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Abstract
We investigate the generalized red refinement for n-dimensional simplices that dates
back to Freudenthal (Ann Math 43(3):580–582, 1942) in a mixed-integer nonlinear
program (MINLP) context. We show that the red refinement meets sufficient conver-
gence conditions for a knownMINLP solution framework that is essentially based on
solving piecewise linear relaxations. In addition, we prove that applying this refine-
ment procedure results in piecewise linear relaxations that can be modeled by the
well-known incremental method established byMarkowitz andManne (Econometrica
25(1):84–110, 1957). Finally, numerical results from the field of alternating current
optimal power flow demonstrate the applicability of the red refinement in such MIP-
based MINLP solution frameworks.

Keywords Mixed-integer nonlinear programming · Red refinement · Piecewise
linear relaxation · Incremental method

1 Introduction

Solving general MINLPs is to this day a very challenging task. The backbone of
most approaches in this context is still branch-and-bound. In the last two decades,
however, various methods have been proposed that tackle non-convex MINLPs by
piecewise convex relaxations without direct branching of the continuous variables, see
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636 R. Burlacu

for example [7,8,12,14,16]. Although these approaches are sometimes rather different,
they all need to address the following two problems: the construction of reasonable
relaxations of the nonlinear functions and the incorporation of these relaxations into
a mixed-integer linear program (MIP) or convex nonlinear program (NLP).

One way to obtain such relaxations is to compute an optimal linearization of a non-
linear functionwith respect to the number of breakpoints and an a priori given accuracy
as in [17,18]. Complementary, optimal polynomial relaxations of one-dimensional
functions are constructed in [16]. For up to three-dimensional functions, explicit
approximation techniques for general nonlinear functions are proposed in [15]. The
main drawback of all these methods, however, is that the number of simplices in the
approximation grows exponentially with the dimension of the function.We refer to the
approach from [19] that avoids this problem in that the piecewise linear approximation
is not required to interpolate the original function at the vertices of the triangulation.

There are many different ways to model piecewise linear functions as an MIP.
A detailed overview of the various models is presented by [20]. Among the most
important ones is the incremental method of Markowitz andManne, see [13], which is
originally developed for one-dimensional functions. A generalization to higher dimen-
sions is described in [6,11,21]. Supplementary to this, an extension to relaxations is
given in [7].

In this paper, we consider theMINLP solutionmethod proposed in [3,6] and further
developed in [2] that tackles anMINLP by solving a series ofMIP relaxations that are
based on piecewise linear functions and completely contain the graph of the function.
The functions are defined on simplices, which in turn are defined by several vertices.
The authors develop an iterative algorithm to find a global optimal solution of the
MINLP by solving theseMIP relaxations, which are adaptively refined. They present
rather general convergence conditions for MINLP solution algorithms that rely on
the adaptive refinement of piecewise linear relaxations. They show that the classical
longest-edge bisection fulfills these conditions and therefore is suitable for such a
solution framework. In addition, they prove that triangulations that are constructed by
successively applying the longest-edge bisection lead to piecewise linear relaxations
that can always bemodeled by the alreadymentioned generalization of the incremental
method.

We extend this result by another refinement strategy for n-dimensional simplices:
the generalized red refinement introduced by Freudenthal in [5]. This procedure is
to some extent an n-dimensional generalization of the well-known red-green refine-
ment, which is used for two-dimensional simplices. We show that the red refinement
meets the convergence conditions from [3]. Moreover, we prove that the generalized
incremental method is suitable to model piecewise linear relaxations that are obtained
by iteratively applying the red refinement. Finally, numerical results from the field of
alternating current optimal power flow demonstrate the applicability of the red refine-
ment in an MINLP solution framework as presented in [3]. More precisely, we show
that this refinement strategy yields tighter dual bounds for the MINLP problems.

This article is structured as follows. We introduce all necessary definitions and
theorems of previous works in Sect. 2. Section 3 shows that the red refinement fulfills
the convergence conditions from [3]. In Sect. 3, we prove that adaptively red refined
piecewise linear relaxations can be modeled by the generalized incremental method.
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On refinement strategies for solvingMINLPs by piecewise… 637

Section 4 presents some numerical results that illustrate the practicability of the red
refinement procedure. We conclude this work in Sect. 5.

2 Preliminaries

The aim of this article is to prove that the generalized red refinement procedure is
suitable for an MINLP solution framework such as in [3].

