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Abstract
We consider uncertain robust electricity market equilibrium problems including trans-
mission and generation investments. Electricity market equilibrium modeling has a
long tradition but is, in most of the cases, applied in a deterministic setting in which
all data of the model are known. Whereas there exist some literature on stochastic
equilibrium problems, the field of robust equilibrium models is still in its infancy.
We contribute to this new field of research by considering �-robust electricity market
equilibriummodels on lossless DC networks with transmission and generation invest-
ments. We state the nominal market equilibrium problem as a mixed complementarity
problem as well as its variational inequality and welfare optimization counterparts.
For the latter, we then derive a �-robust formulation and show that it is indeed the
counterpart of amarket equilibrium problemwith robustified player problems. Finally,
we present two case studies to gain insights into the general effects of robustification
on electricitymarket models. In particular, our case studies reveal that the transmission
system operator tends to act more risk-neutral in the robust setting, whereas generating
firms clearly behave more risk-averse.
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1 Introduction

Equilibrium modeling for liberalized electricity markets and solving these models is
of great practical relevance today. In this area, the main mathematical modeling tools
are variational inequalities and complementarity problems. To obtain the latter, one
usually first states the optimization problem of every player. In the convex case, which
is typically considered in economics in general and in energy market modeling in
particular, the optimal actions of the players can be characterized by their first-order
optimality conditions. Together with suitably chosen market clearing conditions, the
entire system is of the formof amixed complementarity problem (MCP),which is often
a linear one. For a general overview over linear complementarity problems (LCPs),
we refer to the seminal textbook [15]. A detailed discussion about complementarity
problems in energy markets is given in the book [22].

In the vast majority of papers on energy market modeling, the authors study a
deterministic setting, i.e., all the data of themodel is considered to be certain. However,
many of the required parameters such as producers’ operating costs or the willingness
to pay of consumers are not known in advance—especially in the case of long-run
investment models that need to consider time or trading periods that are far in the
future. Consequently, there is a strong need for uncertain electricitymarket equilibrium
modeling. In mathematical optimization, there are mainly two approaches for tackling
uncertain data: stochastic optimization (see, e.g., [8,36]) and robust optimization (see,
e.g., [2,3,53]). Both approaches have also been applied to the field of equilibrium
modeling. However, the stochastic approach to LCPs is rather mature (see, e.g., [10–
12,44]) compared to the field of robust LCPs or robust market equilibrium problems,
which are still in their infancies. The only studies we are aware of are [7,40,43,54–
56] on robust LCPs, [39,45] on robust market equilibrium modeling, and the very
recent and related paper [18] on robust bidding strategies in auctions. In this paper, we
contribute to the second of the three mentioned fields and consider robustified market
equilibrium models with transmission and generation investments.

In conventional power systems, generation and transmission investment (or expan-
sion) planning has been performed in a centralized manner—typically using a cost
minimization approach. However, in today’s restructured electricity markets both
investment decisions as well as market outcomes are decentralized but need to be
integrated to enable a proactive planning process. In proactive planning, a decision
maker can anticipate the investment decisions of the other decision makers and the
market outcome. This anticipative nature of decision making requires sequential, i.e.,
hierarchical, or simultaneous equilibrium models. There have been many develop-
ments in the applied electricity market literature regarding these models in recent
years; please refer to, e.g., [48,51] or the extensive reviews in [24] and [29] as well as
the references therein.
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One of the most prominent studies on simultaneous decision making for generation
and transmission investment is presented in [57]. They have shown that co-optimizing
generation and transmission investments results in lower investment costs compared
to separately optimized investment decisions. This co-optimization model has been
applied in US Eastern Interconnection and leads to cost-effective paths for invest-
ments. However, market outcomes are not investigated. On the other hand, there are
several models that reflect the hierarchical nature as well as the market outcomes. The
studies in [25,31,46] consider bilevel optimization problems in which transmission
and generation investments are simultaneously considered in the bilevel problem’s
upper level and the market is modeled in the lower level. Another stream of studies
[34,35,49,50] investigate hierarchical trilevel models that include transmission invest-
ments as the first level, generation investments as the second level, and the market
outcomes are modeled as third-level decisions. Similar trilevel models are also consid-
ered in [1,16,26,27,38] where the first level models decisions of the regulator/operator
such as market-design decisions or investment in transmission lines, the second level
models generation investment as well as spot-market behavior of market participants,
and the third level contains redispatch models as they are used in, e.g., Germany.

In many of these studies, bilevel or trilevel problems are cast as mathematical
programs with equilibrium constraints (MPECs) or equilibrium problems with equi-
librium constraints (EPECs) and are solved by equivalent single-level reformulations
of the multilevel problem. In [9], the author shows that a hierarchical bilevel model
formulated as an MPEC and a simultaneous model formulated as an MCP lead to the
same results in a perfectly competitive market structure and under some mild condi-
tions; see also, e.g., [13,17] for similar results in comparable settings. Hence, in this
paper, we resort our attention to MCP formulations.

Our contribution is the following.We study a robustification of amarket equilibrium
model for proactive investment planning in generation and transmission assets. By
doing so, we explicitly consider long-run decisions based on market outcomes under
uncertainty, which is of great importance in today’s restructured energy markets. We
complement the literature on energy markets with stochastic uncertainties by handling
the uncertainty in a robust way, which is especially important in risk-averse invest-
ment settings. Consequently, our models allow to shed light on the interdependencies
between endogenously determined demand as well as generation in equilibrium mod-
els and long-run decision-making under uncertainty. Since classical strict robustness
is often criticized for its very conservative solutions, we study the concept of �-
robustness as it is proposed in [5,6,52] and as it is applied tomarket equilibriummodels
in [39] that we modify here to put emphasis on the relation between uncertainty and
long-run decision-making. To the best of our knowledge, �-robustifications of invest-
ment models for generation and transmission expansion have not been considered
before in the literature on energy market equilibrium models. To be more specific, we
consider the willingness to pay of consumers as uncertain and allow a pre-specified
number of � many consumers to deviate from their nominal willingness to pay in
a worst-case way. We review a classical deterministic market equilibrium model in
its MCP and variational inequality form in Sect. 2. There, we also state the equiva-
lent welfare maximization problem. Afterward, in Sect. 3, we derive the �-robustified
counterpart of the deterministic welfare maximization problem and show that it can
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also be obtained as an MCP based on a suitably robustified consumer problem. This
shows that the robustified models are also economically meaningful. We then use the
robustified models in Sect. 4 to analyze the effects of robustification on market out-
comes as demand, generation, and prices as well as on investment decisions. Since
we are interested in observing and understanding these main effects, we have used
two case studies that allow us to clearly analyze the impact of robustification. Interest-
ingly, our case studies reveal that the transmission system operator (who may invest
in transmission line expansion) acts rather risk-neutral, whereas generating firms stop
investing in new generation capacity already for mild uncertainties and thus act more
risk-averse. The paper closes with some concluding remarks and open problems for
future research in Sect. 6.

