN), Recurrent NN, Support Vector Regression). They found that the best 
performance was obtained by the RARX of order 3. Furthermore, they found that 
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nonlinear models such as neural networks and support vector machines had a lower 
generalization capacity compared to linear models. Finally, they concluded that the 
adaptive models overall performed better than static models.

The traditional approaches are regression and econometric models. In this regard, 
the performance of non linear mixed effects, ARIMAX and ARX models to predict 
gas consumption of 62 residential and small commercial customers was assessed by 
[10]. The authors forecast daily consumption of an entire month based on the previ-
ous 18 months. The time series included zero flows and missing data which were 
excluded for the training process. The prediction performance was similar in terms 
of daily mean absolute error which was close to zero for all the tested models. Thus, 
the authors propose to combine multiple models although they recognize that this 
might be a difficult task because of increased computational complexity. Multiple 
linear regression has been proposed by [40] who predicted annual gas consumption 
based on socio-economic variables (GDP and inflation in the case of Turkey) that 
have been selected based on their statistical significance. Based on the forecast, the 
authors propose alternative energy policies. Robust least square method combined 
with log-linear Cobb–Douglas model has been proposed by [15]. The authors com-
pared the proposed robust and ordinary least square methods for the yearly forecast 
of the natural gas demand in Brazil, considering the total demand as well as the 
industrial and power sectors demand. The authors showed that using the proposed 
model can be very useful when a large amount of past data is not available, which is 
usually necessary for the calibration of more sophisticated forecast models.

A hybrid model formed by a grey model and an autoregressive integrated moving 
average model has been proposed by [52] to predict monthly shale gas production. 
The authors conclude that the results of the combined model are more accurate than 
the single linear and nonlinear models.

In [33], Multivariate Adaptive and Conic Multivariate Adaptive Regression 
Splines were proposed to predict residential daily gas demand. The two models 
provided better results in terms of prediction errors (MAE and RMSE) compared 
to these obtained with linear regression and neural networks. In [41], the nonlinear 
characteristics of the natural gas consumption is modeled with several Grey models 
that are compared to predict the yearly natural gas consumption in China. Nonlinear 
programming and genetic algorithm have been proposed by [19] to predict natural 
gas consumption in the residential and commercial sectors on a yearly basis. Simi-
larly, [25] proposed the breeder hybrid algorithm which consists of three steps for 
natural gas flow demand forecast. In the first stage, the coefficients of a nonlinear 
regression model are estimated. Successively, the estimates are improved using a 
genetic algorithm. Finally, the optimized coefficients are deployed as initial solu-
tions for the simulated annealing. Nearest neighbor and local regression were pro-
posed by [6] to predict gas flow in a small gas network with a 15 minutes resolution. 
The authors evidence the importance of environmental variables such as the temper-
ature. Their method allowed to detect anomalies and the consumption patterns based 
on one year historical data. In the literature, there are also combinations of several 
methods to predict one day-head natural gas consumption. In [34], the time series 
were decomposed into low-frequency and high-frequency components using Wave-
let transform. In a second step, the genetic algorithm and Adaptive Neuro-Fuzzy 
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Inference System were deployed to predict each of the decomposed time series. The 
output was finally fed into a feed-forward neural network to refine the prediction. 
The research was focused on different types of natural gas distribution points. The 
authors obtained better prediction results using the data of distribution points located 
near the city center. Neural networks have been also compared to the performance of 
autoregressive models. In [46], for instance, short term natural gas consumption in 
Turkey was predicted using SARIMAX model and Neural Networks (Multilayer and 
Radial Basis) and multivariate regression. They found that SARIMAX had better 
prediction performance. The temperature correlation model, proposed by [43], was 
compared with several configurations of ARX, stepwise regression, Support Vec-
tor Regression and neural network. The authors found that SVR and NN performed 
better on the training set, while high order ARX model performed better on the test 
set. Support Vector Regression has been deployed with false neighbours filtered 
approach to predict short term natural gas consumption [56]. The local predictor was 
based on the nearest neighbour approach so that the Euclidean distance between the 
training and test data and the neighbour filter was applied to determine the valid-
ity of the predicted values based on the exponential separation rate. The authors 
obtained better performance prediction compared to ARIMA, neural networks and 
Support Vector Regression.

