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Abstract
The aimof this letter is to design and computationally test several improvements for the
compact integer linear programming (ILP) formulations of the temporal bin packing
problem with fire-ups (TBPP-FU). This problem is a challenging generalization of
the classical bin packing problem in which the items, interpreted as jobs of given
weight, are active only during an associated time window. The TBPP-FU objective
function asks for the minimization of the weighted sum of the number of bins, viewed
as servers of given capacity, to execute all the jobs and the total number of fire-ups.
The fire-ups count the number of times the servers are activated due to the presence of
assigned active jobs. Our contributions are effective procedures to reduce the number
of variables and constraints of the ILP formulations proposed in the literature as well
as the introduction of new valid inequalities. By extensive computational tests we
show that substantial improvements can be achieved and several instances from the
literature can be solved to proven optimality for the first time.
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1 Introduction

The temporal bin packing problem (TBPP) introduces a temporal dimension to the
classical bin packing problem (BPP), see [11,18,20], by associating to the items time
windows in which they are active. Formally, given a set of items (or jobs), the TBPP
asks for determining the minimum number of bins (or servers) of given capacity to
execute all jobs. Each job is characterized by a size (or resource demand) and a lifespan
(time window in which the job is active), a jobs-to-servers assignment is feasible if
and only if the capacity of the servers is respected at any instant of time. The TBPP
is a challenging problem with a high practical and theoretical interest which has been
recently introduced in the literature, see [9,10]. It belongs to the rich family of cutting
and packing problems, object of intense research in the last decades. The TBPP can
also be interpreted as a high-dimensional vector packing problem [7,19] and it partially
shares the mathematical structures of two-dimensional packing problems, where the
time can be seen as one of the dimensions and the other one is related to the capacity of
the servers. We also refer the interested reader to [13,16] for the strip packing versions
of these problems.

Another problem closely related to the TBPP is the temporal knapsack problem
(TKP). The TKP asks for determining a maximum-profit subset of jobs (also active
for a given time window) which can be executed by a single server, see [2,4]. As far
as the exact approaches to solve the TKP to proven optimality are concerned, this
problem is usually tackled by a Dantzig-Wolfe reformulation and branch-and-price
algorithms [5,6] or by dynamic programming algorithms [8].

The TBPP is introduced in an application-oriented article, see [9], dealing with
efficient workload server management in data centers–one of the key challenges in
light of the ever-growing energy demand of the IT industry [1,12,14]. As far as the
TBPP solution methods are concerned, we refer the reader to [10], an article which
presents several heuristic and exact approaches.The state-of-the-art exact algorithm for
the TBPP is a branch-and-price algorithm, which exploits in preprocessing a plethora
of heuristic algorithms (see [10] for further details).

In the TBPP, the quality of a jobs-to-servers assignment is evaluated solely by
the number of servers in use. However, several recent publications point out that the
specific operating mode of the servers is also crucial. This means, in particular, that
an inactive server can be temporarily put into a sleep mode (or can be completely shut
down) for the purpose of saving energy. In this case the server must then be turned on
again, if required. A server restart is called a fire-up, see also Fig. 1 for a graphical
representation, and–from the perspective of energy-efficiency–this naturally leads to
a second optimization goal, introduced in [3]. The authors of that article propose
two compact ILP formulations (denoted M1 and M2) taking into consideration two
different objectives: (i) the number of servers and (ii) the number of fire-ups. This new
objective function is a weighted-sum, using the input parameter γ > 0 to scale the
contribution of the fire-ups. In this way, a multi-objective variant of the TBPP has been
proposed in [3], hereinafter referred to as the temporal bin packing problem with fire-
ups (TBPP-FU). The models M1 and M2 of [3] are based on the classic Kantorovich-
type structure for the BPP, see [15], and the experiments show that the proposed
exact solution method using these models is very challenging from a computational
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Fig. 1 An exemplary assignment
of five jobs to two servers. (This
assignment is optimal for the
instance appearing in Example 1
with γ = 1)

point of view. In order to quickly find good-quality heuristic solutions, a constructive
look-ahead heuristic (CLH), together with an advanced recovery algorithm based on
mathematical programming techniques, is also presented in [3].

In that article, an interesting insight of the multi-objective function is also shown:
for rather small values of γ , i.e., for γ ≤ 1/n (where n is the number of jobs), it
is possible to considerably reduce the size of the ILP formulations by exploiting the
information given by the heuristic solutions. However, the important question on how
to reduce themodels in the general case of arbitrary values of γ is still an open problem
which we tackle in this letter.

Very recently, in [17] several methods for improving the TBPP-FU ILPmodels have
been proposed. These techniques generate substantial performance gains, including
also the possibility of efficiently handling larger values of γ . In addition, a third
formulation (called M3) is proposed which is not based on the classical job-to-server
assignment variables. More in details, M3 is based on a job-to-job relation and it
allows to a priori discard some infeasible solutions by removing a set of variables.
As a result, model M3 is a more compact ILP formulation (compared to M1 and M2)
which is particularly effective for fast calculations. However, from an overall point of
view, the tests in [17] show that the “optimized” version of M1 remains on average
the state-of-the-art approach in terms of instances solved to proven optimality.

