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Abstract
We studyMarkov perfect equilibria (MPE) of two-player multi-mode differential games with
controlled state dynamics, where one player controls the transition between modes. Different
types of MPE are characterized distinguishing between delay equilibria, inducing for some
initial conditions mode switches after a positive finite delay, and now or never equilibria,
under which, depending on the initial condition, a mode switch occurs immediately or never.
These results are applied to analyze the MPE of a game capturing the dynamic interaction
between two incumbent firms amongwhich one has to decidewhen to extend its product range
by introducing a new product. The market appeal of the new product can be influenced over
time by both firms through costly investments. Under a wide range of market introduction
costs a now or never equilibrium coexists with a continuum of delay equilibria, each of them
inducing a different time of product introduction.

Keywords Multi-mode differential games · Markov perfect equilibrium · Product
innovation · Optimal timing

JEL Classification C73 · L13 · O31

1 Introduction

The main agenda of this paper are to improve our understanding of strategic effects arising
in dynamic economic and managerial settings characterized by potential structural breaks,
which induce jumps in the payoff functions of the economic actors, in the law governing
the dynamics of relevant state variables, or both. Areas of application where such structural
breaks, which we will refer to as mode changes, arise include environmental economics deal-
ing with potential catastrophic transitions (e.g., [8]), financial portfolio and real investment

The authors gratefully acknowledge very helpful comments from two anonymous referees. Funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—SFB 1283/2 2021—317210226.

B Herbert Dawid
hdawid@uni-bielefeld.de

1 Department of Business Administration and Economics and Center for Mathematical Economics,
Bielefeld University, Bielefeld, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13235-021-00408-w&domain=pdf
http://orcid.org/0000-0002-8536-9960


364 Dynamic Games and Applications (2022) 12:363–393

problems incorporating potential crashes and macroeconomic regime shifts (e.g., [7,13]) or
analyses of innovation dynamics capturing abrupt changes in the market structure due to
the adoption of new technologies or the introduction of new products by some market par-
ticipants ([1,3,4]). Whereas all these different problems can be formulated as multi-mode
models, crucial differences arise with respect to the way mode transitions are triggered. In
particular, the timing and the type of mode transition might be deterministic or stochastic and
might be purely exogenous or directly, respectively, indirectly (through the state dynamics)
controlled by some economic agent(s).

In this paper, we focus on multi-mode settings with deterministic, controlled mode tran-
sitions and strategic interaction. In particular, we are interested in characterizing Markov
perfect equilibria (MPE) in multi-mode differential games with a finite number of contin-
uously evolving states, the dynamics of which are controlled by the actions of all players,
and a set of modes, where the time of the transition between the modes is determined by one
of the players; for easier exposition we assume this is player 1. Problems of this kind arise,
for example, in dynamic competition models, like capital accumulation games or dynamic
models of reputation formation, where one of the competitors through the introduction of
new products or technologies to the market can change the demand structure. Whereas the
literature on MPE in timing games with stochastic un-controlled state dynamics is large and
well established (see, e.g., [9,10,17]), there is considerably less work dealing with situations
with controlled mode transitions where the players can also influence the state dynamics.
Intuitively, characterizing MPE in such a setting generates intricate strategic effects. The
Markovian strategy determining the time of the mode switch induces a split of the state space
in a given mode in regions with and without an immediate jump to an alternative mode.1

In a setting where all players through their controls can influence the state dynamics, this
implies that each player might influence the timing of the mode switch and this has to be
taken into account when determining the optimal strategies. At the same time, player 1, when
determining the optimal mode switching strategy, has to take into account the state dynamics
under the equilibrium strategies of all players.

Fewcontributions have addressed these issues. Reddy et al. [15] andGromov andGromova
[6] study multi-mode games with controlled state dynamics, where, however, the mode
transition is not directly controlled by players but determined by state or time constraints.
Hence, players can influence the timing of the mode transition only indirectly by steering
the state variable through their control. In contrast to these papers, we consider a scenario
where the timing of the mode transition is directly controlled by one of the two players and
additionally both players can influence the dynamics of a continuously evolving state variable.
Closest to our paper is Long et al. [14], where in a differential game model with multiple
regimes, the concept of piecewise-closed-loop Nash equilibria (PCNE) is introduced. They
consider a two-player multi-mode differential where both players can induce a change of
the regime of the game and study piecewise-closed-loop Nash equilibria (PCNE). Under this
equilibrium concept the state at which a player carries out a mode switch is derived from
the condition, that it is optimal for the corresponding player to switch at that point, and
the timing of the mode switches is determined as the point in time when the state variable
under the equilibrium controls arrives at that switching state. However, in their setting, it is
assumed that firms commit to their switching time in the sense, that they do not alter that
time even if the other firm would deviate from its equilibrium control path and hence also the
state variable would deviate from its equilibrium path. Therefore, the considered equilibrium

1 Such a split is well known from the optimal stopping or the real-options literature, where typically ‘contin-
uation regions’ and ‘stopping regions’ are distinguished.
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is not fully Markov perfect with respect to the timing decision. Also in Dawid and Gezer
[2], a multi-mode differential game with controlled state dynamics and mode switches is
considered, but again the strategic interactions arising under Markovian strategies are not
fully captured. In particular, the authors consider a strategy space where the players’ controls
influencing the state dynamics are determined by Markovian strategies, whereas the time of
the regime switch is determined with full commitment at time zero and hence can be seen as
following an open-loop strategy. To our best knowledge so far, no characterizations of full
MPE in a setting similar to that considered in this paper are available in the literature.

The innovation of this paper relative to the literature discussed above is thatwe characterize
a (simultaneous move) Nash equilibrium of multi-mode differential games where both the
controls of the players steering the state variable and the decision, whether a mode switch
occurs at given point in time, are determined by Markovian strategies and therefore depend
solely on the current value of the state and the mode. Put differently, in contrast to the existing
literature, we do not assume any kind of commitment of player 1 with respect to the timing
of a mode switch. Since we consider an infinite horizon problem, where objective functions
and state dynamics do not explicitly depend on time, these equilibrium profiles are also
Markov Perfect. The equilibrium strategy profiles therefore correspond to Nash equilibrium
behavior for any combination of values of the state and mode and this in particular implies,
that, whenever player 1 triggers a mode switch, this change is (intertemporally) optimal for
player 1 in light of the current state.

In light of the complexity associatedwith the characterizationof the interplayofMarkovian
strategies determining controls that steer the state variable and such that determine the timing
of mode switches, in this paper we restrict attention to a relative simple setting with two
players, two modes and a one-dimensional state space in order to obtain first insights into
the structure of MPE in multi-mode games with controlled states and mode switches. This
is done mainly for reasons of tractability and easier exposition. Moreover, we believe that
the main strategic effects occurring in such a setting and the types of equilibria arising can
already be seen in such a relatively simple setup. We derive a set of sufficient conditions for
a strategy profile to be a MPE of the game and, based on these conditions, identify different
possible types of equilibria. There are delay equilibria, with the property that for some initial
conditions the mode switch occurs after some finite delay, and now or never equilibria, under
which the state space is partitioned in two areas with the property that for initial conditions
in one area the game stays in the first mode forever, whereas for initial conditions in the
other area player 1 already at t = 0 induces the switch to the second mode. Furthermore, we
show that among the delay equilibria only for a special class of MPE, labeled as maximum
delay equilibria, a standard smooth pasting condition holds for player 1. Such equilibria
always exist if the game has any delay equilibria, but generically in addition to a maximum
delay equilibrium there also exists a continuum of forced switch delay equilibria in which the
mode transition is triggered earlier compared to the maximum delay equilibrium. For these
equilibria, no smooth pasting conditions hold at themode switching threshold. Intuitively, the
mode switch by player 1 is triggered by the fact that, if the state would cross the switching
threshold, while the game is in the initial mode, the action of player 2 would jump to an
action with strong adversarial effects for player 1. Since under such an equilibrium strategy
profile the game never stays for a positive amount of time at a state above the threshold in
the first mode, any action of player 2 in this part of the state space and the first mode can
be supported in a MPE. These arguments show that in the considered settings the fact that a
strategy profile constitutes a Markov perfect equilibrium does not prevent the occurrence of
what could be described as ‘incredible threats’ in the sense that a player’s strategy prescribes
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an action which would be suboptimal for the player to implement if forced to do so for a time
interval with positive measure.

