
Fröhlich, Nicolas; Ruzika, Stefan

Article  —  Published Version

Interdicting facilities in tree networks

TOP

Provided in Cooperation with:
Springer Nature

Suggested Citation: Fröhlich, Nicolas; Ruzika, Stefan (2021) : Interdicting facilities in tree
networks, TOP, ISSN 1863-8279, Springer, Berlin, Heidelberg, Vol. 30, Iss. 1, pp. 95-118,
https://doi.org/10.1007/s11750-021-00600-6

This Version is available at:
https://hdl.handle.net/10419/287026

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s11750-021-00600-6%0A
https://hdl.handle.net/10419/287026
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Vol.:(0123456789)

https://doi.org/10.1007/s11750-021-00600-6

1 3

ORIGINAL PAPER

Interdicting facilities in tree networks

Nicolas Fröhlich1 · Stefan Ruzika1

Received: 21 January 2021 / Accepted: 19 April 2021 
© The Author(s) 2021

Abstract
This article investigates a network interdiction problem on a tree network: given 
a subset of nodes chosen as facilities, an interdictor may dissect the network by 
removing a size-constrained set of edges, striving to worsen the established facili-
ties best possible. Here, we consider a reachability objective function, which is 
closely related to the covering objective function: the interdictor aims to minimize 
the number of customers that are still connected to any facility after interdiction. 
For the covering objective on general graphs, this problem is known to be NP-
complete (Fröhlich and Ruzika In: On the hardness of covering-interdiction prob-
lems. Theor. Comput. Sci., 2021). In contrast to this, we propose a polynomial-
time solution algorithm to solve the problem on trees. The algorithm is based on 
dynamic programming and reveals the relation of this location-interdiction prob-
lem to knapsack-type problems. However, the input data for the dynamic program 
must be elaborately generated and relies on the theoretical results presented in this 
article. As a result, trees are the first known graph class that admits a polynomial-
time algorithm for edge interdiction problems in the context of facility location 
planning.
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1  Introduction

Location science is a well-established research area that fascinates practition-
ers as well as theoreticians. The most basic and likewise famous problems are 
known as the p-median, the p-center, and the covering problem (see Laporte et al. 
2015). Nowadays research in this field mostly extends these basic models, often 
by coupling other fields of theoretical or practical interest, for example, multicri-
teria location planning (Kalcsics et al. 2014; Alzorba et al. 2015), robust location 
planning (Baron et al. 2011; Carrizosa and Nickel 2003), or combining locational 
decisions and routing (see for example the survey Drexl and Schneider 2015).

In this article, we study an innovative location-interdiction problem on tree 
networks. Given a tree T = (V ,E) and a set of facilities S ⊆ V  , we are interested 
in finding a set of r edges R ⊆ E such that the number of nodes V ⧵ S that are still 
connected to some facility s ∈ S after removing the edge set R from the network 
is minimal. Obviously, this is equivalent to maximizing the number of non-reach-
able nodes after interdiction. Intuitively speaking, we aim to find an interdiction 
strategy such that as many nodes as possible are contained in a connected compo-
nent not including a facility after interdiction. In the context of facility location 
planning, studying a reachability objective function is a novel approach, as this 
objective function is useless in a setup without interdiction: it suffices to place 
one facility in each connected component, no matter where it is placed. How-
ever, in the case that an interdictor may dissect the network, this new objective 
function becomes attractive. It can be seen as a special case of the well-known 
covering objective function (cf. Laporte et al. 2015), where the coverage radius is 
sufficiently large to cover the whole graph. Interdiction problems usually describe 
the interdictor’s perspective, and thus, the facilities are already established, and 
the interdictor has full knowledge about the locator’s choice. Although there are 
many observable applications in which the interdictor takes the role of an attacker 
destroying the infrastructure, there are also valuable applications in which the 
interdictor is the defender, for example, the prevention of poison or virus spread-
ing, the destruction of smugglers’ networks, or the mitigation of damage caused 
by floods (see for example Assimakopoulos 1987; Morton et al. 2007; Soleimani-
Alyar et al. 2016). Besides, interdiction problems are often used to reveal weak 
spots of a system.

The analysis of interdiction problems dates back to the second half of the 
last century and has gained great attraction within the last few years. The pri-
mary research mainly has focused on maximum flow interdiction (cf. Burch et al. 
2003; Chestnut and Zenklusen 2017; Wood 1993; Zenklusen 2010) and shortest 
path interdiction (cf. Bar-Noy et  al. 1995; Boros et  al. 2006; Israeli and Wood 
2002; Khachiyan et al. 2008), but in the meantime, the list of combinatorial prob-
lems studied in the context of interdiction has grown rapidly (cf. Chestnut and 
Zenklusen 2016; Dinitz and Gupta 2013; Furini et  al. 2019; Zenklusen 2014, 
2010). A recent survey by Smith and Song (2020) captures the research in this 
area. However, work in the context of location-interdiction problems is sparse. In 
contrast to our approach, most articles in this area concentrate on interdicting the 
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facilities themselves (cf. Aksen et al. 2010; Church et al. 2004; Mahmoodjanloo 
et al. 2016). Commonly, the models are stated as (occasionally multilevel) integer 
programs. An extension is given by allowing fortification, a variant in which sev-
eral facilities can be saved from interdiction, see for example Scaparra and Church 
(2008). Recently, the interdiction of facilities in a hub network has become an 
arising topic (see Ghaffarinasab and Atayi 2018; Ramamoorthy et al. 2018; Ullm-
ert et  al. 2020). Due to the complexity, most problems are solved by heuristic 
or metaheuristic approaches, for example using genetic algorithms or simulated 
annealing. Only a few exact algorithms to solve location-interdiction problems 
on general graphs apart from total enumeration are known, and the computation 
times are—although many times faster—still poor. This even increases the need 
to search for special cases that can be solved exactly in a reasonable time (never-
theless, there are exact solution methods for solving other interdiction problems 
in reasonable time, see for example Lozano and Smith (2017) or Baggio et  al. 
(2021)).

On the contrary, location problems with edge interdiction gained little attention 
in the literature. This is quite surprising since the removal of links in networks is a 
noteworthy kind of interdiction in many applications such as logistics (Adenso-Diaz 
et al. 2018), ecology (Streib et al. 2020), or digital communications (Ahmad et al. 
2017). In Fröhlich and Ruzika (2020, 2021), a systematical classification scheme for 
location-problems with edge interdiction is introduced, and the complexity state of 
the different settings is investigated. They show that in general graphs, the problem 
of the follower is NP-complete, whereas the problem of the leader is even Σp

2
-com-

plete. In Bazgan et al. (2010, 2013), inapproximability results for location-interdic-
tion problems with weighted center and median objectives are presented.