We consider anMINLP problem as an optimization problem of the following type:

minx c�x
s.t. Ax ≤ b,

fi (x) ≤ 0 for all i ∈ {1, . . . , k}, (P)

l ≤ x ≤ u,

x ∈ R
q × Z

p,

where k, q, p ∈ N. First, Ax ≤ b represents the linear constraints, while the nonlinear
constraints are described by continuous nonlinear real-valued functions fi : R

q+p →R

for i = 1, . . . , k. The variables x are bounded from below and above by l, u ∈ R
q+p.

Moreover, we denote by F the set of all nonlinear functions fi (x). Let D f ⊂ R
q+p

be the domain of a nonlinear function f ∈ F . Since each variable in (P) has lower and
upper bounds, the domain D f is a compact set. We consider it to be a d-dimensional
boxwith its edges parallel to the coordinate axes,whiled ≤ q+p. Equality constraints,
i.e., constraints of type fi (x) = 0, are implicitly contained in (P) by simply adding
the constraints fi (x) ≤ 0 and − fi (x) ≤ 0. Please note that we are not restricted
to a linear objective function c�x , because we can include any nonlinear objective
function f : R

q+p → R by substituting f (x) with a variable y ∈ R and adding
f (x) ≤ y as a constraint to the MINLP problem. Due to max c�x = −min −c�x ,
any maximization problem can be transformed to a minimization problem. Thus, (P)
represents a general formal description ofMINLP problems.

The main idea of theMINLP solution approach from [3] is to use piecewise linear
functions to construct MIP relaxations of the underlying MINLP. An iterative algo-
rithm is developed to find a global optimal solution by solving these relaxations, which
are adaptively refined. With the domain D f of f ∈ F , the refinement is performed on
a simplicial triangulation T of D f . A more formal description of this method is given
in Algorithm 2.1.

In [3], the classical longest-edge bisection is used for the refinement procedure in
Line 19 of Algorithm 2.1. In this paper, we consider the generalized red refinement
instead. Please note that the theoretical results are part of the author’s Ph.D. thesis [2].

In order to be equipped with all the necessary ingredients for the following proofs,
we first introduce the most relevant definitions and theorems from [3]. First, with a
δ-precise refinement procedure, Algorithm 2.1 is both correct and convergent:

Definition 2.1 The refinement procedure in Algorithm 2.1 is called δ-precise, if for
an arbitrary sequence (Si ) ∈ Ti of simplices Si that are refined by the refinement
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638 R. Burlacu

Algorithm 2.1 Global optimization of an MINLP by solving adaptively refined MIP
relaxations
Input: An MINLP problem P of type (P), upper bounds ε0f > 0 for the absolute linearization errors in

the piecewise linear approximations used to construct the initial relaxation and the maximal absolute
linearization errors ε f > 0 for all f ∈ F .

Output: If P is feasible, the algorithm returns an optimal solution x of an MIP relaxation Π of P with
| f (x f ) − y f | ≤ ε f for all f ∈ F and c�x ≤ c�x ′ for any feasible point x ′ of P . If no such MIP
relaxation Π of P exists, this is reported by returning infeasible.

1: Set F ← all nonlinear functions that are contained in P .
2: Set D f , ε

0
f , ε f ← the domain D f and the error bounds ε0f , ε f for all f ∈ F .

3: Compute an initial piecewise linear approximation φ0
f of f ∈ F satisfying the upper bound ε0f for all

f ∈ F .
4: Set i ← 0.
5: repeat
6: Construct anMIP relaxation Π i of P from φi

f for all f ∈ F .

7: Solve Π i .
8: if Π i is feasible then
9: Set xi ← optimal solution of Π i .
10: else
11: return infeasible.
12: end if
13: Set stop ← true.
14: for all f ∈ F do
15: Set xif ← projection of xi on D f .

16: Set yif ← value of the variable for the relaxed function value of f .

17: if
∣
∣ f (xif ) − yif

∣
∣ > ε f then

18: Set Sif ← simplex of triangulation T
(

φi
f

)

that contains xif .

19: Set T
(

φi+1
f

) ← refinement of T
(

φi
f

)

(by refining Sif ).

20: Set φi+1
f ← piecewise linear approximation according to T

(

φi+1
f

)

.
21: Set stop ← false.
22: else
23: Set φi+1

f ← φi
f .

24: end if
25: end for
26: Set i ← i + 1.
27: until stop.
28: return xi−1.

procedure with initial triangulation T0 of D f and given δ > 0, there exists an index
N ∈ N, such that

diam(SN ) < δ (1)

holds, where diam(SN ) := supx ′,x ′′∈SN {‖x ′ − x ′′‖}.
Proposition 2.2 (Theorem 3.6, [3]) If the refinement procedure in Algorithm 2.1 is
δ-precise for every δ > 0, then Algorithm 2.1 is correct and terminates after a finite
number of steps.

