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Abstract
Single machine scheduling with sequence-dependent setup times is one of the classical problems of production planning with
widespread applications in many industries. Solving this problem under the min-makespan objective is well known to be
strongly NP-hard. We consider a special case of the problem arising from products having a modular design. This means that
product characteristics, (mass-)customizable by customers, are realized by separate components that can freely be combined.
If consecutive products differ by a component, then a setup is necessary. This results in a specially structured setup matrix that
depends on the similarities of product characteristics. We differentiate alternative problem cases where, for instance, the setup
operations for multiple components either have to be executed sequentially or are allowed to be conducted in parallel. We
analyze the computational complexity of various problem settings. Our findings reveal some special cases that are solvable
in polynomial time, whereas most problem settings are shown to remain strongly NP-hard.

Keywords Scheduling · Modular products · Sequence-dependent setups · Complexity

1 Introduction

We consider a production scheduling problem where jobs
are to be sequenced on a single machine subject to sequence-
dependent setup times under the min-makespan objective.
This problem, which according to the famous 3-field nota-
tion introduced by Graham et al. (1979) is denoted by
[1|si j |Cmax], is closely related to the traveling salesman prob-
lem (TSP). The processing times of jobs merely constitute
a constant portion of the makespan, and minimizing the
makespan is thus equivalent to minimizing the total setup
time. Processing jobs and setup times in the scheduling
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problem then directly correspond to visiting customers and
distances in the TSP. Awide range of results for the TSPwith
special structures of distance matrices is documented by the
survey papers of Boysen and Stephan (2016), Burkard et al.
(1998), and Oda and Ota (2001) as well as Stephan and Boy-
sen (2017).

While the scheduling problem with sequence-dependent
setup times is strongly NP-hard in general, this paper con-
siders special structures of setup times arising in the context
of modular product architectures. We address the question
whether under this special structure the problem is still hard
to solve or can be solved in polynomial time.

The relevance of specially structured setup matrices in the
context of modular products came to our mind when visiting
a production plant of Germany’s market leader for sectional
garage doors (see Fig. 1a). The sections of garage doors,
(mass-)customizable by customers selecting the interior and
exterior surface coating as well as the kind of polyurethane
(PU) foam insulation, are produced in the continuous pro-
duction process schematically depicted in Fig. 1b. Since
interior and exterior steel coatings are unrolled from their
coils and continuously pulled along the three main produc-
tion stages, the whole process can be modeled by a single
machine. Sequence-dependent setups occur whenever two
subsequent jobs, which correspond to customer orders for
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Fig. 1 A modular product and
its production process

garage doors, vary in their individual specification according
to insulation, interior, and/or exterior coating, so that one or
both of the steel coils and/or the cartridge of the PU foam is to
be changed. Vice versa, our three resources (i.e., insulation,
interior, and exterior coating) remain unchanged if subse-
quent jobs share the specific product characteristic. Thus, we
have a specially structured setup matrix that depends on the
similarity of product characteristics of subsequent jobs.

Modular product architectures, providing “a one-to-one
mapping from functional elements in the function structure
to the physical components of the product” with “de-coupled
interfaces between components” (Ulrich 1995) are widely
aspired “to provide customized products or services through
flexible processes in high volumes and at reasonably low
costs” (Da Silveira et al. 2001) in mass-customization envi-
ronments. Typically, there is also a one-to-one mapping not
only from product characteristic to component, but also to a
resource required for the assembly of the respective compo-
nent.Whenever the resource required depends on the product
and needs to be exchanged if products differ in the resource,
modular products share the peculiarities of our garage door
manufacturer, and we have specially structured setup times
that depend on the similarity of product characteristics.

For these modular setups, we want to investigate whether
the specially structured setupmatrices allow solving problem
[1|si j |Cmax] in polynomial time. In doing so, we differentiate
problem variants according to three features:

• Setup operations of resources to be altered between two
successive jobs can be executed in parallel, so that the
maximum time over all current resource setups is to be
considered, or sequentially, so that the sum of single
resource setups constitutes the setup time.

• While we always consider operations equipping the
machine with a resource type, removal operations caused
by removing the resource type required by the previous
job may be relevant or not.

• Setup times per resource can all be equal, e.g., chang-
ing any type of exterior steel coil, interior steel coil,
and PU cartridge always takes the same amount of time,
characteristic-dependent, e.g., changing any typeof exte-
rior steel coil takes identical setup time, which may,
however, differ from the constant setup time for changing
any type of PU cartridges, or value-dependent, e.g., each
specific type of steel coil and PU cartridge may require a
different setup time.

We combine all manifestations of these features and,
hence, have twelve problem variants in total. We determine
the computational complexity of all but one of these variants.

There are several other papers that provide polynomial
time algorithms for special single machine scheduling prob-
lems with setups when minimizing makespan Cmax. They
arise in case of family setups where products are subdivided
into families and only changes between families cause setup
operations, e.g., see Bai et al. (2012), Huang et al. (2011),
Lee and Wu (2010), Wang et al. (2008, 2012), Wu and Lee
(2008), Xu et al. (2014), Yang (2011), and Yang and Yang
(2010) and if setups are applied to model learning effects and
their duration decreases with increasing cumulated produc-
tion time, e.g., see Cheng et al. (2010), Huang et al. (2013),
Koulamas and Kyparisis (2008), Lai et al. (2011), Soroush
(2012) and Yin et al. (2010, 2012). However (to the best of
the authors’ knowledge), none of these existing approaches
considers our case of modular setups where the similarity
of product characteristics influences setup times. Our own
finding (after a thorough literature search) is also supported
by the manifold and up-to-date survey papers on scheduling
with setups provided in Allahverdi (2015), Allahverdi et al.
(1999), Allahverdi et al. (2008) and Stefansdottir et al. (2017)
where modular setups are not mentioned.

