
Fröhlich, Nicolas; Ruzika, Stefan

Article — Published Version

Interdicting facilities in tree networks

TOP

Provided in Cooperation with:
Springer Nature

Suggested Citation: Fröhlich, Nicolas; Ruzika, Stefan (2021) : Interdicting facilities in tree
networks, TOP, ISSN 1863-8279, Springer, Berlin, Heidelberg, Vol. 30, Iss. 1, pp. 95-118,
https://doi.org/10.1007/s11750-021-00600-6

This Version is available at:
https://hdl.handle.net/10419/287026

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s11750-021-00600-6%0A
https://hdl.handle.net/10419/287026
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

https://doi.org/10.1007/s11750-021-00600-6

1 3

ORIGINAL PAPER

Interdicting facilities in tree networks

Nicolas Fröhlich1 · Stefan Ruzika1

Received: 21 January 2021 / Accepted: 19 April 2021
© The Author(s) 2021

Abstract
This article investigates a network interdiction problem on a tree network: given
a subset of nodes chosen as facilities, an interdictor may dissect the network by
removing a size-constrained set of edges, striving to worsen the established facili-
ties best possible. Here, we consider a reachability objective function, which is
closely related to the covering objective function: the interdictor aims to minimize
the number of customers that are still connected to any facility after interdiction.
For the covering objective on general graphs, this problem is known to be NP-
complete (Fröhlich and Ruzika In: On the hardness of covering-interdiction prob-
lems. Theor. Comput. Sci., 2021). In contrast to this, we propose a polynomial-
time solution algorithm to solve the problem on trees. The algorithm is based on
dynamic programming and reveals the relation of this location-interdiction prob-
lem to knapsack-type problems. However, the input data for the dynamic program
must be elaborately generated and relies on the theoretical results presented in this
article. As a result, trees are the first known graph class that admits a polynomial-
time algorithm for edge interdiction problems in the context of facility location
planning.

Keywords Network interdiction · Network location · Dynamic programming · Trees

Mathematics Subject Classification 90C27 · 90B80 · 90C39 · 05C05

 * Nicolas Fröhlich
 froehlich@mathematik.uni-kl.de

 Stefan Ruzika
 ruzika@mathematik.uni-kl.de

1 Technische Universität Kaiserslautern, Gottlieb-Daimler-Str. 48, 67663 Kaiserslautern,
Germany

TOP (2022) 30:95–118

/ Published online: 10 May 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-021-00600-6&domain=pdf

 N. Fröhlich, S. Ruzika

1 3

1 Introduction

Location science is a well-established research area that fascinates practition-
ers as well as theoreticians. The most basic and likewise famous problems are
known as the p-median, the p-center, and the covering problem (see Laporte et al.
2015). Nowadays research in this field mostly extends these basic models, often
by coupling other fields of theoretical or practical interest, for example, multicri-
teria location planning (Kalcsics et al. 2014; Alzorba et al. 2015), robust location
planning (Baron et al. 2011; Carrizosa and Nickel 2003), or combining locational
decisions and routing (see for example the survey Drexl and Schneider 2015).

In this article, we study an innovative location-interdiction problem on tree
networks. Given a tree T = (V ,E) and a set of facilities S ⊆ V , we are interested
in finding a set of r edges R ⊆ E such that the number of nodes V ⧵ S that are still
connected to some facility s ∈ S after removing the edge set R from the network
is minimal. Obviously, this is equivalent to maximizing the number of non-reach-
able nodes after interdiction. Intuitively speaking, we aim to find an interdiction
strategy such that as many nodes as possible are contained in a connected compo-
nent not including a facility after interdiction. In the context of facility location
planning, studying a reachability objective function is a novel approach, as this
objective function is useless in a setup without interdiction: it suffices to place
one facility in each connected component, no matter where it is placed. How-
ever, in the case that an interdictor may dissect the network, this new objective
function becomes attractive. It can be seen as a special case of the well-known
covering objective function (cf. Laporte et al. 2015), where the coverage radius is
sufficiently large to cover the whole graph. Interdiction problems usually describe
the interdictor’s perspective, and thus, the facilities are already established, and
the interdictor has full knowledge about the locator’s choice. Although there are
many observable applications in which the interdictor takes the role of an attacker
destroying the infrastructure, there are also valuable applications in which the
interdictor is the defender, for example, the prevention of poison or virus spread-
ing, the destruction of smugglers’ networks, or the mitigation of damage caused
by floods (see for example Assimakopoulos 1987; Morton et al. 2007; Soleimani-
Alyar et al. 2016). Besides, interdiction problems are often used to reveal weak
spots of a system.

The analysis of interdiction problems dates back to the second half of the
last century and has gained great attraction within the last few years. The pri-
mary research mainly has focused on maximum flow interdiction (cf. Burch et al.
2003; Chestnut and Zenklusen 2017; Wood 1993; Zenklusen 2010) and shortest
path interdiction (cf. Bar-Noy et al. 1995; Boros et al. 2006; Israeli and Wood
2002; Khachiyan et al. 2008), but in the meantime, the list of combinatorial prob-
lems studied in the context of interdiction has grown rapidly (cf. Chestnut and
Zenklusen 2016; Dinitz and Gupta 2013; Furini et al. 2019; Zenklusen 2014,
2010). A recent survey by Smith and Song (2020) captures the research in this
area. However, work in the context of location-interdiction problems is sparse. In
contrast to our approach, most articles in this area concentrate on interdicting the

96

1 3

Interdicting facilities in tree networks

facilities themselves (cf. Aksen et al. 2010; Church et al. 2004; Mahmoodjanloo
et al. 2016). Commonly, the models are stated as (occasionally multilevel) integer
programs. An extension is given by allowing fortification, a variant in which sev-
eral facilities can be saved from interdiction, see for example Scaparra and Church
(2008). Recently, the interdiction of facilities in a hub network has become an
arising topic (see Ghaffarinasab and Atayi 2018; Ramamoorthy et al. 2018; Ullm-
ert et al. 2020). Due to the complexity, most problems are solved by heuristic
or metaheuristic approaches, for example using genetic algorithms or simulated
annealing. Only a few exact algorithms to solve location-interdiction problems
on general graphs apart from total enumeration are known, and the computation
times are—although many times faster—still poor. This even increases the need
to search for special cases that can be solved exactly in a reasonable time (never-
theless, there are exact solution methods for solving other interdiction problems
in reasonable time, see for example Lozano and Smith (2017) or Baggio et al.
(2021)).

On the contrary, location problems with edge interdiction gained little attention
in the literature. This is quite surprising since the removal of links in networks is a
noteworthy kind of interdiction in many applications such as logistics (Adenso-Diaz
et al. 2018), ecology (Streib et al. 2020), or digital communications (Ahmad et al.
2017). In Fröhlich and Ruzika (2020, 2021), a systematical classification scheme for
location-problems with edge interdiction is introduced, and the complexity state of
the different settings is investigated. They show that in general graphs, the problem
of the follower is NP-complete, whereas the problem of the leader is even Σp

2
-com-

plete. In Bazgan et al. (2010, 2013), inapproximability results for location-interdic-
tion problems with weighted center and median objectives are presented.