We illustrate these findings by studying the optimal timing of new product introduction
for a producer (firm 1) facing on an established market a competitor (firm 2), which has
not developed a new product yet and therefore does not have the option of a new product
introduction. The new product introduction corresponds to a mode change, and the state
variable of the considered differential game is the appeal of the new product with consumers,
which is influenced by the two firms through advertising (firm 1) and negative campaigning
(firm 2).2 Furthermore, the market introduction of the new product is associated with lump-
sumcosts.We show that for awide range of values of themarket introduction costs all different
types of equilibria mentioned above coexist, and therefore, for a substantial subset of initial
values of the new product’s market appeal no clear cut prediction about the time of market
introduction of the new product is possible. Furthermore, we determine a threshold such that
for values of the market introduction costs above this value only now or never equilibria exist.
Overall, this analysis highlights that multi-mode timing games of this kind almost generically
give rise to multiplicity of Markov perfect equilibria. A potential implication of this insight
is that more refined equilibrium concepts than MPE should be considered to analyze such
games.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the type of
multi-mode games we are considering, and in Sect. 3, we derive necessary conditions for
MPE in such a setting and also some additional results on equilibrium profiles. In Sect. 4,
we study the optimal timing of new product introduction, thereby illustrating our general
findings. A discussion of our results and conclusions is provided in Sect. 5. ‘Appendix’
contains all proofs and some additional analysis.

2 TheModel

We consider a differential game between two players i = 1, 2, in which each player intends
to maximize an infinite horizon discounted payoff stream of the form

Ji =
∫ ∞

0
e−r t Fi (x(t), u(t),m(t))dt − 1[i=1]e−rτ κ, (1)

where x ∈ R is a one-dimensional state and m(t) ∈ {m1,m2} is the mode of the game.
The interval X = [xl , xu] with xl < xu is the state-space of the game.3 Here, 1 denotes the
indicator function and τ = inf{t ≥ 0|m(t) = m2} is the point in time in which the mode
process moves from m1 to m2. In case no transition to m2 occurs, we set τ = ∞. At time τ ,
transition costs of κ ≥ 0 arise for player 1. The vector u = (u1, u2) denotes the controls of
both players with ui ∈ Ui ⊆ R

n . We assume that Fi (x, u,m) is continuous and differentiable
with respect to x and u for each m ∈ {m1,m2}. The state evolves according to

ẋ = f (x, u,m(t)), x(0) = xini ∈ X (2)

where f (x, u,m) is Lipschitz continuous and differentiable with respect to x and u for all
m ∈ {m1,m2}. The mode process m(t) initially is in m(0) = m1 and is controlled by player

2 Our modeling approach is embedded in a large literature using differential gamemodels to study advertising
under dynamic competition, see Jorgensen and Zaccour [11] for a survey.
3 This representation of the state space includes the cases xl = −∞ and xu = ∞, where in these cases the
corresponding boundary of the state space interval is open.
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1. More precisely, player 1 can determine at which point in time the process jumps from m1

to m2. Once m(t) = m2, no additional mode transitions are possible.4

In what follows, we restrict attention to time-invariant Markovian strategies. More pre-
cisely, we consider strategy profiles ((�1(x,m),�),�2(x,m)) with �i : X × {m1,m2} →
R
ni and � ⊆ X such that ui (t) = �i (x(t),m(t)), i = 1, 2 for all t and the process m(·)

jumps from m1 to m2 at t if and only if m(t) = m1 and x(t) ∈ �. Intuitively, the switching
set �, which is chosen by player 1, determines the set of states at which player 1 induces a
switch from m1 to m2 and hence represents a Markovian strategy of that player.5 A Markov
perfect equilibrium of the (simultaneous move) differential game is a strategy profile such
that each player solves the dynamic optimization problem defined by (1) and (2) given that
the other player determines her control using her equilibrium strategy.

3 Markov Perfect Equilibria

In this section, we derive necessary conditions to be satisfied by a Markov Perfect equilib-
rium profile of the problem described in Sect. 2. The fact that one of the players controls
the transition from mode m1 to m2 implies that, in addition to standard conditions charac-
terizing the value functions and optimal strategies in each of the two modes, the effect of
the endogenous timing of the mode transition has to be taken into account. Intuitively, this
means that on the one hand the time of the mode transition has to be optimal for player 1,
thereby fulfilling standard conditions for optimal stopping problems. On the other hand, for
a given mode switching strategy � of player 1, the opponent player 2 can also influence the
dynamics of x , and thereby the time of the mode switch, by choosing her controls in mode
m1. The interplay of these effects has to be taken into account when characterizing a MPE
profile. In what follows, we focus on equilibria in which the mode switching set � is of
threshold type, i.e., it has the form � = [x̄, xu], where player 1 chooses the value of x̄ .6 We
denote such a threshold strategy characterized by x̄ as �x̄ . The following set of sufficient
conditions characterizes MPE of such threshold type. (The proof of this and all following
propositions is given in ‘Appendix’ A.)

Proposition 1 Consider a multi-mode differential game described in Sect. 2. If there exists a
set of except at (x̄,m1) everywhere continuous and continuously differentiable value functions
Vi : X ×{m1,m2} → R and a profile of almost everywhere continuous Markovian strategies
((�1(x,m),�x̄ ),�2(x,m)) such that the conditions below are satisfied for i = 1, 2, then
this profile constitutes to a Markov perfect equilibrium of the game:

(i)

Vi (x,m2) = 1
r

(
Fi (x, (�1(x,m2),�2(x,m2)),m2)+

+ ∂Vi (x,m2)
∂x f (x, (�1(x,m2),�2(x,m2)),m2)

)
x ∈ X ,

4 The assumption that no additional mode transitions are possible, in particular rules out that the mode jumps
back to m1 and therefore so-called Zeno points (see, e.g., [16]), where the state gets stuck at a certain state,
while the mode keeps switching, are not possible in our setting.
5 In optimal stopping or real option problems, this set is typically referred to as the ‘stopping region.’
6 The fact that we assume that the mode switch happens for all states above the threshold, rather than below
the threshold, is not restrictive, since our equilibrium characterization also applies after transforming the state
from x to −x .
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(ii)

�i (x,m2) ∈ argmaxui∈Ui

(
Fi (x, (ui ,� j (x,m2)),m2)+
+ ∂Vi (x,m2)

∂x f (x, (ui ,� j (x,m2)),m2)
)
x ∈ X , j �= i,

(iii)

lim sup
t→∞

e−r t Vi (x,m2) ≤ 0, i = 1, 2

(iv)

Vi (x,m1) =

⎧⎪⎪⎨
⎪⎪⎩

1
r

(
Fi (x, (�1(x,m1),�2(x,m1)),m1)+

+ ∂Vi (x,m1)
∂x f (x, (�1(x,m1),�2(x,m1)),m1)

)
x < x̄,

Vi (x,m2) − 1[i=1]κ x ≥ x̄,

(v)

limx→x̄− V1(x,m1) = V1(x̄,m1)

limx→x̄− V2(x,m1) ≥ V2(x̄,m1),

where the inequality for player 2 has to hold as equality if there exists an ε > 0 such
that f (x, (�1(x,m1),�2(x,m1)),m1) > 0 for all x ∈ (x̄ − ε, x̄).

(vi)

V1(x,m2) − κ < V1(x,m1), ∀x < x̄

(vii)

r(V1(x,m2) − κ) > maxu1∈U1

[
F1(x, (u1,�2(x,m1)),m1)+
+ ∂V1(x,m2)

∂x f (x, (u1,�2(x,m1)),m1)
]
, ∀x > x̄

(viii)

�i (x,m1)

⎧⎪⎪⎨
⎪⎪⎩

∈ argmaxui∈Ui

(
Fi (x, (ui ,� j (x,m1)),m1)+

+ ∂Vi (x,m1)
∂x f (x, (ui ,� j (x,m1)),m1)

)
x < x̄, j �= i,

= �̃i (x) x ≥ x̄

for some functions �̃i : [x̄, xu] → R
ni , i = 1, 2.