The remainder of the paper is structured as follows. Sec-
tion 2 defines the problem setting and classifies the different
problem cases investigated in this paper. Our complexity
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results are presented in Sect. 3, and finally, Sect. 4 concludes
the paper.

2 Problem definition and classification

We have a modular product, which is mass-customizable
by customers specifying a given set C = {c1, . . . , cm} of
m different product characteristics. For each characteristic
c ∈ C , a customer can select from a given set of integer
values Vc reflecting the alternative options. For our garage
door example, the insulation is a product characteristic c and
there is a set Vc of alternative insulation types the customers
may choose from. All jobs, each corresponding to an order
for a specific product customized according to a customer’s
demand, are unified in job set J = {1, . . . , n}. Each job j ∈ J
is defined by its processing time p j and a value v j,c ∈ Vc
for each characteristic c ∈ C . Let Kc be the number of dis-
tinct values for characteristic c among the set of jobs, and let
K = max {Kc | c ∈ C}.

From now on, a characteristic c ∈ C with value v ∈ Vc
refers to the product characteristic (e.g., the interior coatingof
a garage door) and its value (e.g., a specific kind of coating),
but also to the specific resource (e.g., a steel coil) required
by the machine and its specific resource type (e.g., a specific
type of coil) to realize the value of the characteristic. Thus,
we say processing job j with v j,c ∈ Vc, c ∈ C , requires the
machine to have value v j,c of characteristic c. For each value
v ∈ Vc, c ∈ C , we have a setup time sev,c ≥ 0 for equipping
characteristic c with value v and a setup time srv,c ≥ 0 for
removing value v from characteristic c.

A schedule is a sequence σ of jobs with σ(k) being the
kth job in σ . For processing a job j , we have to configure the
machine by setting each characteristic c ∈ C to v j,c ∈ Vc.
The actual setup time si, j between two jobs i and j depends
on the values required by both jobs for each characteristic.
The setup time si, j,c for characteristic c of job j immediately
following i amounts to srvi,c,c + sev j,c,c, if v j,c �= vi,c and to 0
otherwise. If setups for characteristics are conducted sequen-
tially, then si, j = ∑

c∈C si, j,c. If setups for characteristics
are conducted in parallel, then si, j = max

{
si, j,c | c ∈ C

}
.

The setup time s0, j before the first job j = σ(1) amounts to

s0, j = ∑
c∈C sev j,c,c or s0, j = max

{
sev j,c,c | c ∈ C

}
. The

setup time s j,0 after the last job j = σ(n) amounts to

s j,0 = ∑
c∈C srv j,c,c or s j,0 = max

{
srv j,c,c | c ∈ C

}
.

The makespan Cmax(σ ) of a schedule σ is

Cmax(σ ) = s0,σ (1) +
n−1∑

k=1

sσ(k),σ (k+1) + sσ(n),0 +
∑

j∈J

p j .

Table 1 Values for jobs and
characteristics

v j,c 1 2 3

c1 1 2 2

c2 3 3 4

Table 2 Setup times Vc1 Vc2
1 2 3 4

sev,c 1 1 1 3

srv,c 4 3 2 4

Fig. 2 Cmax = 17 for schedule (1, 3, 2) with parallel setups

Fig. 3 Cmax = 18 for schedule (1, 2, 3) with parallel setups

The goal in problem ModSetup- Seq and ModSetup-
Par is to find a minimum makespan schedule when setups
are conducted sequentially and in parallel, respectively.

In order to improve intuition about the problem setting, we
discuss a small example in the following. We consider job
set J = {1, 2, 3}, characteristics c1 and c2, value sets Vc1 =
{1, 2} and Vc2 = {3, 4}, values for jobs and characteristics as
given in Table 1, and setup times for equipping and removing
as given in Table 2. Each job j ∈ J has unit processing time
p j = 1.

Figures 2, 3, 4 and 5 depict schedules corresponding to
schedules (1, 3, 2) and (1, 2, 3) with parallel and sequen-
tial setups, respectively. The gray blocks represent jobs with
the topmost entry referring to the job number j , the sec-
ond entry representing v j,c1 , and the third entry representing
v j,c2 . Setups are depicted aswhite blocks immediately before
or after the job they belong to. The line a setup is depicted
in refers to the corresponding characteristic. The entry of the
white blocks reflects the length of the corresponding setup.

As we can see in the example, schedule (1, 3, 2) yields a
smallermakespan for parallel setups,while schedule (1, 2, 3)
finds better results for sequential setups.

In general, it is easy to see that the total processing time is
a constant, so that, from now on, we will assume that p j = 0
and neglect processing times. In the following, we elaborate
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Fig. 4 Cmax = 25 for schedule
(1, 3, 2) with sequential setups

Fig. 5 Cmax = 22 for schedule
(1, 2, 3) with sequential setups

how the different problem variants investigated in this paper
are derived.

• Setup aggregation Our first distinction addresses the
aggregation of setup times required for altering the diver-
gent characteristics of two successive jobs. Here, we
distinguish the two problem versions ModSetup- Seq
(e.g., a single worker executes all setups for the different
characteristics sequentially) and ModSetup- Par (e.g.,
each characteristic is serviced by a separate worker, so
that all relevant setups are executed in parallel) elaborated
above.