Anyhow, there are only few interdiction problems for which approximation
algorithms are known, and the gap between these approximations and the best
known bound is evident (cf. Chestnut and Zenklusen 2016, 2017; Pan and Schild
2016; Phillips 1993; Zenklusen 2010, 2014). This motivates studying the threshold
between exact solvability and hardness in more detail. A natural approach is to study
the problems in restricted graph classes. In Shen and Smith (2011), the authors
develop an exact polynomial-time algorithm based on dynamic programming to
solve the critical node problem on trees and series-parallel graphs. The goal is to
identify a subset of the nodes whose removal will maximally disconnect the graph.
Recently, Aringhieri et al. (2019) studied a distance based variant of this prob-
lem. The authors provide polynomial and pseudo-polynomial algorithms for paths,
trees and series–parallel graphs. In contrast to our work, these problems—although
closely related—do not include a set of existing facilities that should be separated.

The contribution of our paper is the first polynomial-time algorithm for interdict-
ing edges in the context of facility location planning. The presented algorithm includes
several stages: As a first step, the given problem instance is decomposed into several
smaller subproblems that can be solved independently. However, a modified knapsack-
type approach is needed to combine the partial solutions. Each of the subproblems is
solved using a dynamic programming approach whose input data is elaborately gen-
erated during the execution of the algorithm. The functionality of the dynamic pro-
gramming approach is based on a subtle choice of candidates. Finally, the polynomial

97

 N. Fröhlich, S. Ruzika

1 3

runtime is ensured by bounding the number of iterations needed to compute the opti-
mal value by a multiple of the number of edges in the tree.

The rest of the paper is structured as follows: Sect. 2 presents the formal definition
and basic notation of the problem. The polynomial-time solution algorithm is devel-
oped in Sect. 3. We summarize the results and give a short outlook in Sect. 4.

2 Definitions and problem setup

Throughout this article, we consider a tree T = (V ,E) . An interdiction strategy R is
a subset of the edge set E of the tree. We say that R satisfies the interdiction budget
r, if |R| ≤ r . The network after removing the edge set R is denoted by T ⧵ R , which is
also referred to as the interdicted network. Given a set S ⊆ V of facilities, we say that
a node v ∈ V is reachable from S, if there exists a path from v to any facility in S. If
this is not the case, we say that v is non-reachable from S. If the context is clear, we
omit the supplement “from S”. We also refer to the nodes in V ⧵ S as customers. The
interdictor strives to maximize the number of non-reachable nodes by deleting arcs.
This interdictor’s problem can be formally stated as:

Problem 1

Input: A tree T = (V ,E) , a set S ⊆ V of facilities, an integral interdiction
budget r > 0

Task: Find a set R ⊆ E of edges with |R| ≤ r such that

 is maximized.

Instead of maximizing the number of non-reachable nodes, the problem can be
equivalently stated minimizing the number of reachable nodes. It further can be formu-
lated as an integer program. For this purpose, we introduce binary decision variables
xv, v ∈ V ⧵ S , indicating whether a customer is reachable or not, and binary variables
ae, e ∈ E , indicating whether the edge e is interdicted or not. By Puv , we denote the
edge set of the unique path connecting nodes u and v. The first constraint ensures the
correct assignment of the x-variables: for v ∈ V ⧵ S , either node v is reachable or the
path to every facility s ∈ S must be interdicted. The second constraint guarantees the
interdiction budget restriction.

fT⧵R(S)∶=|{v ∈ V ∣ v is non-reachable from S in T ⧵ R}|

(1a)min
∑

v∈V⧵S

xv

(1b)s.t. xv +
∑

e∈Psv

ae≥ 1 v ∈ V ⧵ S, s ∈ S

(1c)
∑

e∈E

ae≤ r

98

1 3

Interdicting facilities in tree networks

Clearly, all decision variables should be binary. However, requiring x to be
non-negative suffices to ensure integrality of an optimal solution, as xv, v ∈ V ⧵ S,
is minimized, and by constraint (1b, 1c, 1d, 1e) either greater than or equal to
0 or 1. Note that dropping the binary constraint on decision variable ae, e ∈ E,
and bounding it from below and above by 0 and 1 does not provide an integral
optimal solution. A counterexample is given by the network depicted in Fig. 1
for interdiction budget 2: one (of several) optimal integral solutions is to interdict
the edges (1, 2) and (2, 4) with 5 remaining reachable customers. In contrast,
a fractional optimal solution is given by a(1,2) = a(5,6) = a(8,9) =

2

3
 and associated

solution value 21

3
 , as xv =

1

3
 for every node v ∈ V ⧵ S . In the remainder of this

article, our goal is to show polynomial-time solvability of this problem presenting
a constructive solution algorithm.

3 Algorithmic approach

First, we show how to decompose the given tree into several subproblems, also
called clusters, each of which can be solved efficiently by the algorithm stated in
the second part of this section (see Theorem 3). The partial solutions can then be
composed to an overall solution by an adapted knapsack-type approach. The clus-
ters are constructed as follows:

Definition 1 For an arbitrary node v ∈ V ⧵ S , we denote by ��(v) ⊆ S the set of
closest facilities connected to v, i.e., for every facility s ∈ ��(v) , the unique path
connecting v and s contains no other facility than s.

Definition 2 A set of nodes V ′ ⊆ V ⧵ S is said to be cluster inducing, if

 (i) for every pair of nodes u, v ∈ V � , it holds that ��(u) = ��(v) , and
 (ii) V ′ is inclusion-wise maximal, i.e., there is no superset V ′′ ⊃ V ′ such that

��(u) = ��(v) for all u, v ∈ V ��.

Definition 3 The set of clusters is defined by

(1d)ae∈ {0, 1} e ∈ E

(1e)xv≥ 0 v ∈ V ⧵ S

Fig. 1 An instance with differ-
ent integral / fractional optimal
solutions for r = 2 . Circles
represent customers, squares
represent facilities

1

3

2 4

5

6 7

8

9

10

99

 N. Fröhlich, S. Ruzika

1 3

where ��(V �)∶=��(v) for some v ∈ V � and T[X] denotes the tree induced by X ⊆ V .

In Fig. 2, a network and the corresponding clusters are depicted. Note that by
construction of a cluster, the facilities are located on its leaves.

Without loss of generality, we label the clusters by C1,C2,… ,Ck in an arbitrary
but fixed order. For Ci ∈ C , we refer to the set of nodes, edges, and facilities con-
tained in Ci as Vi ⊆ V , Ei ⊆ E , and Si ⊆ S , respectively. Note that by definition, a
facility may be contained in several clusters, whereas the sets of edges E1, ...,Ek are
disjoint sets.

For a fixed interdiction strategy R ⊆ E , it holds

The third equality follows, since by definition of ��(v) , if v has no path to any facil-
ity of ��(v) , v does not have a path to any other facility of S in the interdicted net-
work T ⧵ R . As a consequence, deciding whether a node of the cluster Ci is reachable
or non-reachable only depends on the part of the interdiction strategy that hits the
edge set Ei.

Assume that one knows that in an optimal solution of Problem 1, r∗
i
 edges of clus-

ter Ci are interdicted, i.e., |R ∩ Ei| = r∗
i
 , where

∑k

i=1
r∗
i
≤ r . In this case, the optimal

solution of the overall problem can be obtained by composing the optimal solu-
tions within the clusters with respect to the particular distribution of the interdiction
budget. More precisely, it follows

C∶=
{
T[V � ∪ ��(V �)] ∣ V � ⊆ V ⧵ S is cluster inducing

}
,

fT⧵R(S) = |{v ∈ V ∣ v is non-reachable from S in T ⧵ R}|

=

k∑

i=1

|{v ∈ Vi ∣ v is non-reachable from S in T ⧵ R}|

=

k∑

i=1

|{v ∈ Vi ∣ v is non-reachable from ��(v) in T ⧵ R}|

=

k∑

i=1

|{v ∈ Vi ∣ v is non-reachable from Si in Ci ⧵ (R ∩ Ei)}|.