2 The deterministic model

2.1 General modeling assumptions and network setting

The deterministic equilibrium model discussed in this section is based on the electric-
ity market equilibrium model given in [22], where the authors apply a well-simplified
application of the study published in [30]. In the latter paper, an LCP for a Nash–
Cournot market structure in bilateral or pool-type electricity markets is introduced;
see [47] for a detailed version of this equilibriummodel. Moreover, in [22] a stochastic
version of the original equilibrium model is considered and solved with a generalized
Benders decomposition approach. A robust version of this electricity market equilib-
rium model is presented in [39]. On the one hand, we simplify the economic setting
by considering a perfectly competitive market but extend the model in [39] by incor-
porating generation and transmission investment decisions that affect the capacity of
generators and transmission lines. Moreover, the specific setting of the robustification
differs compared to the one studied in [39] since we do not bound the number of
uncertainty realizations per consumer over time but bound the number of uncertainty
realizations over the set of all consumers.

The basic assumptions of our generation and transmission investment planning
model are as follows.We consider an equilibriummodel for perfectly competitive day-
ahead markets with transmission constraints. Balancing or real-time markets are not
considered. As a common practice in the literature, transmission and generation invest-
ments will be done for a “target year” in the future; see, e.g., [14]. However, note that
it can be extended to model a dynamic investment model for each year in the planning
horizon; see, e.g., [37]. In compliance with the latter point, investment costs are dis-
counted on an hourly basis. Potential generation investments are applicable for certain
firms and buses, and they are bounded above. Similarly, transmission line investments
are defined between certain buses and they are considered to have upper bounds as
they are constrained by a certain available budget. Finally, for the ease of presentation,
existing line capacity can be expanded without changing the line’s impedance in our
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market models. This simplifying assumption can be relaxed as in [49].
In ourmodel, electricity generators can sell to all consumers in the entire system and

they use the transmission system operator (TSO) as amediator. In this structure, gener-
ating firms optimize their profits according to capacity and generation-sales constraints
and the TSO optimizes its transmission service revenue according to the network con-
straints. The latter are modeled using lossless linear DC (direct current) load flow
constraints. In addition, consumers change their amount of consumption as a reaction
to price levels for optimizing their utility.

In this section, we first define each decision maker’s deterministic optimization
problem separately and then form the overall equilibrium problem by concatenating
each problem’s optimality conditions. Together with nodal flow balance equations,
this leads to an MCP. The solutions of this MCP are market equilibria and the nodal
electricity prices are, as usual, obtained as dual variables of the nodal balance equa-
tions; see, e.g., [14,30]. Due to the fact that we consider a perfectly competitivemarket,
all players act as price takers and we can thus state their optimization problems using
exogenously given market prices.

Inwhat follows,wemodel the electricity transmission network by using a connected
and directed graph G = (I , A) with node (or bus) set I and arc set A. Transmission
lines a ∈ A are usually denoted by its start and end points, e.g., a = (i, j) for start
point i ∈ I and end point j ∈ I . All notation used in the model is given in Table 1.

2.2 Consumers

We start by introducing the models of the consumers that are located at the nodes i ∈ I
of the network. The consumers decide on their demand di ≥ 0 and their willingness
to pay is modeled by inverse market demand functions pi = pi (di ). For the latter
functions, we assume that they are continuous and strictly decreasing. Under this
assumption, the gross consumer surplus

∫ di

0
pi (ω) dω

is a strictly concave function in di and the benefit maximization problem

max
di

∫ di

0
pi (ω) dω − πi di (1a)

s.t. di ≥ 0 (1b)

of the consumer at node i ∈ I thus is a strictly concave maximization problem. Here
and in what follows, πi denotes the exogenously given market price at node i ∈ I .
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Table 1 Indices (top), variables (middle), and parameters (bottom) of the model

Symbol Explanation

I Set of nodes (or buses)

i0 ∈ I Reference bus

F Set of generating firms

I f ⊆ I Set of nodes at which firm f generates

A ⊆ I × I Set of transmission lines

di Demand at node i

x f i Generation by firm f at node i

s f i Sales by firm f to node i

θi Voltage angle at node i

�Ti j Transmission line expansion for line (i, j)

�K f i New generation investment by firm f at node i

πi Nodal electricity price at node i

pi (·) Inverse market demand function at node i

c
op
f i Operating costs of generating firm f at node i

cinvf i Investment costs of new generation capacity for firm f at node i

c
exp
i j Investment costs of capacity expansion for line (i, j)

K f i Initial capacity of generating firm f at node i

�K+
f i Generating firm f ’s maximum investment level at node i

Bi j Susceptance of transmission line (i, j)

Ti j Initial transmission line capacity of line (i, j)

�T+
i j Maximum transmission line expansion for line (i, j)

2.3 Generating firms

Every generating firm f ∈ F solves the problem

max
s f ,x f ,�K f

∑
i∈I

πi s f i −
∑
i∈I f

copf i x f i −
∑
i∈I f

cinvf i �K f i (2a)

s.t.
∑
i∈I

s f i −
∑
i∈I f

x f i = 0, [ν f ] (2b)

x f i ≤ K f i + �K f i , i ∈ I f , [μ f i ] (2c)

�K f i ≤ �K+
f i , i ∈ I f , [δ f i ] (2d)

x f i ≥ 0, �K f i ≥ 0, i ∈ I f , (2e)

s f i ≥ 0, i ∈ I , (2f)

where �K f = (�K f i )i∈I f is the vector of all capacity investments of firm f ,
x f = (x f i )i∈I f is the vector of all generations, and s f = (s f i )i∈I is the vector
comprising all sales. The generating firm f is modeled as a price-taker, i.e., it assumes
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that the price at every single bus is exogenously given. The firms maximize their
profits, which are given by revenue from sales less operating costs less discounted
generation investment costs; see the objective function in (2a). Constraint (2b) mod-
els the balance of electricity generation and sales, capacity constraints are modeled
in (2c), and upper bounds on the capacity investments are given in (2d). As it can be
seen in (2c), generation investments affect the capacity constraints. Here and in what
follows, dual variables are denoted by Greek letters and are given in parentheses next
to the constraints. Finally, (2e) and (2f) ensure nonnegativity of generation, sales, and
capacity investments. Since dual variables of simple nonnegativity constraints will be
directly eliminated later, we do not state them here explicitly.