• Removing time Furthermore, we distinguish whether or
not there are special setup times for removing values from
characteristics required by the previous job. An extra
removing time is to be considered, for instance, if remov-
ing the steel coils required by the previous jobs takes
different amounts of time, e.g., due to varying weights or
sizes. Once all removing times for the different values of
a characteristic are equal, they can simply be added to the
setup times related with equipping the machine for the
subsequent job. Note that the removing time of the last
job, then, is covered by the setup time for equipping of
the first job. Note, furthermore, that due to symmetry the
problem setting with setup times for equipping but with-
out setup times for removing is equivalent to the problem
setting with setup times for removing but without setup
times for equipping.

• Setup time differences We call the standard case value-
dependent setup time. Here, equipping any value v for
characteristic cmay take individual setup times sev,c ≥ 0.
Analogously, individual setup times srv,c ≥ 0 for remov-
ing v from c can occur. Furthermore, we distinguish the
following special cases. We investigate the special case
where setup times are only characteristic-dependent; that
is, we have sev,c = sec and s

r
v,c = src for each characteristic

c ∈ C and each value v ∈ Vc. Furthermore, we analyze
the special case where sec = 1 and src = 1 for each char-
acteristic c ∈ C , so that all setup times are equal.

Given these distinctions, we receive twelve different prob-
lem settings to be investigated in the following section.

3 Analysis of computational complexity

This section analyzes the computational complexity of the
problem variants defined in Sect. 2. The main results are
summarized in Table 3.

We first establish the following properties, which justify
a simplifying assumption concerning all problem variants to
be treated later on.

Lemma 1 In both ModSetup- Seq and ModSetup- Par,
setup times satisfy the triangle inequality.

Proof Let us first consider setup times si, j,c and s j,k,c for an
arbitrary job triplet i ∈ J , j ∈ J , and k ∈ J and an arbitrary
characteristic c ∈ C . We have

si, j,c + s j,k,c =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

srvi,c,c + sev j,c,c + srv j,c,c + sevk,c,c ≥ srvi,c,c + sevk,c,c if vi,c �= v j,c and v j,c �= vk,c

srv j,c,c + sevk,c,c = srvi,c,c + sevk,c,c if vi,c = v j,c and v j,c �= vk,c

srvi,c,c + sev j,c,c = srvi,c,c + sevk,c,c if vi,c �= v j,c and v j,c = vk,c

0 = si,k,c if vi,c = v j,c = vk,c .
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Table 3 Subproblems and their complexity status

ModSetup-Seq ModSetup-Par
setup times no removing removing no removing removing

equal

strongly NP-hard even
if m = 2 (Theorem 1)

or if K = 2 (Theorem 2)

O(n · m · K)
Theorem 3

sec = src = 1
characteristic-dependent

sec ≥ 0, src ≥ 0

value-dependent
sev,c ≥ 0, srv,c ≥ 0 open

strongly NP-hard even
if m = 6 (Theorem 4)

or if K = 3 (Theorem 5)

Note that the above carries over to setups before the first
job j and between the first two jobs j and k in a schedule as
well as to setups after the last job j and between the last two
jobs i and j in a schedule. To see this, in the former case we
can set srvi,c,c = 0 and in the latter case, we can set sevk,c,c = 0.

Now, we consider setup times si, j = ∑
c∈C si, j,c and

s j,k = ∑
c∈C s j,k,c for an arbitrary job triplet i , j , and k

inModSetup- Seq. We obtain

si, j + s j,k =
∑

c∈C
si, j,c +

∑

c∈C
s j,k,c

=
∑

c∈C

(
si, j,c + s j,k,c

) ≥
∑

c∈C
si,k,c = si,k .

Finally,we consider setup times si, j = max
{
si, j,c | c ∈ C

}

and s j,k = max
{
s j,k,c | c ∈ C

}
for an arbitrary job triplet i ,

j , and k inModSetup- Par. We obtain

si, j + s j,k = max
{
si, j,c | c ∈ C

} + max
{
s j ,k,c | c ∈ C

}

≥ max
{
si, j,c + s j ,k,c | c ∈ C

} ≥ max
{
si,k,c | c ∈ C

} = si,k .

Again, this result carries over to setups before the first job
j and between the first two jobs j and k in a schedule as well
as to setups after the last job j and between the last two jobs
i and j in a schedule. ��

The fact that the triangle inequality is satisfied, hence,
means that the approximability results by Svensson et al.
(2017, 2018) and Traub and Vygen (2020) for the asymmet-
ric TSP (with the triangle inequality being satisfied) carry
over to both ModSetup- Seq and ModSetup- Par. Svens-
son et al. (2018) show that the asymmetric TSP can be
approximated within a factor of 5,500 in polynomial time,
and Svensson et al. (2017) refine this result to a factor of 506.
Most recently, Traub and Vygen (2020) further reduced the
factor to 22 + ε for any ε > 0.

Lemma 2 There is an optimal schedule forModSetup- Seq
(ModSetup- Par) where jobs coinciding in the value of each
characteristic are scheduled consecutively.

Proof Consider an arbitrary optimal schedule and the first
job i that does not immediately follow the previous job j
with identical values for each characteristic. If there is no
such job, we are done. Due to Lemma 1, we do not increase
total setup time by removing i from its current position and
inserting it immediately after j . By repeating this step, we
find an optimal schedule where jobs coinciding in the value
of each characteristic are scheduled consecutively. ��
Corollary 1 BothModSetup- Seq andModSetup- Par can
be solved inO(n ·m · K + (m · K )!) time and, thus, inO(n)

time, if m and K are fixed.