C2

C3

C1

C4

Fig. 2 An instance of Problem 1 and corresponding clusters

100

1 3

Interdicting facilities in tree networks

Thus, the overall solution is composed of the clusters’ solutions. The cluster’s prob-
lem is formally given by:

Problem 2 (Subproblem ������� − ��)

Input: A cluster Ci according to Definition 3, an integral interdiction budget
r′ ≤ r

Task: Find a set Ri ⊆ Ei of edges with |Ri| ≤ r′ such that

 is maximized.

Before stating an algorithm to solve ������� − �� efficiently, we show how
these partial solutions can be combined to an optimal solution of the overall
problem. To this end, assume that for some fixed interdiction budget r′ ≤ r , one
can solve problem ������� − �� stated in Problem 2 on a single cluster Ci effi-
ciently. According to (2), the problem reduces to finding the optimal choices of
r∗
1
, ..., r∗

k
 requiring

∑k

i=1
r∗
i
≤ r . To cope with the latter problem, we introduce a

variant of the knapsack problem with additional constraints grouping the items
and restricting the number of chosen items per group.

Problem 3 (Knapsack with Bucket Constraints (KNAP-BC))

Input: A set of items I = {1, ..., n} , a weight function w ∶ I ⟶ ℕ , a profit func-
tion p ∶ I ⟶ ℕ , a bucket assignment � ∶ I → {1, ..., k} , and a weight
bound W

Task: Find a set I′ ⊆ I of items with
∑

i∈I� w(i) ≤ W and �(i) ≠ �(j) for all
i, j ∈ I�, i ≠ j such that

∑
i∈I� p(i) is maximized.

It can be easily seen that this problem models Problem 1, provided that
������� − �� can be solved efficiently for all clusters Ci ∈ C and all interdiction
budgets r′ ≤ r . For this purpose, let R∗

i
(r�) denote an optimal solution in cluster Ci

with respect to budget r′ and define

to be the corresponding optimal solution value of ������� − �� . Every cluster
represents a bucket, and for every suitable interdiction budget r′ ≤ r , there is an item
with profit z∗

i
(r�) and weight r′ . Clearly, only one solution of each cluster can be part

of the solution of Problem 1, which justifies the bucket constraints.

(2)

max
R⊆E,|R|≤r

fT⧵R(S) =

k∑

i=1

max
Ri⊆Ei,|Ri|=r∗i

|{v ∈ Vi ∣ v non-reachable from Si in Ci ⧵ Ri}|.

fCi⧵Ri
(Si)∶=|{v ∈ Vi ∣ v is non-reachable from Si in Ci ⧵ Ri}|

z∗
i
(r�)∶=|{v ∈ Vi ∣ v is non-reachable from Si in Ci ⧵ R

∗
i
(r�)}|

101

 N. Fröhlich, S. Ruzika

1 3

KNAP-BC can be solved in time O(nW) by the following adaption of the well-
known dynamic programming approach to solve the knapsack problem: Without
loss of generality, assume that the items are ordered block by block according to
their buckets, i.e., the first block of items belongs to bucket B1 , the next block of
entries to bucket B2 , and so on. We define a function � ∶ I ⟶ {0, 1, ..., n} mapping
an item to the last item of the previous block, i.e., for i ∈ I , we define

All we have to ensure when iteratively increasing the set of allowed items during
dynamic programming is that a new solution containing the new item is not based
on the solution of any other item of that bucket. The pseudocode to solve KNAP-
BC is given in Algorithm 1. The value P(i,j) represents the optimal solution value
restricted to items {0, 1, ..., i} and budget limit j. A solution can be obtained by track-
ing the corresponding items that are packed. As here the maximum weight W is
bounded by r ≤ |E| , Algorithm 1 runs in polynomial time with respect to the input
size of Problem 1.

Theorem 1 Algorithm 1 computes the optimal solution of KNAP-BC correctly in
time O(nW).

Proof Analogous to the proof of the general 0-1-knapsack problem (cf. Gilmore
and Gomory 1966) and the fact that item i ∈ I may only be chosen if no other item
j ∈ I, j ≠ i , with �(i) = �(j) is already packed. ◻

Example 1 Recall the network given in Fig. 2. The items of the corresponding knap-
sack instance can be deduced from the partial solutions within the clusters:

�(i)∶=

{
max{j ∈ I ∣ �(j) = �(i) − 1}, if �(i) ≥ 2

0, else.

102

1 3

Interdicting facilities in tree networks

C1 C2 C3 C4

r′ z
∗
1
(r�) r′ z

∗
2
(r�) r′ z

∗
3
(r�) r′ z

∗
4
(r�)

0 0 0 0 0 0 0 0
1 1 1 1 1 3 1 0
2 – 2 2 2 – 2 1
3 – 3 5 3 – 3 2

For a total interdiction budget of 5, it is optimal to interdict one edge in C1 , three
edges in C2 , and one edge in C3.

3.1 Solving ��������� by dynamic programming

In this section, we develop an algorithm to solve ������� − �� . In combination
with Algorithm 1, this solves Problem 1. By assumption, the tree considered in this
subsection is a cluster according to Definition 3. From now on, let T = (V ,E) denote
the corresponding subtree of the cluster and let S ⊆ V be the set of facilities which
are, by construction, located on the leaves of T. Obviously, removing |S| edges suf-
fices to separate all non-facility-nodes of T from S by deleting the incident edges
of S. Thus, without loss of generality, we may assume r′ ≤ |S| . We further require
every interdiction strategy to be proper, i.e., a solution does not contain any redun-
dant edges. An edge e is redundant in R ⊆ E if the set of non-reachable nodes with
interdiction strategy R equals the set of non-reachable nodes with respect to interdic-
tion strategy R ⧵ {e} . An arbitrary interdiction strategy R ⊆ E can be easily checked
for properness and transformed into a proper one.

We now give an alternative formulation of ������� − �� . More precisely,
instead of finding an optimal set of edges to interdict, one may also look for the nodes
that should become non-reachable. Note that such a set of nodes V ′ ⊆ V ⧵ S induces
a unique interdiction strategy and vice versa, as all incident edges of V ′ must be inter-
dicted, assuming no redundant edges. Let �(V �)∶={e = (u, v) ∈ E ∣ u ∈ V �, v ∉ V �}
denote the set of outgoing edges of V ′ and let V denote the set of all node sets
V ′ ⊆ V ⧵ S such that T[V �] is connected. Then, Problem 2 can be reformulated to
Problem 4. It is easy to see that these two problems are equivalent.

Problem 4

Input: A cluster T according to Definition 3, an integral interdiction budget
r′ ≤ r

Task: Find a set V′ ⊆ V satisfying

 (1)
∑

V �∈V� ��(V �)� ≤ r� and
 (2) V � ∩ V �� = � for all V �,V �� ∈ V

� with V ′ ≠ V ′′

 such that
∑

V �∈V� �V �� is maximized.

103

 N. Fröhlich, S. Ruzika

1 3

This problem can be seen as a variant of knapsack with conflict constraints (cf.
Pferschy and Schauer 2009). However, the number of items (namely the cardinality
of V) is not polynomially bounded in the input size of the original problem. Thus, a
naive dynamic programming approach may—provided that the conflict constraints
can be addressed—lead to an exponential time algorithm. Instead, we investigate
some optimality conditions of Problem 4 to facilitate an efficient dynamic program.