It is therefore sufficient to prove that the generalized red refinement is δ-precise in
order to show that its combination with Algorithm 2.1 yields a correct and convergent
algorithm.
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On refinement strategies for solvingMINLPs by piecewise… 639

Moreover, we must prove that piecewise linear relaxations that are obtained by
iteratively applying the red refinement can be described by an MIP model. In Algo-
rithm 2.1, the piecewise linear relaxations are modeled by the generalized incremental
method, see [6]. There are two main ideas of the generalized incremental model. At
first, any point x S inside a simplex S with its vertex set V(S) = {x̄ S0 , . . . , x̄ Sd } can be
expressed either as a convex combination of its vertices or equivalently as

x S = x̄ S0 +
d

∑

j=1

(

x̄ Sj − x̄ S0
)

δSj (2)

with
∑d

j=1 δSj ≤ 1 and δSj ≥ 0 for j = 1, . . . , d.
The other main idea is that all simplices of a triangulation are ordered in such a

way that the last vertex of any simplex is equal to the first vertex of the next one.
In this way, we can construct a Hamiltonian path and model the piecewise linear
approximation along this path. It is known that modeling piecewise linear functions
by the generalized incremental method is possible if an ordering of the simplices with
the following properties is available:

(O1) The simplices in T = {S1, . . . , Sn} are ordered such that V(Si ) ∩ V(Si+1) �= ∅
for i = 1, . . . , n − 1, and

(O2) for each simplex Si its vertices x̄
Si
0 , . . . , x̄ Sid can be labeled such that x̄ Sid = x̄ Si+1

0
for i = 1, . . . , n − 1.

Hence, we only have to show that a red refined triangulation has properties (O1)
and (O2) to utilize the generalized incremental method.

3 Convergence result

In this article, we consider Algorithm 3.1 that is proposed in [1,5] as the refinement
procedure in Algorithm 2.1. It is a generalization of the red refinement strategy, which
originally was only developed for triangles. It is known that the generalized red refine-
ment procedure always delivers a triangulation of a simplex (that has to be refined)
by 2d sub-simplices. Moreover, the triangulation is consistent, i.e., the intersection of
any two sub-simplices is either empty or a common lower-dimensional simplex with
respect to the vertex sets. Consequently, a consistent triangulation does not allow for
hanging nodes, i.e., nodes that are contained in the vertex set of a simplex S, but not
in all vertex sets of the simplices that are adjacent to S. We again point out that the
theoretical results in this and the subsequent section are part of the author’s Ph.D.
thesis [2]. We first illustrate the refinement by Algorithm 3.1 using an example in
dimension two.

Example 3.2 We consider a simplex Sl of some triangulation of a two-dimensional
nonlinear function with vertex set V(Sl) = {x̄0, x̄1, x̄2} that has to be refined. Let the
scalar δ be sufficiently large such that a refinement is performed by Algorithm 3.1.
Note that for k ≤ 1 the condition τ−1(1) < · · · < τ−1(k) is considered to be fulfilled.
The same applies for the condition τ−1(k + 1) < · · · < τ−1(d) in case of k ≥ d − 1.
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640 R. Burlacu

Algorithm 3.1 Generalized red refinement of a simplex S
Input: A simplex S with V(S) = {x̄0, . . . , x̄d } and a scalar δ.

Output: If the longest edge of S is greater than δ, a set of 2d simplices {S0, . . . , S2d−1}with S = ∪2d−1
i=0 Si

and int(Si ) ∩ int(S j ) = ∅ for all i �= j is returned. Otherwise no refinement is performed.
1: Set e ← longest edge of S.
2: if ‖e‖ ≤ δ then
3: return V(S).
4: else
5: Set i ← −1.
6: for 0 ≤ k ≤ d do
7: Set v0 ← 1

2 (x̄0 + x̄k ).
8: for τ ∈ Symd do
9: if τ−1(1) < · · · < τ−1(k) and τ−1(k + 1) < · · · < τ−1(d) then
10: for 1 ≤ l ≤ d do
11: Set vl ← vl−1 + 1

2 (x̄τ(l) − x̄τ(l)−1).
12: end for
13: Set i ← i + 1.
14: Set V(Si ) ← {v0, . . . , vd } ; Si ← conv(V(Si )).
15: end if
16: end for
17: end for
18: return V(S0), . . . ,V(S2

d−1).
19: end if

First, the symmetry group Sym2 has two permutations: the identity τ1 = id and the
permutation τ2 : {1, 2} → {2, 1}. The identity fulfills the condition in Line 9 for all
0 ≤ k ≤ 2.