Overall, the analyzed literature shows that there are few works that are focused 
on the comparison between methods to predict hourly gas flow of different types of 
nodes in a gas network or combining the advantages of different forecasting methods 
to a hybrid model for hourly gas flows. Therefore, we propose a hybrid model based 
on optimisation and machine learning and compare its results to four different mod-
els to predict hourly gas flow. To address the heterogeneity of the time series for the 
different node types we compare results obtained for four different types of nodes.

2  Data

We consider high-resolution natural gas inflows and outflows in the high-pressure 
gas pipeline network operated by Open Grid Europe GmbH (OGE).

The gas transmission network has more than 1000 boundary nodes which can be 
classified into four different groups:

• Network Transfer Points (labeled NET) are large nodes with natural gas imported 
and exported to other networks mostly outside Germany. These can be entries 
and/or exits.

• Municipal Utility nodes (MUN) serve residential and small commercial constitu-
ents and are always only exits. They are often temperature dependent, exhibit 
daily and seasonal patterns, and simultaneously are influenced by weekends/holi-
days.

• Industry and Power Stations (IND) represent electricity generation and factory 
production nodes. These are also always exits and naturally exhibit weekly pat-
terns due to working routines.
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• Storage nodes (STO) usually have a large number of zero flow hours with some 
substantial, often constant transfer in between. The nodes can always be both 
entries and exits.

While, in principle, we know the above classification, it is proved not to be reliable 
regarding the behavior of the nodes, so we will not use this information as part of 
the forecast, but just to explain certain behavior.

Table 1 depicts the number of nodes belonging to the different groups and the 
percentage of gas flow explained by each group.

As an illustration, we carefully selected three nodes for each type. The three 
network nodes we selected occupy 22% of the whole network flow. The municipal 
nodes are considered important by the TSO. The Industry nodes selected represent 
power plants and play a key role in energy generation with high renewable energy 
shares, as they are fast to start and can produce the necessary energy in times of 
peak demand. For the representative nodes from the Storage group, we selected the 
most frequently used nodes in the observed period. Figure 2 shows normalized (to 
the range of [0, 1]) flows of the nodes considered in this study.

For each node, the gas flows are measured hourly. Additionally, we were given 
the average daily temperatures measured at the nodes. Some statistical properties 
of selected nodes are given in Table 2. As can be seen from Fig. 2 and in Table 2 
some nodes have continuous flow, while other are active only occasionally. Stor-
age nodes have the highest percentage of zero flows. For the ones considered in this 
study hours with zero flow amount for 26–53% of the time. Network nodes show 
the highest variability and are always inflows. Industry nodes are always outflows 
and are clearly not temperature dependent. Municipal nodes are usually temperature 
dependent and have strong daily, weekly and seasonal patterns.

3  Methods

Many research studies showed that combining forecasts improves accuracy relative 
to individual forecasts [16, 27]. In this section, we will first present three different 
individual forecasting methods; Functional AutoRegressive (FAR), Long Short-
Term Memory Network (LSTM) and Mathematical Programming (MP) model. 
Then we will propose a hybrid model (HYB) based on MP method which is using 
the output of two other forecasting models, FAR and LSTM, as additional inputs 
(features).

Table 1  Number of nodes and 
percentage of flow

Type # flow(%)

Network 34 72.95
Municipal 726 16.68
Industry 234 4.26
Storage 14 6.11
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3.1  Functional autoregressive (FAR) method

Recent development in functional data analysis provides an efficient way for jointly 
analyzing the large dimensional processes such as natural gas flows. On each day, 
the hourly gas flows are represented as a continuous gas flow curve over an infi-
nite time interval that naturally inherits the serial and cross-dependence in the raw 
data. The serial cross-dependence among the daily gas flow curves is described by 

Fig. 2  Normalized flow of selected nodes
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the functional autoregressive (FAR) model ([8]), which extends the discrete time 
series analysis from a finite dimensional space to an infinite world. The most popu-
lar estimation methods for FAR type models include the functional Yule–Walker 
estimation and the sieve maximum likelihood (SML) estimation, see [7–9, 21], and 
[12–14, 31].

Our interest is to predict the daily gas flow curves based on the learned dynamic 
dependence over time. We detail the FAR setup for the daily curves of natural gas 
flows and show how to obtain the SML estimator of the functional parameters.