Lemma 1 There exists an optimal solution V∗ = {V1, ...,Vl} ⊆ V of Problem 4
such that �(Vi) ∩ �(Vj) = � for all Vi,Vj ∈ V

∗ with Vi ≠ Vj . Especially, all edges in
�(Vi) ∩ �(Vj) are redundant.

Proof Suppose that �(Vi) ∩ �(Vj) = {e} for two sets Vi,Vj ∈ V
∗ with Vi ≠ Vj . Replac-

ing the sets Vi and Vj in V∗ by Vi ∪ Vj remains feasible and provides the same objec-
tive value. Especially, it holds �(Vi ∪ Vj) = (�(Vi) ∪ �(Vj)) ⧵ {e} . ◻

Analogously to the properness of an interdiction strategy, we call a solution
V
∗ = {V1, ...,Vl} ⊆ V of Problem 4 proper, if no two sets Vi,Vj ∈ V

∗,Vi ≠ Vj, in V∗
can be merged without loosing feasibility or decreasing the objective value.

Lemma 2 (Necessary Condition) Let V∗ = {V1, ...,Vl} ⊆ V be optimal for Prob-
lem 4, assume V∗ to be proper, and choose e = (u, v) ∈ �(Vi) for some arbitrary
i ∈ {1, ..., l} . Let u ∈ Vi and v ∉ Vi . Then, either deg(v) ≥ 3 , or v is a facility.

Proof Assume that this is not the case, i.e., for some i ∈ {1, ..., l} , there is an edge
e = (u, v) ∈ �(Vi) with u ∈ Vi and v ∉ Vi such that deg(v) ≤ 2 . Assume that v ∉ S .
As V∗ is proper, it follows v ∉ Vj for all j ∈ {1, ..., l} by Lemma 1. This is imme-
diately a contradiction to the optimality of V∗ , as replacing Vi by Vi ∪ {v} strictly
improves the objective value while

∑
V �∈V� ��(V �)� does not increase. ◻

Lemma 3 (Necessary Condition) Let V∗ ⊆ V be optimal for Problem 4 and let V∗ be
proper. Then, any set Vi ∈ V

∗ is inclusion-wise maximal, i.e., there is no strict super-
set V ′

i
⊃ Vi with |�(V �

i
)| ≤ |�(Vi)|.

Proof This follows as replacing Vi by V ′
i
 in V∗ strictly improves the objective value,

provided that V �
i
∩ Vj = � for all Vj ∈ V

∗ ⧵ {Vi} , while the interdiction costs are
not increased. So, suppose that V �

i
∩ Vj ≠ � for some Vj ∈ V

∗ ⧵ {Vi} . Since V∗ is
proper, there must be at least one additional node v ∈ V ⧵ S such that v ∉ Vi for all
i ∈ {1, ..., l} on the (unique) path between the sets Vi and Vj . Without loss of gen-
erality, choose v adjacent to Vi . Then, replacing Vi in solution V∗ by V ′

i
⧵ Vj strictly

improves the objective value while maintaining feasibility, which is a contradiction.
 ◻

Lemma 3 motivates studying the following related Problem 5: given a node
v ∈ V ⧵ S and a fixed interdiction budget r′ , find an inclusion-wise maximal set
V � ∈ V such that v ∈ V � and |�(V �)| ≤ r� . Note that however, one can not conclude

104

1 3

Interdicting facilities in tree networks

that in an optimal solution V∗ ⊆ V of Problem 4, every Vi is an optimal solution
of Problem 5 for some node x ∈ V ⧵ S and some budget r′ ≤ r . In fact, this is not
true, as we show in Example 5. Nonetheless, the analysis of Problem 5 prepares
the solution algorithm of Problem 4.

Problem 5

Input: A cluster T according to Definition 3, an integral interdiction budget
r′ ≤ r and a node x ∈ V ⧵ S

Task: Find a set V ′ ⊆ V ⧵ S such that

 (1) x ∈ V �,
 (2) �(V �) ≤ r� , and
 (3) T[V �] is connected

 such that |V ′| is maximized.

In Problem 5, every facility in S must be cut off from node x in order to make x
non-reachable. We also refer to the set of non-reachable nodes as non-reachable
area as the whole induced subgraph is non-reachable by property (3). To ensure
connectedness of the induced subgraph of non-reachable nodes, every interdicted
edge must lie on a path connecting x and a facility s ∈ S to maintain feasibility. In
the sequel, our goal is to further reduce the set of candidate edges considered for
interdiction.

Definition 4 Define

where dist(v1, v2) denotes the length of the shortest v1-v2-path with respect to the
number of edges.

Intuitively speaking, the set ����(x) contains all “last common” edges of
paths from node x to two facilities, leading to an increase of interdiction budget
if additional nodes should be cut off. Note that in Definition 4, we do not require
u ≠ v ; thus, every edge incident to a facility is also contained in ����(x) . In
Fig. 3, the candidates ����(x) with respect to node x ∈ V are drawn dashed. We
claim that it suffices to consider edges from ����(x) for interdiction. In fact,
𝛿(V �) ⊆ ����(x) is even a necessary condition for the optimality of V ′ , if one
presumes no redundant edges.

Lemma 4 Let V∗ ⊆ V ⧵ S be optimal for Problem 5. Then 𝛿(V∗) ⊆ ����(x).

Proof Consider any optimal set V∗ with |�(V∗)| = r� such that there exists an edge
e ∈ �(V∗) with e ∉ ����(x) . As stated before, e must be contained in a path

����(x) ={e ∈ E ∣ ∃u, v ∈ S ∶ e = argmax (i,j)∈E(Pux)∩E(Pvx)

max{dist(x, i), dist(x, j)})},

105

 N. Fröhlich, S. Ruzika

1 3

connecting x and a facility in s ∈ S (otherwise the set of non-reachable nodes cannot
be connected or x is reachable). Let e = (vl, vl+1) , i.e., vl ∈ V∗ and vl+1 ∉ V∗ . Con-
sider the edge set

and let Δ denote the number of edges in Ê that must be interdicted to keep the nodes
in V∗ ∪ {vl+1} non-reachable. Suppose Δ ≤ 1 . This is a contradiction to the optimal-
ity of V∗ as |�(V∗ ∪ {vl+1})| ≤ |�(V∗)| . Thus, it follows Δ ≥ 2 . So, at least the edges
(vl+1, v

�) and (vl+1, v��) ∈ Ê with v′ ≠ v′′ must be interdicted to keep V∗ ∪ {vl+1} non-
reachable. This implies that both nodes v′ and v′′ must lie on a path to different facil-
ities. But then, by construction of ����(x) , the edge (vl, vl+1) ∈ ����(x) , which is
a contradiction. ◻

In the sequel, we develop a solution algorithm for Problem 5 based on Lemma 4.
It is easy to see that the (unique) minimum x-S-cut among the edges in ����(x)
corresponds to the interdiction strategy with the lowest cost that makes x non-reach-
able and, at the same time, secondarily maximizes the number of non-reachable
nodes. The idea is to iteratively increase the interdiction cost by dynamic program-
ming shifting the set of interdicted edges step by step towards the facilities, enlarg-
ing the non-reachable area. For any edge of the current interdiction strategy, there is
by Lemma 4 a distinct set of edges which may replace this edge. More precisely, one
asks for the minimum cost extension of the non-reachable area in this direction. For-
mally, the replacement set of a candidate e ∈ ����(x) is defined as follows:

where �(e) and �(e) denote the endpoints of edge e ∈ E closer to and farther away
from node x, respectively. By construction of ����(x) , when the set of non-reach-
able nodes V ′ should be extended by exchanging a current edge e ∈ �(V �) , all edges