Since τ2 does not satisfy Line 9 for k = 0, we obtain the first corner sub-simplex S0l
for τ1. The vertices of S0l are

v0 = x̄0, v1 = v0 + 1

2
(x̄1 − x̄0), v2 = v1 + 1

2
(x̄2 − x̄1); (3)

see Fig. 1 for an illustration.
For k = 1 both permutations τ1 and τ2 comply with Line 9. Equivalent to k = 0,

with τ1 we obtain the simplex S1l as in (3), while now v0 = x̄0 + 1
2 (x̄1 − x̄0). We thus

obtain the corner sub-simplex S1l simply by translating the corner sub-simplex S0l by
the vector 1

2 (x̄1 − x̄0). For τ2, we compute the vertices of the simplex S2l as

v0 = 1

2
(x̄1 − x̄0), v1 = v0 + 1

2
(x̄2 − x̄1), v2 = v1 + 1

2
(x̄1 − x̄0). (4)

Finally, for k = 1 again only the identity τ1 fulfills the condition in Line 9. We
obtain the simplex S3l as in (3) with v0 = x̄0 + 1

2 (x̄2 − x̄0). The corner sub-simplex S3l
again corresponds to a translation of S0l by the vector 1

2 (x̄2 − x̄0).
We now prove the δ-preciseness of the refinement procedure and show how to

model a refined triangulation by the generalized incremental method afterward. Let
T̃k be the refined triangulation of an initial triangulation T0 of D f obtained by applying
Algorithm 3.1 such that in every iteration i ≤ k all simplices of T̃i−1 are refined.
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On refinement strategies for solvingMINLPs by piecewise… 641

Fig. 1 A red refinement of a two-dimensional simplex with corresponding ordering and labeling of the four
sub-simplices. The labeled vertices of the original simplex that is refined are marked in bold blue

Lemma 3.3 Let S ∈ R
d be a simplex ofT0 and e the longest edge of S. Then, the longest

edge of any simplex of T̃l contained in (the set) S is bounded by 1
2l

‖e‖ with l ∈ N.

Proof The lemma follows directly from Line 11 of Algorithm 3.1, since

∣
∣
∣
∣

1

2
(x̄τ(l) − x̄τ(l)−1)

∣
∣
∣
∣
≤ 1

2
‖e‖

are the lengths of the edges of the sub-simplices that are constructed during the first
refinement step. Applying this recursively finishes the proof. ��
Lemma 3.4 Let δ > 0, then there is an Ñ ∈ N, such that T̃Ñ is a refinement of every
triangulation obtained by applying Algorithm 3.1 to T0 with δ as input parameter.

Proof Let e0 be the longest edge of all simplices of T0. With Lemma 3.3 and Ñ :=
max

{

0,
⌈

ln
( ‖e0‖

δ

)

/ ln(2)
⌉}

, the proof works equivalently to the one of Theorem 3.4
from [3]: After at most Ñ refinement steps the longest edge of any simplex of T̃Ñ is
bounded by δ. Since Algorithm 3.1 only refines simplices with a longest edge larger
than δ and no simplex in T̃Ñ has an edge longer than δ, it follows by the pigeonhole
principle that T̃Ñ is the finest refinement of T0 that is achievable. ��
Theorem 3.5 Algorithm 3.1 as refinement procedure in Algorithm 2.1 is δ-precise
for every δ > 0. With Ñ as in Lemma 3.4, the number of refinement steps N as in
Definition 2.1 is bounded from above by

N := m(2Ñd − 1) + 1,

where m is the number of simplices contained in T0.

Proof We count every single simplex that has to be refined to achieve T̃Ñ from
Lemma 3.4 and obtain

m(1 + 2d + 22d + · · · + 2Ñd−1) = m(2Ñd − 1)
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642 R. Burlacu

refinements in total. The rest of the proof follows by the pigeonhole principle as
in the proof of Theorem 3.5 from [3]: Every sequence (Si ) ∈ Ti of simplices has an
element Sk with index k ≤ m(2Ñd−1)+1, such that Sk ∈ T̃Ñ , since T̃Ñ is a refinement
of every triangulation obtained by Algorithm 3.1 with parameter δ. Therefore, simplex
Sk has the δ-preciseness property (1), as no simplex in T̃Ñ has an edge longer than δ. ��

The next corollary follows directly from Proposition 2.2 and Theorem 3.5.