Let {Xt(�)}
n
t=1

 denote the gas flow curve on day t, which is a square-integrable 
random function in the Hilbert space H defined over a time domain � ∈ [0, 1] 
without loss of generality. The functional autoregressive model of order 1, i.e. the 
FAR(1) model, is defined as:

where �(�) is the time-dependent mean function of Xt(�) . The innovation �t(�) is a 
strong H-white noise with zero mean and bounded second moment E‖𝜀(𝜏)‖2 < ∞ . 
The norm ‖ ⋅ ‖ is induced by the inner product < ⋅ > of H . The AR operator is rep-
resented as a kernel K ∈ L2([0, 1]) , which is one implementable form of the Hil-
bert-Schmidt operator specifying the serial dependence of the curve on its own past 
value. This choice of convolution kernel operator is very common in the study of 
functional linear and autoregressive processes, see, [29, 31, 53] and [14]. The kernel 
K is usually taken to be an even function with ‖K‖2 < 1 . Here, ‖ ⋅ ‖2 denotes the 
standard L2 norm.

For the functional observations and the autoregressive terms defined on the infi-
nite dimensional space, we project them onto Fourier basis functions given their 
periodic features, which is also easy to derive a closed-form solution. We represent 

(1)Xt(�) − �(�) = ∫
1

0

K(� − s)[Xt−1(s) − �(s)]ds + �t(�),

Table 2  Properties of nodes 
used in the study

We denote inflows as positive and outflows as negative values

Node Type Mean std min max Zeros (%)

NET1 Network 13546 3177 4063 21092 0.00
NET2 Network 7752 3792 0 19113 0.01
NET3 Network 26241 3506 0 32593 0.06
MUN1 Municipal −  171 48 −  763 0 2.68
MUN2 Municipal −  591 230 −  1658 0 0.85
MUN3 Municipal −  111 35 −  299 0 0.02
IND1 Industry −  161 32 −  334 0 0.01
IND2 Industry −  141 41 −  305 0 0.43
IND3 Industry −  121 23 −  302 0 1.23
STO1 Storage 227 2469 −  8013 11850 25.88
STO2 Storage − 277 2606 −  5453 13972 52.88
STO3 Storage 150 3377 −  9940 15017 39.51
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the functional terms in the basis of L2([0, 1]) given by the trigonometric functions 
Φ0 = I[0,1] , Φ2k(�) =

√
2 cos(2�k�) and Φ2k−1(�) =

√
2 sin(2�k�) for k ∈ ℤ�{0} , as 

follows:

where at,0 , at,k , bt,k denote the constant, cosine, and sine Fourier basis coefficients 
corresponding to the observed gas flow curves Xt(�) ; cj,0 and cj,k are the constant 
and cosine basis coefficients for the unknown even kernel K(�) ; �0 , �k , �k are for 
the intercept function �(�) = �(�) − ∫ 1

0
K(� − s)�(s) ds , and �t,0 , �t,k , et,k are for the 

innovation �t(�).
Plug-in the Fourier expansions into (1) and re-arrange the equations, we obtain the 

recursive relationship of the Fourier coefficients. However, it is unfeasible to estimate 
the Fourier coefficients in infinite-dimensional parameter spaces. This makes it neces-
sary to conduct regularization or dimension reduction. Among others, [20] proposed 
the method of sieve to conduct estimation over the approximating subspaces {Θmn

} , 
called sieves, rather than over the original infinite-dimensional space Θ . We refer to 
[11] for more theoretical details and [13] for a specific application example of the sieve 
method.

Under sieves, the unknown parameters are estimated under a subspace {Θmn
} . The 

estimation of the FAR model is thus converted to an estimation problem of a finite 
number of unknown Fourier coefficients. Further assume the Fourier coefficients of the 
innovation function �t(�) , i.e, �t,0 , �t,k , et,k , are IID Gaussian distributed with zero mean 
and variance �2

k
 , a transition density under Θmn

 is defined as follows:

based on which the maximum likelihood estimator can be obtained with closed-
form solution under sieve Θmn

 as:

Yt(�) = at,0 +

∞∑

k=1

[bt,kΦ2k−1(�) + at,kΦ2k(�)],

K(�) = cj,0 +

∞∑

k=1

cj,kΦ2k(�),

�(�) = �0 +

∞∑

k=1

[�kΦ2k−1(�) + �kΦ2k(�)],

�t(�) = �t,0 +

∞∑

k=1

[et,kΦ2k−1(�) + �t,kΦ2k(�)],

𝓁(Xt,K) =
2�−(2mn+1)∕2

�0
∏mn

k=1
�2
k

⋅ exp

�
−

1

2�2
0

(at,0 − �0 − c0at−1,0)
2

−

mn�

k=1

1

2�2
k

�
(bt,k − �k −

1
√
2
ckbt−1,k)

2 + (at,k − �k −
1
√
2
ckat−1,k)

2

��
,
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which lead to the kernel estimator K̂(⋅).
We implement the FAR modelling to forecast the daily gas flow curves. The 

h-step ahead gas flow forecast, denoted as X̂t+h(𝜏) is:

At each forecast point, we estimate the Fourier coefficients to obtain the estimated 
mean function �̂�(⋅) and kernel operator K̂(⋅). The fitted model is then used to com-
pute h = 1− and 2-step ahead forecasts of the gas flow curves.

3.2  Long short‑term memory network

In this section, we use Long Short-Term Memory Network (LSTM) to predict gas 
flow based on the previous 24-h. LSTM are a special types of Recurrent Neural Net-
works (RNN) that have been introduced in the eighties (i.e. [18, 39]) to model time 
interrelations by allowing connection between hidden units with a time delay [35]. 
At each iteration, the hidden state vector receives the input vector and its previous 
hidden state. The hidden state vector can therefore be seen as a representation of 
time sequences [36].

Long Short-Term Memory (LSTM) networks, proposed by [22], include a mem-
ory gate that controls what passes through the network and what is blocked so that 
some of the information that is feedback to the network is remembered and some 
other is forgotten. An additional gate keeps memory and filters out what has to be 
forgotten. At each time step, the network memorizes the information and filters out 
what is not relevant for the prediction. Finally, another set of gates ignores what is 
irrelevant. The formulation of the LSTM, as presented in [28], consists of three lay-
ers that are called gates: the input (3), forget (4) and output gates (7), respectively:

where ht−1 is the hidden state computed at time t − 1 which is calculated based on 
previous hidden state, ht . Each of the gate has a sigmoid function so that the values 
range between 0 and 1.

�̂�0 =
−ĉ0
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∑

t at−1,k)
2 + (
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,

(2)X̂t+h(𝜏) = �̂�(𝜏) + ∫
1

0

K̂(𝜏 − s)[Xt(s) − �̂�(s)]ds.

(3)i = sig(Wi [̇ht−1, xt] + bi)

(4)f = sig(Wf [̇ht−1, xt] + bf )
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The decision on which information will be stored into a cell is based on the input 
layer (3) and on a hyperbolic tangent (or sigmoid) function assigned to the layer that 
returns the set of candidate values, Ĉ (5):

To update the cell state Ct−1 into Ct , the old state is multiplied by the forget gate and 
added to the new candidate values (6):

Finally, the output is obtained by passing the cell state Ct to a rectified linear func-
tion (or hyperbolic tangent) to decide which part of the information is passed to the 
output 7. Moreover, the cell state is multiplied by the output of the relu (or tanh) 
gate (8).

Thanks to this architecture, LSTM has the ability to look back several time steps 
and, thus, to improve the predictions. Also recurrent neural networks can look time 
steps back but the problem they incur is called vanishing or exploding gradient for 
which the results either become very large or small.

The LSTM deployed to forecast gas flow consisted of one single layer and an 
early stop function with patience set to four. This means that the training of the net-
work stops as soon as the value of loss function remains the same after four itera-
tions. In this work, different types of parameters are manually selected to forecast 
gas flow depending on the type of node and based on trial and error.

The configuration of the parameters of the network for each node is reported in 
Table 3. The most influential parameter is the batch size that is the number of train-
ing examples that are utilized in each iteration. The higher the value of this param-
eter the faster is the training of the network. Only two types of activation functions 
are selected for the hidden state, depending on the node: hyperbolic tangent function 
(tanh) or sigmoid. The transfer function of the output gate selected for all nodes, 
except for one network node, is the Rectified Linear Unit (Relu). Overall for storage 
nodes that are characterized by high variability between negative and positive values 
and by a high number of hours with zero flows, the batch size was set between 48 
and 80 and the number of neurons between 70 and 80.