Anyhow, there are only few interdiction problems for which approximation 
algorithms are known, and the gap between these approximations and the best 
known bound is evident (cf. Chestnut and Zenklusen 2016, 2017; Pan and Schild 
2016; Phillips 1993; Zenklusen 2010, 2014). This motivates studying the threshold 
between exact solvability and hardness in more detail. A natural approach is to study 
the problems in restricted graph classes. In Shen and Smith (2011), the authors 
develop an exact polynomial-time algorithm based on dynamic programming to 
solve the critical node problem on trees and series-parallel graphs. The goal is to 
identify a subset of the nodes whose removal will maximally disconnect the graph. 
Recently, Aringhieri et  al. (2019) studied a distance based variant of this prob-
lem. The authors provide polynomial and pseudo-polynomial algorithms for paths, 
trees and series–parallel graphs. In contrast to our work, these problems—although 
closely related—do not include a set of existing facilities that should be separated.

The contribution of our paper is the first polynomial-time algorithm for interdict-
ing edges in the context of facility location planning. The presented algorithm includes 
several stages: As a first step, the given problem instance is decomposed into several 
smaller subproblems that can be solved independently. However, a modified knapsack-
type approach is needed to combine the partial solutions. Each of the subproblems is 
solved using a dynamic programming approach whose input data is elaborately gen-
erated during the execution of the algorithm. The functionality of the dynamic pro-
gramming approach is based on a subtle choice of candidates. Finally, the polynomial 
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runtime is ensured by bounding the number of iterations needed to compute the opti-
mal value by a multiple of the number of edges in the tree.

The rest of the paper is structured as follows: Sect. 2 presents the formal definition 
and basic notation of the problem. The polynomial-time solution algorithm is devel-
oped in Sect. 3. We summarize the results and give a short outlook in Sect. 4.

2 � Definitions and problem setup

Throughout this article, we consider a tree T = (V ,E) . An interdiction strategy R is 
a subset of the edge set E of the tree. We say that R satisfies the interdiction budget 
r, if |R| ≤ r . The network after removing the edge set R is denoted by T ⧵ R , which is 
also referred to as the interdicted network. Given a set S ⊆ V  of facilities, we say that 
a node v ∈ V  is reachable from S, if there exists a path from v to any facility in S. If 
this is not the case, we say that v is non-reachable from S. If the context is clear, we 
omit the supplement “from S”. We also refer to the nodes in V ⧵ S as customers. The 
interdictor strives to maximize the number of non-reachable nodes by deleting arcs. 
This interdictor’s problem can be formally stated as:

Problem 1 

Input:	� A tree T = (V ,E) , a set S ⊆ V  of facilities, an integral interdiction 
budget r > 0

Task:	� Find a set R ⊆ E of edges with |R| ≤ r such that 

	 is maximized.

Instead of maximizing the number of non-reachable nodes, the problem can be 
equivalently stated minimizing the number of reachable nodes. It further can be formu-
lated as an integer program. For this purpose, we introduce binary decision variables 
xv, v ∈ V ⧵ S , indicating whether a customer is reachable or not, and binary variables 
ae, e ∈ E , indicating whether the edge e is interdicted or not. By Puv , we denote the 
edge set of the unique path connecting nodes u and v. The first constraint ensures the 
correct assignment of the x-variables: for v ∈ V ⧵ S , either node v is reachable or the 
path to every facility s ∈ S must be interdicted. The second constraint guarantees the 
interdiction budget restriction. 

fT⧵R(S)∶=|{v ∈ V ∣ v is non-reachable from S in T ⧵ R}|

(1a)min
∑

v∈V⧵S

xv

(1b)s.t. xv +
∑

e∈Psv

ae≥ 1 v ∈ V ⧵ S, s ∈ S

(1c)
∑

e∈E

ae≤ r
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Clearly, all decision variables should be binary. However, requiring x to be 
non-negative suffices to ensure integrality of an optimal solution, as xv, v ∈ V ⧵ S, 
is minimized, and by constraint (1b, 1c, 1d, 1e) either greater than or equal to 
0 or 1. Note that dropping the binary constraint on decision variable ae, e ∈ E, 
and bounding it from below and above by 0 and 1 does not provide an integral 
optimal solution. A counterexample is given by the network depicted in Fig.  1 
for interdiction budget 2: one (of several) optimal integral solutions is to interdict 
the edges (1,  2) and (2,  4) with 5 remaining reachable customers. In contrast, 
a fractional optimal solution is given by a(1,2) = a(5,6) = a(8,9) =

2

3
 and associated 

solution value 21

3
 , as xv =

1

3
 for every node v ∈ V ⧵ S . In the remainder of this 

article, our goal is to show polynomial-time solvability of this problem presenting 
a constructive solution algorithm.

3 � Algorithmic approach

First, we show how to decompose the given tree into several subproblems, also 
called clusters, each of which can be solved efficiently by the algorithm stated in 
the second part of this section (see Theorem 3). The partial solutions can then be 
composed to an overall solution by an adapted knapsack-type approach. The clus-
ters are constructed as follows:

Definition 1  For an arbitrary node v ∈ V ⧵ S , we denote by ��(v) ⊆ S the set of 
closest facilities connected to v, i.e., for every facility s ∈ ��(v) , the unique path 
connecting v and s contains no other facility than s.

Definition 2  A set of nodes V ′ ⊆ V ⧵ S is said to be cluster inducing, if 

	 (i)	 for every pair of nodes u, v ∈ V � , it holds that ��(u) = ��(v) , and
	 (ii)	 V ′ is inclusion-wise maximal, i.e., there is no superset V ′′ ⊃ V ′ such that 

��(u) = ��(v) for all u, v ∈ V ��.

Definition 3  The set of clusters is defined by

(1d)ae∈ {0, 1} e ∈ E

(1e)xv≥ 0 v ∈ V ⧵ S

Fig. 1   An instance with differ-
ent integral / fractional optimal 
solutions for r = 2 . Circles 
represent customers, squares 
represent facilities

1

3

2 4

5

6 7

8

9

10
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where ��(V �)∶=��(v) for some v ∈ V � and T[X] denotes the tree induced by X ⊆ V .