Proof Wecan cluster jobswith identical values for each char-
acteristic by sorting inO(n ·m ·K ) time using radix sort. We
then have a fixed number m · K of clusters to be sequenced.
Evaluating each of the (m · K )! sequences can be done in
constant time, if m and K are fixed. ��

In the following, we will assume that we do not have jobs
coinciding in all values of characteristics. We can ensure this
by a preprocessing step that clusters jobs accordingly. Such
a preprocessing step clustering jobs with identical values for
all characteristics can be conducted inO(n ·m ·K ) time using
radix sort or inO((n log n) ·m) time with comparison-based
sorting. After the preprocessing step, we handle clusters as
jobs.

3.1 Sequential setups

This section analyzes the computational complexity of those
problem cases where setups are executed sequentially, i.e.,
we have si, j = ∑

c∈C si, j,c for all i, j ∈ J with i �= j .
Unfortunately, the problem turns out to be strongly NP-hard
not only in the most restricted case, but also if we addition-
ally restrict the setting to nomore thanm = 2 characteristics.
We show NP-hardness by reduction from the problem to
find a Hamiltonian path in a cubic graph, abbreviated to
Ham- Cube, which is strongly NP-complete, see Garey and
Johnson (1979).
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Theorem 1 ModSetup-Seq with sev,c = 1 for each character-
istic c ∈ C and each value v ∈ Vc and without setups for
removing is strongly NP-hard even if m = 2.

Proof We consider an arbitrary instance I of Ham- Cube
given by a cubic graph G = (V , E). Let v1j , v2j , and v3j be
the three nodes adjacent to j ∈ V . We first construct another
instance I ′ ofHam- Cube specifiedby a graphG ′ = (V ′, E ′)
as follows.

We replace each node in V by a triangle in G ′ where each
of the nodes in a triangle establishes the connection to one
other triangle. Connections among triangles correspond to
edges in E . Let j i ∈ V ′ be the node in the triangle replacing
j ∈ V that connects its triangle to the triangle replacing
i ∈ V . Furthermore, we define Ẽ , the set of edges between
different triangles. Punnim et al. (2007) show that there exists
a Hamiltonian cycle in G ′, if and only if there exists one in
G. The idea of the proof can be easily adapted to show that
there is a Hamiltonian path in G ′, if and only if there is one
in G.

Now, we construct an instance I ′′ of ModSetup- Seq.
We set J = V ′ and m = 2. Jobs j k1 , j k2 , and j k3 have
v j k1 ,1 = v j k2 ,1 = v j k3 ,1 = j for each j ∈ J . Jobs j i and

i j have v j i ,2 = vi j ,2 = { j, i} for each { j i , i j } ∈ Ẽ . Finally,
we have sev,c = 1 for each value v of each characteristic
c and do not consider setups for removing. This completes
the reduction which is pseudo-polynomial, see Garey and
Johnson (1979, p. 101).

Summarizing, we have a job for each node in V ′. Two
jobs coincide in the value of the first characteristic, if they
belong to the same triangle in G ′ (and, therefore, correspond
to the same node in G). Two jobs coincide in the value of the
second characteristic, if they belong to different triangles and
are connected by an edge in G ′ (and, therefore, correspond
to an edge in G).

We claim that there is a schedulewithmakespan of atmost
|V ′| + 1 for I ′′, if and only if there is a Hamiltonian path in
G ′.

• If there is a Hamiltonian path inG ′, thenwe can construct
a schedule for I ′′ by having the jobs in the same order
as the corresponding nodes in the Hamiltonian path in
G ′. We, then, have setup time of 2 prior to the first job.
Furthermore, we have a setup time of 1 between each pair
of consecutive jobs. This is true, because two jobs differ
in exactly one characteristic’s value, if the corresponding
nodes in G ′ are adjacent. Hence, there is a schedule for
I ′′ with makespan of at most 2 + (|V ′| − 1) = |V ′| + 1.

• Now, assume there is a schedule with a makespan of at
most |V ′| + 1. We have a setup time of 2 prior to the
first job, which leaves |V ′|−1 total setup time for setups
between pairs of consecutive jobs. Since there are no
identical jobs, we have a setup time of at least 1 for each

such pair. Hence, each pair of consecutive jobs corre-
sponds to adjacent nodes inG ′, since non-adjacent nodes
in G ′ incur a setup time of 2.

Hence, there is schedule with a makespan of at most |V ′|+1
for I ′′, if and only if there is a Hamiltonian path in G. ��

To illustrate the relation between instances I , I ′, and I ′′
in the proof, we provide an example in the following. Figure
6a depicts an example instance I with V = {1, . . . , 6}. The
modified graph G ′ specifying instance I ′ is depicted in Fig.
6b. Here, we have a triangle of nodes for each node in G.
Two triangles are connected by an edge in E ′, if and only if
the corresponding nodes in V are connected by an edge in E .
Each node in a triangle connects its triangle to exactly one
other triangle.

The Hamiltonian path (1, 6, 5, 2, 3, 4) in G corresponds
to, e.g., the Hamiltonian path

(14, 15, 16, 61, 63, 65, 56, 51, 52, 25, 24, 23, 32, 36, 34, 43, 42, 41)

in G ′. The other way round, the Hamiltonian path

(14, 41, 42, 43, 34, 32, 36, 63, 65, 61, 16, 15, 51, 56, 52, 25, 24, 23)

in G ′, where nodes 14, 15, and 16 belonging to the same
triangle are not visited consecutively, implies a Hamiltonian
path

(41, 42, 43, 34, 32, 36, 63, 65, 61, 16, 14, 15, 51, 56, 52, 25, 24, 23)

inG ′, where nodes of each triangle are visited consecutively.
The latter Hamiltonian path in G ′ implies Hamiltonian path
(4, 3, 6, 1, 5, 2) in G.