3.3  Mathematical programming (MP) for time series forecasting

In this Section, we use Linear Programs (LP) together with Mixed Integer Lin-
ear Programs (MILP) for prediction of the flows—supplies and demands of the gas 
network. Given a set of measurements md,h ∈ M for each day d ∈ D and each hour 
h ∈ H . Let us define Md ⊆ M as a subset of the measurements before day d. The fea-
tures i ∈ Fh = {1,… , nh} are defined as arbitrary functions of historical flow values, 

(5)Ĉt = tanh(WC [̇ht−1, xt] + bC)

(6)Ct = ft◦Ct−1 + i◦Ĉt

(7)ot = sig(Wo[ht−1, xt] + b)

(8)ht = tahn(Ct)◦ot
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fh,i(d) ∶ D → Md, i ≤ ph ≤ nh and exogenous variables fh,i(d), i ∈ {ph + 1,… , nh} . 
We can approximate gas flow with weighted sum of features

where pd,h is the flow value which is approximated, and wh,i define the weights.
The approximation error is defined as

and the optimal weights are calculated by minimizing the sum of absolute errors for 
each day d and hour h

This problem is not a LP because of the nonlinear absolute value in the objective 
function but it can be transformed into a LP. We can rewrite the error ed,h as the dif-
ference of two non-negative variables:

Then the transformed objective function is

For a solution to be optimal regarding to the objective e+
d,h

⋅ e−
d,h

= 0 must be true, so 
we can write

(9)pd,h =
∑

i∈Fh

wh,ifh,i(d)

ed,h = pd,h − md,h

min
∑

d∈D,h∈H

|ed,h|

ed,h = e+
d,h

− e−
d,h

min
∑

d∈D,h∈H

|e+
d,h

+ e−
d,h
|

|e+
d,h

− e−
d,h
| = |ed,h| + |e−

d,h
| = e+

d,h
+ e−

d,h

Table 3  Parameters of the LSTM

Node Neurons Dropout Activation Activation output Batch size

NET1 55 0 Sigmoid Relu 2
NET2 70 0 Sigmoid Tanh 243
NET3 30 0 Sigmoid Relu 2
MUN1 40 0.7 Sigmoid Relu 2
MUN2 30 0.7 Tanh Relu 2
MUN3 30 0.7 Sigmoid Relu 2
IND1 70 0.5 Tanh Relu 12
IND2 70 0.7 Tanh Relu 10
IND3 70 0.7 Tanh Relu 324
STO1 70 0.7 Sigmoid Relu 48
STO2 80 0.7 Tanh Relu 80
STO3 80 0.7 Tanh Relu 80
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and consequently the final LP problem becomes

Furthermore, we can force our model to be unbiased by requiring

and setting bounds for the weights l ≤ wh,i ≤ u to limit the influence of a single spe-
cific feature.

For each day in the test set (out of sample days that we want to forecast) the fore-
casted flow values are computed by first computing the weights via an LP with 16 
weeks of historical data and then using the weighted sum of features (9) for each 
hour to forecast the flow values. The lower and upper bounds for the weights are set 
to l = −2 and u = 2 , respectively. For the computation of the forecasted flow values, 
it might be that also forecasted flow values of prior hours are used as input values 
for calculating the features, if the corresponding hours do not lie in the past.

3.4  Training: feature selection

In the training procedure of this method, a slightly different model is used which 
automatically chooses for each hour the B features which are most important, to 
limit over-fitting in the LP. Therefore, we add additional binary variables xh,i to the 
problem, which determine whether feature i is chosen for hour h, i.e., whether the 
weight of feature i and hour h is not equal to zero. Then, we link these variables to 
the weight variables

and limit the number of chosen features by B

The solution of the resulting MILP leads for each hour h to one feature set Fh of at 
most B features which are most important for this hour.