P = ((x = v0, v1), (v1, v2), ..., (vp−1, vp = s))

Ê∶={e ∈ E ∣ e is incident to node vl+1} ⧵ {e},

���(e)∶={e� ∈ ����(x) ∣ the�(e) − �(e�) − path contains no edge of ����(x)},

g

e
l

i

j

k

m n

h

c

a

b
d

f
x

Fig. 3 The candidate set ����(x) is drawn dashed

106

1 3

Interdicting facilities in tree networks

in ���(e) must be interdicted. Otherwise, V ′ would be reachable through this path.
Thus, replacing edge e increases the current interdiction cost by

as one unit of cost can be saved for not anymore interdicting edge e. To simplify
notation, we define the set of nodes enclosed by an edge set as follows:

Definition 5 (Enclosed Node Set) For a proper interdiction strategy R ⊆ E and a
node x ∈ V , we define �x(R) to be the set of nodes containing x enclosed by R, i.e.,
�x(R) is the node set of the connected component containing node x in T ⧵ R . If R is
not proper, we define �x(R)∶=�x(R�) , where R′ ⊆ R denotes the strategy where all
redundant edges of R are removed.

With the last definition, we can describe the set of nodes additionally made non-
reachable by the replacement of edge e ⊆ R in any proper interdiction strategy:

Although the last definition suggests that �x(e) depends on the exact choice of R, the
increment of replacing edge e by ���(e) is the same for all such constructed interdic-
tion strategies, as the set of additional non-reachable nodes is the same.

Example 2 Recall the network presented in Fig. 3. Replacing edge c in a current
interdiction strategy by edges g and h implies |�x(c)| = 5 , no matter which edges of
{b, d, e, f , i, j, k, l} are interdicted, see Fig. 4.

The profit of replacing edge e in a current proper interdiction strategy R by the set
���(e) is thus given by

As mentioned, the algorithmic idea is to extend a current interdiction strategy itera-
tively by replacing one of its edges by its replacement set. Clearly, the current set of
non-reachable nodes may be expanded into different directions, i.e., the edge of the
current interdiction strategy that must be replaced by its replacement set is not (nec-
essarily) unique. The goal is to find a feasible sequence of replacements such that

����(e)∶=|���(e)| − 1,

�x(e)∶=�x(R ⧵ {e} ∪ ���(e)) ⧵ �x(R)

���� ��(e)∶=|�x(e)|.

Fig. 4 The increment of non-
reachable nodes replacing edge
c by edges g and h

g h

c

x

107

 N. Fröhlich, S. Ruzika

1 3

the induced non-reachable area is maximal. To find this sequence of replacements,
we change the perception of the replacements: the candidate edges of the original
graph become nodes in a decision tree which is browsed by dynamic programming
for finding the best replacement strategy. We point out that choosing a replacement
does not mean that the corresponding edge is interdicted, but replaced by its replace-
ment set in the current interdiction strategy.

Initially, we start with an artificial replacement denoted by ∅x and define
���(�x) to be the set of edges contained in the minimum x-S-cut among
the edges in ����(x) . Straightforward, we define ����(�x)∶=|���(�x)| and
���� ��(�x) = �x(���(�

x)).
The set of all possible replacements is thus given by

R∶={e ∈ ����(x) ∣ ���(e) ≠ �} ∪ {�x} . Choosing replacement ∅x means that an
initially empty interdiction strategy is replaced by the minimum x-S-cut among
the edges in ����(x) . For an element � ∈ R ⧵ {�x} , we set its parent

The provided parent–children relation between the replacements enables to illustrate
the feasible replacement strategies in a decision tree with node set R rooted in node
∅x (see Fig. 5).

Definition 6 A replacement strategy I ⊆ R is called feasible, if

1. �x ∈ I and
2. for � ∈ I, � ≠ �x, holds that ������(�) ∈ I.

Consequently, every feasible replacement strategy is represented by a sub-
tree of the decision tree that contains the root node ∅x . Note that the replace-
ment strategy does not explicitly specify the edges to be interdicted; rather,
it tells which edges are being substituted, starting with ∅x . Nevertheless,
one can implicitly compute the resulting interdiction strategy: for a feasi-
ble replacement strategy I ⊆ R , the corresponding interdiction strategy is
given by {� ∈

⋃
��∈I ���(�

�) ∣ � ∉ I} . Costs and profit of I are computed by
����(I)∶=

∑
�∈I ����(�) and ���� ��(I)∶=

∑
�∈I ���� ��(�) , respectively.

������(�)∶=��, where �� is the unique element such that � ∈ ���(��).

∅x(1, 4)

a(1, 2)

b(2, 3) c(1, 5)

d(1, 2) f(1, 5) h(1, 3)

g

e l

i

j

k
h

c

a

b
d

fx

Fig. 5 The decision tree with highlighted replacement strategy {�x, a, b, c, h} for the network in Fig. 3
with respect to node x (left) and its corresponding non-reachable area (right)

108

1 3

Interdicting facilities in tree networks

Without loss of generality, we relabel the set of possible replacements
R = {�0 = �x, �1, ..., �p} according to a breadth-first search starting from node ∅x .
That is, for two elements �i, �j ∈ R with i < j it must hold dist(�i, �x) ≤ dist(�j, �

x).

Example 3 The decision tree for the network given in Fig. 3 with respect to node x is
given in Fig. 5. The tuples next to the nodes depict costs and profits. The highlighted
replacement strategy is {�x, a, b, c, h} with total cost 6 and total profit 17. The cor-
responding interdiction strategy is {d, e, f , g,m, n} . An ordering of R according to a
breadth-first search is given by {�x, a, b, c, d, f , h}.

The idea of the dynamic programming approach is to restrict the decision tree to
the first j + 1 replacements {�0, ..., �j}, j ≤ |R| . By W(i,j,k) , we denote the objective
value of a corresponding optimal replacement strategy I(i,j,k) with respect to interdic-
tion budget i ≤ r′ provided that �k ∈ I(i,j,k) and I(i,j,k) ⊆ {𝜏0, ..., 𝜏j} . Note that the last
condition requires k ≤ j . The third index k ∈ {1, ..., |R|} is needed to ensure feasi-
bility of the replacement set, as outlined in the next lines.

Consider an arbitrary triple (i, j, k) for suitable indices i, j and k. As we require
�k ∈ I(i,j,k) , there are three cases, and the best of these cases is chosen:

1. There is a former replacement strategy that already includes the required replace-
ment �k for some lower interdiction budget i′ < i maximizing the total profit. In
this case, we set

 Consequently, the related replacement strategy does not change, i.e., it follows
I(i,j,k) = I(i−1,j,k).

2. There is a former replacement strategy that already includes the required replace-
ment �k for some smaller decision tree j′ < j maximizing the total profit. In this
case, we set

 Again, the related replacement strategy does not change, i.e., it follows
I(i,j,k) = I(i−1,j,k).

3. There is a former replacement strategy not yet containing the replacement �k that
can be extended by the replacement �k to maximize the total profit. For this more
involved case, the computation of W(i,j,k) is explained below.

In the third case, we only may extend former replacement strategies I(i�,j�,k�)

– that contain only allowed replacements, i.e., it must hold j′ ≤ j,
– that satisfy the budget constraint after adding replacement �k , i.e., it must hold

i� + ����(�k) ≤ i , and
– whose corresponding interdiction strategy contains the edge �k , (otherwise

it cannot be replaced). This is the case if and only if ������(�k) ∈ I(i�,j�,k�) and
�k ∉ I(i�,j�,k�).