Corollary 3.6 Algorithm 2.1 together with Algorithm 3.1 as refinement procedure is
correct and terminates after a finite number of steps.

4 Incremental method for red refined piecewise linear relaxations

We now show that a piecewise linear approximation that results from applying Algo-
rithm 3.1 can also bemodeled with the generalized incremental method.We first prove
two lemmata that are used afterward to prove the main result of this section.

Lemma 4.1 Let S = {S0, . . . , S2d−1} be a refinement of a simplex S by Algorithm 3.1
withV(S) = {x̄0, . . . , x̄d}. Then, each simplex of the subset of the corner sub-simplices
S ′ = {Si0 , . . . , Sid } of S contains a vertex of the simplex S, i.e., x̄ j ∈ V(Si j ) for
all j = 0, . . . , d. Moreover, for each pair of simplices Si j , Sik ∈ S ′ the midpoint m jk

of the edge with endpoints x̄ j and x̄k is contained in both vertex sets of the simplices.

Proof First, the identity id ∈ Symd always fulfills the conditions from Line 9 of
Algorithm 3.1. Let Si j be the simplex that is constructed using the starting vertex v0 =
1
2 (x̄0 + x̄ j ) and τ = id, where j = 0, . . . , d. Due to the telescoping sum in Line 11,
it follows that

v j = 1

2
(x̄0 + x̄ j )

︸ ︷︷ ︸

v0

+1

2
(x̄1 − x̄0)

︸ ︷︷ ︸

v1

+1

2
(x̄2 − x̄1)

︸ ︷︷ ︸

...

+ · · · + 1

2
(x̄ j − x̄ j−1) = x j (5)

is contained in the vertex set of Si j .
Furthermore, due to the telescoping sum in (5), we can rewrite Line 11 as

vl ← 1

2
(x̄0 + x̄ j ) + 1

2
(x̄l − x̄0) = 1

2
(x̄ j + x̄l)

for τ = id. Since m jk = 1
2 (x̄ j + x̄k), we conclude that the vertices vk and v j that

occur during the construction of Si j and Sik , respectively, are equal to m jk . ��
Lemma 4.2 Let S ′′ = {S0, . . . , S2d−1−(d+1)} be a refinement of a simplex S by Algo-
rithm 3.1 without the d + 1 corner sub-simplices of S ′ as in Lemma 4.1. Then, the
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On refinement strategies for solvingMINLPs by piecewise… 643

union of all simplices of S ′′ is a (convex) polytope and the triangulation of S ′′ has an
ordering with the properties (O1) and (O2).

Proof Alternatively to the vertex description, we can describe the simplex S by its
half-space representation

S =
{

x ∈ R
d : a�

j x ≤ b j with a j ∈ R
d and b j ∈ R for j = 0, . . . , d

}

. (6)

We now describe the set S ′′ by adding the inequalities that separate all corner sub-
simplices from the set S as in (6). For a vertex of S exactly d inequalities in (6) are
tight. Due to Lemma 4.1, the vertex set of the corner sub-simplex Si j ∈ S ′ consists of
the vertex x̄ j and all midpointsm jk with k = 0, . . . , d. Let a�

j x ≤ b j be the inequality
that is not tight for x̄ j . Naturally, it is tight for all other vertices of S and it follows that

a�
j m jk = 1

2
a�
j (x̄k + x̄ j ) = 1

2
(b j + a�

j x̄ j ). (7)

Moreover, since the red refinement also delivers a triangulation of S, where all interiors
of the sub-simplices are disjunct, we can describe Si j by substituting a�

j x ≤ b j with

a�
j x ≤ 1

2 (b j + a�
j x̄ j ) in (6). Therefore, by separating all corner sub-simplices, we

obtain the half-space description

S ′′ =
{

x ∈ R
d : a�

j x ≤ b j , a�
j x ≥ 1

2
(b j + a�

j x̄ j )

with a j ∈ R
d and b j ∈ R for j = 0, . . . , d

}

.