2.4 Transmission system operator

The model of the transmission system operator (TSO) is given by

max
θ,�T

∑
(i, j)∈A

(
π j − πi

)
Bi j

(
θi − θ j

) −
∑

(i, j)∈A

cexpi j �Ti j (3a)

s.t. Bi j
(
θi − θ j

) ≤ Ti j + �Ti j , (i, j) ∈ A, [λ+
i j ] (3b)

− Bi j
(
θi − θ j

) ≤ Ti j + �Ti j , (i, j) ∈ A, [λ−
i j ] (3c)

�Ti j ≤ �T+
i j , (i, j) ∈ A, [γi j ] (3d)

− π ≤ θi ≤ π, i ∈ I \ {i0}, [ε−
i , ε+

i ] (3e)

θi0 = 0, [ξ ] (3f)

�Ti j ≥ 0, (i, j) ∈ A, (3g)

where θ = (θi )i∈I is the vector of all phase angles in the network and �T =
(�Ti j )(i, j)∈A comprises all transmission line capacity investments. The objective
of the TSO is to effectively distribute the transmission system services considering
lossless DC network constraints and to optimize its revenues obtained due to these
operations. The TSO’s revenue optimization in this manner, in fact, ensures that firms
cannot use market power to obtain more transmission rights in the competitive market;
see [30]. In otherwords, the systemoperatorworks as an arbitrageurwho benefits from
price differences between nodes. Furthermore, in this model, the TSO also decides on
transmission line capacity investments �Ti j for all transmission lines (i, j) ∈ A. The
objective function (3a) denotes the revenue of the TSO, calculated as the price differ-
ences multiplied by power flows less discounted transmission line expansion costs.
Constraints (3b) and (3c) model lossless DC power flow. Upper bounds on the trans-
mission line expansion are given in (3d) and (3e) represents lower and upper bounds
on the phase angles θi , i ∈ I .1 The phase angle of the reference bus i0 is fixed in (3f) to
ensure a unique physical solution and, finally, (3g) ensures nonnegativity of capacity
investments.

1 Note that the πi , i ∈ I , in the objective function (3a) represent prices, whereas π without an index in (3e)
stands for the circle number.
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2.5 Market clearing

As market clearing conditions we use the nodal flow balance equations

di −
∑
f ∈F

x f i +
∑

(i, j)∈A

Bi j
(
θi − θ j

) −
∑

( j,i)∈A

B ji
(
θ j − θi

) = 0, i ∈ I . (4)

Note that demand di at node i is the sum of all firms’ sales to that node, i.e., di =∑
f ∈F s f i .

2.6 Amixed complementarity market equilibriummodel

The market equilibrium model including generation and transmission investments is
mainly taken from [9] and it is presented as the following MCP, which is obtained by
concatenating the optimality conditions (that are both necessary and sufficient in our
case) of all players and the market clearing conditions.2

0 ≤ di ⊥ πi − pi (di ) ≥ 0, i ∈ I , (5a)
0 ≤ s f i ⊥ ν f − πi ≥ 0, f ∈ F, i ∈ I , (5b)

0 ≤ x f i ⊥ copf i − ν f + μ f i ≥ 0, f ∈ F, i ∈ I f , (5c)

0 ≤ �K f i ⊥ cinvf i − μ f i + δ f i ≥ 0, f ∈ F, i ∈ I f , (5d)

ν f free ⊥
∑
i∈I

s f i −
∑
i∈I f

x f i = 0, f ∈ F, (5e)

0 ≤ μ f i ⊥ K f i + �K f i − x f i ≥ 0, f ∈ F, i ∈ I f , (5f)

0 ≤ δ f i ⊥ �K+
f i − �K f i ≥ 0, f ∈ F, i ∈ I f , (5g)

0 ≤ �Ti j ⊥ cexpi j − λ−
i j − λ+

i j + γi j ≥ 0, (i, j) ∈ A, (5h)

0 ≤ λ+
i j ⊥ Ti j + �Ti j − Bi j

(
θi − θ j

) ≥ 0, (i, j) ∈ A, (5i)

0 ≤ λ−
i j ⊥ Ti j + �Ti j + Bi j

(
θi − θ j

) ≥ 0, (i, j) ∈ A, (5j)

0 ≤ γi j ⊥ �T+
i j − �Ti j ≥ 0, (i, j) ∈ A, (5k)

0 ≤ ε+
i ⊥ π − θi ≥ 0, i ∈ I \ {i0}, (5l)

0 ≤ ε−
i ⊥ θi + π ≥ 0, i ∈ I \ {i0}, (5m)

θi free ⊥
∑

(i, j)∈A

Bi j
(
π j − πi

) −
∑

( j,i)∈A

B ji
(
πi − π j

)

+
∑

(i, j)∈A

Bi j
(
λ−
i j − λ+

i j

)
−

∑
( j,i)∈A

B ji

(
λ−
j i − λ+

j i

)

− ε+
i + ε−

i = 0, i ∈ I \ {i0}, (5n)

θi0 free ⊥
∑

(i, j)∈A

Bi j
(
π j − πi

) −
∑

( j,i)∈A

B ji
(
πi − π j

)

+
∑

(i, j)∈A

Bi j
(
λ−
i j − λ+

i j

)
−

∑
( j,i)∈A

B ji

(
λ−
j i − λ+

j i

)
= 0, (5o)

2 Note that, since all constraints are linear, no further constraint qualification is required.
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ξ free ⊥ θi0 = 0, (5p)

πi free ⊥ di −
∑
f ∈F

x f i +
∑

(i, j)∈A

Bi j
(
θi − θ j

)

−
∑

( j,i)∈A

B ji
(
θ j − θi

) = 0, i ∈ I . (5q)

Note that the market clearing conditions are equipped with the beforehand exoge-
nously given market prices as dual variables. Thus, we obtain a system in the primal
variablesd, s, x,�K , θ,�T and in thedual variablesν, μ, δ, λ+, λ−, γ, ε−, ε+, ξ, π .
A solution of this system, by construction, corresponds to solutions of the separate
optimization problems presented in Sects. 2.2–2.4 that also satisfy the market clearing
conditions (4). Thus, a solution of (5) is a market equilibrium and π = (πi )i∈I is the
vector of market clearing nodal prices.