In order to interpret the conditions listed in the proposition, we first observe that conditions
(i) and (ii) are standard conditions for a MPE of the game in mode m2. Since for any value
of the state x above the threshold x̄ player 1 immediately switches to mode m2, the value
functions in mode m1 in this part of the state space coincide with that in mode m2 net of the
costs associated with the switch from m1 to m2. For values of x below x̄ , the value function
and the equilibrium strategies are characterized by standardHamilton–Jacobi–Bellman (HJB)
equations (see (iv) and (viii)). The boundary condition for these HJB equations is given by
the value matching condition in (v) which guarantees that the value function of player 1 is
continuous at the threshold x̄ , whereas the value function of player 2 might exhibit a jump
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at the threshold x̄ at which player 1 switches to mode m2. However, as we will illustrate
below, a non-continuous value function for player 2 can arise only if the state dynamics in
equilibrium is such that the switch to modem2 occurs either immediately or never, depending
on the initial state, i.e., if the dynamics in mode m1 leads the state away from the threshold
x̄ (cf. condition (v)). The optimality of the threshold x̄ from the perspective of player 1 is
guaranteed by conditions (vi) and (vii), where condition (vi) ensures that it is not optimal for
player 1 to switch to mode m2 at any x ∈ [xl , x̄) and (vii) guarantees that for any x > x̄ it is
optimal for player 1 to switch immediately to mode m2 rather than remaining in mode m1.

Finally, we like to point out that the sufficient conditions for anMPE, provided in Proposi-
tion 1, impose hardly any restrictions on the strategies φi (x,m1) for x > x̄ . This implies that
in spite of the fact that we consider Markov perfect equilibria, which constitute equilibria
of every subgame defined by the current state and mode, the players might use strategies
which for x > x̄ in mode m1 induce actions that would not be optimal for that player if
implemented for a positive amount of time. This is still optimal because for these states the
game immediately switches to mode m2. We will discuss this issue in more detail below and
illustrate that this feature might give rise to a wide range of coexisting equilibria.

For our further discussion, it is helpful to distinguish different types of equilibria that
can arise in our setting. The main property to be considered is whether the state dynamics
under the equilibrium strategies (�1(x,m1),�2(x,m1)) for x < x̄ in the neighborhood of
x̄ points toward the threshold x̄ , i.e., whether f (x, (�1(x,m1),�2(x,m1)),m1) > 0 for
x ∈ (x̄−ε, x̄). If this condition holds, then for xini ∈ (x̄−ε, x̄) the game switches tom2 with
some positive delay. We refer to such equilibria as delay equilibria.7 On the other hand, if
f (x, (�1(x,m1),�2(x,m1)),m1) < 0 for all x ∈ (x̄ − ε, x̄), then the game either switches
immediately to mode m2, for x(0) ≥ x̄ or remains in mode m1 forever (for x(0) < x̄). We
denote such equilibria as now or never equilibria. The following definition puts these notions
more formally.

Definition 1 Consider a MPE strategy profile P = ((�1(.), �x̄ ),�2(.)) satisfying the con-
ditions of Proposition 1 and denote by τ(xini ) = inf{t ≥ 0 : x̃(t) ≥ x̄} with x̃(0) = xini

and ˙̃x = f (x̃, (�1(x̃,m1),�2(x̃,m1)),m1) and τ(xini ) = ∞ if x̃(t) < x̄ ∀t . Then,
• the MPE profile P is called a now or never equilibrium if for every initial state xini ∈ X

either τ(xini ) = 0 or τ(xini ) = ∞.
• the MPE profile P is called a delay equilibrium if there exist initial states xini ∈ X such

that 0 < τ(xini ) < ∞.
• a delay equilibrium profile P = ((�1(.), �x̄ ),�2(.)) is called a forced switch delay

equilibrium if there is a small ε > 0 such that for any alternative strategy �̃2(.) of player
2 with �̃2(x,m1) = �2(x,m1) ∀x /∈ [x̄, x̄ + ε), �̃2(x,m2) = �2(x,m2) ∀x ∈ X and
�̃2(x,m1) continuous and continuously differentiable on (x̄ − ε, x̄ + ε) there exists a
strategy (�̃1(.), �x̃ ) with x̃ > x̄ which is a better response for player 1 to �̃2(.) than
(�1(.), �x̄ ).

• a delay equilibrium which is not a forced switch delay equilibrium is called maximum
delay equilibrium.

Intuitively, a forced switch delay equilibrium has the property that the switch of player 1
to mode m2 at the state x̄ is triggered by the threat of a jump in the control player 2 would

7 To avoid any confusion, it should be noted that the notion of delay equilibria in our setting refers to a delay
in the mode switch and hence is not related to work on Nash equilibria in differential games with delays in
the state equation.



370 Dynamic Games and Applications (2022) 12:363–393

implement at x̄ if the mode would stay in m1.8 Formally in Definition 1, this is expressed by
the fact that under a forced switch delay equilibrium, any continuous extension of player 2’s
strategy �2(.,m1) beyond x̄ would make it a best response for player 1 to switch to mode
m2 at some threshold above x̄ . Delay equilibria, where the mode switch by player 1 is not
triggered by such a threat, are called maximum delay equilibria. In any delay equilibrium,
the fact that player 1 has incentives to delay the switch to mode m2 for any x ∈ (x̄ − ε, x̄)
induces that the inequality

F1(x, (�1(x,m1),�2(x,m1)),m1) > r(V1(x,m2) − κ)−
− ∂V1(x,m2)

∂x f (x, (�1(x,m1),�2(x,m1)),m1)

(3)
holds for x ∈ (x̄ − ε, x̄). The inequality has the standard interpretation that the left-hand
side gives the (flow) profit player 1 receives in mode m1 from marginally delaying the mode
switch and the right-hand side the associated (discounted) loss in value received in m2. In
general, (3) might hold as a strict inequality even in the limit as x converges to x̄ , in particular
if the strategy�2(.,m1) of player 2 exhibits a jump at x̄ . In an equilibrium with this property,
player 1 has strict incentives to delay the switch to mode m2 for any value of the state x up
to x̄ , and the switch to m2 at x̄ is then triggered by the jump the action of player 2 would
exhibit if the game would remain in mode m1. From the perspective of player 2, the jump in
�2(.,m1) at x̄ in such a setting, however, is optimal only because player 1 switches the mode
to m2 for any x ≥ x̄ such that player 2 is never required to implement the actions induced
by �2(x,m1), x ≥ x̄ for a positive amount of time. In such a situation, if player 2 would
move the jump of its control from x̄ to x̄ + ε, this would also induce a change in the optimal
switching strategy of player 1 in the sense that the optimal mode switching threshold for
player 1 would move upward. These are the forced switch delay equilibria. If an equilibrium
has the maximum delay property, and therefore the choice of x̄ by player 1 is not triggered
by the threat of a jump of the action of player 2, standard optimal stopping arguments imply
that player 1 delays the switch until a value of x is reached where (3) holds as equality. In
such equilibria, also a standard smooth pasting condition for player 1 holds in the sense that
the slope of the value function of player 1 at x = x̄ in mode m1 coincides with the slope in
mode m2. In the following lemma, we state these observations more formally.

Lemma 1 If P = ((�1(x,m),�x̄ ),�2(x,m)) is a maximum delay equilibrium profile, then

lim
x→x̄−

[
F1(x, (�1(x,m1),�2(x,m1)),m1) + ∂V1(x,m2)

∂x
f (x, (�1(x,m1),�2(x,m1)),m1)

]

= r(V1(x̄,m2) − κ) (4)

and

lim
x→x̄−

∂V1(x,m1)

∂x
= ∂V1(x̄,m2)

∂x
. (5)

In the remainder of this section, we discuss the implications of the different types of
equilibria for the continuity of the players’ controls over time. First, we observe that in case
of now or never equilibria with continuous strategies�i (.,m1) and�i (.,m2) the trajectories
of the actions of both players are continuous over time, since no switch fromm1 tom2 occurs

8 The label of ‘forced switch delay equilibrium’ should not be misinterpreted in a Stackelberg sense, that
player 2 first announces to implement a jump in its control at x̄ and player 1 then reacts to this by choosing its
mode switching threshold at x̄ . Since we consider a MPE with simultaneous strategy choices by both players,
the incentives for player 1 to switch mode at x̄ stem from the fact that in equilibrium player 1 has rational
expectations about the strategy of player 2.
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for t > 0. Hence, we focus here on delay equilibria and the question whether controls are
continuous at the point of time when the mode is changed by player 1. Given that we consider
deterministic models, where for a given strategy profile both player can perfectly predict the
time of the switch to mode m1, intuitively one could expect that in equilibrium controls are
continuous as long as the marginal effects of the controls on the players instantaneous profits
and on the state dynamics is the same in both modes. As we show below, this intuition holds
true for player 1 as long as we consider a maximum delay equilibrium where the smooth
pasting condition holds for player 1 at the time of the mode switch and the optimal action of
player 1 is not affected by potential jumps of the control of player 2. To show this formally,
we introduce the following notions.