In Fig.  2, a network and the corresponding clusters are depicted. Note that by 
construction of a cluster, the facilities are located on its leaves.

Without loss of generality, we label the clusters by C1,C2,… ,Ck in an arbitrary 
but fixed order. For Ci ∈ C , we refer to the set of nodes, edges, and facilities con-
tained in Ci as Vi ⊆ V  , Ei ⊆ E , and Si ⊆ S , respectively. Note that by definition, a 
facility may be contained in several clusters, whereas the sets of edges E1, ...,Ek are 
disjoint sets.

For a fixed interdiction strategy R ⊆ E , it holds

The third equality follows, since by definition of ��(v) , if v has no path to any facil-
ity of ��(v) , v does not have a path to any other facility of S in the interdicted net-
work T ⧵ R . As a consequence, deciding whether a node of the cluster Ci is reachable 
or non-reachable only depends on the part of the interdiction strategy that hits the 
edge set Ei.

Assume that one knows that in an optimal solution of Problem 1, r∗
i
 edges of clus-

ter Ci are interdicted, i.e., |R ∩ Ei| = r∗
i
 , where 

∑k

i=1
r∗
i
≤ r . In this case, the optimal 

solution of the overall problem can be obtained by composing the optimal solu-
tions within the clusters with respect to the particular distribution of the interdiction 
budget. More precisely, it follows

C∶=
{
T[V � ∪ ��(V �)] ∣ V � ⊆ V ⧵ S is cluster inducing

}
,

fT⧵R(S) = |{v ∈ V ∣ v is non-reachable from S in T ⧵ R}|

=

k∑

i=1

|{v ∈ Vi ∣ v is non-reachable from S in T ⧵ R}|

=

k∑

i=1

|{v ∈ Vi ∣ v is non-reachable from ��(v) in T ⧵ R}|

=

k∑

i=1

|{v ∈ Vi ∣ v is non-reachable from Si in Ci ⧵ (R ∩ Ei)}|.

C2

C3

C1

C4

Fig. 2   An instance of Problem 1 and corresponding clusters
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Thus, the overall solution is composed of the clusters’ solutions. The cluster’s prob-
lem is formally given by:

Problem 2  (Subproblem	 ������� − ��)

Input:	� A cluster Ci according to Definition  3, an integral interdiction budget 
r′ ≤ r

Task:	� Find a set Ri ⊆ Ei of edges with |Ri| ≤ r′ such that 

	 is maximized.

Before stating an algorithm to solve ������� − �� efficiently, we show how 
these partial solutions can be combined to an optimal solution of the overall 
problem. To this end, assume that for some fixed interdiction budget r′ ≤ r , one 
can solve problem ������� − �� stated in Problem 2 on a single cluster Ci effi-
ciently. According to (2), the problem reduces to finding the optimal choices of 
r∗
1
, ..., r∗

k
 requiring 

∑k

i=1
r∗
i
≤ r . To cope with the latter problem, we introduce a 

variant of the knapsack problem with additional constraints grouping the items 
and restricting the number of chosen items per group.

Problem 3  (Knapsack with Bucket Constraints (KNAP-BC)) 

Input:	� A set of items I = {1, ..., n} , a weight function w ∶ I ⟶ ℕ , a profit func-
tion p ∶ I ⟶ ℕ , a bucket assignment � ∶ I → {1, ..., k} , and a weight 
bound W

Task:	� Find a set I′ ⊆ I of items with 
∑

i∈I� w(i) ≤ W and �(i) ≠ �(j) for all 
i, j ∈ I�, i ≠ j such that 

∑
i∈I� p(i) is maximized.

It can be easily seen that this problem models Problem  1, provided that 
������� − �� can be solved efficiently for all clusters Ci ∈ C and all interdiction 
budgets r′ ≤ r . For this purpose, let R∗

i
(r�) denote an optimal solution in cluster Ci 

with respect to budget r′ and define

to be the corresponding optimal solution value of ������� − �� . Every cluster 
represents a bucket, and for every suitable interdiction budget r′ ≤ r , there is an item 
with profit z∗

i
(r�) and weight r′ . Clearly, only one solution of each cluster can be part 

of the solution of Problem 1, which justifies the bucket constraints.

(2)

max
R⊆E,|R|≤r

fT⧵R(S) =

k∑

i=1

max
Ri⊆Ei,|Ri|=r∗i

|{v ∈ Vi ∣ v non-reachable from Si in Ci ⧵ Ri}|.

fCi⧵Ri
(Si)∶=|{v ∈ Vi ∣ v is non-reachable from Si in Ci ⧵ Ri}|

z∗
i
(r�)∶=|{v ∈ Vi ∣ v is non-reachable from Si in Ci ⧵ R

∗
i
(r�)}|
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KNAP-BC can be solved in time O(nW) by the following adaption of the well-
known dynamic programming approach to solve the knapsack problem: Without 
loss of generality, assume that the items are ordered block by block according to 
their buckets, i.e., the first block of items belongs to bucket B1 , the next block of 
entries to bucket B2 , and so on. We define a function � ∶ I ⟶ {0, 1, ..., n} mapping 
an item to the last item of the previous block, i.e., for i ∈ I , we define

All we have to ensure when iteratively increasing the set of allowed items during 
dynamic programming is that a new solution containing the new item is not based 
on the solution of any other item of that bucket. The pseudocode to solve KNAP-
BC is given in Algorithm 1. The value P(i,j) represents the optimal solution value 
restricted to items {0, 1, ..., i} and budget limit j. A solution can be obtained by track-
ing the corresponding items that are packed. As here the maximum weight W is 
bounded by r ≤ |E| , Algorithm 1 runs in polynomial time with respect to the input 
size of Problem 1.

Theorem  1  Algorithm  1 computes the optimal solution of KNAP-BC correctly in 
time O(nW).