It follows that the union of all simplices of S ′′ is a convex polytope.
The consistency of the triangulation of S translates to the triangulation of S ′′,

because only the corner sub-simplices are omitted. It is shownby [6] that a triangulation
with the property that for each nonempty subset S̃ � T of a triangulation T there
exist simplices S1 ∈ S̃ and S2 ∈ T \S̃ such that S1, S2 have d common vertices,
always yields a triangulation with the properties (O1) and (O2). Therefore, we only
have to prove that the triangulation of S ′′ has this property. To this end, we consider a
nonempty subset S̃ of S ′′. Each facet of a d-dimensional simplex consists of d vertices
of the simplex. Let S̃F be the set of all facets of the simplices of S̃, where the simplices
are described by the convex hull of its vertices. Then, each facet in S̃F is either a facet
of S ′′ (in the sense of convex hulls) or a common facet of two simplices of S̃ . This
is due to the consistency of the triangulation. Since S̃ � S ′′, however, there must
be a facet in S̃F that is a common facet of two simplices S1, S2 such that S1 ∈ S̃
and S2 ∈ S ′′\S̃. ��

Endowed with Lemmas 4.1 and 4.2, we are now ready to prove the main result of
this section.
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644 R. Burlacu

Theorem 4.3 LetT be a triangulationwith the properties (O1) and (O2). Then, any tri-
angulation T ′ obtained by applying Algorithm 3.1 to T maintains the properties (O1)
and (O2).

Proof For the following proof, we first show that there is an ordering of the sets S ′
and S ′′ from Lemmas 4.1 and 4.2 with the properties (O1) and (O2). The second
part of the proof merges these two orderings to obtain an overall ordering with the
properties (O1) and (O2).

LetT = {S1, . . . , Sn} and Sl be the simplex that has to be refined,while x̄ Sl0 , . . . , x̄ Sld
are its labeled vertices. We first consider d ≥ 4 and d = 2, 3 afterward. The 2d

simplices S0l , . . . , S2
d−1

l , into which Sl is divided by the red refinement, have due
to Lemma 4.1 the property that the corner sub-simplices contain the vertices of Sl .
Without loss of generality, let x̄ Slj ∈ V(S j

l ).
We first show that the set S ′ of the corner sub-simplices has an ordering with the

required properties. The corner sub-simplices S j
l ∈ S ′ yield a complete graph G =

(V , E) with the simplices as the node set V and the midpoints m jk as the edge set E

connecting the simplices S j
l and Skl . Due to m jk = mkj , we assume in the following

for the notationm jk that j < k holds. For each Hamiltonian path in G, we can use the
path itself as an ordering of the simplices that correspond to the nodes of G. An edge
connecting two consecutive nodes of the path corresponds to a common midpoint
of two consecutive simplices. Therefore, the ordering naturally has property (O1),
which indicates that two consecutive simplices have at least one common vertex. The
ordering has the property O2 as well, which states that the last vertex of any simplex
is equal to the first vertex of the next one: With two consecutive simplices S j

l and Skl
that correspond to two consecutive nodes of the Hamiltonian path, we only have to set

x̄
S j
l

d = m jk and x̄
Skl
0 = m jk .

Moreover, it follows from Lemma 4.2 that there is an ordering

(

Si0l , . . . , S
i2d−1−(d+1)
l

)

(8)

of the simplex set S ′′ with the properties (O1) and (O2). Since the vertices of the
simplices of S ′′ are the midpointsm jk , there must be two midpointsm jk andmst with

m jk = x̄
S
i0
l

0 and mst = x̄
S
i
2d−1−(d+1)
l

d .

We now link the orderings of S ′ and S ′′ to obtain an overall ordering with the
properties (O1) and O2. Let R be a Hamiltonian path in the sub-graph of G that
consists of the vertices V \{0, j, k, s, t, d}. Such a path is always attainable, because
any sub-graph of a complete graph is also complete. With j �= k one of the following
three cases applies to the node j : j = s, j = t , or j �= s ∧ j �= t . With s �= t ,
we have the following three cases for the node s: s = j , s = k, or s �= j ∧ s �= k.
Consequently, due to j �= k and s �= t only the following five cases are possible for
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the nodes j , k, s, and t :

j = s ∧ k �= t, j = s ∧ k = t, j �= s ∧ k = t, k = s, j �= s ∧ k �= t . (9)

The case k = s is equivalent to the case j = t , since the inverse of the ordering (8)
also has the properties (O1) and (O2).

Keeping the cases in (9) in mind, we define the path

H =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(0, j, t, R, k, d), if j = s ∧ k �= t , (10a)
(0, R, j, k, d), if j = s ∧ k = t , (10b)
(0, j, s, R, t, d), if k = s, (10c)
(0, j, s, R, k, t, d), otherwise. (10d)

Please note that if t = d in (10a),we can again invert the ordering (8) such that t �= d
and k = d. The same can be applied in case of k = d in (10c) and (10d). Moreover,
any permutation of the labeling x̄i of the simplex Si0l , where i = 0, . . . , d − 1 and of

the simplex S
i2d−1−(d+1)
l , where i = 1, . . . , d, is permissible. Thus, we can assume that

mst �= m0d and that m jk �= m0u if mst = mud . This guarantees us that the path H is
always a Hamiltonian path.