Definition 2 A differential game of the structure described in Sect. 2 has

• mode independent control effects if and only if

∂Fi (·,m1)

∂ui
= ∂Fi (·,m2)

∂ui
and

∂ f (·,m1)

∂ui
= ∂ f (·,m2)

∂ui
, i = 1, 2. (6)

• separable control effects if

∂Fi (x, (ui , u j ),m)

∂ui
and

∂ f (x, (ui , u j ),m)

∂ui

do not depend on u j for all x ∈ X and m ∈ {m1,m2}.
For twice differentiable functions Fi and f , separable control effects are equivalent to the
condition that the cross-derivatives of these functions with respect to the two controls vanish.
In many types of games, including, for example, different variants of investment games,
direct effect of the control of one player on the incentives of the other player indeed does not
exist.

Even if we consider games that have both of these properties, equilibrium profiles, as
characterized by Proposition 1, in general might exhibit jumps in the feedback strategies
of both players such that limx→x̄− �i (x,m1) �= �i (x̄,m2). More precisely, in the case of
forced switch delay equilibria, the actions of both players jump at the point in time when
the modes switch to m2. Concerning the investment of player 2, who cannot directly control
the switch from mode m1 to m2, in general jumps in the control occur as the game moves
from mode m1 to mode m2 in all types of delay equilibria. In equilibrium, player 2 perfectly
predicts the time of the mode switch and also the value of its investment in mode m1 for
her future profits in mode m2. Therefore, at first sight the discontinuity of the investment of
player 2 might be surprising. The jump in the action of player 2 results from the fact that in
mode m1 player 2 can influence the time of the switch to mode m2, since the choice of her
control affects the dynamics of the state and thereby the time the state hits the threshold x̄
determined by the equilibrium strategy of player 1. This effect, which influences the optimal
choice of the control of player 2, immediately disappears, at the point in time when the mode
changes to m2. Hence, the equilibrium strategy of player 2 in general exhibits a jump at the
state x̄ in any delay equilibrium even if the game exhibits mode independent and separable
control effects.

Considering the action of player 1, we have to distinguish betweenmaximal delay equilib-
ria and forced switch delay equilibria. Whereas Proposition 2 shows that the control of player
1 is continuous at the time of the regime switch in maximal delay equilibria, in general this
does not hold for delay equilibria not having this property. Intuitively, in such an equilibrium
player 1 has strict incentives to delay the jump to mode m2 for all values of the state below
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the threshold x̄ , and, differently to the maximal delay equilibrium, this incentive to delay
does not converge to zero as x approaches x̄ . The reason for player 1 to switch to modem2 at
x̄ is that player 2 threatens to discontinuously change its action at x̄ if the game would stay in
mode m1. Hence, for a given strategy of player 2, the threshold x̄ at which player 1 switches
to modem2 is determined by the state at which player 2 threatens to change its control. Based
on this, player 1 has to adjust its investment in order to influence the duration of the game in
modem1. Similarly to what we described for player 2 above, this effect disappears as soon as
the mode is m2 and hence also the action of player 1 in general exhibits a jump at the mode
switch. More formally, in the absence of a smooth pasting condition the state derivative of
the value function of player 1 in general exhibits a jump as the mode switches from m1 to
m2. Therefore, the marginal return of investment for player 1 jumps as the game switches
from mode m1 to m2 at x̄ , which induces a jump in the control of player 1. In Sect. 4, we
will illustrate these scenarios using a simple example analyzing the optimal timing of new
product introduction in a duopoly.

The following proposition formally establishes that under maximum delay equilibria the
action of player 1 is continuous over time although the mode changes at some positive t from
m1 to m2.

Proposition 2 If ((�1(x,m),�x̄ (x)),�2(x,m)) is a maximum delay equilibrium profile of
a game with mode independent and separable control effects such that in each mode m the
strategies �i , i = 1, 2 are continuous with respect to the state x and the right-hand side of
condition (ii) in Proposition 1 has a unique maximizer at x = x̄ , then

lim
x→x̄− �1(x,m1) = �1(x̄,m2).

The intuition for this result is straightforward. For the maximal delay equilibrium, the
smooth pasting condition holds for player 1 at the threshold x̄ . This ensures that the slope
with respect to the state of her value function is identical in modes m1 and m2 at this point.
If the marginal effects of the own control on the instantaneous payoff and the state dynamics
are not affected directly by the change in mode (mode independent control effect) and by the
potential change in the other player’s control (separable control effect) due to themode switch,
then the optimization problemwhich player 1 faces at state x̄ is equivalent, no matter whether
the firm is in mode m1 or in m2. Hence, its equilibrium feedback strategy is continuous at x̄ .

4 An Illustrative Example: Optimal Timing of New Product Introduction

To illustrate our general findings, we now consider the timing problem of a firm, denoted
as firm 1, which has to decide when to introduce a new product, that it has developed. We
assume that the firm is already active producing an established product and competes with
a second firm (firm 2) on the market for the established product. Only firm 1 has developed
the new product and therefore has the option to introduce that product at any point in time
t ≥ 0.

Before the new product is introduced (mode m1), the inverse demand for the established
product is given by

po = αo − (q1o + q2o),

where po denotes the price of established product and qio the quantity of that product supplied
by firm i, i = 1, 2. After the introduction of the new product (modem2), the inverse demand
changes to
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po(q1o + q2o, q1n) = αo − (q1o + q2o) − ηq1n

pn(q1o + q2o, q1n) = α0
n + αn − η(q1o + q2o) − q1n .

Here, αo is the reservation price of the established product, whereas α0
n + αn denotes the

reservation price of the new product. We write this reservation price as the sum of a constant
parameter α0

n , giving theminimal value of the reservation price, and the state variableαn(t) ≥
0 capturing the effects of the efforts of the two competitors to influence the (inverse) demand
for the new product. Firm 1, as the (potential) innovator, tries to increase the willingness
to pay for the new product, whereas the competitor firm 2 might invest in reducing this
willingness, e.g., by providing information to consumers about negative features of the new
product or by negative campaigning. Both firms choose nonnegative effort hi , measured e.g.,
in work hours, to do advertising (firm 1), respectively, negative campaigning (firm 2) for the
new product. The unit cost of such effort is denoted by ci > 0, i = 1, 2 ,and we assume that
there are decreasing returns to effort in terms of the size of the effect on the inverse demand
for the new product. More precisely, we assume that the change in reservation price is given
by

α̇n = √
2h1 − γ

√
2h2 − δαn, m ∈ {m1,m2}.

Here, γ > 0 is a parameter, and δ is the rate by which the effect of firms’ effort on inverse
demand vanishes. We assume that the equation governing the dynamics of αn is the same
in both modes, which captures a situation where firms might invest effort in influencing the
reservation price of the new product also before the product is actually introduced to the
market.9 For analytical convenience, we transform the firms’ control variables according to
ui = √

2hi to obtain the following formulation with linear state dynamics

α̇n = f (αn, (u1, u2),m) := u1 − γ u2 − δαn, m ∈ {m1,m2} (7)

and quadratic cost functions ξi (ui ) = ci
2 u

2
i . In slight abuse of notation, we will refer to the

controls ui as firm effort in the further analysis. Production costs for the established product
are assumed to be symmetric across firms and given by νo

2 q
2
io, i = 1, 2 and analogously for

the new product firm 1 has production costs νn
2 q

2
1n .