The list of features used in this study is presented in Table  4. The whole set of 
features F we used consists of 29 different features based on historical flow values, 
one temperature feature and two different features describing position of the pre-
dicted gas day in the week and the offset feature. Using sensitivity analysis the num-
ber of chosen features was limited to six. One year of historical measurements was 

min
∑

d∈D,h∈H

(e+
d,h

+ e−
d,h
)

subject to
∑

i∈F

fh,i(d) ⋅ wh,i − md,h = e+
d,h

− e−
d,h

for all ∈ D, h ∈ H

e+
d,h
, e−

d,h
≥ 0

wh,i ∈ ℝ

∑

d∈D,h∈H

(e+
d,h

− e−
d,h
) = 0

xh,i ⋅ l ≤ w+
h,i

≤ xh,i ⋅ u

∑

i∈F

xh,i ≤ B
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used for training and selecting optimal set of features for every node and hour. Fig-
ure 3 is showing the heatmap of selected features for MP model for each group of 
nodes summed up for 24 h.

For all nodes the feature representing the flow of the previous hour ( f1 ) is the 
mostly used feature. For all hours except the first predicted gas hour this feature 
value is calculated based on the the forecasted flow of previous hour when the 
final forecast is calculated. The same hour yesterday( f4 ) is also widely selected 
among all groups. As it was expected Weekend ( f31 ), Evening ( f32 ) as well as 
Mean temperature difference feature ( f30 ) are usually chosen only for the Munici-
pal utilities since the behaviour of those nodes shows strong daily, weekly and 
seasonal patterns. In the case of Industry nodes the features of Mean flow of the 
same and previous day ( f29, f15 ) together with the Ratio features f11, f12 are the 

Table 4  List of features

Feature Description

f1(d, h) =

{
m(d, h − 1), if h > 0

m(d − 1, 23) otherwise

Prior hour

f2(d, h) = m(d − 1, 0) First hour yesterday
f3(d, h) = m(d − 1, 23) Last hour yesterday
f4∶10(d, h) = m(d − (1, 2,… , 7), h) The same hour 1,2,...,7 days ago

f11∶12(d, h) = m(d − 1, 0(h))∕m(d − 2, 0(h)) Ratio first(same) hour yesterday first(same) 
hour 2 days ago

f13∶14(d, h) = m(d − 1, 0(h)) − m(d − 2, 0(h)) Difference first(same) hour yesterday, 
first(same) hour 2 days ago

f15∶21(d, h) = 1∕24
�∑

h∈H m(d − (1, 2,… , 7), h)
�

Mean flow 1,2,...,7 days ago

f22(d, h) = f15(d, h)∕f16(d, h) Ratio mean flow yesterday, 2 days ago

f23(d, h) = f15(d, h)∕f21(d, h) Ratio mean flow yesterday, 7 days ago

f24(d, h) = f15(d, h)∕
�
1∕24

�∑
h∈H m(d − 8, h)

��
Ratio mean flow yesterday, 8 days ago

f25(d, h) = f15(d, h) − f16(d, h) Difference mean flow yesterday, 2 days ago
f26(d, h) = f15(d, h) − f21(d, h) Difference mean flow yesterday, 7 days ago

f27(d, h) = f15(d, h) − (1∕24(
∑

h∈H m(d − 8, h))) Difference mean flow yesterday, 8 days ago

f28(d, h) =

{
0, if h = 0

m(d, 0) otherwise

First hour today

f29(d, h) =

�
0, if h = 0

1∕h
∑h−1

i=0
(d, i) otherwise

Mean flow today

f30(d, h) = td − td−1 Difference mean temperature today and 
yesterday

f31(d, h) =

{
1, if day ∈ {Saturday, Sunday}

0, otherwise

Weekend

f32(d, h) =

{
1, if day ∈ {Friday, Saturday}

0, otherwise

Evening

f33(d, h) = 1 Offset
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most frequently chosen features. For Transfer Points and Storages features of 
mean flow of the same and previous day ( f29, f15 ) are also dominating ones except 
for first gas hour where this pattern is not present. For all observed nodes the Off-
set feature (representing the bias in the model) is selected very frequently.

Figure  4 shows a scatter plot of flow amount versus the three most frequently 
chosen features among different types of nodes for all hours of the day. It can be 
seen that the flow depends linearly on f4 while other features are showing a non-
linear dependency.

3.4.1  Hybrid model

The main advantage of the mathematical programming method (MP) proposed in 
this paper is flexibility in the sense that adding new features when they are avail-
able in order to improve the forecast is very simple.