The path H corresponds to an ordering, where the vertices in H are the corner sub-
simplices S j

l ∈ S ′. As showed above, this ordering has the properties (O1) and (O2).
We now insert the ordering (8) of the simplex setS ′′ into the one of H after the simplex
that corresponds to the vertex j . The union of S ′ and S ′′ corresponds to the set of all 2d
sub-simplices into which Sl is divided by the red refinement. Therefore, the resulting
ordering covers all 2d sub-simplices. The merging of the two orderings of S ′ and S ′′
via the midpoints m jk and mst finally leads to an overall ordering (Sr0l , . . . , S

r2d−1
l )

that has the properties (O1) and (O2).
In case of d = 2, we use the ordering (S0l , S

1
l , S

2
l , S3l ), where S

0
l , S

1
l , and S3l are the

three corner sub-simplices and S2l the remaining center sub-simplex, see again Fig. 1
for an illustration.

For d = 3, we assume without loss of generality that the vertex x̄3 of
the simplex that has to be refined is contained in S7l . We use the ordering
(S0l , S

1
l , S

2
l , S3l , S

4
l , S

5
l , S

6
l , S

7
l ), where S0l , S

1
l , S

2
l , and S7l are the four corner sub-

simplices contained in S ′ and S3l –S
6
l the four center sub-simplices of S ′′. Finally, the

orderings of S ′ and S ′′ are linked via m jk = m02 and mst = m27.
With these orderings for the refined simplex Sl and all dimensions d ≥ 2, we

complete the proof as follows. We order the simplices of T ′ as

(S1, . . . , Sl−1, S
r0
l , . . . , S

r2d−1
l , Sl+1, . . . , Sn). (11)

123



646 R. Burlacu

Since the corner sub-simplices of Sl yield a complete graph, we can order them such
that

x̄ Sl−1
d = x̄

S
r0
l

0 and x̄
S
r
2d−1
l

d = x̄ Sl+1
0

holds. Therefore, the simplices Sl−1, S
r0
l and S

r2d−1
l , Sl+1 are linked as required in O2.

Altogether, due to the inheritance from T , we conclude that the ordering (11) of the
simplices of T ′ has the properties (O1) and (O2). ��

5 Numerical results

In this section, we numerically analyze towhat extent the red refinement procedure can
beusedbeneficially in anMINLP solution approach that is basedonAlgorithm2.1. The
key element of Algorithm 2.1 is to solveMIP relaxations that provide dual bounds for
theMINLP problem due to the relaxation property. With increasingly finerMIP relax-
ations, the resulting dual bounds also become tighter. Concurrently, the approximation
error decreases, which yields anMIP solutions that is feasible for theMINLP problem
from a practical point of view, e.g., if the error is smaller than 10−6.

Naturally, any objective value of a global optimal solution of an MIP relaxation
provides a dual bound for theMINLP problem.At the same time, the dual bound of any
MIP relaxation is also a dual bound for theMINLP. Typically, in a solution framework
that is based on Algorithm 2.1 this is exploited by solving a very fineMIP relaxation.
It is not necessary to solve thisMIP to global optimality, since each dual bound of the
MIP that is obtained during the solution process already provides a dual bound for the
MINLP. Therefore, we can employ a very fine initialMIP relaxation in Algorithm 2.1
also to find tight dual bounds.

One way to construct an initial relaxation is to specify a fixed number of simplices
for each domain D f with f ∈ F and apply the refinement strategy successively to
each simplex until the desired number of simplices is attained. This corresponds to an
triangulation scheme such as T̃k in Lemma 3.3.

In the following, we pursue such a triangulation strategy and compare the red refine-
ment with the longest-edge bisection (LEB) from [3]. To this end, we consider all 20
alternating current (AC) optimal power flow (OPF) instances from the NESTA bench-
mark set (v0.7.0) with up to 300 buses, see [4]. These instances are subdivided into
three operating conditions: standard, active power increase (api), and small angle dif-
ference (sad). We use the Extended Conic Quadratic Formulation of [9] to model an
AC OPF instance. Thus, we obtain a total amount of 59 MINLP problems, since for
the case “nesta_case_6_ww” no active power increase instance is given.

We skip the details of theMINLPmodels in order not to go beyond the scope of this
article. The nonlinearities of the MINLP problems consist of quadratic monomials,
bivariate products, and one-dimensional trigonometric functions. The triangulations
that are constructed by the red refinement and the longest-edge bisection differ for
the domains of the bivariate products only, as they are identical for one-dimensional
domains.