Firms maximize profits by choosing the production quantities as well as the effort ui at
every point in time t . In addition, firm 1 decides about the time at which the new product is
introduced. The introduction of the new product is associated with lump-sum costs of κ > 0.

Since the quantity choice in this setting does not have any intertemporal effects, firms at t
choose quantities according to the Cournot equilibrium, which depends on the value of αn(t)
for all t after the introduction of the new product. Standard calculations (see ‘Appendix’ B
for a derivation of the Cournot equilibrium quantities and profits in both modes) show that
before the introduction of the new product we have

qm1
io = αo

3 + νo
i = 1, 2, (8)

and the market profit of each firm is given by π
m1
io = (

1 + νo
2

)
(qm1

io )2. Hence, we obtain for
the instantaneous profit in mode m1

Fi (αn, ui ,m1) =
(
1 + νo

2

)
(qm1

io )2 − ξi (ui ) i = 1, 2. (9)

9 This assumption seems quite realistic since advertising for (and against) new products often starts after the
product introduction has been announced but well before the product is actually introduced.
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In order to guarantee that after the introduction of the new product also a positive amount
of this good is produced in equilibrium regardless of the value of αn , we assume that α0

n >
3ηαo
3+νo

. Furthermore, we restrict attention to scenarios where in equilibrium both firms also

sell a positive quantity of the established product. This is true as long as αn < αUB
n :=

(2+νn)(1+νo)+η2

η(3+2νo)
αo − α0

n (see ‘Appendix’ B).

For values of αn ∈ [0, αUB
n ], we obtain as the equilibrium quantities in mode m2:

qm2
1o (αn) = αo((1 + νo)(2 + νn) + η2) − η(α0

n + αn)(3 + 2νo)

(1 − η2)(6 + 5νo) + 3(νo + νn) + (2 + νn)ν2o + 4νoνn

qm2
2o (αn) = αo((1 + νo)(2 + νn) − 2η2) − η(α0

n + αn)νo

(1 − η2)(6 + 5νo) + 3(νo + νn) + (2 + νn)ν2o + 4νoνn

qm2
1n (αn) = (1 + νo)((α

0
n + αn)(3 + νo) − 3αoη)

(1 − η2)(6 + 5νo) + 3(νo + νn) + (2 + νn)ν2o + 4νoνn
(10)

The corresponding instantaneous profit in mode m2 is

F1(αn, u1,m2) =
(
1 + ν2o

2

)
(qm2

1o (αn))
2 +

(
1 + ν2n

2

)
(qm2

1n (αn))
2

+ 2ηqm2
1o (αn)q

m2
1n (αn) − ξ1(u1)

F2(αn, u2,m2) =
(
1 + ν2o

2

)
(qm2

2o (αn))
2 − ξ2(u2) (11)

Overall, the dynamic strategic interaction between the two firms constitutes a two-mode
differential game of the form considered in Sect. 2 with the single state αn evolving according
to (7) and the instantaneous profits in mode m1 given by (9) and those in mode m2 given
by (11). Both firms decide on their effort ui as a function of the current state and mode and
additionally firm 1 determines the timing of the switch fromm1 tom2, which means that firm
1 decides on a threshold ᾱn such that it introduces the new product as soon as the reservation
price of the new product α0

n + αn is larger than α0
n + ᾱn . Formally, in accordance with Sect.

3 we consider profiles of Markovian strategies of the form ((�1(αn,m),�ᾱn ),�2(αn,m))

and in what follows characterize Markov perfect equilibria of this game.

4.1 MPE in Modem2

In order to characterize the different types of equilibria in our game, we first consider the final
mode m2. Since the instantaneous profits given in (11) are quadratic functions of state and
controls and the state Eq. (7) is linear, the game in mode m2 is of linear quadratic structure.
Following a wide range of the literature about such games (see, e.g., [5]), we assume that the
game has a MPE with linear feedback strategies10, giving rise to quadratic value functions
of both players. The value and feedback functions can then be determined by a guess and
verify approach using the first-order conditions and Hamilton–Jacobi–Bellman equations,
see ‘Appendix’ C for details.

10 It should be noted that the game might as well have additional MPEs with nonlinear feedback strategies.
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Fig. 1 Value functions in mode m2

Figure 1 shows the value functions of both players in theMPE for our benchmark parameter
setting.11 The green arrows indicate the direction of the state dynamics under the equilibrium
feedback strategies. There is a unique stable steady state α

∗,m2
n , and it is easy to verify that

α
∗,m2
n < αUB

n under our parameter setting such that both firms sell positive quantities of the
old product in the steady state. Figure 1 clearly shows that, as expected, the value of firm
1 increases with αn , whereas firm 2 is hurt by an increase in the attractiveness of the new
product.

4.2 Different Types of MPEs in Modem1

In order to characterize MPE strategies in modem1, we first determine the value functions of
both players under the extreme scenarios in which the new product, regardless of the initial
condition, is either immediately or never introduced. We denote the value function of firm i
in the former case of immediate introduction by V 0

i (αn,m1). Clearly, we have

V 0
i (αn,m1) = Vi (αn,m2) − 1[i=1]κ.

If the new product is never introduced, positive investment is never optimal for either firm,
i.e., ui (t) = 0, i = 1, 2, t ≥ 0, and hence, the value functions read

V∞
i (αn,m1) =

(
1 + νo

2

) (qm1
io )2

r
, i = 1, 2.

Note that V∞
i is constant with respect to αn because the attractiveness of the new product

is irrelevant if this product is never introduced. Given that V 0
1 (αn,m1) increases with αn , it

follows that V 0
1 (0,m1) > V∞

1 (0,m1) implies V 0
1 (αn,m1) > V∞

1 (αn,m1) ∀α ∈ [0, αUB
n ]

and it is optimal for firm 1 to introduce the new product at some finite point in time t . If this
inequality is violated, then in general it might depend on the initial value αn(0) whether the

11 Since the purpose of the analysis of this model is to illustrate our theoretical findings, we abstain from
carrying out a systematic calibration exercise for our model. The parameters have been chosen in a way that
they give rise to the different types of equilibria discussed in the previous section. The values are η = 0.5, c1 =
c2 = 45, r = 0.04, γ = 0.5, αo = 1, α0n = 0.5, δ = 0.1, νo = 0.4, νn = 0.2.
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new product is introduced. In order to gain a better understanding of the potential structure
of equilibria under which the new product introduction depends on the initial state, we first
characterize the properties of equilibrium state dynamics on (0, ᾱn).

The following proposition shows that under an MPE profile the state αn is either
monotonously increasing or decreasing on the entire interval below the threshold value at
which firm 1 introduces the new product (i.e., for α ∈ (0, ᾱn)).

Proposition 3 If ((�1(αn,m),�ᾱn ),�2(αn,m)) is a MPE profile of the game, then it holds
for all α1

n, α
2
n ∈ (0, ᾱn) that

sgn
[
f (α1

n, (�1(α
1
n,m1),�2(α

1
n,m1)))

] = sgn
[
f (α2

n, (�1(α
2
n,m1),�2(α

2
n,m1)))

]
.

The observation that in equilibrium the state αn is either strictly increasing or strictly
decreasing on the entire interval (0, ᾱn) has several important implications. If in a given
equilibrium the new product is introduced after a positive and finite delay for some initial
value αn(0), then under this equilibrium profile the product is introduced after finite time
regardless of the initial state αn(0). Conversely, if in a given equilibrium the product is
never introduced for some initial value of the new market size, then under this equilibrium a
positive finite delay in product introduction can never occur, regardless of αn(0). Relating to
the different types of equilibria introduced in Sect. 3, the proposition shows that the property
‘delay equilibrium,’ which inDefinition 1was defined locally in the sense that for some initial
condition the mode switches after some delay, in the framework of this model is actually
a global property in the sense that in any delay equilibrium the switch to m2 occurs after
a positive finite delay for all αn ∈ [0, ᾱn). Similarly, in this model in any now or never
equilibrium the switch never occurs for any initial value of the state below the threshold ᾱn .

In what follows, we illustrate our general results from Sect. 3 by showing that, depending
on the size of the new product introduction costs κ , qualitatively different types of MPE
constellations exist in in our model.