2.7 An equivalent welfare maximization problem

It is well-known that the MCP(5), which models the wholesale electricity market
under perfect competition, is equivalent to the welfare maximization problem (WMP)

max
z

∑
i∈I

∫ di

0
pi (ω) dω −

∑
f ∈F

⎛
⎝∑

i∈I f
copf i x f i +

∑
i∈I f

cinvf i �K f i

⎞
⎠ −

∑
(i, j)∈A

cexpi j �Ti j

(6a)

s.t. Consumers: (1b) for all i ∈ I , (6b)

Generating firms: (2b)–(2f) for all f ∈ F, (6c)

TSO: (3b)–(3g), (6d)

Market clearing: (4) (6e)

with variables z = (d�, s�, x�,�K�, θ�,�T�)� as before. The equivalence can
be shown by comparing the first-order optimality conditions of Problem(6)—which
are, again, necessary and sufficient—with the MCP(5) and by identifying the dual
variables of the market clearing conditions in (6e) with the equilibrium prices πi ,
i ∈ I , of the MCP.

2.8 An equivalent variational inequality

In this section, we also present an equivalent formulation of the MCP model given in
Sect. 2.6 as a variational inequality (VI). In general, the latter is given as the following
problem. Given a feasible set K ⊆ R

n and a vector-valued mapping G : Rn → R
n ,

the variational inequality problem VI(G, K ) is to find a vector z∗ ∈ K that satisfies

G(z∗)�(z − z∗) ≥ 0 for all z ∈ K . (7)
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One advantage of VI formulations (compared to MCPs) is that only primal variables
appear in the formulation. In the context of the market equilibrium problem studied so
far, the feasible set is given by the feasible sets of all players in the market equilibrium
problem and the market clearing conditions, i.e.,

K = {z : (6b)–(6e) are satisfied}. (8)

Note that this set is a convex polyhedron. The variable vector of the VI thus is given
by z and the VI’s mapping G is defined as

G(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(pi (di ))i∈I
0

(copf i ) f ∈F,i∈I f
(cinvf i ) f ∈F,i∈I f

0
(cexpi j )(i, j)∈A

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where 0 here stands for the zero vector in appropriate dimension.
We close this section with some brief comments on existence and uniqueness of

market equilibria. Existence can be easily shown using the VI approach of this section.
Since the function G is continuous and because a nonempty, convex, and compact set
K̃ ⊆ K exists that contains all solutions of the VI(G, K ), standard VI theory can
be applied that ensures the existence of a solution. Since the VI is equivalent to the
MCP(5) and to the welfare maximization problem(6), this also implies the existence
of solutions for these two formulations. The situation is much more complicated when
it comes to uniqueness of solutions. To the best of our knowledge, there is no result
in the literature that can be applied directly to the setting studied in this paper. For
a related long-run model without DC power flow constraints, uniqueness of market
equilibria is shown in [28]. Moreover, uniqueness of the solution of a short-run model,
again without DC power flow constraints is proven in [42] for the case of transport
costs. However, the most related study is given in [41]. There, a short-run market
equilibrium model is analyzed that also incorporates DC power flow constraints. It is
shown that equilibria are, in general, not unique. Thus, we do not expect uniqueness
of solutions for the setting considered in this paper.

3 A 0-Robustifiedmarket model

We now turn to the discussion of possible uncertainties in the models of the last sec-
tion. In principle, the techniques presented in the following can be applied to handle
uncertainties of different data such as, e.g., the future willingness to pay of consumers,
the future operating costs of generators, or the future investment costs for extending
the capacity of a transmission line. Here, we focus on the former as a prototypical
parameter for two reasons. First, this parameter is very important in equilibrium mod-
els since demand influences prices, which themselves influence generation and thus
investment. Second, considering future demand parameters as uncertain is also of
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great importance for practice; see, e.g., [4,32,45]. In the following, we consider a �-
robustification of the WMP(6). To this end, we additionally assume that each inverse
market demand function pi is linear and strictly decreasing, i.e., pi (di ) = ai + bidi
with ai ≥ 0 and bi < 0. Thus, theMCP(5) is a mixed linear complementarity problem
(MLCP). In what follows, we consider uncertainty in the intercepts ai , i ∈ I , of the
demand functions and use box-uncertainty sets centered around the nominal values.
Thus, for given nominal values āi , i ∈ I , of the price-intercepts we have ai = āi + ui
with

u = (ui )i∈I ∈ U := {u ∈ R
|I | : − �ai ≤ ui ≤ �ai , �ai ≥ 0, i ∈ I ,

|{i ∈ I : ui 
= 0}| ≤ �}.

Here, |I | ≥ � ∈ N is the number of uncertain price-intercepts that we hedge against
in a worst-case sense. Next, we show that we obtain the same model if we either

1. robustify the welfare maximization problem(6) or
2. first robustify a properly chosen aggregatedmodel of the consumers and then derive

an MLCP as well as an equivalent optimization model.

In the described �-robust setting, the robust counterpart of (6) reads as

max
z

∑
i∈I

∫ di

0
(āi + biω) dω −

∑
f ∈F

⎛
⎝∑

i∈I f
copf i x f i +

∑
i∈I f

cinvf i �K f i

⎞
⎠

−
∑

(i, j)∈A

cexpi j �Ti j − max{J⊆I : |J |≤�}

{∑
i∈J

�aidi

}
(9a)

s.t. (6b)–(6e). (9b)

Note that we only consider the price intercepts of the inverse market demand functions
to be uncertain, whereas the slopes are considered to be certain. The reasons for this are
twofold. First, this leads to amuchmore streamlinedpresentationof the results sincewe
omit the technicalities required if slopes are also uncertain. Second, it is rather standard
for electricity market equilibrium models including fluctuating demand of consumers
that are modeled using inverse market demand functions that price intercepts change
over time while the slopes are kept constant; see, e.g., [27,28]. The same assumption is
also made, e.g., in [21] for the case of uncertain demand. Regarding a study in which
the slopes are considered to be uncertain as well we refer to [39].

Using the techniques as in, e.g., [39,43], we obtain the following equivalent refor-
mulation of the robust counterpart (9).