All computations are carried out using a Python implementation of Algorithm 2.1
on a cluster using 4 cores of a machine with two Xeon E3-1240 v6 “Kaby Lake” chips
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(4 cores, HT disabled) running at 3.7 GHZ with 32 GB of RAM. The run time limit is
set to 4h for each instance with a global relative optimality gap of 0.01%. We utilize
Gurobi 9.1.1 as MIP solver, see [10].

5.1 Relaxations with 8 simplices

At first, we use 8 simplices, i.e., segments in case of one-dimensional and triangles
in case of two-dimensional functions, to construct an initial MIP relaxation. Table 1
depicts the results for all 59 NESTA instances. Here, dLEB and dRR are the best dual
bounds of the MIP relaxations constructed by the LEB and the red refinement (RR).
Correspondingly, TLEB and TRR are the run times until theMIP relaxations are solved
to global optimality, while TL indicates that the time limit of 4h has been exceeded.

A common measure for comparing two different MINLP solution approaches is
the shifted geometric mean. The shifted geometric mean of n numbers t1, . . . , tn with

shift s is defined as
(

∏n
i=1(ti + s)

)1/n − s. It has the advantage that it is neither

affected by very large outliers (in contrast to the arithmetic mean) nor by very small
outliers (in contrast to the geometric mean). We use a typical shift s = 10 for both the
run times and the dual bounds. Please note that if an instance runs into the time limit,
we use a run time of 4h for the calculation of the shifted geometric mean.

The geometric mean in Table 1 is 36.73 for dLEB and 36.88 for dRR. Regarding the
run times, we have 256.12 s for TLEB and 251.95 s for TRR. Therefore, both refinement
strategies are of equal quality, while the red refinement is slightly favorable, since it
has tighter dual bounds, faster run times and is able to solve an additional instance to
global optimality, namely the sad instance “nesta_case_29_edin”.

5.2 Relaxations with 32 simplices

Table 2 shows the results for all 59NESTA instances if we use 32 simplices to construct
the initial MIP relaxation. As the size of the relaxations increases, less instances are
solved to global optimality. The geometric mean in Table 2 is 39.49 for dLEB and 39.50
for dRR. Regarding the run times, we have 1587.48 s for TLEB and 1529.38 s for TRR.
Therefore, both refinement strategies are of equal quality, while the red refinement is
again slightly favorable, since it has faster run times.

5.3 Relaxations with 128 simplices for bivariate products

As pointed out before, a very fine initial MIP relaxation can also be utilized to
obtain tight dual bounds. With a high number of simplices for the triangulations the
MIP size drastically increases. For one-dimensional domains the LEB and RR are
identical. Since we are primarily interested in the difference between LEB and RR,
we now use 128 simplices to construct the initial MIP relaxation, but only for all
two-dimensional domains that correspond to the bivariate products of the problem. In
case of one-dimensional functions, we only use 2 segments.
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Table 3 contains the results for all 59 NESTA instances. The geometric mean in
Table 3 is 23.36 for dLEB and 23.40 for dRR. Regarding the run times, we have 451.67 s
for TLEB and 330.84 s for TRR. Hence, in the case of very fine initial relaxations the
RR can be very advantageous. Although the dual bounds are of the same quality, the
run time is significantly better. This suggests that with theRR, we are able to find tight
dual bounds at shorter run times.

The numerical results in this section demonstrate that red refinement can be applied
advantageously for initial relaxations in Algorithm 2.1. In particular, when the red
refinement is used to construct very fine MIP relaxations to obtain tight dual bounds
it is more favorable than the longest-edge bisection forMINLP problems that arise in
the field of AC OPF.

6 Conclusion

In this paper, we showed that the generalized red refinement for n-dimensional sim-
plices can be utilized for solving MINLP problems by piecewise linear relaxations.
We proved that the red refinement meets sufficient convergence conditions for such an
MINLP solution framework as proposed in [3]. Furthermore, we showed that applying
this refinement procedure results in piecewise linear relaxations that can be modeled
by the well-known incremental method established by Markowitz and Manne [13].

Numerical results from the field of alternating current optimal power flow illustrated
that the application of the red refinement procedure as an alternative to the longest-
edge bisection can be advantageous in practice. Especially, if the MIP relaxation is
primarily used to obtain tight dual bounds, the red refinement seems to be favorable.

The most important subject of future research is to what extent the combination of
the two refinement strategies provides further potential for improvement. One possibil-
ity is to implement a hybrid approach that startswith an initial relaxation constructed by
the red refinement and subsequently refines it by applying the longest-edge bisection.
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