W(i,j,k) = W(i−1,j,k).

W(i,j,k) = W(i,j−1,k).

109

 N. Fröhlich, S. Ruzika

1 3

To shorten notation of the latter condition, we denote the candidate set of these
feasible indices k′ by

Intuitively speaking, the set K(i, j, k) contains all the indices k′ such that replacement
�k can be added to I(i−����(�k),j,k�) . This is illustrated in Fig. 6: the two left replacement
strategies can be extended by replacement c, but not the right one, as this replace-
ment is already made.

Thus, in the third case, the value W(i,j,k) can be computed by

Combining the three cases, the recursion formula to compute W(i,j,k) is given by

provided that the requested index exists (if not assume the value to be −∞). The
recursion can be initialized with I(����(�x),j,0) = {�x} for all j ∈ {0, ..., |R|} . It follows:

Theorem 2 The optimal solution of Problem 5 is given by

i.e., Algorithm 2 solves Problem 5 correctly in polynomial time.

Proof The correctness of the algorithm follows by the previous discussion. The
candidate set ����(x) can be determined in O(|V2|) , costs and profits can be
obtained in linear time. In (5), the maximum over at most j values is computed. As
r′ ≤ |E| ≤ |V| and |R| ≤ |E| , the total runtime of Algorithm 2 is in O(|V|4) . ◻

K(i, j, k)∶={k� ∈ {1, ..., j} ∣ ������(�k) ∈ I(i−����(�k),j,k�) and �k ∉ I(i−����(�k),j,k�)}

W(i,j,k) = max
k�∈K(i,j,k)

W(i−����(�k),j,k
�) + ���� ��(�k).

(3)W(i,j,k)∶=max{W(i−1,j,k),

(4)W(i,j−1,k),

(5)max
k�∈K(i,j,k)

W(i−����(�k),j,k
�) + ���� ��(�k)},

max
k∈{1,...,|R|}

W(r�,|R|,k),

∅x

a

b c

d f h

∅x

a

b c

d f h

∅x

a

b c

d f h

Fig. 6 Three different replacement strategies. Only the left two can be extended by replacement c, as
replacement c is already contained in the right one

110

1 3

Interdicting facilities in tree networks

Note that Algorithm 2 is not optimized in terms of running time as our goal is to
show polynomial solvability and to present an easy-to-understand reasoning.

Example 4 Recall the network of Example 3 (Fig. 3) and its corresponding deci-
sion tree given in Fig. 5. The input of Algorithm 2 is annotated in Table 1, and the
computation is outlined in Table 2 for interdiction budget 4. All missing values are
−∞ . The optimal solution is given by W(4,6,6) = 14 , and the replacement strategy
obtained by backtracking is {�0, �1, �3, �6} = {�x, a, c, h} . The corresponding inter-
diction strategy is thus {b, g,m, n}.

As already mentioned, an optimal solution of Problem 4 may not be composed of
optimal solutions of Problem 5. We justify this claim in the next example.

Example 5 Consider the graph depicted in Fig. 7 and interdiction budget 11. Then,
the (unique) optimal solution of Problem 4 is given by V∗ = {{v1, v2, v3, v4}, {v6, v7}}
with |�({v1, v2, v3, v4})| = 10 and |�({v6, v7})| = 1 . However, for interdiction budget
10, node set {v1, v2, v3, v4} is not optimal (for Problem 5) for any fixed node v1, ..., v4 ,
as it is always better to cut off the 5 upper facilities. For example, for fixed node v1 ,
the set {v1, v4, v5, v6, v7} with |�({v1, v4, v5, v6, v7})| = 10 is optimal for Problem 5.

It is easy to see that the size of the network (and thus the runtime of Algorithm 2)
can be reduced by merging appropriate nodes, leading to a weighted formulation of
Problem 1:

Remark 1 If it holds for two nodes u, v ∈ V ⧵ S that ����(u) = ����(v) , then, in
an optimal solution, node u is non-reachable if and only if node v is non-reachable.
Thus, nodes u and v may be merged into a single node {u, v} with ���� ��({u, v}) = 2 .

111

 N. Fröhlich, S. Ruzika

1 3

Note that the equivalence of the minimum u-S-cut and the minimum v-S-cut is a
(necessary and) sufficient condition for ����(u) = ����(v).

3.2 Dynamic program for Problem 2

As a last step to show polynomial solvability of Problem 1, we show how to extend
Algorithm 2 solving the restricted Problem 5 to solve the unrestricted Problem 2.
By combining the solutions of all the clusters according to Algorithm 1, the desired
result then follows.

Intuitively speaking, the idea of the overall solution algorithm is as follows: in
contrast to Problem 5, where a single non-reachable area “grows” by iteratively
increasing the budget, we now have several such disjoint areas. Thus, in addition to

Table 1 Input of Algorithm 2 j Element Replacement set Cost Profit

�0 0 ∅x a 1 4
�1 1 a b, c 1 2
�2 2 b d, f 2 3
�3 3 c h 1 5
�4 4 d – 1 2
�5 5 f – 1 5
�6 6 h – 1 3

Table 2 Computation of the dynamic program

i = 1 i = 2 i = 3 i = 4

W(1,0,0) = 4 W(2,1,1) = W(1,1,0) + 2 = 6 W(3,1,1) = W(2,1,1) = 6 W(4,1,1) = W(3,1,1) = 6

W(1,1,0) = 4 W(2,2,1) = W(2,1,1) = 6 W(3,2,1) = W(3,1,1) = 6 W(4,2,1) = W(4,1,1) = 6

W(1,2,0) = 4 W(2,3,1) = W(2,2,1) = 6 W(3,3,1) = W(3,2,1) = 6 W(4,3,1) = W(4,2,1) = 6

W(1,3,0) = 4 W(2,4,1) = W(2,3,1) = 6 W(3,4,1) = W(3,3,1) = 6 W(4,4,1) = W(4,3,1) = 6

W(1,4,0) = 4 W(2,5,1) = W(2,4,1) = 6 W(3,5,1) = W(3,4,1) = 6 W(4,5,1) = W(4,4,1) = 6

W(1,5,0) = 4 W(2,6,1) = W(2,5,1) = 6 W(3,6,1) = W(3,5,1) = 6 W(4,6,1) = W(4,5,1) = 6

W(1,6,0) = 4 W(3,3,3) = W(2,3,1) + 5 = 11 W(4,2,2) = W(2,2,1) + 3 = 9

W(3,4,3) = W(3,3,3) = 11 W(4,3,2) = W(4,2,2) = 9

W(3,5,3) = W(3,4,3) = 11 W(4,4,2) = W(4,3,2) = 9

W(3,6,3) = W(3,5,3) = 11 W(4,5,2) = W(4,4,2) = 9

W(4,6,2) = W(4,5,2) = 9

W(4,3,3) = W(3,3,3) = 11

W(4,4,3) = W(4,3,3) = 11

W(4,5,3) = W(4,4,3) = 11

W(4,6,3) = W(4,5,3) = 11

W(4,6,6) = W(3,6,3) + 3 = 14

112

1 3

Interdicting facilities in tree networks

enlarging one of the current non-reachable areas with increasing interdiction budget,
there is also the possibility to establish a new (disjoint) non-reachable area. It turns
out that Algorithm 2 only needs to be slightly modified to cope with this.