Theorem 3.1 The �-robust counterpart (9) of the welfare maximization problem (6) is
equivalent to

max
z,α,β

∑
i∈I

∫ di

0
(āi + biω) dω −

∑
f ∈F

⎛
⎝∑

i∈I f
copf i x f i +

∑
i∈I f

cinvf i �K f i

⎞
⎠
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−
∑

(i, j)∈A

cexpi j �Ti j −
∑
i∈I

βi − α� (10a)

s.t. (6b)–(6e), (10b)

βi + α − �aidi ≥ 0, i ∈ I , [ρi ] (10c)

βi ≥ 0, i ∈ I , (10d)

α ≥ 0, (10e)

where β = (βi )i∈I .
In what follows, we abbreviate the robustified welfare maximization problem(10) by
RWMP. As RWMP is a concave maximization problem over a polyhedral feasible set,
its necessary and sufficient first-order optimality conditions can be stated as the MCP

0 ≤ di ⊥ πi + �aiρi − āi − bi di ≥ 0, i ∈ I , (11a)
0≤s f i ⊥ ν f −πi ≥ 0, f ∈F, i ∈ I , (11b)

0 ≤ x f i ⊥ copf i − ν f + μ f i ≥ 0, f ∈ F, i ∈ I f , (11c)

0 ≤ �K f i ⊥ cinvf i − μ f i + δ f i ≥ 0, f ∈ F, i ∈ I f , (11d)

ν f free ⊥
∑
i∈I

s f i −
∑
i∈I f

x f i = 0, f ∈ F, (11e)

0 ≤ μ f i ⊥ K f i + �K f i − x f i ≥ 0, f ∈ F, i ∈ I f , (11f)

0 ≤ δ f i ⊥ �K+
f i − �K f i ≥ 0, f ∈ F, i ∈ I f , (11g)

0 ≤ �Ti j ⊥ cexpi j − λ−
i j − λ+

i j + γi j ≥ 0, (i, j) ∈ A, (11h)

0 ≤ λ+
i j ⊥ Ti j + �Ti j − Bi j

(
θi − θ j

) ≥ 0, (i, j) ∈ A, (11i)

0 ≤ λ−
i j ⊥ Ti j + �Ti j + Bi j

(
θi − θ j

) ≥ 0, (i, j) ∈ A, (11j)

0 ≤ γi j ⊥ �T+
i j − �Ti j ≥ 0, (i, j) ∈ A, (11k)

0 ≤ ε+
i ⊥ π − θi ≥ 0, i ∈ I \ {i0}, (11l)

0 ≤ ε−
i ⊥ θi + π ≥ 0, i ∈ I \ {i0}, (11m)

θi free ⊥
∑

(i, j)∈A

Bi j
(
π j − πi

) −
∑

( j,i)∈A

B ji
(
πi − π j

)

+
∑

(i, j)∈A

Bi j
(
λ−
i j − λ+

i j

)
−

∑
( j,i)∈A

B ji

(
λ−
j i − λ+

j i

)

− ε+
i + ε−

i = 0, i ∈ I \ {i0}, (11n)

θi0 free ⊥
∑

(i, j)∈A

Bi j
(
π j − πi

) −
∑

( j,i)∈A

B ji
(
πi − π j

)

+
∑

(i, j)∈A

Bi j
(
λ−
i j − λ+

i j

)
−

∑
( j,i)∈A

B ji

(
λ−
j i − λ+

j i

)
= 0, (11o)

ξ free ⊥ θi0 = 0, (11p)

πi free ⊥ di −
∑
f ∈F

x f i +
∑

(i, j)∈A

Bi j
(
θi − θ j

)

−
∑

( j,i)∈A

B ji
(
θ j − θi

) = 0, i ∈ I , (11q)
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0 ≤ α ⊥� −
∑
i∈I

ρi ≥ 0, (11r)

0 ≤ βi ⊥1 − ρi ≥ 0, i ∈ I , (11s)

which we denote in the following by RMCP. This system is the same as (5) together
with (11r) and (11s). Moreover, in (11a) we have the additional term �aiρi compared
to (5a).

Next, we robustify the aggregated consumer model, i.e., the model

max
d

∑
i∈I

(∫ di

0
pi (ω) dω − πi di

)
(12a)

s.t. di ≥ 0, i ∈ I . (12b)

Its robust counterpart is given by

max
d

∑
i∈I

∫ di

0
(āi + biω) dω −

∑
i∈I

πi di − max{J⊆I : |J |≤�}

{∑
i∈J

�aidi

}
(13a)

s.t. di ≥ 0, i ∈ I . (13b)

Again, using the techniques as in, e.g., [39,43], we obtain the following reformulation
of the robust counterpart (13).

Theorem 3.2 The �-robust counterpart (13) is equivalent to

max
d,α,β

∑
i∈I

∫ di

0
(āi + biω) dω −

∑
i∈I

πi di − α� −
∑
i∈I

βi (14a)

s.t. βi + α − �aidi ≥ 0, i ∈ I , (14b)

di ≥ 0, βi ≥ 0, i ∈ I , (14c)

α ≥ 0. (14d)

Now, we put all first-order optimality conditions of the generating firms, TSO,
robustified aggregated consumer (14), and the nodal flow balance equations together.
We call the resulting system the robust market equilibrium problem (RMEP). This
system is equivalent to (11) resp. (10). The equivalence can be shown by comparing
the first-order optimality conditions (11) of (10) with the RMEP and by identifying the
dual variables of the flow balance equations with the equilibrium prices πi , i ∈ I , of
the RMCP.

As we did for the MCP(5) in Sect. 2.8, we also present an equivalent formulation
of the RMCP as a variational inequality. We use the same notation as in Sect. 2.8. The
variable vector is given by v = (z�, α, β�)� and the feasible set reads

K = {v : (10b)–(10e) are satisfied}. (15)
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Fig. 1 3-Bus test system

Finally, the VI’s mapping G is defined as

G(v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(āi + bidi )i∈I
0

(copf i ) f ∈F,i∈I f
(cinvf i ) f ∈F,i∈I f

0
(cexpi j )(i, j)∈A

�

(1)i∈I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The existence of �-robustified solutions can be shown in analogy to the existence of
nominal solutions as discussed at the end of Sect. 2.