In this section, we propose a hybrid model(HYB), combining mathematical 
programming (MP) with the two other proposed methods by adding the outputs 
from LSTM and FAR model as an exogenous inputs to the MP model. The opti-
mal sets of features chosen for every node and hour were kept from previous MP 
training and extended with the forecasts from the LSTM and FAR model as addi-
tional features. The final forecast is calculated as weighted sum of all features 
from the extended features set:

New optimal weights are calculated by running an LP:

(10)pd,h =
∑

i∈F

fh,i(d) ⋅ wh,i + LSTM (d, h) ⋅ wh, LSTM + FAR (d, h) ⋅ wh, FAR

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31 f32 f33
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Fig. 3  Heatmap of selected features for different node group
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Fig. 4  Scatter plot of some frequently chosen features vs flow
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where LSTMh(d) and FARh(d) represent the forecasted values obtained from the 
LSTM and FAR models, respectively.

4  Testing and results

4.1  Influence of temperature

The temperature is one of the most important factors that influence gas consump-
tion. When the natural gas is consumed for heating such as in residential areas, the 
temperature usually has an inverse relationship with gas consumption which is also 
dependent on other environmental data such as the time of day, the day of week, the 
season, etc. Furthermore, temperature and time of day are the factors that mostly 
impact the forecast error [45].

The majority of models presented in the literature are focused on residential and 
small commercial consumer at individual or aggregate level. Several authors have 
considered the temperature (i.e. [19, 33, 34]) or meteorological data [46] in their 
models to forecast gas flow and reduce the prediction error. In [50], the authors 
pointed out that the nonlinear characteristics of temperature has been assessed long 
time ago and gas consumption is proportional to the Heating Degree Day (HDD) 
[5]. This proportionality is evidenced when plotting the average daily temperature 
versus the gas consumption.

The scatter plots of daily changes of temperature versus daily changes of gas flow 
of the nodes considered in this work are shown in Fig. 5. Storage nodes have a high 
percentage of zero flows, those are the nodes that better approximate the non linear 
relationship expressed by the HDD. As expected, the Municipal nodes present a pos-
itive correlation between the flow and the temperature. Among the network nodes, 
one of them presents a negative relationship with the temperature. The remaining 
nodes appear to be independent from the temperature.

4.2  Results

4.2.1  Objectives, setup and evaluation metrics

In this paper, we observed a data set of hourly gas flow time series from 12 nodes 
with 17.520 observations (2 years).

min
∑

d∈D,h∈H

(e+
d,h

+ e−
d,h
)

subject to pd,h − md,h = e+
d,h

− e−
d,h

for all d ∈ D, h ∈ H

pd,h =
∑

i∈F

fh,i(d) ⋅ wh,i + LSTMh(d) ⋅ wh, LSTM + FARh(d) ⋅ wh, FAR

e+
d,h
, e−

d,h
≥ 0

wh,i,wh, LSTM ,wh, FAR ∈ ℝ



402 M. Petkovic et al.

1 3

Our goal is to predict values pd,0 to pd,23 for a given d ∈ D . Of course only data 
for days d − 1 and earlier can be used. All proposed methods are tested on the last 
60 days of the data set.

Our basis comparison are the mean absolute deviation (MAD) between the 
hourly forecast and the measured flow during one day (24 h) ahead forecast, 
defined as

Fig. 5  Scatter plot of gas consumption daily change vs temperature change
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and mean absolute percentage error (MAPE) defined as

All results are also compared to a baseline (BAS) forecast defined as

Even though our main goal is to predict, as precisely as possible, the average hourly 
gas flows for the next 24 h, we adopted mean daily errors (MAD and MAPE) as 
accuracy metrics having in mind that the transport system operator has certain flex-
ibility throughout the day. In particular, this means that, in principle, the maximum 
hourly error could be compensated by technical measures of TSO as long as it is not 
prolonged for several hours and have same direction.

4.2.2  Forecasting results

Mean MAD and MAPE (over 60 days in the test set) achieved by proposed models 
are presented in the Table 5.