Proof  Analogous to the proof of the general 0-1-knapsack problem (cf. Gilmore 
and Gomory 1966) and the fact that item i ∈ I may only be chosen if no other item 
j ∈ I, j ≠ i , with �(i) = �(j) is already packed. 	�  ◻

Example 1  Recall the network given in Fig. 2. The items of the corresponding knap-
sack instance can be deduced from the partial solutions within the clusters:

�(i)∶=

{
max{j ∈ I ∣ �(j) = �(i) − 1}, if �(i) ≥ 2

0, else.
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C1 C2 C3 C4

r′ z
∗
1
(r�) r′ z

∗
2
(r�) r′ z

∗
3
(r�) r′ z

∗
4
(r�)

0 0 0 0 0 0 0 0
1 1 1 1 1 3 1 0
2 – 2 2 2 – 2 1
3 – 3 5 3 – 3 2

For a total interdiction budget of 5, it is optimal to interdict one edge in C1 , three 
edges in C2 , and one edge in C3.

3.1 � Solving ��������� by dynamic programming

In this section, we develop an algorithm to solve ������� − �� . In combination 
with Algorithm 1, this solves Problem 1. By assumption, the tree considered in this 
subsection is a cluster according to Definition 3. From now on, let T = (V ,E) denote 
the corresponding subtree of the cluster and let S ⊆ V  be the set of facilities which 
are, by construction, located on the leaves of T. Obviously, removing |S| edges suf-
fices to separate all non-facility-nodes of T from S by deleting the incident edges 
of S. Thus, without loss of generality, we may assume r′ ≤ |S| . We further require 
every interdiction strategy to be proper, i.e., a solution does not contain any redun-
dant edges. An edge e is redundant in R ⊆ E if the set of non-reachable nodes with 
interdiction strategy R equals the set of non-reachable nodes with respect to interdic-
tion strategy R ⧵ {e} . An arbitrary interdiction strategy R ⊆ E can be easily checked 
for properness and transformed into a proper one.

We now give an alternative formulation of ������� − �� . More precisely, 
instead of finding an optimal set of edges to interdict, one may also look for the nodes 
that should become non-reachable. Note that such a set of nodes V ′ ⊆ V ⧵ S induces 
a unique interdiction strategy and vice versa, as all incident edges of V ′ must be inter-
dicted, assuming no redundant edges. Let �(V �)∶={e = (u, v) ∈ E ∣ u ∈ V �, v ∉ V �} 
denote the set of outgoing edges of V ′ and let V denote the set of all node sets 
V ′ ⊆ V ⧵ S such that T[V �] is connected. Then, Problem  2 can be reformulated to 
Problem 4. It is easy to see that these two problems are equivalent.

Problem 4 

Input:	� A cluster T according to Definition  3, an integral interdiction budget 
r′ ≤ r

Task:	� Find a set V′ ⊆ V satisfying 

	 (1)	
∑

V �∈V� ��(V �)� ≤ r� and
	 (2)	 V � ∩ V �� = � for all V �,V �� ∈ V

� with V ′ ≠ V ′′

	 such that 
∑

V �∈V� �V �� is maximized.
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This problem can be seen as a variant of knapsack with conflict constraints (cf. 
Pferschy and Schauer 2009). However, the number of items (namely the cardinality 
of V ) is not polynomially bounded in the input size of the original problem. Thus, a 
naive dynamic programming approach may—provided that the conflict constraints 
can be addressed—lead to an exponential time algorithm. Instead, we investigate 
some optimality conditions of Problem 4 to facilitate an efficient dynamic program.

Lemma 1  There exists an optimal solution V∗ = {V1, ...,Vl} ⊆ V of Problem  4 
such that �(Vi) ∩ �(Vj) = � for all Vi,Vj ∈ V

∗ with Vi ≠ Vj . Especially, all edges in 
�(Vi) ∩ �(Vj) are redundant.

Proof  Suppose that �(Vi) ∩ �(Vj) = {e} for two sets Vi,Vj ∈ V
∗ with Vi ≠ Vj . Replac-

ing the sets Vi and Vj in V∗ by Vi ∪ Vj remains feasible and provides the same objec-
tive value. Especially, it holds �(Vi ∪ Vj) = (�(Vi) ∪ �(Vj)) ⧵ {e} . 	�  ◻

Analogously to the properness of an interdiction strategy, we call a solution 
V
∗ = {V1, ...,Vl} ⊆ V of Problem 4 proper, if no two sets Vi,Vj ∈ V

∗,Vi ≠ Vj, in V∗ 
can be merged without loosing feasibility or decreasing the objective value.

Lemma 2  (Necessary Condition) Let V∗ = {V1, ...,Vl} ⊆ V be optimal for Prob-
lem  4, assume V∗ to be proper, and choose e = (u, v) ∈ �(Vi) for some arbitrary 
i ∈ {1, ..., l} . Let u ∈ Vi and v ∉ Vi . Then, either deg(v) ≥ 3 , or v is a facility.

Proof  Assume that this is not the case, i.e., for some i ∈ {1, ..., l} , there is an edge 
e = (u, v) ∈ �(Vi) with u ∈ Vi and v ∉ Vi such that deg(v) ≤ 2 . Assume that v ∉ S . 
As V∗ is proper, it follows v ∉ Vj for all j ∈ {1, ..., l} by Lemma 1. This is imme-
diately a contradiction to the optimality of V∗ , as replacing Vi by Vi ∪ {v} strictly 
improves the objective value while 

∑
V �∈V� ��(V �)� does not increase. 	�  ◻

Lemma 3  (Necessary Condition) Let V∗ ⊆ V be optimal for Problem 4 and let V∗ be 
proper. Then, any set Vi ∈ V

∗ is inclusion-wise maximal, i.e., there is no strict super-
set V ′

i
⊃ Vi with |�(V �

i
)| ≤ |�(Vi)|.

Proof  This follows as replacing Vi by V ′
i
 in V∗ strictly improves the objective value, 

provided that V �
i
∩ Vj = � for all Vj ∈ V

∗ ⧵ {Vi} , while the interdiction costs are 
not increased. So, suppose that V �

i
∩ Vj ≠ � for some Vj ∈ V

∗ ⧵ {Vi} . Since V∗ is 
proper, there must be at least one additional node v ∈ V ⧵ S such that v ∉ Vi for all 
i ∈ {1, ..., l} on the (unique) path between the sets Vi and Vj . Without loss of gen-
erality, choose v adjacent to Vi . Then, replacing Vi in solution V∗ by V ′

i
⧵ Vj strictly 

improves the objective value while maintaining feasibility, which is a contradiction. 	
� ◻

Lemma  3 motivates studying the following related Problem  5: given a node 
v ∈ V ⧵ S and a fixed interdiction budget r′ , find an inclusion-wise maximal set 
V � ∈ V such that v ∈ V � and |�(V �)| ≤ r� . Note that however, one can not conclude 
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that in an optimal solution V∗ ⊆ V of Problem 4, every Vi is an optimal solution 
of Problem 5 for some node x ∈ V ⧵ S and some budget r′ ≤ r . In fact, this is not 
true, as we show in Example 5. Nonetheless, the analysis of Problem 5 prepares 
the solution algorithm of Problem 4.