Figure 6c highlights for each job corresponding to a node
in G ′ the values of the characteristics in instance I ′′. We can
see that the first value coincides with the corresponding node
in G, while the second value reflects the corresponding edge
in G.

Let us once more consider Hamiltonian path

(41, 42, 43, 34, 32, 36, 63, 65, 61, 16, 14, 15, 51, 56, 52, 25, 24, 23)

in G ′. If we have the corresponding schedule for I ′′, then
we obtain a total setup time of 2 + (|V ′| − 1) = 2 + (18 −
1) = 19 since two consecutive jobs coincide in exactly one
characteristic’s value.

Note that Theorem 1 states strong NP-hardness for the
most restricted version of ModSetup- Seq with sev,c = 1
for each characteristic c ∈ C and each value v ∈ Vc
and without setups for removing. Hence, all other problem
cases ModSetup- Seq share this complexity status. How-
ever, we add another complexity result that proves strong
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(a) (b)

(c)

Fig. 6 Example instances I , I ′, and I ′′ in the proof of Theorem 1

NP-hardness, if instead the maximum number K of distinct
values over all characteristics is restricted. Again, we show
NP-hardness by reduction from the problem to find a Hamil-
tonian path in a cubic graph, abbreviated to Ham- Cube.

Theorem 2 ModSetup- Seq with sev,c = 1 for each charac-
teristic c ∈ C and each value v ∈ Vc and without setups for
removing is strongly NP-hard even if K = 2.

Proof We consider an arbitrary instance I of Ham- Cube
given by a cubic graphG = (V , E) and construct an instance
I ′ of ModSetup- Seq as follows. We set J = V and
m = |E |. We consider a one-to-one relationship between
edges in E and characteristics. We refer to the characteristic
associated with e ∈ E as ce. For each j ∈ J and each e ∈ E ,
we have v j,e = 1 if e is incident to j , and v j,e = 0 other-

wise. Finally, we have se1,c = se0,c = 1 for each characteristic
c and do not consider setups for removing. This completes
the reduction which is pseudo-polynomial.

Summarizing, we have a job for each node in V . Two dis-
tinct jobs j and j ′ have v j,e = v j ′,e = 1 for a characteristic
ce, if and only if nodes j and j ′ are adjacent in G and e is the
connecting edge. SinceG is cubic, each job j has v j,e = 1 for
exactly three characteristics, and we denote the set of these
characteristics as C j . We refer to them as the characteristics
of job j .

We claim that there is a schedule with a makespan of at
most 5.5 · |V |− 4 for I ′, if and only if there is a Hamiltonian
path in G.
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We, first, have a look at the total setup time for character-
istic ce with e = { j, j ′} in a given schedule. Note that a setup
time of 1 is due before the first job in any schedule. Without
loss of generality, we assume that j is scheduled before j ′.
• If j and j ′ are scheduled in the first two positions or in
the last two positions, then total setup time for ce is 2.

• If j and j ′ are scheduled in consecutive positions p and
p+1, respectively, with p = 2, . . . , n−2 or in positions
1 and n, then total setup time for ce is 3.

• If j and j ′ are scheduled in non-consecutive positions
p and p′, respectively, with p = 1 and 2 < p′ < n or
1 < p < n − 1 and p′ = n, then total setup time for ce
is 4.

• If j and j ′ are scheduled in non-consecutive positions p
and p′, respectively, with 1 < p < p′ −1 < n′ −1, then
total setup time for ce is 5.
Now, we analyze the total setup time in a given schedule

σ and distinguish two cases.

• If there is a characteristic ce ∈ Cσ(1) ∩ Cσ(n), then the
total setup time for characteristics in Cσ(1) ∪ Cσ(n) is at
least

LB1 = 1 · 3︸︷︷︸
ce

+ 2 · 2︸︷︷︸
LB′

1

+2 · 4 = 15.

Obviously, the total setup time for ce is 3. If and only if
Cσ(1) ∩Cσ(2) �= ∅ (Cσ(n−1) ∩Cσ(n) �= ∅), the total setup
time for the characteristic in Cσ(1) ∩Cσ(2) (in Cσ(n−1) ∩
Cσ(n)) is 2 leading to partial lower bound LB ′

1. The total
setup time for at least one characteristic of σ(1) and at
least one characteristic of σ(n) is 4 leading to the last
term in LB1. Hence, total setup time for characteristics
in Cσ(1) ∪ Cσ(n) equals 15, if Cσ(1) ∩ Cσ(2) �= ∅ and
Cσ(n−1) ∩ Cσ(n) �= ∅ and exceeds 15 otherwise.

Among the 1.5 · |V | − 5 other characteristics at most
|V | − 3 can have total setup time of 3. In fact, if Cσ(k) ∩
Cσ(k+1) �= ∅, k = 2, . . . , n−2, then total processing time
of ce with e = {σ(k), σ (k + 1)} is 3. This leads to a total
setup time for the 1.5 · |V | − 5 remaining characteristics
of

S1(q) = 3 · (|V | − 3 − q) + 5 · (0.5 · |V | − 2 + q)

= 5.5 · |V | − 19 + 2 · q.

with q being the number of pairs of consecutive jobs in
σ(2), . . . , σ (n−1) having no characteristic in common.
We, thus, obtain a lower bound of the total setup time for
all characteristics of

LB(q) = LB1 + S1(q) = 15 + 5.5 · |V | − 19 + 2 · q

= 5.5 · |V | − 4 + 2 · q.