It can be seen that between individual forecasting methods the LSTM model 
is the most robust one and obtained the best results for nodes from all 4 behavior 
groups. The MP model achieved the best results for all Municipal utilities, and the 
performance is especially good for MUN2 node where all models had a particularly 
high MAPE. FAR model outperformed others for the Industry node IND2. Even 

(11)MADd ∶= 1∕h
∑

h

|ph − mh|

(12)MAPEd ∶= 1∕h
∑

h

|(ph − mh)∕mh|

(13)p̂h,d ∶= mh,d−1

Table 5  Comparison of mean daily performance

 The best performance is marked in bold

MAPE MAD

MP FAR LSTM HYB BAS MP FAR LSTM HYB BAS

NET1 0.128 0.131 0.035 0.033 0.133 1269 1350 357 331 1366
NET2 0.176 0.195 0.075 0.088 0.211 727 828 328 378 901
NET3 0.084 0.096 0.056 0.055 0.098 1855 2245 1439 1393 2168
MUN1 0.032 0.101 0.09  0.030 0.069 6.36 19.03 29.02 5.97 11.47
MUN2 0.327 0.370 0.588 0.324 0.355 65.67 72.90 101.18 64.8 71.1
MUN3 0.064 0.088 0.071 0.064 0.089 5.36 7.37 5.16 5.61 7.41
IND1 0.131 0.137 0.109 0.114 0.171 19.37 19.99 15.64 16.66 25.5
IND2 0.035 0.028 0.057 0.030 0.034 3.85 3.19 6.24 3.71 3.76
IND3 0.103 0.135 0.087 0.086 0.142 9.78 12.32 7.48 7.45 13.44
STO1 0.550 0.689 0.313 0.291 0.764 609.28 753.42 313.79 294.09 681.31
STO2 0.298 0.343 0.226 0.205 0.411 428.24 560.78 384.33 329.54 624.38
STO3 0.895 0.970 0.475 0.502 0.997 895 1155 909 816 1442
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though FAR errors are slightly higher than other two proposed models (MP and 
LSTM) it can be seen that for most of the nodes the performance is very similar. For 
Storage nodes with intermittent behaviour none of the proposed individual methods 
has demonstrated adequate accuracy.

The Hybrid model showed an improvement for all 4 groups nodes. The improve-
ment is especially significant for Storage nodes, where the average MAPE is lower 
for more than 2(%) for nodes STO1 and STO2. For node STO3 the LSTM model has 
the lowest MAPE but the lowest MAD is achieved by the HYB model.

The four types of nodes considered in the paper have very different behaviors, 
and the time series of the corresponding flows can be forecasted with wide accu-
racy ranges. The Storage nodes have a characteristic behavior with the intermittent 
flow of a large scale which, in addition, can have both directions. The MUN2 node 
also shows some intermittent behavior, especially in the test period, which results in 
higher mean daily errors.

Figure  6 shows calculated 24 h ahead forecast and the measured flow of all pro-
posed models for a 1 week period.

The proposed Hybrid model is built on the top of Mathematical Programming 
(MP) method, which represents a weighted sum of features (calculated on previous 
flow values as well as some exogenous variables) chosen by Mixed Integer Program-
ming (MIP) in the offline regime. The Hybrid model’s main advantage is its prop-
erty to easily include new features like forecasts from different models in order to 
improve the final result. Using the Hybrid model, we are ensuring that the provided 
forecast is at least ‘as good as’ the best model’s result, always taking advantage 
of discarding the influence of previously inaccurate model. Even though for some 
nodes, single forecast models outperform the Hybrid model, the proposed method 
shows robust, stable accuracy very similar to the best individual model and, in some 
cases, brings a significant improvements. For example, in the case for MUN2 node, 
which shows some intermittent behaviour and significant changes in the daily levels, 
the LSTM model fails to give a good forecast with the mean daily MAPE of more 
than 50%. Simultaneously, the Hybrid model successfully sets the weights for the 
corresponding features and discards LSTM forecast, using the linear combination of 
other features to provide the forecast, which reduces the MAPE by 26%.

5  Conclusions

In this paper, we proposed a robust and powerful hybrid forecast model combin-
ing Mathematical Programming with Functional AutoRegressive and Long Short 
Term Neural Network model for forecasting gas flows at the boundary nodes of 
gas transport network. Our experiments are based on real world data from one of 
Germany’s largest transmission system operators, Open Grid Europe. We showed 
that the proposed method is appropriate for choosing optimal set of features and 
forecasting various behaviours from different nodes groups in the complex gas 
transmission network. From obtained results it is clear that even though in some 
specific cases single forecast models outperform the Hybrid model, the proposed 
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method can achieve stable accuracy close to the best individual model and in 
some cases brings a significant improvement to the forecast quality.
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Fig. 6  24 hours ahead forecast for 1 week test set
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