In this article, we aim to enrich and complete the structural analysis of the compact
ILP formulations for the TBPP-FU. To this end, we present new methods to improve
the ILP models which lead to better numerical results. More in details, we show how
to transfer parts of the previously mentioned favorable properties of M3, i.e., mainly
a small model size and the possibility to easily account for job incompatibilities, to
M1 andM2, thus obtaining very robust and more powerful compact formulations. The
main contributions of our investigation are:

– We optimize and reduce the set of constraints of M1 by removing redundancies
and tightening some conditions.

– We present a new class of valid inequalities forM1 andM2mimicking the inherent
property of M3 to avoid forbidden item pairs.

– We theoretically show how heuristic-based information can be used for arbitrary
choices of γ , generalizing the results of the literature. A side effect of investigating
the heuristic used for that purpose is that we can also pass a good-quality starting
point to the ILP solver.

The remainder of this letter is structured as follows: In the next section we introduce
the notation and the M1 and M2 formulations from the literature. In the core Sect.
3, we present the new reduction procedures and the new family of valid inequalities.
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2336 J. Martinovic et al.

Finally, extensive computational tests are reported inSect. 4, aiming at computationally
evaluating the beneficial effect of the newly proposed techniques.

2 Preliminaries and basic models

In this section, we present the most important terminologies and notations, as well as
a brief overview of the current ILP formulations from the literature. Let us consider
n ∈ N items (jobs), each of which possessing a resource demand (item size) ci ∈ N

that is active only in the interval [si , ei ) formed by the starting time si ∈ N and the
ending time ei ∈ N, i ∈ I := {1, . . . , n}. Then, these items have to be assigned to bins
(servers) of capacity C ∈ N so that a weighted sum consisting of (i) the number of
servers required and (ii) the number of fire-ups is minimized, where the second term is
scaled by a weighting parameter γ > 0. Let K := {1, . . . , n} denote the set of servers
and let T := ⋃

i∈I {si , ei } and TS := ⋃
i∈I {si } collect the relevant instants of (starting)

times. Moreover, we assume the items to be ordered with respect to non-decreasing
starting times (where ties are broken arbitrarily), and we use It := {i ∈ I | t ∈ [si , ei )}
to indicate the active jobs at time t ∈ T .

Example 1 Let us consider an instance with servers of capacity C = 2 and n = 5
items having resource demands c = (2, 1, 1, 1, 1), starting times s = (1, 1, 5, 7, 7),
and ending times e = (2, 11, 15, 16, 8). Then, for γ = 1, an optimal solution requires
two servers and three fire-ups as depicted in Fig. 1.

In total, three different compact models for the TBPP-FU have so far been for-
mulated in the literature. To reiterate, the original publication [3] contained two ILP
formulations (called M1 and M2) which were based on classic job-to-server assign-
ment variables. Some first reduction methods together with a new third exact approach
(called M3) have been presented in [17], all of which contributed to significantly bet-
ter numerical results. To facilitate understanding the ILP formulations, here we only
present the raw versions from [3] in some detail. However, we emphasize that all of
our contributions presented later are directly applied to the models from [17], which
correspond to the current state of the literature. In contrast, a formal introduction ofM3
is skipped since our new reductions either specifically address the set of servers to be
modeled (which, however, is not explicitly contained in M3) or exclude combinations
of items (which is automatically done in M3 through job-to-job coupling).

Remark 1 Nevertheless,wewill also consider an improved version ofM3 in the numer-
ical part, but its differences with the version from [17] are very general and therefore
traceable even without explicit knowledge of the model itself.

To state M1, let us consider the following four types of binary variables:

– We have zk = 1 if and only if server k ∈ K is used.
– We set xik = 1 if and only if job i ∈ I runs on server k ∈ K .
– We use ytk = 1 if and only if server k ∈ K is active at time t ∈ T .
– We have wtk = 1 if and only if server k ∈ K is activated at time t ∈ TS .
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Consequently, the z-variables measure the number of servers required whereas the
w-variables are responsible for counting the fire-ups. The original version of M1, as
presented in [3], then reads as follows

Model 1 (M1)

min
∑

k∈K

⎛

⎝zk + γ
∑

t∈TS
wtk

⎞

⎠

s.t. ytk ≤
∑

i∈It
ci xik ≤ ytkC, k ∈ K , t ∈ T , (1)

∑

k∈K
xik = 1, i ∈ I , (2)

xik ≤ ysi ,k, i ∈ I , k ∈ K , (3)

ytk ≤ zk, k ∈ K , t ∈ T , (4)

ytk − yt−1,k ≤ wtk, k ∈ K , t ∈ TS, (5)

xik ∈ {0, 1}, i ∈ I , k ∈ K , (6)

ytk ∈ {0, 1}, k ∈ K , t ∈ T , (7)

wtk ∈ {0, 1}, k ∈ K , t ∈ TS, (8)

zk ∈ {0, 1}, k ∈ K . (9)

The objective function minimizes a weighted sum of the aforementioned criteria.
Constraints (1) make sure that the capacity of an active server is respected (right hand
side), and that an empty server is deactivated (left hand side). Conditions (2) demand
that any job is assigned exactly once, while linking the different types of variables is
done by Restrictions (3)–(5). In particular, (5) is responsible for recognizing a fire-
up in precisely those cases where the considered server is currently active, but was
inactive at the preceding instant of time (indicated by t − 1 in a symbolic way).