4 Case study #1: a 3-bus example

In this section, we apply the �-robust market equilibrium problem with transmission
and generation investments derived in the last section to the academic 3-bus test system
given in Fig. 1. This test case is taken and adapted from [30]. The situation is as
follows. Firm 1 is located at bus 1 and firm 2 is located at bus 2. Both firms can
invest in additional generation capacity. Demand, which is modeled using linearly
decreasing inverse market demand functions is located at all three buses and all buses
are connected with each other via existing transmission lines. The line connecting
bus 1 and 2 has significantly less capacity and is the only transmission line for which
the transmission capacity can be extended. All specific generation, demand, and line
parameters are given in Table2. Note that generation and transmission expansion cost
parameters are discounted assuming a lifetime of 20 years and an interest rate of 3%
per year. In this case study, we assume a representative hour that repeats itself during
the year, i.e., 8760 times, and investment costs are discounted to a year.

We implemented both the nominal and the robustified market equilibrium problem
as a variational inequality in GAMS (version 24.6.1; see [23]) and solved them using
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Table 2 The parameters for the 3-bus system

Generation parameters Unit Firm 1 Firm 2

c
op
f i $/MWh 15 20

cinvf i $/MW/year 15,000 12,000

K f i MW 480 350

�K+
f i MW 100 100

Demand parameters Unit Bus 1 Bus 2 Bus 3

ai $ 40 40 32

bi $/MW 0.08 0.08 0.0516

Line parameters Unit Line 1–2 Line 1–3 Line 2–3

c
exp
i j $/MW/year 21,000 – –

Ti j MW 25 1000 1000

�T+
i j MW 50 – –

Bi j S (= �−1) 100 100 100

PATH (version 4.7.04; see [20]) and the extended mathematical programming (EMP)
framework [19] on a 2.3GHz processor and 8GB RAM. As this is a small-scale
illustrative example, the solution times are less than a second for all consideredmodels.

For getting some intuition for the equilibria in the deterministic setting, we first dis-
cuss the solutions of the nominal case in Sect. 4.1. Afterward, we discuss the numerical
results for the �-robust market equilibria in Sect. 4.2.

4.1 The deterministic case

Westartwith discussing thenumerical results for the nominal case and for four different
scenarios that are characterized by the following two decisions.

Investment: We consider the case in which both firms and the TSO are allowed to
invest in generation and transmission capacity, respectively, and the case
in which investment is not possible. The latter is obtained by setting
�K+

f i = 0 and �T+
i j = 0.

Congestion: We consider the case in which congestion can appear and the case in
which transmission line capacities are considered to be sufficiently large.
For the former case, we use the capacities given in Table2.

All results for all four possible scenarios are summarized in Table3. First, without
transmission line congestion, there is no investment (see the 4th and 5th column
in Table3)—even in the case in which it is allowed. As expected, without network
congestion, net surplus is maximal (at an annual value of 77 047 000). The profit of
firm 1 (which can produce cheaper than firm 2) in this case is the maximum and firm 2
(the more expensive one) makes no profit. Thus, the marginal operating cost of firm 2,
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Table 3 Numerical results for the market equilibrium model with and without investment as well as with
and without congestion

Congestion No congestion

Investment No investment Investment No investment

d1 291.1 304.9 250 250

d2 250 249.9 250 250

d3 264.4 275.1 232.6 232.6

pi (d1) 16.71 15.6 20 20

pi (d2) 20 20.004 20 20

pi (d3) 18.35 17.8 20 20

x11 535.8 480 480 480

x22 269.7 350 252.6 252.6

�T1−2 50 – 0 –

�K11 55.8 – 0 –

�K22 0 – 0 –

Flow on line 1–2 75 25 75.8 75.8

Flow on line 1–3 169.7 150.1 154.2 154.2

Flow on line 2–3 94.7 125.1 78.4 78.4

Profit of firm 1 7200 2541 21 024 21 024

Profit of firm 2 0 134 0 0

TSO revenue 3240 14 454 0 0

Gen. exp. cost 837 – 0 –

Trans. exp. cost 1050 – 0 –

Consumer surplus 67 393 71 580 56 023 56 023

Total surplus 78 670 75 580 77 047 77 047

Net surplus 76 783 75 580 77 047 77 047

All values in the lower part of the table are given in thousands

i.e., 20 $/MWh, sets all nodal prices, which are equal sincewithout congestion no price
differences appear. Because an uncongested network does not lead to any investment
incentives for the generating firms, generation and demand are strictly bounded above
and, thus, consumer surplus (56 023 000) is small compared to the congested network
cases.

If no investment is allowed in the case with congestion (3rd column), the profit of
firm 1 is minimal. As it is the case also for firm 2, firm 1 produces at its capacity.
Investment in generation capacity would be profitable (2 541 000 in column 3 vs. 7
200 000 in column 2) but is not possible. Moreover, the profit for firm 2 is maximal
(134 000), which is the only setting in which firm 2makes profit. This is due to the fact
that firm 2 sells its entire generation (350MW) from bus 2 to the TSO (at a price of
20.004, which is slightly higher than its operating costs of 20) and the TSO pays/gets a
wheeling fee from firm 2 for transmitting power to buses 1 and 3. This wheeling fee is
given by pi (di )− p3(d3) (sincewe choose bus 3 to be the reference bus) and is negative
(− 2.2) for bus 1, but positive for node 2 (2.2). The profit for firm 2 is (p2(d2)−cop22)x22,
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because this formula omits wheeling fees the TSO gets/pays from/to firm 2 in order
to transmit power to other nodes. This explanation is in line with the more detailed
explanation given in, e.g., [30] and [47]. Thus, also the TSO’s revenues are maximal
in this case since price differences are maximal. Indeed, the nodal prices are the lowest
at bus 1 and 3 and highest at bus 2, where the price is the same for all scenarios.

Finally, when investments are allowed and there is congestion in the system, a
better net surplus value is observed compared to the case without investments. This
can be expected as new investment in transmission and generation capacity allows for
higher net surplus. The profit of firm 1 is better off, whereas profit of firm 2 reduces
completely to 0. Only in this case, a generation investment by firm 1 (55.8MW) and
a transmission expansion by the TSO (50MW on line 1–2) can be observed. Thus
(and as usual), scarce network capacities lead to investment incentives for generation.
This, in turn, yields slightly higher nodal prices, except for bus 2. Since this case (2nd
column) is for sure the most interesting one, it will be the base case for discussing the
results of the robustified models in the next section.