Furthermore, a total setup time of LB(0) = 5.5 · |V | − 4
is achieved, if and only if Cσ(k) ∩ Cσ(k+1) �= ∅ for each
k = 1, . . . , n − 1.

• If Cσ(1) ∩ Cσ(n) = ∅, then the total setup time for char-
acteristics in Cσ(1) ∪ Cσ(n) is at least

LB2 = 2 · 2︸︷︷︸
LB′

2

+4 · 4 = 20.

Partial lower bound LB ′
2 is motivated as LB ′

1 above. The
total setup time for the two remaining characteristics of
σ(1) and σ(n), respectively, is 4 leading to the last term
in LB2. Hence, the total setup time for the characteristics
in Cσ(1) ∪ Cσ(n) equals 20, if Cσ(1) ∩ Cσ(2) �= ∅ and
Cσ(n−1) ∩ Cσ(n) �= ∅ and exceeds 20 otherwise.

For the 1.5 · |V | − 6 remaining characteristics, we can
derive a total setup time of

S2(q)=3 · (|V |−3−q)+5 · (0.5 · |V |−3+q)=5.5 · |V |−24+2 · q.

We, thus, obtain a lower bound

LB(q)= LB2+S2(q)=20+5.5 · |V |−24+2 · q=5.5 · |V |−4+2 · q.

Furthermore, a total setup time of LB(0) = 5.5 · |V | − 4
is achieved, if and only if Cσ(k) ∩ Cσ(k+1) �= ∅ for each
k = 1, . . . , n − 1.

For both cases, we see that the lower bound of 5.5 · |V |−4 of
the total setup time (and thus of the makespan) is achieved, if
and only if Cσ(k) ∩ Cσ(k+1) �= ∅ for each k = 1, . . . , n − 1.
Hence, a schedule with makespan 5.5 · |V | − 4 implies a
Hamiltonian path in G and vice versa. This completes the
proof. ��

Summarizing, the most restricted version ofModSetup-
Seq considered in this paper is strongly NP-hard, even if
either m = 2 or K = 2. Since ModSetup- Seq can be
solved in polynomial time if both m and K are fixed, see
Corollary 1, this completes the picture.

3.2 Parallel setups

This section analyzes the computational complexity of those
problem cases where setups are executed in parallel, i.e., we
have si, j = max

{
si, j,c | c ∈ C

}
for all i, j ∈ J with i �= j .

First, we develop a positive result for the special case with
sev,c = sec and srv,c = src for each characteristic c ∈ C and
each value v ∈ Vc. Without loss of generality, we assume
that seck + srck ≥ seck+1

+ srck+1
for each k = 1, . . . ,m − 1.
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Table 4 Values for jobs and
characteristics

v j,c 1 2 3 4 5 6

c1 1 2 2 3 3 2

c2 4 6 5 5 6 6

c3 8 8 7 9 9 9

Lemma 3 There is an optimal schedule to ModSetup- Par
with sev,c = sec and s

r
v,c = src , where all jobs having the same

value for c1 are scheduled consecutively.

Proof Consider an optimal schedule where some jobs with
the same value for c1 are not scheduled consecutively. Let j
be the first job, which is followed by an immediate successor
s( j)withv j,c1 �= vs( j),c1 although there is a (non-immediate)
successor j ′ with v j,c1 = v j ′,c1 . If there ismore than one such
successor, we assume that j ′ is the first one. Let p( j ′) be the
immediate predecessor of j ′.

We modify the schedule as follows. We postpone the sub-
sequence of jobs (s( j), . . . , p( j ′)) and move it to the end of
the schedule. Now, j ′ immediately follows j . The total setup
time changes as follows.

• In the original schedule, the setup time between s( j) and
its immediate predecessor j and between j ′ and its imme-
diate predecessor p( j ′) is 2(src1 + sec1). The last job in the
schedule causes max

{
src | c ∈ C

}
setup time for remov-

ing.
• In the new schedule, the setup time between s( j) and
its immediate predecessor is at most src1 + sec1 and the
setup time between j ′ and its immediate predecessor j
is at most src2 + sec2 ≤ src1 + sec1 . Here, also, the last job
in the schedule causes max

{
src | c ∈ C

}
setup time for

removing.

Since the total setup time does not increase, the makespan
does not increase either. Hence, the modification yields an
optimal schedule. By repeating this step, we can achieve an
optimal schedule as specified in the lemma. ��

To illustrate the basic idea of the proof of Lemma 3,
we consider job set J = {1, . . . , 6}, characteristics c1, c2,
and c3, and value sets Vc1 = {1, 2, 3}, Vc2 = {4, 5, 6}, and
Vc3 = {7, 8, 9}. The values for these jobs and characteristics
are given in Table 4, and the setup times for equipping and
removing are given in Table 5. Note that we have sev,c = sec
and srv,c = src .

Figure 7 depicts a schedule where not all jobs having the
same value for c1 are scheduled consecutively. In this exam-
ple, we have j = 3 and j ′ = 6.

The schedule in Fig. 8 is obtained from the schedule in Fig.
7 by applying the modification used in the Proof of Lemma
3. We postpone the subsequence (s( j), . . . , p( j ′)), which

Table 5 Setup times

Vc1 Vc2 Vc3

1 2 3 4 5 6 7 8 9

sev,c 3 1 4

srv,c 4 5 1

consists of jobs 4 and 5, andmove it to the end of the schedule.
This modification reduces the makespan by one time unit.

Theorem 3 ModSetup- Par with sev,c = sec and srv,c = src
for each characteristic c ∈ C and each value v ∈ Vc can be
solved in O(n · m · K ).