To this end, we combine all the decision trees DTx , x ∈ V ⧵ S as explained before
in a single decision tree. Define the new decision tree DT as follows: Create a root
node ∅ . For every x ∈ V ⧵ S , denote by DTx the decision tree with respect to node
x. All these decision trees DTx are linked by an edge from their root node ∅x to ∅ .
The resulting graph is sketched in Fig. 8. Again, we assume that the nodes of DT are
labeled according to a breadth-first search starting at ∅ by {�0 = �, �1, ..., �p} . Fur-
ther, we set ���(�)∶={�x ∣ x ∈ V ⧵ S} and ����(�)∶=���� ��(�)∶=0.

If element ∅x , x ∈ V ⧵ S , is part of the current replacement strategy, there is a
non-reachable area established with respect to node x according to the previous sec-
tion. Thus, every node of the cluster may be the origin of a non-reachable area, and
every established non-reachable area may be extended analogously to Algorithm 2.
However, we have to ensure that no two different non-reachable areas overlap, as
this would cause non-proper interdiction strategies and re-count some non-reachable
nodes when summing profits, requiring the following adaption of the recursion.

We keep the notation and interpretation of W(i,j,k) , I(i,j,k) , and R(i,j,k) analogous to
Algorithm 2. Further, we introduce a set V(i,j,k) ⊆ V ⧵ S containing all non-reachable
nodes with respect to interdiction strategy R(i,j,k) , which is easy to compute. Consider
any arbitrary iteration (i, j, k) and say that �k is part of the decision tree DTx , i.e., �k
is a replacement to enlarge the non-reachable area originating from node x. Then,
the adapted recursion is given by

(6)W(i,j,k)∶=max{W(i−1,j,k),

(7)W(i,j−1,k),

v1 v2 v3

v4

v5v6v7

Fig. 7 An instance with r = 11 and the optimal solution of Problem 4. However, the non-reachable area
{v1, v2, v3, v4} cannot be found by Problem 5

113

 N. Fröhlich, S. Ruzika

1 3

provided that the requested index exists (if not we again assume the value to be −∞).
The recursion can be initialized by I(0,j,0) = {�} for all j ∈ {0, ..., |R|}.

In contrast to before, there is a slight difference in (8): additionally to the previ-
ous conditions, we have to ensure that no two different non-reachable areas merge,
as the resulting interdiction strategy would not be proper and the computation of the
profit would not be well-defined. Note that there is always a proper optimal inter-
diction strategy, such that this is no restriction. For all k� ∈ K(i, j, k) , the condition
V(i−����(�k),j,k

�) ∩ �x(�k) = � can be easily checked, and the proof of the algorithm is
analogous to before.

Remark 2 Obviously, a specific non-reachable area may be obtained by several
replacement strategies with different origins. From that point on, both non-reachable
areas could be augmented in the same way. Thus, the size of the decision tree can be
reduced by deleting duplicate strategies that represent the same outcome, improving
the runtime of the algorithm (cf. Example 6).

Example 6 Consider the upper left network given in Fig. 9. The encircled nodes
can be merged due to Remark 1. The nodes are labeled by numbers, edges by let-
ters. The resulting decision tree is sketched in Fig. 10. The grayed out parts can be
omitted by Remark 2. The development of the current best non-reachable area(s)
during the execution of the algorithm is illustrated in Fig. 9. Exemplarily, we show
the computation of W(4,9,8) , the optimum value with respect to interdiction budget 4
(note that we only demonstrate the path of the recursion where the maximum value
is attained).

(8)
max

k� ∈ K(i, j, k) ∶

V(i−����(�k),j,k
�) ∩ �x(�k) = �

W(i−����(�k),j,k
�) + ���� ��(�k)},

W(4,9,8) = W(3,9,7) + ���� ��(�8) = 8 + 3 = 11

W(3,9,7) = W(2,9,1) + ���� ��(�7) = 6 + 2 = 8

W(2,9,1) = W(1,9,6) + ���� ��(�1) = 3 + 3 = 6

W(1,9,6) = W(0,9,0) + ���� ��(�6) = 0 + 3 = 3

Fig. 8 Construction of the deci-
sion tree ∅(0, 0)

∅1 ∅2 ∅n

DT1 DT2 DTn

. . .

114

1 3

Interdicting facilities in tree networks

7

8

4

6

5

2

3

1

j i

k l
g

h

e

f

d

c
b a

i = 1

i = 2 i = 3

i = 4 i = 5

Fig. 9 Optimal non-reachable areas for different interdiction budget

115

 N. Fröhlich, S. Ruzika

1 3

In total we can conclude:

Theorem 3 Problem 2 is solvable in polynomial time.

Note that the procedure discussed before overcomes the problem pointed out
in Example 5, as every non-reachable area is extended in such a way that the total
profit is optimized and not the profit of a single non-reachable area.

Finally, combining the solution algorithms of Problem 2 and Problem 3 as dis-
cussed at the beginning of this section, we can state the polynomial solvability of
Problem 1:

Theorem 4 Problem 1 is solvable in polynomial time.

4 Conclusion

In this article, we introduced an interdiction problem on tree networks, interdict-
ing a subset of the edges in order to impair the facilities. Precisely, we asked for
a size-constrained set of edges that maximizes the number of non-reachable nodes
after interdiction. We formulated the problem as an integer program and presented a
polynomial time algorithm to solve the problem. To the best of our knowledge, this
is the first polynomial time algorithm for an interdiction problem in the context of
facility location planning with edge interdiction. The developed algorithm is based
on dynamic programming and reveals similarities to a knapsack problem. However,
an additional dimension in the recurrence relation is needed, as some parts of the
interdiction strategy are dependent from other parts.

Further research may concentrate on either optimizing running time to solve this
problem or to study transferability to other, more general graphs. Further research
may also address the locator’s perspective: which nodes should be chosen as a facil-
ity such that the destruction of the network by removing a certain number of edges

∅(0, 0) τ0

∅4∅3(1, 1) τ2∅2∅1(1, 3) τ1 ∅5(2, 1) τ3 ∅6(1, 1) τ4 ∅7(4, 4) τ5 ∅8(1, 3) τ6

a(1, 2) τ7

d(1, 3) τ8

g(2, 4) τ9

d

g

b

d

g

g e

g

h

g

g i

g

Fig. 10 The decision tree for the network given in Fig. 9

116

1 3

Interdicting facilities in tree networks

affects the established facilities as less as possible. The latter problem is closely
related to robust optimization assuming a worst-case analysis.