Problem 5 

Input:	� A cluster T according to Definition  3, an integral interdiction budget 
r′ ≤ r and a node x ∈ V ⧵ S

Task:	� Find a set V ′ ⊆ V ⧵ S such that 

	 (1)	 x ∈ V �,
	 (2)	 �(V �) ≤ r� , and
	 (3)	 T[V �] is connected

	 such that |V ′| is maximized.

In Problem 5, every facility in S must be cut off from node x in order to make x 
non-reachable. We also refer to the set of non-reachable nodes as non-reachable 
area as the whole induced subgraph is non-reachable by property (3). To ensure 
connectedness of the induced subgraph of non-reachable nodes, every interdicted 
edge must lie on a path connecting x and a facility s ∈ S to maintain feasibility. In 
the sequel, our goal is to further reduce the set of candidate edges considered for 
interdiction.

Definition 4  Define

where dist(v1, v2) denotes the length of the shortest v1-v2-path with respect to the 
number of edges.

Intuitively speaking, the set ����(x) contains all “last common” edges of 
paths from node x to two facilities, leading to an increase of interdiction budget 
if additional nodes should be cut off. Note that in Definition 4, we do not require 
u ≠ v ; thus, every edge incident to a facility is also contained in ����(x) . In 
Fig. 3, the candidates ����(x) with respect to node x ∈ V  are drawn dashed. We 
claim that it suffices to consider edges from ����(x) for interdiction. In fact, 
𝛿(V �) ⊆ ����(x) is even a necessary condition for the optimality of V ′ , if one 
presumes no redundant edges.

Lemma 4  Let V∗ ⊆ V ⧵ S be optimal for Problem 5. Then 𝛿(V∗) ⊆ ����(x).

Proof  Consider any optimal set V∗ with |�(V∗)| = r� such that there exists an edge 
e ∈ �(V∗) with e ∉ ����(x) . As stated before, e must be contained in a path

����(x) ={e ∈ E ∣ ∃u, v ∈ S ∶ e = argmax (i,j)∈E(Pux)∩E(Pvx)

max{dist(x, i), dist(x, j)})},
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connecting x and a facility in s ∈ S (otherwise the set of non-reachable nodes cannot 
be connected or x is reachable). Let e = (vl, vl+1) , i.e., vl ∈ V∗ and vl+1 ∉ V∗ . Con-
sider the edge set

and let Δ denote the number of edges in Ê that must be interdicted to keep the nodes 
in V∗ ∪ {vl+1} non-reachable. Suppose Δ ≤ 1 . This is a contradiction to the optimal-
ity of V∗ as |�(V∗ ∪ {vl+1})| ≤ |�(V∗)| . Thus, it follows Δ ≥ 2 . So, at least the edges 
(vl+1, v

�) and (vl+1, v��) ∈ Ê with v′ ≠ v′′ must be interdicted to keep V∗ ∪ {vl+1} non-
reachable. This implies that both nodes v′ and v′′ must lie on a path to different facil-
ities. But then, by construction of ����(x) , the edge (vl, vl+1) ∈ ����(x) , which is 
a contradiction. 	�  ◻

In the sequel, we develop a solution algorithm for Problem 5 based on Lemma 4. 
It is easy to see that the (unique) minimum x-S-cut among the edges in ����(x) 
corresponds to the interdiction strategy with the lowest cost that makes x non-reach-
able and, at the same time, secondarily maximizes the number of non-reachable 
nodes. The idea is to iteratively increase the interdiction cost by dynamic program-
ming shifting the set of interdicted edges step by step towards the facilities, enlarg-
ing the non-reachable area. For any edge of the current interdiction strategy, there is 
by Lemma 4 a distinct set of edges which may replace this edge. More precisely, one 
asks for the minimum cost extension of the non-reachable area in this direction. For-
mally, the replacement set of a candidate e ∈ ����(x) is defined as follows:

where �(e) and �(e) denote the endpoints of edge e ∈ E closer to and farther away 
from node x, respectively. By construction of ����(x) , when the set of non-reach-
able nodes V ′ should be extended by exchanging a current edge e ∈ �(V �) , all edges 

P = ((x = v0, v1), (v1, v2), ..., (vp−1, vp = s))

Ê∶={e ∈ E ∣ e is incident to node vl+1} ⧵ {e},

���(e)∶={e� ∈ ����(x) ∣ the�(e) − �(e�) − path contains no edge of ����(x)},

g

e
l

i

j

k

m n

h

c

a

b
d

f
x

Fig. 3   The candidate set ����(x) is drawn dashed
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in ���(e) must be interdicted. Otherwise, V ′ would be reachable through this path. 
Thus, replacing edge e increases the current interdiction cost by

as one unit of cost can be saved for not anymore interdicting edge e. To simplify 
notation, we define the set of nodes enclosed by an edge set as follows:

Definition 5  (Enclosed Node Set) For a proper interdiction strategy R ⊆ E and a 
node x ∈ V  , we define �x(R) to be the set of nodes containing x enclosed by R, i.e., 
�x(R) is the node set of the connected component containing node x in T ⧵ R . If R is 
not proper, we define �x(R)∶=�x(R�) , where R′ ⊆ R denotes the strategy where all 
redundant edges of R are removed.

With the last definition, we can describe the set of nodes additionally made non-
reachable by the replacement of edge e ⊆ R in any proper interdiction strategy:

Although the last definition suggests that �x(e) depends on the exact choice of R, the 
increment of replacing edge e by ���(e) is the same for all such constructed interdic-
tion strategies, as the set of additional non-reachable nodes is the same.

Example 2  Recall the network presented in Fig.  3. Replacing edge c in a current 
interdiction strategy by edges g and h implies |�x(c)| = 5 , no matter which edges of 
{b, d, e, f , i, j, k, l} are interdicted, see Fig. 4.