4.2.1 Small Costs of Market Introduction

If κ is sufficiently small, i.e., κ < κ := V1(0,m2)− V∞
1 (0,m1), then it follows directly that

immediate introduction is more profitable for firm 1 than no introduction regardless of the
value ofαn .12 Hence, in equilibrium the newproduct is always introduced. Concentrating first
on a maximum delay equilibrium, we need to characterize the threshold value of ᾱn , above
which the product is introduced. Denoting the threshold in the maximum delay equilibrium
by ᾱmd

n , we obtain that the following condition has to be satisfied for some positive value of
um1
2 (see ‘Appendix’ D):

r
(
V1(ᾱ

md
n ,m2) − κ

)
= F1(ᾱ

md
n ,�1(ᾱ

md
n ,m2),m1)

+∂V1(ᾱmd
n ,m2)

∂αn
f (ᾱmd

n ,�1(ᾱ
md
n ,m2), u

m1
2 ),

rV2(ᾱ
md
n ,m2) = F2(ᾱ

md
n , um1

2 ,m1) − c2u
m1
2

γ
f (ᾱmd

n ,�1(ᾱ
md
n ,m2), u

m1
2 ) (12)

Whereas the first equation captures the smooth pasting condition, the second is the HJB
equation of firm 2 at αmd

n . To obtain these equations, we have used the fact that the equilib-
rium value function of firm 2 has to coincide between the two modes for all αn ≥ ᾱn (see

12 For our benchmark parameter constellation, we have V1(0,m2) = 2.7 and V∞
1 (0,m1) = 2.6 such that

for all values κ < 0.1 this condition is fulfilled.
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Fig. 2 Value functions of firm 1 (left panel) and firm 2 (right panel) under the maximum delay equilibrium
(solid line), a forced switch delay equilibrium with ᾱn = ᾱdn = 0.01 (coarsely dashed line) and immediate
introduction of the new product (dashed line). The dotted line indicates the value function if the new product
is never introduced (κ = 0.095)

0.01 0.02 0.03 0.04

0.01

0.02

0.03

0.04

n�

),( 11 mmd ��

),( 21 m��

),( 12 mmd ��

),( 22 m��

md
n�

(a) Maximum delay equilibrium

0.01 0.02 0.03 0.04

0.01

0.02

0.03

0.04

n�

),( 11 md ��

),( 21 m��

),( 12 md �� ),( 22 m��

),( 12 md ��
d
n�

(b) Forced switch delay equilibrium

Fig. 3 Investment strategies of firm 1 (black) and firm 2 (red) in the a maximum delay equilibrium and the b
forced switch delay equilibrium with ᾱn = ᾱdn = 0.01 (κ = 0.095). Strategies in mode m1 are indicated by
solid lines, those in mode m2 by dashed lines (Color figure online)

Proposition 1) and that the control of firm 1 is identical in both modes for αn = ᾱmd
n since

all conditions of Proposition 2 are satisfied in our model.
For our benchmark parametrization together with market introduction costs of κ = 0.095,

the system (12) has a unique positive solution given by ᾱmd
n = 0.036 and um1

2 = 0.0047.
The corresponding maximum delay equilibrium is illustrated in Figs. 2 and 3a. The solid
lines in the two panels of Fig. 2 show the value functions of the two firms in mode m1

under such an equilibrium. More precisely, these functions have been determined as the
solutions of the HJB equations for mode m1 on [0, ᾱmd

n ] under the boundary conditions
that Vi (ᾱmd

n ,m1) = Vi (ᾱmd
n ,m2) − 1[i=1]κ, i = 1, 2. It can be easily checked that these

value functions in combination with feedback functions derived from the maximization of
the right-hand side of the HJB equation on [0, ᾱmd

n ] satisfy all conditions of Proposition 1
for any profile (�1,�2) satisfying �2(αn,m1) ≥ �2(ᾱ

md
n ,m1) for all αn ≥ ᾱmd

n (in order
to ensure condition (vii) of Proposition 1). The equilibrium investment functions under the
maximum delay equilibrium are shown in Fig. 3a. It can be clearly seen that the investment
of firm 1 in modem1 (solid black line) intersects with the equilibrium investment in modem2
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(black dashed line) exactly at the threshold ᾱmd
n above which firm 1 immediately introduces

the new product. We do not show any values for the function �1(αn,m1) for αn ≥ ᾱmd
n

since any choice of the function on this interval is compatible with equilibrium. The figure
also illustrates the downward jump of the investment of firm 2 at the threshold αn = ᾱmd

n
where the mode switches from m1 to m2. In mode m1, there is an additional incentive for
player 2 to invest. Such investment decreases the speed of the increase of αn and delays
the point in time when the state variable arrives at ᾱmd

n and the new product is introduced.
Firm 2 has an incentive to delay the new product introduction, which provides additional
investment incentives. Once the new product is introduced, this additional incentive vanishes
which results in a downward jump in player 2’s investment.

However, the maximum delay equilibrium is not the only MPE in our setting. Actually,
for any threshold ᾱd

n ∈ [0, ᾱmd
n ) there is a forced switch delay equilibrium such that firm

1 introduces the new product immediately for all αn ≥ ᾱd
n . In Fig. 2, the value functions

corresponding to such an equilibrium with ᾱd
n = 0.01 are illustrated with coarsely dashed

lines. It can be clearly seen that both value functions have a kink at αn = ᾱd
n such that

also for firm 1 the smooth pasting condition does not hold at this threshold where the firm
introduces the new product. The equilibrium feedback function corresponding to this MPE
is shown in Fig. 3b. The figure illustrates that the investments of both firms jump at the
point in time when the new product is introduced, where the jump is upward for firm 1 and
downward for firm 2. Whereas the intuition for the downward jump of firm 2 is analogous
to that developed for the maximum delay equilibrium, the upward jump for firm 1 is due to
the fact that after the introduction of the new product an increase of αn has a positive impact
on the instantaneous profit of firm 1, whereas in mode m1 such an increase only has impact
on the remaining time till the new product is introduced. If the new product is introduced at
a level of αn , where the value function in mode m2 is still strictly steeper than that in mode
m1, the investment incentives jump upward at the point of market introduction. A crucial
feature of this equilibrium profile is that �2(αn,m1) for αn ≥ ᾱd

n is sufficiently large such
that it is optimal for firm 1 to introduce the new product immediately at ᾱd

n . In our example,
this is guaranteed by setting �2(ᾱ

d
n ,m1) > 1

γ
�1(ᾱ

d
n ,m1), which implies that under optimal

investment by firm 1 the state variable αn does not move above ᾱd
n . As discussed in Sect. 3,

although such high investments by firm 2 would not be optimal, if it were to be carried out
for a time interval with positive measure, in equilibrium the firm is never required to carry
out such investment, regardless of the value of αn(0).

4.2.2 Intermediate Costs of Market Introduction

We now consider the case where κ > κ , which implies that for αn(0) = 0 immediate
introduction of the new product yields a lower value for firm 1 than never introducing the
new product and abstaining from any investment into the buildup of αn . Although immediate
introduction of the new product is not optimal, an introduction with some delay might still
be more profitable than no introduction. Taking into account that the largest value for firm 1
is obtained under the maximum delay equilibrium, Vmd

1 (0,m1) > V∞
1 (0,m1) is a necessary

and sufficient condition for the existence of delay equilibria in our setting. It should be noted
that Vmd

1 (0,m1) is a decreasing function of κ such that this condition implies an upper bound
κ̄ for the costs of market introduction such that for all κ ≤ κ̄ there exists an equilibrium such
that for all αn(0) ≥ 0 the new product is introduced to the market after finite time. For
this subsection, we assume that κ ∈ [κ, κ̄], i.e., the market introduction costs are in an
intermediate range such that for αn(0) = 0 immediate introduction is not optimal but there
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Fig. 4 Value functions of firm 1 (left panel) and firm 2 (right panel) under the maximum delay equilibrium
(solid line), the equilibrium with minimal delay (coarsely dashed line) and immediate introduction of the
new product (dashed line). The dotted line indicates the value function if the new product is never introduced
(κ = 0.1025)

exists an equilibrium which induces new product introduction with some delay for this initial
value.