The second formulation M2 appearing in [3] addresses the temporal aspect of the
problem in a less explicit way, e.g., by not making use of the y-variables measuring
the activity of the servers. Instead, however, the sets δi := {

j < i
∣
∣ si < e j

}
and

δ+
i := {

j < i
∣
∣ si ≤ e j

}
, i ∈ I , gathering jobs being active at si (see δi and δ+

i ) or
just having finished at si (only δ+

i ) are required. With these ingredients, M2 from [3]
is given by:

Model 2 (M2)

min
∑

k∈K

⎛

⎝zk + γ
∑

t∈TS
wtk

⎞

⎠

s.t.
∑

j∈δi

c j x jk + ci xik ≤ Czk, i ∈ I , k ∈ K (10)

∑

k∈K
xik = 1, i ∈ I , (11)
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xik ≤ zk, i ∈ I , k ∈ K , (12)

wsi ,k ≥ xik −
∑

j∈δ+
i

x jk, i ∈ I , k ∈ K , (13)

xik ∈ {0, 1}, i ∈ I , k ∈ K , (14)

wtk ∈ {0, 1}, t ∈ TS, k ∈ K , (15)

zk ∈ {0, 1}, k ∈ K . (16)

The objective function and Conditions (11) already appeared in exactly the same way
in M1, whereas Constraints (10) again ensure that the server capacity is respected.
Restrictions (12)–(13) are responsible for linking the different types of variables. In
particular, Conditions (13) state that a fire-up at time si has to be perceived on server
k, if item i , but none of the items from δ+

i , has been placed on it.
Besides being relatively large in size, the original versions of M1 and M2 possess

some structural drawbacks:

(i) The solution space is highly symmetric.
(ii) The LP relaxation is rather poor.
(iii) The set K is much larger than required in an optimal solution.

Note that the first two problems are mainly related to the Kantorovich-type structure
of the models and were already successfully addressed in parts in [17]. Without going
into too much detail (for this, we refer the reader to the contributions of [17]), this was
done primarily by:

(R1) Renumbering the servers so that only index pairs (i, k) from the setΔ := {(i, k) |
k ≤ i} have to be considered. This also made it possible to move to server-
dependent time sets

T (k) =
⋃

i≥k

{si , ei } and TS(k) =
⋃

i≥k

{si },

which helped to also save some of the y- and w-variables.
(R2) Introducing valid inequalities zk ≤ ∑

t∈TS(k) wtk for any k ∈ K implying at least
one fire-up on every server. In particular, this prevents the two variable types
in the objective function from becoming arbitrarily small independently of each
other.

(R3) Lifting the item sizes ci , i ∈ I , to possibly tighten Conditions (1) and (10).

Furthermore, by additional minor reductions (referred to as (R4) and (R5) in [17]),
some redundancies within the set of constraints could be eliminated in M2. Based on
numerical tests, it was shown that the listed techniques lead to significant improve-
ments of the compact models, with (R1) and (R2) proving to be particularly valuable
for the benchmark instances considered. This was due mainly to the fact that the
size of the models could be reduced by roughly 50% (both in terms of variables and
constraints), but also to significantly better LP bounds. For this reason, it seems worth-
while to us to explore further reduction possibilities (for the approaches from [17])
and present them in the next section, thus arriving at the somewhat “best possible”
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version of the compact formulations M1 and M2 (and, in the light of Remark 1, also
M3).

3 New reductionmethods

The new reduction methods to be proposed in this section can be roughly divided into
three categories:

(a) “optimizing” the set of constraints,
(b) adding new valid inequalities,
(c) a heuristic-based reduction of the model size.

While item (a) is specific to the y-variables and Constraints (1) from M1, (b) and (c)
can be applied to M1 and M2. For this reason, we will discuss all these methods using
M1, but also briefly point out how they might need to be modified for M2. For the
sake of completeness, we again point out that the specification of a starting point for
the ILP solver, which is implicitly associated with (c), can of course be used for all
three existing models.