The profit of replacing edge e in a current proper interdiction strategy R by the set 
���(e) is thus given by

As mentioned, the algorithmic idea is to extend a current interdiction strategy itera-
tively by replacing one of its edges by its replacement set. Clearly, the current set of 
non-reachable nodes may be expanded into different directions, i.e., the edge of the 
current interdiction strategy that must be replaced by its replacement set is not (nec-
essarily) unique. The goal is to find a feasible sequence of replacements such that 

����(e)∶=|���(e)| − 1,

�x(e)∶=�x(R ⧵ {e} ∪ ���(e)) ⧵ �x(R)

���� ��(e)∶=|�x(e)|.

Fig. 4   The increment of non-
reachable nodes replacing edge 
c by edges g and h 

g h

c

x
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the induced non-reachable area is maximal. To find this sequence of replacements, 
we change the perception of the replacements: the candidate edges of the original 
graph become nodes in a decision tree which is browsed by dynamic programming 
for finding the best replacement strategy. We point out that choosing a replacement 
does not mean that the corresponding edge is interdicted, but replaced by its replace-
ment set in the current interdiction strategy.

Initially, we start with an artificial replacement denoted by ∅x and define 
���(�x) to be the set of edges contained in the minimum x-S-cut among 
the edges in ����(x) . Straightforward, we define ����(�x)∶=|���(�x)| and 
���� ��(�x) = �x(���(�

x)).
The set of all possible replacements is thus given by 

R∶={e ∈ ����(x) ∣ ���(e) ≠ �} ∪ {�x} . Choosing replacement ∅x means that an 
initially empty interdiction strategy is replaced by the minimum x-S-cut among 
the edges in ����(x) . For an element � ∈ R ⧵ {�x} , we set its parent

The provided parent–children relation between the replacements enables to illustrate 
the feasible replacement strategies in a decision tree with node set R rooted in node 
∅x (see Fig. 5).

Definition 6  A replacement strategy I ⊆ R is called feasible, if 

1.	 �x ∈ I and
2.	 for � ∈ I, � ≠ �x, holds that ������(�) ∈ I.

Consequently, every feasible replacement strategy is represented by a sub-
tree of the decision tree that contains the root node ∅x . Note that the replace-
ment strategy does not explicitly specify the edges to be interdicted; rather, 
it tells which edges are being substituted, starting with ∅x . Nevertheless, 
one can implicitly compute the resulting interdiction strategy: for a feasi-
ble replacement strategy I ⊆ R , the corresponding interdiction strategy is 
given by {� ∈

⋃
��∈I ���(�

�) ∣ � ∉ I} . Costs and profit of I are computed by 
����(I)∶=

∑
�∈I ����(�) and ���� ��(I)∶=

∑
�∈I ���� ��(�) , respectively.

������(�)∶=��, where �� is the unique element such that � ∈ ���(��).

∅x(1, 4)

a(1, 2)

b(2, 3) c(1, 5)

d(1, 2) f(1, 5) h(1, 3)

g

e l

i

j

k
h

c

a

b
d

fx

Fig. 5   The decision tree with highlighted replacement strategy {�x, a, b, c, h} for the network in Fig.  3 
with respect to node x (left) and its corresponding non-reachable area (right)
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Without loss of generality, we relabel the set of possible replacements 
R = {�0 = �x, �1, ..., �p} according to a breadth-first search starting from node ∅x . 
That is, for two elements �i, �j ∈ R with i < j it must hold dist(�i, �x) ≤ dist(�j, �

x).

Example 3  The decision tree for the network given in Fig. 3 with respect to node x is 
given in Fig. 5. The tuples next to the nodes depict costs and profits. The highlighted 
replacement strategy is {�x, a, b, c, h} with total cost 6 and total profit 17. The cor-
responding interdiction strategy is {d, e, f , g,m, n} . An ordering of R according to a 
breadth-first search is given by {�x, a, b, c, d, f , h}.

The idea of the dynamic programming approach is to restrict the decision tree to 
the first j + 1 replacements {�0, ..., �j}, j ≤ |R| . By W(i,j,k) , we denote the objective 
value of a corresponding optimal replacement strategy I(i,j,k) with respect to interdic-
tion budget i ≤ r′ provided that �k ∈ I(i,j,k) and I(i,j,k) ⊆ {𝜏0, ..., 𝜏j} . Note that the last 
condition requires k ≤ j . The third index k ∈ {1, ..., |R|} is needed to ensure feasi-
bility of the replacement set, as outlined in the next lines.

Consider an arbitrary triple (i, j, k) for suitable indices i, j and k. As we require 
�k ∈ I(i,j,k) , there are three cases, and the best of these cases is chosen: 

1.	 There is a former replacement strategy that already includes the required replace-
ment �k for some lower interdiction budget i′ < i maximizing the total profit. In 
this case, we set 

 Consequently, the related replacement strategy does not change, i.e., it follows 
I(i,j,k) = I(i−1,j,k).

2.	 There is a former replacement strategy that already includes the required replace-
ment �k for some smaller decision tree j′ < j maximizing the total profit. In this 
case, we set 

 Again, the related replacement strategy does not change, i.e., it follows 
I(i,j,k) = I(i−1,j,k).

3.	 There is a former replacement strategy not yet containing the replacement �k that 
can be extended by the replacement �k to maximize the total profit. For this more 
involved case, the computation of W(i,j,k) is explained below.

In the third case, we only may extend former replacement strategies I(i�,j�,k�)

–	 that contain only allowed replacements, i.e., it must hold j′ ≤ j,
–	 that satisfy the budget constraint after adding replacement �k , i.e., it must hold 

i� + ����(�k) ≤ i , and
–	 whose corresponding interdiction strategy contains the edge �k , (otherwise 

it cannot be replaced). This is the case if and only if ������(�k) ∈ I(i�,j�,k�) and 
�k ∉ I(i�,j�,k�).

W(i,j,k) = W(i−1,j,k).

W(i,j,k) = W(i,j−1,k).
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To shorten notation of the latter condition, we denote the candidate set of these 
feasible indices k′ by

Intuitively speaking, the set K(i, j, k) contains all the indices k′ such that replacement 
�k can be added to I(i−����(�k),j,k�) . This is illustrated in Fig. 6: the two left replacement 
strategies can be extended by replacement c, but not the right one, as this replace-
ment is already made.

Thus, in the third case, the value W(i,j,k) can be computed by

Combining the three cases, the recursion formula to compute W(i,j,k) is given by

provided that the requested index exists (if not assume the value to be −∞ ). The 
recursion can be initialized with I(����(�x),j,0) = {�x} for all j ∈ {0, ..., |R|} . It follows:

Theorem 2  The optimal solution of Problem 5 is given by

i.e., Algorithm   2 solves Problem 5 correctly in polynomial time.