4.2 The 0-Robust case

In this section, we present and discuss the results for the �-robustified market equi-
librium models. We consider uncertain demand, which is modeled via uncertain
price-intercepts ai , i = 1, 2, 3, of the inverse market demand functions of the con-
sumers. Since we have three consumers, we consider robustified equilibrium models
for � ∈ {0, 1, 2, 3}, where � = 0 corresponds to the nominal case and larger values
of � lead to more conservative solutions. In particular, for � = 3 we obtain the strictly
robust counterpart so that the most conservative case is also covered. Moreover, we
also vary the size of the uncertainty interval around the nominal price-intercept āi .
Here, we consider intervals with 20–80% deviation around the nominal values. Again,
larger possible deviations lead to more conservative solutions.

Demands and prices

We start by discussing nodal demands and prices in the robustified market equi-
libria; see Fig. 2. The results show a clear pattern. With increasing uncertainty
(i.e., larger � and/or larger uncertainty intervals), demands and prices are decreas-
ing. This is in line with the results reported in [39] and can be explained as follows.
The worst-case for the consumers corresponds to small surpluses, which are obtained
if the price-intercept uncertainty reveals so that the consumer’s willingness to pay
decreases. Since a decreased willingness to pay leads to less demand and thus smaller
prices, this explains the trends visible in Fig. 2.One can also see that the prices converge
to the operating cost of the cheapest producer in the network (firm 1 at bus 1). This, in
particular, means that price differences converge to 0 in the network, i.e., uncertainty
decreases regional differentiation between nodes that are visible in the nominal solu-
tion due to network constraints. Moreover, note that the demands decrease faster than
price differences, which will be important for a later discussion.
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Fig. 2 Top: nodal demands (di in MWh) vs.different uncertainty interval sizes. Bottom: nodal prices (πi in
$/MWh) vs.different uncertainty interval sizes. Both for � ∈ {0, 1, 2, 3}

Generation and sales

Figure3 shows all generation and sales for all considered values of� and all considered
uncertainty set sizes. The left-most figures (� = 0) show the results for the nominal
equilibrium model. It can be seen in the top-most figure that generation is decreasing
for larger uncertainty—which is clear since demands decrease as well. Moreover,
both generators decrease their generation in almost the same way, leading to almost
parallel curves. This also leads to the fact that firm2 stops generation earlier than firm 1
simply because of its higher operating costs. Regarding sold quantities, we observe
non-monotone behavior. We discuss the case of � = 2 for the sales of firm 1 in detail,
where we have an increase in sales of firm 1 to the consumer at bus 1 when we go
from 40 to 60% of possible deviation from the nominal price-intercepts. This increase
in uncertainty leads to less demand, which in turn excludes the more expensive firm 2
from the market; see � = 2 in the top-most figure. Thus, the cheaper firm 1 needs to
step in to satisfy the remaining demand. As a consequence, a larger uncertainty can—
in special situations—also lead to an increase in sales for certain firms that remain in
the market when others get too expensive to satisfy the reduced demand.

Up to now, we observed that both demands and generations decrease if uncertainty
increases. It is thus not surprising that consumer as well as total and net surpluses
decrease as well—see Fig. 4, where it can be seen that all surplus measures converge
to zero with larger uncertainty.We also observe that profit of firms almost immediately
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Fig. 3 Top: total generation by each firm (x f i in MWh). Mid and bottom: Sales by firm 1 (mid; s1i in
MWh) and 2 (bottom; s2i in MWh) at each node of the network. All vs.different uncertainty interval sizes
and for � ∈ {0, 1, 2, 3}

converge to zero in all uncertain cases. This means that almost all surplus is collected
by the TSO.

Generation vs. transmission investment

As for the nominal case, we never observe investment in generation capacity of firm 2
so that Fig. 5 only shows investments in generation capacity by firm 1 and by the
TSO in additional transmission capacity for line 1–2. For the nominal case (� = 0),
we see that both firm 1 and the TSO are investing in additional capacity. However,
for � ≥ 1, firm 1 stops investing directly, whereas the TSO still invests for � = 1

123



E. Çelebi et al.

Fig. 4 Surplus values (in $) vs.different uncertainty interval sizes and for � ∈ {0, 1, 2, 3}

Fig. 5 Investments (in MW) vs.different uncertainty interval sizes and for � ∈ {0, 1, 2, 3}

(independent of the size of the uncertainty sets) and also still invests for � ∈ {2, 3} for
smaller uncertainty sets. It thus seems to be the case that generating firms act in a more
risk-averse way, whereas the TSO behaves more risk-neutral. Putting it differently, the
TSO pays the cost of uncertainty. The explanation is as follows: For this case study,
it is obvious that the capacity of line 1–2 is very strict. Hence, in most scenarios it is
better to invest in transmission capacity in order to maximize net surplus. Moreover,
we already mentioned above that demands decrease faster than price differences if
we increase the degree of uncertainty. Since total generation needs to decrease as
total demand decreases, investment incentives for generating firms get weaker for
larger uncertainty. On the other hand, we already observed that price differences stay
larger also for larger uncertainties. Since the TSO mainly earns via price differences,
cf. Problem (3), investment incentives for the TSO decrease more slowly than for
generating firms when we increase � or the size of the uncertainty intervals.

5 Case study #2: a 30-bus example

In this section, a modified IEEE 30-bus system from [51] and [33] is used to demon-
strate our approach for a larger case. In this case study, there are 6 generators (located
at buses 1, 2, 13, 22, 23, and 27) and 39 lines. Different than the modified case study
in [33], we do not consider new candidate lines, which would require binary variables
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for modeling expansion decisions. Another difference from both the studies in [51]
and [33] is that we do not include quadratic cost parameters for generators in our
model. Indeed, some preliminary numerical experiments revealed that the main con-
clusions are very similar with or without quadratic generation cost terms, which is why
we choose to consider the simplified linear setting here for brevity. All firms can invest
in generation capacity and all 39 existing lines are eligible for transmission expan-
sion. The remaining generation, demand, and line parameters are presented in [51]
and in Appendix 5.A of [33]. Similar to the case study in Sect. 4, we have solved
both the nominal and the robustified market equilibrium problems as a variational
inequality. All instances are again solved in less than one second of CPU time.

5.1 The deterministic case

Similar to the scenarios in Table3 of Sect. 4.1, the results for the nominal case are
presented in Table4. Without transmission line congestion, the results are identical for
the cases with and without investments, which is why we list them as a single column
(last column of Table4). For the other cases, the table shows all generation investments
by all firms and all transmission line investments by the TSO for the nominal case. It
is visible that there is substantial generation and transmission investment in the case
of network congestion. Hence, total and net surpluses are maximal, but the firms’
total profit (i.e., producer surplus) is minimal—only firm 2 enjoys extra profits when
compared to the other cases.