3.1 Reduction (a)

We first observe that after having applied Reduction (R1), Constraints (1) from M1
only need to be formulated for the time steps t ∈ T (k) relevant on server k ∈ K .
However, we do not require the whole inequality chain

ytk ≤
∑

i∈It :(i,k)∈Δ

ci xik ≤ ytkC

for each t ∈ T (k), since either of the two parts has a very specific purpose. To be more
precise, the left hand side is only important to perceive the deactivation of a server,
while the right hand side helps to recognize an active server. Hence, it suffices to state
the first inequality for ending times t ∈ TE (k) = ⋃

i≥k{ei } (on server k) only, whereas
the second inequality needs to be formulated just for the server-dependent starting
times t ∈ TS(k) = ⋃

i≥k{si }. In the latter case, we can even go a step further by noting
that only the non-dominated starting times T nd

S (k) have to be considered. Observe that
a starting time t1 is called dominated if it is directly followed by another starting time t2
(so that every job that is active at t1 is still active at t2), see also [10,17]. After we have
accordingly broken the chain of inequalities into two parts, we can strengthen the first
part by moving from ytk ≤ ∑

i∈It :(i,k)∈Δ ci xik to ytk ≤ ∑
i∈It :(i,k)∈Δ xik . Obviously,

the latter better conveys the important message that an empty server cannot be active
and an active server needs to have at least one item running on it. Overall, Reduction
(a) helps to save some redundant conditions appearing in (1), while other conditions
of that type are even tightened.
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3.2 Reduction (b)

One of themajor advantages ofModelM3 from [17] consisted of the fact that the set of
variables to be consideredwas very small due to the eliminationof forbidden itempairs.
By that, we mean that any pair of jobs appearing in F := {(i, j) | [si , ei )∩[s j , e j ) �=
∅, ci+c j > C} cannot be executed on the same server.While this could be incorporated
directly into the model generation of M3 due to the job-to-job coupling, additional
valid inequalities are needed for M1 and M2 to avoid such pairs. However, the naive
way of just demanding xik + x jk ≤ zk for any k ∈ K and any (i, j) ∈ F with (i, k),
( j, k) ∈ Δ normally leads to a very large amount of further constraints (up toO(n3) of
them in the worst case). For this reason, here we propose a more sophisticated strategy
that produces fewer and at the same time (partly) better such inequalities. To this end,
note that for a fixed server k it would be sufficient to collect (a reasonable subset of)
the maximal cliques of the incompatibility graph G(k) = (I (k), F) formed by the
relation F on the set I (k) := {i ∈ I | i ≥ k} of items that can be assigned to server
k. Then, for any such clique C (related to server k) with |C| ≥ 2, the condition

∑

i∈C
xik ≤ zk (17)

has to be added. For M1, we recommend to replace zk on the right hand side of
this inequality by ytk , where t is the last starting time of the items from C (that is,
one specific instant of time where all these items are active). Thanks to the coupling
conditions (4) from M1, this will impose an even stronger constraint.
To find the maximal cliques, we propose the following strategy, starting with k = 1
(so that I (k) = I holds):

(i) Find the maximal cliques of the subgraph (of G(1)) formed only by the items
having ci > C/2.

(ii) For any fixed item i ∈ I with ci ≤ C/2: consider the subgraph formed by the
items j with c j > C − ci that are adjacent to i in G(1). When we add {i} to a
maximal clique of this subgraph, then we end up with a maximal clique of G(1).

By these two steps, we will find all maximal cliques of G(1) thanks to the following
result:

Lemma 1 Let k ∈ K be fixed. Then, a maximal clique of G(k) can have at most one
item of size ≤ C/2.

Proof Indeed, if there were two such items in the clique, we would not have an edge
between them which gives the contradiction. �	

For any remaining server k ≥ 2, the maximal cliques of G(k) (having size |C| ≥ 2)
can be iteratively obtained from the information of the previous step k − 1 by deleting
the item i = k − 1 from any maximal clique of G(k − 1) and applying cardinality and
dominance tests to the obtained subsets of items.
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3.3 Reduction (c)

The techniques presented so far (in Sects. 2 and 3) have not yet contributed to the
reduction of the quantity |K |, which has a decisive influence on the model size as, for
instance, the index k appears in any of the four variable types of M1. To deal with this
challenge, which was already established as item (iii) in Sect. 2, appropriate heuristic
information can be applied. However, from a theoretical point of view, the latter has
only been successfully achieved for very small choices of γ :

Theorem 1 ([3]) Let γ ≤ 1/n. Then, the number of servers required for the TBPP-FU
is equal to the number of servers in an optimal solution to the TBPP.

The previous result allows for either computing the optimal size of K beforehand by
solving a somewhat easier auxiliary problem (that is, the TBPP) or to at least limit
the number of servers to any value obtained by a heuristic solution. However, as also
reported in [3, Example 2.2], this result does not hold for larger choices of γ , so that
reducing the size of K cannot be performed in the majority of the cases. To tackle this
issue the following result presents an easy way of using heuristic information in the
general case, too.