Proof  The correctness of the algorithm follows by the previous discussion. The 
candidate set ����(x) can be determined in O(|V2|) , costs and profits can be 
obtained in linear time. In (5), the maximum over at most j values is computed. As 
r′ ≤ |E| ≤ |V| and |R| ≤ |E| , the total runtime of Algorithm 2 is in O(|V|4) . 	�  ◻

K(i, j, k)∶={k� ∈ {1, ..., j} ∣ ������(�k) ∈ I(i−����(�k),j,k�) and �k ∉ I(i−����(�k),j,k�)}

W(i,j,k) = max
k�∈K(i,j,k)

W(i−����(�k),j,k
�) + ���� ��(�k).

(3)W(i,j,k)∶=max{W(i−1,j,k),

(4)W(i,j−1,k),

(5)max
k�∈K(i,j,k)

W(i−����(�k),j,k
�) + ���� ��(�k)},

max
k∈{1,...,|R|}

W(r�,|R|,k),

∅x

a

b c

d f h

∅x

a

b c

d f h

∅x

a

b c

d f h

Fig. 6   Three different replacement strategies. Only the left two can be extended by replacement c, as 
replacement c is already contained in the right one
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Note that Algorithm 2 is not optimized in terms of running time as our goal is to 
show polynomial solvability and to present an easy-to-understand reasoning.

Example 4  Recall the network of Example  3 (Fig.  3) and its corresponding deci-
sion tree given in Fig. 5. The input of Algorithm 2 is annotated in Table 1, and the 
computation is outlined in Table 2 for interdiction budget 4. All missing values are 
−∞ . The optimal solution is given by W(4,6,6) = 14 , and the replacement strategy 
obtained by backtracking is {�0, �1, �3, �6} = {�x, a, c, h} . The corresponding inter-
diction strategy is thus {b, g,m, n}.

As already mentioned, an optimal solution of Problem 4 may not be composed of 
optimal solutions of Problem 5. We justify this claim in the next example.

Example 5  Consider the graph depicted in Fig. 7 and interdiction budget 11. Then, 
the (unique) optimal solution of Problem 4 is given by V∗ = {{v1, v2, v3, v4}, {v6, v7}} 
with |�({v1, v2, v3, v4})| = 10 and |�({v6, v7})| = 1 . However, for interdiction budget 
10, node set {v1, v2, v3, v4} is not optimal (for Problem 5) for any fixed node v1, ..., v4 , 
as it is always better to cut off the 5 upper facilities. For example, for fixed node v1 , 
the set {v1, v4, v5, v6, v7} with |�({v1, v4, v5, v6, v7})| = 10 is optimal for Problem 5.

It is easy to see that the size of the network (and thus the runtime of Algorithm 2) 
can be reduced by merging appropriate nodes, leading to a weighted formulation of 
Problem 1:

Remark 1  If it holds for two nodes u, v ∈ V ⧵ S that ����(u) = ����(v) , then, in 
an optimal solution, node u is non-reachable if and only if node v is non-reachable. 
Thus, nodes u and v may be merged into a single node {u, v} with ���� ��({u, v}) = 2 . 
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Note that the equivalence of the minimum u-S-cut and the minimum v-S-cut is a 
(necessary and) sufficient condition for ����(u) = ����(v).

3.2 � Dynamic program for Problem 2

As a last step to show polynomial solvability of Problem 1, we show how to extend 
Algorithm 2 solving the restricted Problem 5 to solve the unrestricted Problem 2. 
By combining the solutions of all the clusters according to Algorithm 1, the desired 
result then follows.

Intuitively speaking, the idea of the overall solution algorithm is as follows: in 
contrast to Problem  5, where a single non-reachable area “grows” by iteratively 
increasing the budget, we now have several such disjoint areas. Thus, in addition to 

Table 1   Input of Algorithm 2 j Element Replacement set Cost Profit

�0 0 ∅x a 1 4
�1 1 a b, c 1 2
�2 2 b d, f 2 3
�3 3 c h 1 5
�4 4 d – 1 2
�5 5 f – 1 5
�6 6 h – 1 3

Table 2   Computation of the dynamic program

i = 1 i = 2 i = 3 i = 4

W(1,0,0) = 4 W(2,1,1) = W(1,1,0) + 2 = 6 W(3,1,1) = W(2,1,1) = 6 W(4,1,1) = W(3,1,1) = 6

W(1,1,0) = 4 W(2,2,1) = W(2,1,1) = 6 W(3,2,1) = W(3,1,1) = 6 W(4,2,1) = W(4,1,1) = 6

W(1,2,0) = 4 W(2,3,1) = W(2,2,1) = 6 W(3,3,1) = W(3,2,1) = 6 W(4,3,1) = W(4,2,1) = 6

W(1,3,0) = 4 W(2,4,1) = W(2,3,1) = 6 W(3,4,1) = W(3,3,1) = 6 W(4,4,1) = W(4,3,1) = 6

W(1,4,0) = 4 W(2,5,1) = W(2,4,1) = 6 W(3,5,1) = W(3,4,1) = 6 W(4,5,1) = W(4,4,1) = 6

W(1,5,0) = 4 W(2,6,1) = W(2,5,1) = 6 W(3,6,1) = W(3,5,1) = 6 W(4,6,1) = W(4,5,1) = 6

W(1,6,0) = 4 W(3,3,3) = W(2,3,1) + 5 = 11 W(4,2,2) = W(2,2,1) + 3 = 9

W(3,4,3) = W(3,3,3) = 11 W(4,3,2) = W(4,2,2) = 9

W(3,5,3) = W(3,4,3) = 11 W(4,4,2) = W(4,3,2) = 9

W(3,6,3) = W(3,5,3) = 11 W(4,5,2) = W(4,4,2) = 9

W(4,6,2) = W(4,5,2) = 9

W(4,3,3) = W(3,3,3) = 11

W(4,4,3) = W(4,3,3) = 11

W(4,5,3) = W(4,4,3) = 11

W(4,6,3) = W(4,5,3) = 11

W(4,6,6) = W(3,6,3) + 3 = 14
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enlarging one of the current non-reachable areas with increasing interdiction budget, 
there is also the possibility to establish a new (disjoint) non-reachable area. It turns 
out that Algorithm  2 only needs to be slightly modified to cope with this.