Proof Lemma 3 allows to cluster jobs according to their val-
ues of c1. We refer to these clusters as c1-clusters. Note that
between each pair of c1-clusters we have a total setup time of
srv,c1 + sev,c1 . Before the first c1-cluster, we have a setup time
of max

{
seck | ck ∈ C

}
and after the last c1-cluster, we have

a setup time of max
{
srck | ck ∈ C

}
. Hence, we can sequence

c1-clusters in an arbitrary order. Then, jobs in each c1-cluster
can be sequenced independently.

Note that within each c1-cluster, we can apply Lemma 3
with respect to c2 instead of c1. Hence,we arrange c2-clusters
within each c1-cluster that can be sequenced in arbitrary
order. At this point, we can assume that there is no setup
before the first job and after the last job in each c1-cluster,
because the maximum possible time has been considered
already between c1-clusters (and before the first and after the
last c1 cluster). Following this line of argument, we arrange
ck+1 within ck-cluster for k = 1, . . . ,m−1.Due toLemma3,
this yields an optimal schedule. We can implement this clus-
ter schedule by sorting jobs lexicographically using radix sort
in O(n · m · K ). ��

For the instance depicted in Figs. 7 and 8, we have an
optimal schedule derived by sorting jobs lexicographically
illustrated in Fig. 9.

Themost general case ofModSetup- Par, however, turns
out to be NP-hard. We show this result by a transformation
from the path version of the geometric traveling salesman
problemwithmaximummetric, abbreviated to PATH- TSP-
MAX. Note that the geometric traveling salesman problem
with maximum metric is strongly NP-hard, see Garey and
Johnson (1979). It follows easily that the problem to find a
shortest path with a given start point u and a given end point
v that visits all other points exactly once is strongly NP-hard,
as well.
PATH-TSP-MAX : Given a set P ⊆ Z × Z of (integer)
points in the plane, two specified points u, v ∈ P , and a
positive integer B, is there a simple path of length B or less
(with respect to the maximum metric) that starts in u, ends
in v, and visits every point exactly once?
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Fig. 7 Schedule with jobs having the same value for c1 not scheduled consecutively

Fig. 8 Schedule with jobs having the same value for c1 scheduled consecutively

Fig. 9 Optimal schedule

Theorem 4 ModSetup- Par is strongly NP-hard, even if
m = 6.

Proof For an arbitrary instance I ofPATH- TSP- MAX, e.g.,
a set P of points, a start point u ∈ P , an end point v ∈ P ,
and an integer B, we construct an instance I ′ ofModSetup-
Par with m = 6 characteristics c1 to c6 as follows. Without
loss of generality, we assume the smallest coordinates in I
in both dimensions to be zero. Additionally, we assume that
coordinates are not larger than B, since otherwise the answer
to I trivially is no. Summarizing, we assume 0 ≤ px ≤ B
and 0 ≤ py ≤ B for each p = (px , py) ∈ P .

For each point p ∈ P , we introduce a job p requir-
ing unique values vp,c1 = p1, vp,c2 = p2, vp,c3 = p3,
vp,c4 = p4, vp,c5 = p5, and vp,c6 = p6 for characteris-
tics c1, c2, c3, c4, c5, and c6, respectively. For each job p,
p �= u and p �= v, the resulting setup times for equipping
and removing are

• sep1,c1 = px and srp1,c1 = B − px for characteristic c1,
• sep2,c2 = B − px and srp2,c2 = px for c2,
• sep3,c3 = py and srp3,c3 = B − py for c3,
• sep4,c4 = B − py and srp4,c4 = py for c4,
• sep5,c5 = B and srp5,c5 = 0 for c5 and
• sep6,c6 = 0 and srp6,c6 = B for c6.

For jobs u and v, setup times for equipping and removing are

• seu1,c1 = 0, sev1,c1 = vx , sru1,c1 = B − ux , and srv1,c1 = 0
for c1,

• seu2,c2 = 0, sev2,c2 = B − vx , sru2,c2 = ux , and srv2,c2 = 0
for c2,

• seu3,c3 = 0, sev3,c3 = vy , sru3,c3 = B − uy , and srv3,c3 = 0
for c3,

• seu4,c4 = 0, sev4,c4 = B − vy , sru4,c4 = uy , and srv4,c4 = 0
for c4,

• seu5,c5 = 0, sev5,c5 = B, sru5,c5 = 0, and srv5,c5 = 0 for c5
and

• seu6,c6 = 0, sev6,c6 = 0, sru6,c6 = B, and srv6,c6 = 0 for c6.

This completes the reductionwhich is pseudo-polynomial.
The questionwe ask iswhether there is a schedulewith a total
setup time of at most |P| · B.

A parallel setup of characteristics c1 and c2 from a job
p (p �= v) to a job q (q �= u) requires max{B − px +
qx ; px + B − qx } = B +max{qx − px ; px − qx } time units.
Analogously, a parallel setup of c3 and c4 from p (p �= v)
to q (q �= u) requires B + max{qy − py; py − qy}. Thus, a
parallel setup of all characteristics c1 to c6 from p (p �= v) to
q (q �= u) requires B+max{qx − px ; px −qx ; qy − py; py−
qy; 0} = B + d∞(p, q) time units with d∞(p, q) denoting
the distance between the corresponding points p and q in I .
Consequently, a YES-certificate of I with a length at most B
directly corresponds to a YES-certificate of I ′ with the total
setup time of |P| · B.