Theorem 2 Let zheu be the objective value obtained by any heuristic for the TBPP-
FU. Then, the number of servers required in an optimal solution is at most k� :=

zheu/(1 + γ )�.
Proof If the claim was wrong we would need at least k� + 1 servers in an optimal
solution. Since every server is switched-on at least once, this would lead to an objective
value of at least

(k� + 1) + γ · (k� + 1) = (1 + γ ) · (k� + 1) > zheu

giving the contradiction because the heuristic would have to be better than the optimal
solution. �	
This result allows us to replace the set K = {1, . . . , n} at all positions in M1 and M2
with an appropriately defined and greatly reduced set K � := {1, . . . , k�}. Moreover,
we recommend to pass the heuristic solution to the solver to give it a warm start. For
our investigations, we will use the constructive look-ahead heuristic (CLH) described
in [3, Sect. 3], but in a slightly more exploratory way. Before explaining the precise
meaning of this intention, let us briefly collect the main idea of that heuristic: As
stated in Sect. 2, we start by an item list ordered with respect to non-decreasing
starting times si (where ties are broken in an arbitrary way) and process the items
one by one. Moreover, we require a look-ahead parameter q ∈ N indicating the
number of future items to be taken into account when making the current decision.
In a specific iteration, we consider a fixed item i ∈ I and assign it to every open
server that is able to accommodate it, and (as another alternative) also to a new empty
server. By that, we obtain various different assignmentsA1, . . . ,Ap. Now, we add the
next q items to any of these assignments in a best-fit fashion, leading to the extended
assignments Ã1, . . . , Ãp. Finally, we compute the corresponding objective values
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(i.e., the weighted sum of servers and fire-ups) and place item i to that bin whose
extended assignment led to the lowest objective value.

Since in [3] the parameter q = 3 was used without compelling justification, we
will first preface our actual test calculations in the next section with a somewhat more
detailed consideration of the CLH algorithm.

4 Computational tests

4.1 Data sets andmethodology

For our numerical calculations, we coded the above approaches in Python (version
3.9.2) and used its Gurobi (version 9.1.1) interface to solve the resulting ILP formula-
tions with default settings and a time limit of 30 min per instance. All the experiments
were run on an AMDA10-5800K processor with 16 GB RAM, that is, the same hard-
ware as in [17]. Due to its novelty, the TBPP-FU has not yet been able to leave a
large scientific footprint in the relevant literature, so that only one set of benchmark
instances has been specifically designed for the problem under consideration, see [3].
In that publication, the authors propose 160 instances formed by 32 groups of five
instances each, all sharing the same capacity C = 100. Apart from that, any group is
determined by four indicators:

– number of items: n ∈ {50, 100, 150, 200},
– time horizon: dense or relaxed (indicated by a maximum starting time s̄ ∈

{n, 1.2n}),
– job duration di := ei −si : short or long (represented by ’dS’ and ’dL ’ and indicated
by uniformly distributed integers di ∈ [10, 30] and di ∈ [20, 60], respectively)

– resource consumption ci : low or high (represented by ’cL ’ and ’cH ’ and indicated
by uniformly distributed integers ci ∈ [25, 50] and ci ∈ [25, 75], respectively).

Even though the total number of instances appears to be relatively small, they can
be considered very suitable for numerical test calculations due to their difficulty,
especially because only 63 of them could be solved in the original publication [3].
Also the improvements discussed in [17] could increase this number to only just over
50% (that is, 85 out of 160), so that their solution still represents a serious challenge
from today’s point of view.

In the following discussions, the improved versions of the compact models from
[17] will be referred to asM1�, M2�, andM3�. To reiterate, beyond providing a heuris-
tic starting point, M1� and M2� differ from their previous versions by applying the
techniques proposed in Sect. 3. For model M3, we note that based on the impres-
sions of some internal preliminary test calculations, the final implementation in [17]
sometimes did contain only a subset of the valid inequalities of type xik ≤ xkk , but
unfortunately this was not sufficiently clearly stated in the text itself. Although this
approach suggested slight performance advantages from the point of view of that time,
(in the meantime) these expectations have not been generally confirmed with respect
to the whole benchmark set tested here. For this reason, in contrast to [17], here we use
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the complete set of constraints of the above type (and, of course, the same heuristic
starting point as for the other models) to define M3�.

4.2 Computational results for CLH

In a first experiment, we study the influence of the look-ahead parameter q on the
performance of the CLH approach from [3]. For this purpose, we exemplarily consider
the instances with n ∈ {100, 200} items and refer to the results in Table 1. Based on
this data, one can see the rough trend that a deeper look into the future (that is, a
larger value of q) typically leads to a reduction in the heuristic value. However, this is
by no means a strictly monotonous relationship, because for two different choices of
q the obtained assignments will be considerably different, in general. Consequently,
although the tabulated data give a very consistent picture in that large values of q are
to be preferred, there is no single universally best choice of that parameter.

Remark 2 To better evaluate these data, column LB in Table 1 contains the average
rounded-up LP values of M1�, i.e., a lower bound for the integer optimal value. By
that, we see for instance that the average difference between the heuristic and the
optimal value is bounded by roughly 27% for the hard instances with n = 200 items,
but for a few constellations (especially with cH ) it is also (considerably) larger since
it is much harder to obtain a dense heuristic packing in these cases.