To this end, we combine all the decision trees DTx , x ∈ V ⧵ S as explained before 
in a single decision tree. Define the new decision tree DT as follows: Create a root 
node ∅ . For every x ∈ V ⧵ S , denote by DTx the decision tree with respect to node 
x. All these decision trees DTx are linked by an edge from their root node ∅x to ∅ . 
The resulting graph is sketched in Fig. 8. Again, we assume that the nodes of DT are 
labeled according to a breadth-first search starting at ∅ by {�0 = �, �1, ..., �p} . Fur-
ther, we set ���(�)∶={�x ∣ x ∈ V ⧵ S} and ����(�)∶=���� ��(�)∶=0.

If element ∅x , x ∈ V ⧵ S , is part of the current replacement strategy, there is a 
non-reachable area established with respect to node x according to the previous sec-
tion. Thus, every node of the cluster may be the origin of a non-reachable area, and 
every established non-reachable area may be extended analogously to Algorithm 2. 
However, we have to ensure that no two different non-reachable areas overlap, as 
this would cause non-proper interdiction strategies and re-count some non-reachable 
nodes when summing profits, requiring the following adaption of the recursion.

We keep the notation and interpretation of W(i,j,k) , I(i,j,k) , and R(i,j,k) analogous to 
Algorithm 2. Further, we introduce a set V(i,j,k) ⊆ V ⧵ S containing all non-reachable 
nodes with respect to interdiction strategy R(i,j,k) , which is easy to compute. Consider 
any arbitrary iteration (i, j, k) and say that �k is part of the decision tree DTx , i.e., �k 
is a replacement to enlarge the non-reachable area originating from node x. Then, 
the adapted recursion is given by

(6)W(i,j,k)∶=max{W(i−1,j,k),

(7)W(i,j−1,k),

v1 v2 v3

v4

v5v6v7

Fig. 7   An instance with r = 11 and the optimal solution of Problem 4. However, the non-reachable area 
{v1, v2, v3, v4} cannot be found by Problem 5
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provided that the requested index exists (if not we again assume the value to be −∞ ). 
The recursion can be initialized by I(0,j,0) = {�} for all j ∈ {0, ..., |R|}.

In contrast to before, there is a slight difference in (8): additionally to the previ-
ous conditions, we have to ensure that no two different non-reachable areas merge, 
as the resulting interdiction strategy would not be proper and the computation of the 
profit would not be well-defined. Note that there is always a proper optimal inter-
diction strategy, such that this is no restriction. For all k� ∈ K(i, j, k) , the condition 
V(i−����(�k),j,k

�) ∩ �x(�k) = � can be easily checked, and the proof of the algorithm is 
analogous to before.

Remark 2  Obviously, a specific non-reachable area may be obtained by several 
replacement strategies with different origins. From that point on, both non-reachable 
areas could be augmented in the same way. Thus, the size of the decision tree can be 
reduced by deleting duplicate strategies that represent the same outcome, improving 
the runtime of the algorithm (cf. Example 6).

Example 6  Consider the upper left network given in Fig.  9. The encircled nodes 
can be merged due to Remark 1. The nodes are labeled by numbers, edges by let-
ters. The resulting decision tree is sketched in Fig. 10. The grayed out parts can be 
omitted by Remark  2. The development of the current best non-reachable area(s) 
during the execution of the algorithm is illustrated in Fig. 9. Exemplarily, we show 
the computation of W(4,9,8) , the optimum value with respect to interdiction budget 4 
(note that we only demonstrate the path of the recursion where the maximum value 
is attained).

  

(8)
max

k� ∈ K(i, j, k) ∶

V(i−����(�k),j,k
�) ∩ �x(�k) = �

W(i−����(�k),j,k
�) + ���� ��(�k)},

W(4,9,8) = W(3,9,7) + ���� ��(�8) = 8 + 3 = 11

W(3,9,7) = W(2,9,1) + ���� ��(�7) = 6 + 2 = 8

W(2,9,1) = W(1,9,6) + ���� ��(�1) = 3 + 3 = 6

W(1,9,6) = W(0,9,0) + ���� ��(�6) = 0 + 3 = 3

Fig. 8   Construction of the deci-
sion tree ∅(0, 0)

∅1 ∅2 ∅n

DT1 DT2 DTn

. . .
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Fig. 9   Optimal non-reachable areas for different interdiction budget
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In total we can conclude:

Theorem 3  Problem 2 is solvable in polynomial time.

Note that the procedure discussed before overcomes the problem pointed out 
in Example 5, as every non-reachable area is extended in such a way that the total 
profit is optimized and not the profit of a single non-reachable area.

Finally, combining the solution algorithms of Problem 2 and Problem 3 as dis-
cussed at the beginning of this section, we can state the polynomial solvability of 
Problem 1:

Theorem 4  Problem 1 is solvable in polynomial time.

4 � Conclusion

In this article, we introduced an interdiction problem on tree networks, interdict-
ing a subset of the edges in order to impair the facilities. Precisely, we asked for 
a size-constrained set of edges that maximizes the number of non-reachable nodes 
after interdiction. We formulated the problem as an integer program and presented a 
polynomial time algorithm to solve the problem. To the best of our knowledge, this 
is the first polynomial time algorithm for an interdiction problem in the context of 
facility location planning with edge interdiction. The developed algorithm is based 
on dynamic programming and reveals similarities to a knapsack problem. However, 
an additional dimension in the recurrence relation is needed, as some parts of the 
interdiction strategy are dependent from other parts.

Further research may concentrate on either optimizing running time to solve this 
problem or to study transferability to other, more general graphs. Further research 
may also address the locator’s perspective: which nodes should be chosen as a facil-
ity such that the destruction of the network by removing a certain number of edges 

∅(0, 0) τ0

∅4∅3(1, 1) τ2∅2∅1(1, 3) τ1 ∅5(2, 1) τ3 ∅6(1, 1) τ4 ∅7(4, 4) τ5 ∅8(1, 3) τ6

a(1, 2) τ7

d(1, 3) τ8

g(2, 4) τ9

d

g

b

d

g

g e

g

h

g

g i

g

Fig. 10   The decision tree for the network given in Fig. 9

116



1 3

Interdicting facilities in tree networks﻿	

affects the established facilities as less as possible. The latter problem is closely 
related to robust optimization assuming a worst-case analysis.
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