The upper bound of generation for all firms is 60MW and all firms except firm 1
are producing at this bound in the uncongested network cases and in the case with
congestion but without investment (3rd and 4th column).

5.2 The 0-robust case

In this section,weconsider the�-robustified equilibriummodel for� ∈ {0, 10, 20, 30},
where � = 0 is equivalent to the nominal case and larger values lead to more
conservative solutions. Note again that for � = 30, we obtain the strictly robust
case. As in Sect. 4.2, we vary the size of the uncertainty interval around the nominal
price-intercept āi between 20 and 80% of the nominal values.

We observe results regarding demand, prices, generation, and sales that are com-
parable to those for the 3-bus study. For instance, as uncertainty increases, consumer,
total and net surpluses converge to zero; see Fig. 6, which shows qualitatively the same
behavior as in Fig. 4 for the 3-bus study.

In this case study, we have resorted our attention to the investment behavior of firms
and the TSO, since these aspects also are the most interesting ones in the 3-bus case
study. Figures7 and 8 show the investments by firms in additional generation capacity
as well as line investments by the TSO in the �-robustified settings for different levels
of uncertainty. In both figures, the values are given as percentagesw.r.t. the investments
in the nominal case. It can again be seen that investments monotonically decrease if
the level of uncertainty increases. Moreover, the investments of the TSO stay larger for
increased levels of uncertainty when compared to the generation investments of the
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Table 4 Numerical results for the IEEE-30 bus system market equilibrium model with and without invest-
ment as well as with and without congestion

Congestion No congestion

Investment No investment w/wo Investment

Total demand 521.47 358.57 358.60

x1 8.33 58.57 58.60

x2 160 60 60

x13 67.64 60 60

x22 121.98 60 60

x23 77.20 60 60

x27 86.32 60 60

�T15−23 5.22 – –

�T21−22 20.04 – –

�T22−24 1.88 – –

�T25−27 3.69 – –

�K f 2 100.00 – –

�K f 13 7.64 – –

�K f 22 61.98 – –

�K f 23 17.20 – –

�K f 27 26.32 – –

Profit of firm 1 – – –

Profit of firm 2 1581.40 927.35 923.96

Profit of firm 13 541.11 797.92 854.33

Profit of firm 22 975.86 1784.54 1819.79

Profit of firm 23 617.60 982.54 1248.50

Profit of firm 27 690.56 1670.12 1630.87

Total profit 4406.53 6162.47 6477.45

TSO revenue 4612.61 2447.87 2313.96

Gen. exp. cost 1705.12 – –

Trans. exp. cost 123.33 – –

Consumer surplus 6707.50 3451.38 3344.83

Total surplus 15 726.63 12 061.72 12 136.24

Net surplus 13 898.18 12 061.72 12 136.24

Values in upper part of the table are in MW and values in lower part of the table are $/hour

firms. This is similar to the observation for the 3-bus network in Sect. 4: Generating
firms act in a more risk-averse way compared to the TSO who behaves more risk-
neutral. This is also clearly supported by the level of expansion cost depicted in
Fig. 9, where also the generation firms’ investment costs decline faster then the TSO’s
investment costs.
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Fig. 6 Surplus values (in $/hour) vs.different uncertainty interval sizes and for � ∈ {0, 10, 20, 30}

Fig. 7 Generation investments by firms as percent of the generation investments in the nominal case under
different uncertainty interval sizes and for � ∈ {0, 10, 20, 30}

Fig. 8 Transmission investments by TSO at certain lines as percent of the transmission investments at
certain lines in the nominal case under different uncertainty interval sizes and for � ∈ {0, 10, 20, 30}

6 Conclusion

In this paper, we applied the concept of �-robustness to electricity market equilibrium
models including investment opportunities in additional generation or transmission
line capacity. To this end, we first introduced the nominal, i.e., certain, equilibrium
problem as anMCP and also stated its variational inequality andwelfaremaximization
counterpart. We then �-robustified the latter and showed that the resulting robustified
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Fig. 9 Percent change in generation and transmission investment costs under different uncertainty interval
sizes and for � ∈ {0, 10, 20, 30}

welfare maximization problem is equivalent to a suitably chosen equilibrium model
derived from suitably chosen and robustified consumer problems. This shows that
the robustified market equilibrium problem is indeed economically meaningful. In
two detailed case studies, we afterward presented numerical results for the robustified
setting and then discussed the effects of robustification. In particular, in both case
studies we observed a rather risk-neutral investment behavior for the TSO, whereas
generating firms stop investments already for mild uncertainties and thus, act in amore
risk-averse manner. Since this behavior can be observed for both considered networks
and due to the explanations that we give for this behavior, we think that this qualitative
difference between the investment of firms and the TSO is generalizable. However,
we admit that the robustification of other uncertain parameters like production costs
or technical network data might lead to different observations.

The area of robust market equilibria is a rather young field of research. Conse-
quently, there are still many open research questions. Based on what we presented in
this paper, we propose the following questions as interesting topics of future work:

1. How does robust equilibrium modeling interferes with market power modeling?
It might be interesting to compare, both theoretically and computationally, how
robust market equilibria depend on whether perfect competition models or models
capturing market power are used.

2. Which other concepts of robust optimization can be carried over to market equilib-
rium modeling? It might, e.g., be interesting to see which effects can be observed
when applying the concept of adjustable robustness to equilibrium models.

3. What policy conclusions can be drawn from applying robust equilibrium models
to real-world electricity markets? Since, for sure, many parameters of electricity
market models are uncertain (such as investment and operating costs of generating
firms), such studies might be both of scientific as well as political interest.

Finally, let us close this paper with a rather general topic. The scientific commu-
nity dealing with energy market equilibrium models is often discussing the question
of what the “correct model” looks like. Should it be deterministic but with a high
level of physical accuracy? Is a proper modeling of physics maybe less important but
should there be a stronger emphasis on uncertainty modeling? If a stronger empha-
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sis on uncertainty modeling is required, what kind of uncertainty model (stochastic
or robust—risk-neutral or highly risk-averse) is the right one? These questions are
long-lasting because they are hard to answer. Since in the recent past, more and more
robust aspects entered the stage of energy market equilibrium modeling—and this
paper hopefully serves as one contribution into this direction—a proper analysis now
seemsmore achievable as before. For instance, equilibriummodels including different
ways of handling uncertainty can be fitted against real-world market outcomes to shed
some light on the appropriateness of stochastic and robust equilibrium modeling.
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