In Fig. 4, this case is illustrated by showing the value functions for immediate market
introduction (dashed lines), the maximum delay equilibrium (solid line) and no market intro-
duction (dotted line). We denote by ᾱnn

n the largest value of αn such that V∞
1 (αn,m1) ≥

V1(αn,m2) − κ . Clearly, for all values of αn < ᾱnn
n immediate market introduction is not

optimal; therefore, the range of threshold values ᾱd
n for which delay equilibria can exist is

restricted to ᾱd
n ∈ [ᾱnn

n , ᾱmd
n ]. However, for a delay equilibrium to exist, the associated value

function must also satisfy V d
1 (0,m1; ᾱd

n ) ≥ V∞
1 (0,m1), where we denote by V d

1 (0,m1; ᾱd
n )

the value function of firm 1 under a (candidate for a) delay equilibrium with threshold ᾱd
n .

If this inequality does not hold, condition (ii) in Proposition 1 would be violated at αn = 0.
This can be seen by realizing that by choosing ui = 0 for αn = 0 we have α̇ = 0 and the
value of the right-hand side of the HJB equation becomes

(
1 + νo

2

)
(qm1

io )2 = rV∞
1 (0,m1) > rV d

1 (0,m1; ᾱd
n ).

Since under the equilibrium feedback functions in the delay equilibrium the right-hand side
of the HJB equation has to be equal to rV d

1 (0,m1; ᾱd
n ) (see condition (i) in Proposition 1), the

feedback function�d(αn,m1; ᾱd
n ) in that equilibrium candidate does not maximize the right-

hand side of the HJB equation. This shows that no delay equilibrium with V d
1 (0,m1; ᾱd

n ) <

V∞
1 (0,m1) can exist with the property that the newproduct is introduced after a positive delay

for αn(0) = 0. Furthermore, we know from Proposition 3 that in any equilibrium the sign of
the state dynamics cannot change on the interval [0, ᾱn]. This rules out any equilibriumprofile
under which the new product is never introduced (and hence αn decreases over time) for a
small value of αn(0), but is introduced after a delay for larger values of αn(0). Put together
these arguments establish that for any threshold ᾱd

n with V d
1 (0,m1; ᾱd

n ) < V∞
1 (0,m1) no

delay equilibrium can exist. However, there exists a continuum of delay equilibria where at
the market introduction threshold this inequality does not hold. In particular, there exists a
unique αd

n ∈ (ᾱnn
n , ᾱmd

n ] such that V d
1 (0,m1; ᾱd

n ) ≥ V∞
1 (0,m1) for all ᾱd

n ∈ [αd
n , ᾱ

md
n ]. To

see this, note that, since the smooth pasting condition is satisfied at ᾱmd
n , for all ᾱd

n < ᾱmd
n an

equilibrium with a later switch tom2 leads to a higher value forfirm 1. Hence, V d
1 (0,m1; ᾱd

n )
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Fig. 5 Equilibrium investment
strategies under the MPE with
‘now or never’ product
introduction (κ = 0.1025). The
strategies of player 2 are depicted
in red
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is an increasing and continuous function of ᾱd
n . Furthermore, in light of the definition of ᾱnn

n
we have

V d
1 (0,m1; ᾱnn

n ) < V d
1 (ᾱnn

n ,m1; ᾱnn
n ) = V1(ᾱ

nn
n ,m2) − κ = V∞

1 (ᾱnn
n ,m1).

Since without market introduction of the new product the value of firm 1 does not depend on
αn , we have V∞

1 (0,m1) = V∞
1 (ᾱnn

n ,m1) > V d
1 (0,m1; ᾱnn

n ). Due to κ < κ̄ , we also have
V∞
1 (0,m1) < V d

1 (0,m1; ᾱmd
n ) and the intermediate value theorem implies the existence of

αd
n ∈ (ᾱnn

n , ᾱmd
n )with V d

1 (0,m1;αd
n) = V∞

1 (0,m1). In the two panels of Fig. 4, we illustrate
this observation by showing, as coarsely dashed lines, the value functions of the two firms
under the (forced switch) delay equilibrium with threshold ᾱd

n = αd
n . For any threshold value

ᾱd
n in the interval [αd

n , ᾱ
md
n ], a delay equilibrium profile can be constructed in the same way

as discussed in the previous subsection.
However, in the case of intermediate values of market introduction costs considered here,

there also exists a now or never equilibrium, as discussed in Sect. 3. Similarly to the forced
switch delay equilibria, also this equilibrium is characterized by a threat of a strong investment
of player 2 in m1 as soon as the state variable αn is larger or equal than ᾱnn

n . Hence, firm 1
introduces the product immediately if αn ≥ ᾱnn

n . As discussed above, under a potential delay
equilibrium in which firm 1 invests positive amounts we would have

V d
1 (αn,m1; ᾱnn

n ) < V d
1 (ᾱnn

n ,m1; ᾱnn
n ) = V∞

1 (ᾱnn
n ,m1) = V∞

1 (αn,m1)

for all αn < ᾱnn
n and therefore setting �1(αn,m1) = 0 is the optimal strategy for firm 1 on

this interval. Hence, in equilibrium we also must have �2(αn,m1) = 0 for all αn < ᾱnn
n . We

obtain a MPE profile under which for all αn(0) < ᾱnn
n both firms invest nothing and the new

product is never introduced, whereas for αn(0) ≥ ᾱnn
n the product is introduced at t = 0 and

both firms afterward invest according to the MPE strategies in mode m2. The equilibrium
feedback functions underlying this equilibrium are illustrated in Fig. 5, where, as in Fig. 3,
we do not show any values of �1(αn,m1) for αn ≥ ᾱnn

n since any choice is compatible with
an equilibrium profile.

Figure 6 illustrates the dynamics emerging under the different types of equilibria that
coexist for an intermediate level of themarket introduction costs. In particular, the trajectories
of the market attractiveness (αn) and of the investments of both firms (u1, u2) are depicted for
a small initial value of the market attractiveness. The dotted lines corresponding to the now
or never equilibrium show that in such an equilibrium, due to absence of any investments the
attractiveness of the new product decreases toward zero and the product is never introduced.
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Fig. 6 Dynamic of the attractiveness of the new product (a) and the investments of both firms (b) for αn(0) =
ᾱnnn = 0.004 under the maximum delay equilibrium (solid line), the equilibrium with minimal delay (ᾱdn =
0.015, dashed line) and the now or never equilibrium (dotted line) for κ = 0.1025

The dashed and the solid lines correspond to the dynamics under the (forced switch) delay
equilibrium with the minimal possible threshold, i.e., ᾱd

n = αd
n , and the maximum delay

equilibrium. The points in time atwhich the newproduct is introduced under the forced switch
delay and the maximum delay equilibrium are denoted by τ d and τmd , where τ d < τmd .
The figure illustrates that under both equilibria the state αn increases over time. In the time
interval [0, τ d ], the increase is slower under the delay equilibrium than under the maximum
delay equilibrium, because the investments of firm 2, which decrease the speed of growth of
αn , are larger under the delay than under the maximum delay equilibrium. The investments
of firm 1, fostering the growth of αn , are virtually identical under both equilibria. Intuitively,
firm 2 invests more under the forced switch delay equilibrium, because the downward jump
of its instantaneous profit associated with the switch to mode m2 is much closer time-wise
in the forced switch delay equilibrium than in the maximum delay equilibrium and therefore
less heavily discounted. Hence, the incentive to invest in delaying the switch is stronger
in the forced switch delay equilibrium. For firm 1, no such effect occurs and the incentive
to invest during mode m1 is hardly affected by the type of the delay equilibrium. Under
the forced switch delay equilibrium, both controls exhibit a jump at τ d with the investment
of firm 1 jumping upward and those of firm 2 jumping downward. As a result, αn grows
faster after τ d compared to the time before the new product introduction and we observe a
higher attractiveness of the newmarket under the forced switch delay equilibrium than under
the maximum delay equilibrium. It should, however, be noticed that under both equilibria
the state αn converges to the steady state in mode m2 (α∗,m2

n ) and therefore this difference
between the two equilibria disappears in the long run. Finally, Fig. 6b illustrates again that in
the maximum delay equilibrium the investment of firm 1 is continuous throughout the entire
trajectory, i.e., also at period τmd at which the mode switches from m1 to m2.