As for the computational efforts, it is important to note that all the heuristic values
can be determined very quickly, meaning that for many scenarios (n, q) the heuristic
solution is available in less than 1 s. Even checking all the look-ahead parameters q
(mentioned in Table 1) for an instance with n = 200 jobs and then deciding on the best
result (see column ’best’ in Table 1) takes only about 17 s on average, which is quite
acceptable when measured against the time limit of 30 min permitted for the exact
solution of these rather challenging instances. For this reason, and considering that our
intention is to present a preferably maximally reduced compact formulation, we will
always choose the best heuristic value to define k� (that is, the number of initialized
servers) appearing in Theorem 2. We note, however, that one could alternatively agree
on a compromise between computational effort and quality of the heuristic solution
and always use a fixed value of the look-ahead parameter (say q = 20), since already
this leads to a significant improvement (e.g., on average about 15% better heuristic
values for n = 200) compared to the relatively arbitrary choice of q = 3 from [3],
without noticeably increasing the time required. Either way, as the cardinality of K
strongly influences the number of variables and constraints, very powerful reductions
in terms of the model size can be expected.

For the sake of exposition, we take a closer look at the associated numbers in Table
2. Due to space limitations, we again consider only the subset of instances that was also
used in Table 1, but finally we also report the average results over all 160 instances in
the last row of Table 2 to allow for a better overall picture. In addition, we also include
the values of M3 (and M3� just having slightly more constraints for some instance
groups), as thiswas the best formulation so far in terms ofmodel size. Compared to that
approach, we notice that the ideas presented in Sect. 3 lead to significant reductions
of the integer programs associated with M1 and M2. To be more precise, while the
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savings in the number of constraints is about 60% in both cases (compared to M3),
in the case of the number of variables it ranges from about 32% (for M1�) to 45%
(for M2�). These reductions become even more remarkable when referring only to the
comparison of the literature version M1 (resp. M2) with the version M1� (resp. M2�)
improved in the context of this work. On average, here we end up with roughly 75%
fewer variables (in both cases) and, depending on the formulation, between 67% and
80% fewer constraints. While for a fixed number of items n and a fixed model we
previously saw very little variation in the indicators nvar and ncon among the several
groups of instances, we now observe that our reductions are particularly successful
when short and/or low-resource jobs are considered (see dS and cL ). On the one hand,
these constellations tend to lead to particularly few interactions between the jobs and
therefore allow for better heuristic solutions (typically leading to a small value of k�),
which is also clearly supported by the results from Table 1. On the other hand, for the
case cH , the number of forbidden item combinations increases significantly, so that,
for example, a sometimes substantial number of valid inequalities (see Reduction (b)
in Sect. 3) must be added to the model.

4.3 Computational results for the compact models

In a next step, we focus on the performance of M1�, M2�, and M3� when addressing
the exact solution of the benchmark instances. To this end, we tabulate the obtained
results in Table 3 and compare them with the previous state of the literature (that is,
M1,M2, andM3 from [17]). First, we note that the contributions from Sect. 3 (and also
the warm start of the solver) helped to significantly increase the number of instances
solved to optimality.More specifically, themodifications toM1 (M2, andM3) resulted
in 18 (18, and 15) additional proven optimal solutions, so that all formulations now
perform considerably better than their original versions from [17]. A table containing
more information about which model was able to solve which instance can be found
in the “Appendix” section.

Remark 3 Interestingly, in at least ten additional cases M2� already had the correct
optimal value, but failed to prove the optimality within the given time limit. For M1�

and M3�, these numbers resulted in 0 and 3 instances, respectively, see also Table 7
in the “Appendix” section.

Due to its small model size and the fact that, for example, the reduction related to K
is particularly promising for large values of n, M3� is the best formulation for the very
small instances with n = 50 items, but constantly loses this leading position for larger
instances (especially in comparison with M1�). Overall, it is noticeable in Table 3 that
the performance of M1�, M2�, and M3� has improved, especially for many instances
from the constellation (dS, cL), which further supports the observations made in Table
2 that the reductions (of M1 and M2) are particularly strong for these cases. However,
the ideas from Sect. 3 not only contribute to an overall improvement in the number of
optimally solved instances, but (inmany cases) also to considerably lower computation
times required. On the one hand, this can be seen from the average values in Table
3, but it becomes somewhat more evident if we look at the percentage of optimally
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Fig. 2 Temporal development of
the number of instances solved
to optimality by the various
formulations

solved instances over time, see Fig. 2. Therein, it is clearly visible that at any point
in time a fixed updated formulation dominates its corresponding original model from
[17]. Moreover, given the additional improvements from Sect. 3, either M1� or M2�

always possesses the most convincing performance. The generally smaller model size
of M2� causes it to dominate M1� within the first 2 min, while in the long term M3�

offers similar and M1� even better numerical results. We attribute the latter to the
fact that the numerous coupling conditions in M1� (i.e., the implications inherent to
Constraints (3)–(5)) have a large effect in the deeper layers of the branch-and-bound
tree, since already the specification of a small set of variables actually fixes a much
larger set of variables to integer values.Moreover, the methods contained in Reduction
(a), and the fact that the valid cuts from Reduction (b) can be formulated in a stronger
way may also have contributed to the slightly better overall performance of M1�.

While these considerations refer only to the successfully solved instances, the exit
gaps provided in the last row of Table 3 also indicate the improvements with respect
to all instances. Roughly speaking, all compact models were able to reduce their exit
gap by at least 45%, with M1� standing out here with a reduction of more than 80%.
This observation is partly due to the fact that the specification of a starting point now
generally leads to reasonable approximate solutions even for very difficult instances.