For the opposite direction, suppose an arbitrary schedule
for I ′ with a total setup time of at most |P| · B. We, first,
establish that this schedule necessarily starts with u and ends
with v. The total setup time for both c5 and c6 is (|P|−1) ·B.
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Hence, we have a total setup time for c5 and c6 combined of
at least |P| · B (and, thus a total setup time of more than
|P| · B since setup times between jobs for c1 to c4 exceed
B) unless the positive setup times for c5 and c6 occur in
the same |P| − 1 gaps between jobs. The latter can only be
achievedwhen having u and v in the first and the last position,
respectively.

Thus, the schedule directly corresponds to a path from u
to v and due to the analogy between setup times between
jobs and distances between points the path has a length of at
most B. This completes the proof. ��

Next, we add another complexity result that proves strong
NP-hardness, if instead the maximum number K of dis-
tinct values over all characteristics is restricted. We show
NP-hardness by a reduction from the problem tofind aHamil-
tonian path in a graph, abbreviated toHam, which is strongly
NP-complete, see Garey and Johnson (1979).

Theorem 5 ModSetup- Par is strongly NP-hard, even if
K = 3 and sev,c = srv,c for all c ∈ C and v ∈ Vc.

Proof We consider an arbitrary instance I of Ham given by
a graph G = (V , E) with V = {1, . . . , |V |}. We construct
an instance I ′ of ModSetup- Par as follows.

• For each vertex i ∈ V , we have a job i in I ′.
• For each pair ( j, k) of vertices with j < k of I , we

introduce a characteristic c j,k in I ′. In the following, we
call these characteristics edge-characteristics.

– The set of values for edge-characteristic c j,k isVj,k =
{ j, k, 0}.

– For edge-characteristic c j,k , job j receives value
v j,c j,k = j , job k has value vk,c j,k = k, and each
other job i , i �= j and i �= k, has value vi,c j,k = 0.

– We set sej,c j,k = srj,c j,k = sek,c j,k = srk,c j,k = 0, that
is equipping edge-characteristic c j,k with j or k or
removing j or k from c j,k takes no time, if { j, k} ∈ E .
If { j, k} /∈ E , we set sej,c j,k = srj,c j,k = sek,c j,k =
srk,c j,k = 1. Finally, we set se0,c j,k = sr0,c j,k = 0.

• For each vertex i ∈ V , we introduce a characteristic ci
in I ′. In the following, these characteristics are called
vertex-characteristics.

– The set of values for vertex-characteristics ci is Vi =
{i, 0}.

– For vertex-characteristic ci , job i receives value
vi,ci = i , whereas each other job j , j �= i , has value
v j,ci = 0.

– We set se0,ci = sr0,ci = 0, that is equipping vertex-
characteristic ci with value 0 or removing value 0
from ci takes no time. Furthermore, we set sei,ci =
sri,ci = 1.

Thus, we have |V | jobs and 0.5 · |V | · (|V | − 1) + |V |
characteristics each having at most 3 values. The reduction
is pseudo-polynomial.

The question we ask is whether there is a schedule with
a makespan of at most |V | + 1. For each job i , we have at
least a setup time of sei,ci = 1 for equipping characteristic ci
with value i and, for the last job i ′, we have at least a setup
time of sri ′,ci ′

= 1 for removing i ′ from ci ′ . Thus, |V | + 1

is a lower bound for the makespan in I ′ due to the vertex-
characteristics.

We can achieve a makespan of |V | + 1 only if we do
not have two consecutive jobs j and k, such that { j, k} /∈ E .
These jobs would incur a total setup time of srj,c j,k +sek,c j,k =
2 in between. However, for a pair of consecutive jobs j and
k, such that the corresponding nodes are adjacent in I , we
have a total setup time of 0 for each edge-characteristic. This
completes the proof. ��

Summarizing, similar as for ModSetup- Seq problem
ModSetup- Par is strongly NP-hard, even if either m or K
are fixed. On the other hand,ModSetup- Par can be solved
in polynomial time if bothm and K are fixed, see Corollary 1,
or setup times are not value-dependent, see Theorem 3.

4 Conclusions and outlook

This paper investigates the well-known machine schedul-
ing problem [1|si j |Cmax] for the special case of modular
products. In a mass-customization environment, modular
products allow customers to individually specify their prod-
ucts by selecting a specific value (e.g., a specific PU foam)
for different product characteristics (e.g., the insulation of
a garage door) and each value is realized by a dedicated
component assembled into the product. If each component
requires a specific resource (e.g., the cartridge containing
the selected PU foam) during the assembly process, which
need not be changed whenever two subsequent jobs share
the respective value of the product characteristic, then the
setup matrix becomes specially structured and depends on
the similarity of products. We provide an in-depth analy-
sis of computational complexity for different problem cases
with modular products. Specifically, we distinguish whether
resource setups are executed sequentially or in parallel and
consider removal operations as well as special setup times.
We show that for some caseswith parallel setups, our detailed
view on the special structure of setups is worthwhile and pro-
vides an algorithm finding optimal solutions in polynomial
time. Other problem cases are shown to be strongly NP-
hard, so that the complexity status compared to [1|si j |Cmax]
remains unaltered. Note that the producer of sectional garage
doors that brought the peculiarities of modular setups to
our attention applies a single worker for setups, so that the
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sequential setups render their machine scheduling problem
strongly NP-hard.

Future research should investigate the leftover problem
case, whose complexity status is still open. This case consid-
ers parallel resource setups, no removal operations srv,c = 0,
and general setup times sev,c ≥ 0. Furthermore, developing
exact and heuristic solution procedures for the strongly NP-
hard problem cases is a valid task for future research. Such
procedures should exploit the special structure of the setup
matrices and could, for instance, apply our efficiently solv-
able problem case as a bounding argument.
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