Acknowledgements This work was partially supported by the Bundesministerium für Bildung und
Forschung (BMBF) under Grant FKZ 13N14561.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was partially sup-
ported by the Bundesministerium für Bildung und Forschung (BMBF) under Grant FKZ 13N14561.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Adenso-Diaz B, Mar-Ortiz J, Lozano S (2018) Assessing supply chain robustness to links failure. Int J Prod
Res 56(15):5104–5117

Ahmad W, Hasan O, Pervez U, Qadir J (2017) Reliability modeling and analysis of communication net-
works. J Network Comput Appl 78:191–215

Aksen D, Piyade N, Aras N (2010) The budget constrained r-interdiction median problem with capacity
expansion. Central Eur J Oper Res 18(3):269–291

Alzorba S, Günther C, Popovici N (2015) A special class of extended multicriteria location problems. Opti-
mization 64(5):1305–1320

Aringhieri R, Grosso A, Hosteins P, Scatamacchia R (2019) Polynomial and pseudo-polynomial time algo-
rithms for different classes of the distance critical node problem. Discr Appl Math 253:103–121. https://
doi. org/ 10. 1016/j. dam. 2017. 12. 035

Assimakopoulos N (1987) A network interdiction model for hospital infection control. Comput Biol Med
17(6):413–422

Baggio A, Carvalho M, Lodi A, Tramontani A (2021) Multilevel approaches for the critical node problem.
Oper Res

Bar-Noy A, Khuller S, Schieber B (1995) The complexity of finding most vital arcs and nodes. Tech. Rep
Baron O, Milner J, Naseraldin H (2011) Facility location: a robust optimization approach. Prod Oper Manage

20(5):772–785
Bazgan C, Toubaline S, Vanderpooten D (2010) Complexity of determining the most vital elements for the

1-median and 1-center location problems. In: International conference on combinatorial optimization
and applications. Springer, pp 237–251

Bazgan C, Toubaline S, Vanderpooten D (2013) Complexity of determining the most vital elements for the
p-median and p-center location problems. J Comb Opt 25(2):191–207

Boros E, Borys K, Gurevich V, Rudolf G (2006) Inapproximability bounds for shortest-path network inter-
diction problems. Technical report, Rutgers University, Piscataway, NJ, USA

Burch C, Carr R, Krumke S, Marathe M, Phillips C, Sundberg E (2003) A decomposition-based pseudoap-
proximation algorithm for network flow inhibition. In: Network interdiction and stochastic integer pro-
gramming. Springer, pp 51–68

Carrizosa E, Nickel S (2003) Robust facility location. Math Methods Oper Res 58(2):331–349

117

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dam.2017.12.035
https://doi.org/10.1016/j.dam.2017.12.035

 N. Fröhlich, S. Ruzika

1 3

Chestnut SR, Zenklusen R (2016) Interdicting structured combinatorial optimization problems with { 0, 1 }
-objectives. Math Oper Res 42(1):144–166

Chestnut SR, Zenklusen R (2017) Hardness and approximation for network flow interdiction. Networks
69(4):378–387

Church RL, Scaparra MP, Middleton RS (2004) Identifying critical infrastructure: the median and covering
facility interdiction problems. Ann Assoc Am Geogr 94(3):491–502

Dinitz M, Gupta A (2013) Packing interdiction and partial covering problems. In: Goemans M, Correa J
(eds) Integer programming and combinatorial optimization. Springer, Berlin, Heidelberg. pp 157–168

Drexl M, Schneider M (2015) A survey of variants and extensions of the location-routing problem. Eur J
Oper Res 241(2):283–308

Fröhlich N, Ruzika S (2020) The complexity of median-location problems with edge interdiction. Tech. rep.
Technische Universität Kaiserslautern

Fröhlich N, Ruzika S (2021) On the hardness of covering-interdiction problems. Theor. Comput. Sci. https://
doi. org/ 10. 1016/j. tcs. 2021. 04. 007

Furini F, Ljubić I, Martin S, Segundo PS (2019) The maximum clique interdiction problem. Eur J Oper Res
277(1):112–127. https:// doi. org/ 10. 1016/j. ejor. 2019. 02. 028

Ghaffarinasab N, Atayi R (2018) An implicit enumeration algorithm for the hub interdiction median problem
with fortification. Eur J Oper Res 267(1):23–39. https:// doi. org/ 10. 1016/j. ejor. 2017. 11. 035

Gilmore PC, Gomory RE (1966) The theory and computation of knapsack functions. Oper Res
14(6):1045–1074

Israeli E, Wood KR (2002) Shortest-path network interdiction. Networks Int J 40(2):97–111
Kalcsics J, Nickel S, Pozo MA, Puerto J, Rodríguez-Chía AM (2014) The multicriteria p-facility median

location problem on networks. Eur J Oper Res 235(3):484–493
Khachiyan L, Boros E, Borys K, Elbassioni K, Gurvich V, Rudolf G, Zhao J (2008) On short paths interdic-

tion problems: total and node-wise limited interdiction. Theory Comput Syst 43(2):204–233
Laporte G, Nickel S, Saldanha da Gama F (2015) Location science, vol 528. Springer
Lozano L, Smith JC (2017) A backward sampling framework for interdiction problems with fortification.

INFORMS J Comput 29(1):123–139
Mahmoodjanloo M, Parvasi SP, Ramezanian R (2016) A tri-level covering fortification model for facility

protection against disturbance in r-interdiction median problem. Comput Ind Eng 102:219–232
Morton DP, Pan F, Saeger KJ (2007) Models for nuclear smuggling interdiction. IIE Trans 39(1):3–14
Pan F, Schild A (2016) Interdiction problems on planar graphs. Discr Appl Math 198:215–231
Pferschy U, Schauer J (2009) The knapsack problem with conflict graphs. J Graph Algorithms Appl

13(2):233–249
Phillips CA (1993) The network inhibition problem. In: Proceedings of the twenty-fifth annual ACM sympo-

sium on theory of computing, pp 776–785
Ramamoorthy P, Jayaswal S, Sinha A, Vidyarthi N (2018) Multiple allocation hub interdiction and protection

problems: model formulations and solution approaches. Eur J Oper Res 270(1):230–245. https:// doi.
org/ 10. 1016/j. ejor. 2018. 03. 031

Scaparra MP, Church RL (2008) An exact solution approach for the interdiction median problem with fortifi-
cation. Eur J Oper Res 189(1):76–92. https:// doi. org/ 10. 1016/j. ejor. 2007. 05. 027

Shen S, Smith JC (2011) Polynomial-time algorithms for solving a class of critical node problems on trees
and series-parallel graphs. Networks 60(2):103–119. https:// doi. org/ 10. 1002/ net. 20464

Smith JC, Song Y (2020) A survey of network interdiction models and algorithms. Eur J Oper Res
283(3):797–811. https:// doi. org/ 10. 1016/j. ejor. 2019. 06. 024

Soleimani-Alyar M, Ghaffari-Hadigheh A, Sadeghi F (2016) Controlling floods by optimization methods.
Water Resour Manage 30(12):4053–4062

Streib L, Kattwinkel M, Heer H, Ruzika S, Schäfer RB (2020) How does habitat connectivity influence
the colonization success of a hemimetabolous aquatic insect?—a modeling approach. Ecol Model
416:108909

Ullmert T, Ruzika S, Schöbel A (2020) On the p-hub interdiction problem. Comput Oper Res 124:105056
Wood RK (1993) Deterministic network interdiction. Math Comput Model 17(2):1–18
Zenklusen R (2010) Network flow interdiction on planar graphs. Discr Appl Math 158(13):1441–1455
Zenklusen R (2014) Connectivity interdiction. Oper Res Lett 42(6–7):450–454

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

118

https://doi.org/10.1016/j.tcs.2021.04.007
https://doi.org/10.1016/j.tcs.2021.04.007
https://doi.org/10.1016/j.ejor.2019.02.028
https://doi.org/10.1016/j.ejor.2017.11.035
https://doi.org/10.1016/j.ejor.2018.03.031
https://doi.org/10.1016/j.ejor.2018.03.031
https://doi.org/10.1016/j.ejor.2007.05.027
https://doi.org/10.1002/net.20464
https://doi.org/10.1016/j.ejor.2019.06.024

	Interdicting facilities in tree networks
	Abstract
	1 Introduction
	2 Definitions and problem setup
	3 Algorithmic approach
	3.1 Solving by dynamic programming
	3.2 Dynamic program for Problem 2

	4 Conclusion
	Acknowledgements
	References