Remark 4 To gain a rough insight into which of the presented reductions have which
effect, we exemplarily solved again the more difficult half of the instances (those
with n ≥ 150) by different variants of M1. More precisely, we start with the version
from [17] and then gradually add the methods from Sect. 3, see Table 4. Note that
for Reduction (c) we distinguish between the mere heuristic-based reduction (called
“M1� (cold)”) and the additional use of the feasible solution as a starting point for the
ILP solver.

In terms of model size, one can clearly see that Reduction (c) makes the largest con-
tribution, reducing both variable and constraint numbers very significantly. However,
also Reduction (a) helps to make a remarkable improvement, especially by already
removing roughly 40% of all constraints. In contrast, as expected, adding valid cuts
(i.e., applying Reduction (b)) again leads to an increase (of 22%) in constraints, but
this still results in better overall performance, especially for n = 150. With respect to
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Table 4 Some key indicators summarizing the effects of the step-by-step reduction for n = 150 (upper
half, i.e., rows 1-6) and n = 200 (lower half, i.e., rows 7-12)

Indicator Units M1 M1 + (a) M1 + (a) + (b) M1� (cold) M1�

nvar 103 31.3 28.7 28.7 7.4 7.4

ncon 103 56.1 34.1 41.5 11.7 11.7

nnz 103 613.0 317.0 408.5 130.9 130.9

z – 61.7 57.5 46.6 38.0 37.4

opt – 13 15 17 19 22

t s 1332.3 1228.3 1174.8 1084.6 992.4

nvar 103 54.6 51.1 51.1 11.2 11.2

ncon 103 96.8 61.1 74.5 17.6 17.6

nnz 103 1114.2 607.4 770.0 199.3 199.3

z – 179.1 95.4 91.6 44.3 40.1

opt – 10 10 10 11 14

t s 1422.1 1376.0 1376.3 1360.1 1219.9

In addition to the notation already used before, nnz represents the number of nonzero elements appearing
in the constraint matrix of the optimization problems

the number of instances solved to proven optimality and the solution times required, it
can be observed that for n = 150 each individual method has an approximately equal
contribution. For the even more difficult instances with n = 200 items, Reductions (a)
and (b) do particularly lead to significantly better objective function values (in total,
we see a reduction of almost 50% from M1 to M1+(a)+(b)), but the optimality for
additional instances can only be witnessed after having added Reduction (c). Hence,
from the point of view of model performance, Reduction (c) as a whole (i.e, using
heuristic information plus warm start) is typically slightly superior to the other two
individual techniques. Some more detailed results can also be found in Table 8 in the
“Appendix” section.

Moreover, Fig. 3 additionally gives an overview of the average objective values (again
only for the 80 harder instances with n ≥ 150) over time. Besides the obvious and
substantial improvements of M1�, M2�, and M3� (over the original versions), we
highlight the very good performance of M2� (see Fig. 4 for an enlarged section) at
almost all instants of time, which we again particularly attribute to the much smaller
model size. Although Fig. 4 might suggest this, M2� is nevertheless not better than
M1� or M3� for every single instance, see also Table 5.

We observe that the comparison between M1� and M2� ends in a draw here, with
16 wins for each of the models, while both of the previously mentioned formulations
dominate the M3� model in terms of the objective function value found much more
often than they are defeated by it. From a general point of view, it can be said that the
advantages of M1� lie in particular in its ability to obtain proven optimal solutions,
while M2� is able to (on average) produce slightly better feasible points even for
challenging instances of the TBPP-FU. The high quality of the approximate solutions
obtained from M1� and M2� is also confirmed by the fact that the best (rounded-up)
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Fig. 3 Temporal development of
the average objective value for
n ≥ 150 by the various
formulations. To better
distinguish the new models,
which are very close to each
other, we refer to Fig. 4

Fig. 4 An enlarged section from
Fig. 3 to better compare M1�,
M2�, and M3�

LP bound (over all models) for the instances considered in Fig. 4 averaged 34.55. The
fact that M3�, in the light of Table 5, now tends to perform worst in the comparison of
the three formulations is mainly due to the fact that, according to Table 2, it has lost
its former leading position (in terms of model size) to the other two formulations as a
result of the very powerful improvements from Sect. 3.

Overall, it can be concluded that the methods presented in Sect. 3 (and the warm
start of the solver) not only substantially improve the performance of the models
individually, but also result in the advantageous features of the M3-type approaches
(listed in [17]) now being barely discernible in most of the numerical comparisons.
As a consequence, also M3� is outperformed in many respects by M1� and M2�.

4.4 An outlook: valid cuts from lot sizing

In the literature there are many problems of operations research which, similar to the
TBPP-FU, assign additional costs to the start-up of a machine, see for example the
uncapacitated lot sizing problem [21]. For that problem, classes of valid inequalities
are also known, whose applicability and usefulness for the TBPP-FU we want to
briefly discuss here as a conclusion of our considerations. In particular, this is also
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Table 5 Comparison between
the three improved formulations

M1� M2� M3�

M1� – 16 25

M2� 16 – 26

M3� 15 15 –

An integer number x ∈ N at position (i, j) in the table means, that
formulation i was strictly better (i.e., it found a better feasible point)
than j in x cases

to emphasize that the improvements in compact models achieved in this article have
indeed reached a certain plateau level and, as a consequence, that obvious ideas from
adjacent fields do not easily lead to further numerical advantages. For the sake of
exposition, in a final experiment, let us therefore add the following types of constraints
to M1�

wtk ≤ ytk,

wtk ≤ 1 − yt−1,k,

lbt ≤
∑

k∈K �

ytk .

The first two sets are directly taken from [21], establish an additional w-y-coupling
of the variables appearing in M1�, and can be added for all k ∈ K � and t ∈ TS(k).
In particular, these restrictions include that a server that is active at a given instant
of time cannot be activated at the following point in time. The third set of conditions
involves a lower bound lbt ∈ Nwhich is defined as the optimal value of a bin packing
problem containing precisely the subset It of jobs being available at time t ∈ TS . By
that, we make sure that sufficiently many servers are active at every time instant to
accommodate the items that are executed at that moment.

Remark 5 Since all these valid cuts explicitly require the presence of the y-variables,
they cannot be applied to M2� or M3�.

Let us refer to the model containing all these new valid inequalities byM1��. Then, for
the benchmark set and hardware specified in Sect. 4.1, we obtain the average numbers
collected in Table 6. In terms of model size, we note that variables remain untouched,
while there is an obvious increase in the number ncon of constraints and also in the
number nnz of non-zero elements in the system matrix. In contrast, the LP bound zLP
at the root node improves only negligibly. In our observations, these opposing effects
nevertheless lead to a marginal improvement of the model performance overall. As
can be seen from the exit gap, slightly better feasible points are found on average,
so that in the end exactly one more instance could be optimally solved. We attribute
this in particular to the fact that although the additional inequalities do not necessarily
contribute to raising the continuous bound in the root node, they do help to keep the
resulting branch-and-bound trees (over the entire time period) somewhat smaller, see
also Fig. 5.
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Table 6 A brief overview of the
numerical comparison between
M1� and M1��

Indicator Units M1� M1�� Diff

nvar 103 6.1 6.1 ±0%

ncon 103 9.4 12.6 +34%

nnz 103 102.1 110.0 +7.7%

zLP – 32.7 32.8 +0.3%

Exit gap % 3.9 3.4 −12.8%

opt – 103 104 +1%

t s 727.6 705.5 −3%

The column ’Diff’ measures the percentage deviation of the new value
from the previous one. Please note that positive and negative deviations
may have a separate meaning depending on the criterion

Fig. 5 The average number of
unexplored nodes (for M1� and
M1��) over time. The average is
built based on all 160 instances

Finally, however, we would like to point out that despite the same software and
hardware, the solution process applied by the Gurobi solver is subject to a high degree
of randomization and thus a comparison of both sets of experiments (with such a
small difference) is difficult. In particular, we do not want to claim that the small
performance deviations between the two variants are an actual advancement of the
model itself, since they could have been caused by other effects. Even though we will
refer to M1� as state-of-the-art for these reasons, it was important to us to at least
briefly discuss this alternative variant in the context of an outlook, since one or the
other version could prove to be more advantageous for concrete problem instances
from practice or other (future) benchmark sets.

5 Conclusions

In this article, we dealt with the temporal bin packing problem with fire-ups, a rela-
tively new decision making problem in operations research typically leading to integer
models of challenging size. Even though some fundamental methods for obtaining
more tractable formulations have already been described in the recent literature, these
investigations do not yet turn out to be “complete” upon closer inspection, especially
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because the incorporation of heuristic information has so far only been possible for a
few special cases. Therefore, the contributions of this articlewere aimed in particular at
three methods to improve existing ILP models: “optimizing” the set of constraints (by
removing redundancies and tightening some inequalities), adding valid inequalities,
and reducing the number of servers to be considered (thus considerably decreasing
the overall model size). Based on numerical computations, the positive effects of the
new techniques (together with the warm start of the solver) could be manifested. We
underline not only the fact that, as a result of the improvements, each model was able
to solve at least 15 additional instances (compared to its previous version from [17])
of the challenging benchmark set from [3], but also highlight that, in particular, the
optimal solution of 14 instances (twelve by M1�, nine by M2�, seven by M3�, and
six by all three models) was obtained for the first time. Now that the investigation of
assignment models for the TBPP-FU is somewhat “complete”, future research should
focus in particular on flow-based models or branch-and-price approaches. Moreover,
theoretical results dealing with the worst-case performance of heuristics for the TBPP-
FU have not yet been addressed at all in the literature. From a practical point of view,
also generalizations of the problem considered here could be explored, in which, for
example, the time interval [si , ei ) of a job can be shifted slightly, which is then associ-
ated with penalty costs (for early or late execution). An idea related to this in a certain
sense has already been mentioned in the concluding parts of [10] for the TBPP.
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