4.2.3 Large Costs of Market Introduction

If market introduction costs are large, i.e., κ > κ̄ , then we have Vmd
1 (0,m1) < V∞

1 (0,m1),
which means that any candidate for a delay equilibrium yields a smaller value for firm 1 at
αn(0) = 0 than not investing in the build-up of αn and never introducing the new product.
We illustrate the value functions of both firms for this case in Fig. 7. Due to Vmd

1 (0,m1) <

V∞
1 (0,m1), there can be no equilibria where for the initial condition αn(0) = 0 firm 1 invests
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Fig. 7 Value functions of firm 1 (left panel) and firm 2 (right panel) under the candidate for a maximum delay
equilibrium (solid line), the immediate introduction of the new product (dashed line) and if the new product
is never introduced. The value functions under the now or never equilibrium are indicated in bold (κ = 0.11)

in the buildup of αn and eventually introduces the new product. Using the same arguments
as developed in the previous subsection, this rules out the existence of any MPE under which
the product is introduced with delay for some initial value αn(0). Hence, the only equilibrium
that still exists in this scenario is the now or never equilibrium, where firm 1 introduces the
new product immediately for αn(0) ≥ ᾱnn

n and never introduces it for αn(0) < ᾱnn
n . The

value functions of both firms corresponding to this equilibrium are indicated in bold in Fig.
7. It should be noted that under this equilibrium the value function for firm 1 has a kink at
ᾱnn
n (panel (a)), while the value of the game for firm 2 exhibits a downward jump as the initial

state αn(0) crosses the threshold ᾱnn
n (panel (b)).

5 Discussion and Conclusions

In this paper, we studyMarkov perfect equilibria in two-playermulti-mode differential games
where both players can influence the dynamics of the state variable and one player controls
the timing of the mode switches. We identify different types of equilibria which can occur
in such games and our analysis of a simple model of dynamic competition under potential
new product introduction illustrates the properties of these different types of equilibria. In
particular, we show that forced switch delay equilibria, maximum delay equilibria and now
or never equilibria might coexist for some parameter constellations. More precisely, we have
demonstrated that the following three scenarios arise:

(i) κ ≤ κ: There exists a maximum delay equilibrium with product introduction at α =
αmd
n and a continuous investment path of player 1 across both modes of the game.

Furthermore, for any ᾱd
n ∈ [0, αmd

n ) there exists a forced switch delay equilibrium with
new product introduction at ᾱd

n . In each of these equilibria, the investments of both
players jump as the mode switches from m1 to m2.

(ii) κ < κ ≤ κ̄: There exists a maximum delay equilibrium plus for each ᾱd
n ∈ [αd

n , ᾱ
md
n )

there is also a forced switch delay equilibrium. Furthermore, in this case also a now or
never MPE exists.

(iii) κ > κ̄: Whereas strategy profiles inducing market introduction with delay for some
initial value of αn do not constitute a MPE, the now or never equilibrium still exists.
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In scenario (iii) for each initial condition, a unique prediction about the occurrence and timing
of the new product introduction can be made if we restrict attention to the MPE analyzed
here. This is not true in the first two cases. In case (ii), there is a set of initial conditions
αn(0) ∈ [0, ᾱnn

n ] such that MPEs under which the new product is eventually introduced
coexist with the now or never equilibrium under which no introduction of the new product
occurs. For αn(0) > ᾱnn

n , the new product is introduced under all existing equilibria although
the time of the introduction varies across equilibria. Similarly, under scenario (i) the product
is eventually introduced for all initial conditions, where the time of the introduction depends
on the chosen equilibrium.

Whereas all equilibria considered here are Markov perfect, intuitively the forced switch
delay equilibria seem less plausible compared to the maximum delay and the now or never
equilibrium. As discussed above, the equilibrium profiles underlying these equilibria include
strategies for firm 2, under which in mode m1 for αn ≥ ᾱd

n investments are chosen which
would not be optimal if the game would stay in modem1 for an amount of time with positive
measure even after the state αn has crossed the threshold ᾱd

n . Since in equilibrium the state
is never larger or equal than ᾱd

n in mode m1 for a positive amount of time, this feature does
not contradict the optimality of the strategy of firm 2. However, it nevertheless constitutes an
‘incredible threat’ in the sense that it would not be optimal for firm 2 to stick to this investment
strategy, in case firm 1 would deviate from its own equilibrium strategy by increasing the
threshold at which it switches to mode m2.

A main insight of our analysis is that a strategy profile might be Markov perfect even
though the strategy of some players induces actions in some parts of the state space which
would not be optimal for the player if carried out for a positive amount of time. Although this
phenomenon has been demonstrated in this paper only for multi-mode games, it seems that it
might arise also in other classes of differential games. For example, in games inwhich the state
dynamics is controlled by potentially singular controls of both players MPEs might exist in
which the strategy of one player in a certain region of the state space make it optimal for some
other player to induce a jump of the state out of that region by means of a singular control.
Similar to our setup, Markov perfection does not put any restrictions on the regular control
of that player in the region in which the other player chooses a singular control.13 Intuitively,
under such a MPE profile the state always immediately jumps out of that singular control
region such that the amount of time for which the actions induced by the players’ strategies
in that region are actually implemented has measure zero. Hence, also in the framework of
such differential games incredible threats, in the sense that actions are chosen which would
be suboptimal if implemented for a positive amount of time, can occur as part of Markov
perfect equilibrium profiles. An interesting question for future research might be to explore
whether such Markov perfect equilibria with ‘incredible threats’ in multi-mode or singular
control games can be eliminated by appropriate equilibrium refinements. Developing such
a refinement would also provide a valuable theoretical basis for alleviating the problem of
non-uniqueness of predictions about equilibrium timing of regime switches in applications
like the dynamic innovation model considered in this paper.
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13 This can, for example, be seen in Theorem 1 of Kwon [12], characterizing best responses in a dynamic
common goods game in continuous time.
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Appendix A: Proofs

Proof of Proposition 1 In order to prove that the considered profile is an equilibrium, we first
observe that conditions (i) to (iii) are standard conditions implying that the profile in mode
m2 is a Markov perfect equilibrium of the infinite horizon game in this mode (see Theorem
4.4 in Dockner et al. [5]).

Consider now the optimization problem of player 2 in mode m1 for a given strategy
�1(x,m1),�x̄ of player 1. Given that player 1 switches to mode m2 instantaneously for
x > x̄ , the choice of �2(x,m1) for all x > x̄ does not affect the objective function of firm
2. Hence, any choice for �̃2(x) is optimal.

We now turn to the problem of player 2 for an arbitrary initial state xini ∈ [xl , x̄). Define
an auxiliary value function V̂2(x) on [xl , x̄] as follows

V̂2(x) =
{
V2(x,m1) x ∈ [xl , x̄),
limx→x̄− V2(x,m1) x = x̄ .

By definition, this auxiliary value function is continuous and differentiable on [xl , x̄] and
due to (iv) satisfies the Hamilton–Jacobi–Bellman equation for the optimal control problem
of player 2 on that interval. Standard results show that this is therefore the value func-
tion of the auxiliary control problem of player 2, in which player 2 receives the payoff
limx→x̄− V2(x,m1) once the state hits x̄ . Furthermore, because of condition (viii),�2(x,m1)

is the optimal feedback function for player 2 with respect to this auxiliary problem. It should
be noted that any control path under which the state does not hit x̄ yields the same value
for player 2 under the auxiliary and the original problem. Any control path under which the
state hits x̄ due to condition (v) yields a larger or equal value for player 2 under the auxil-
iary problem than under the original problem. In particular, this implies that, if a path under
which x̄ is not hit is optimal under the auxiliary problem, it is also optimal under the original
problem.

Consider now an arbitrary xini ∈ [xl , x̄). If the optimal path under the auxiliary problem
induced by�2(x,m1) does not hit x̄ , then it is also optimal under the original problem. If the
optimal path under the auxiliary problem induced by �2(x,m1) hits x̄ , then we must have
f (x, (�1(x,m1),�2(x,m1)),m1) > 0 for all x ∈ (x̄ − ε, x̄) for some ε > 0. By condition
(v), this implies that V̂2(x̄) = V2(x̄,m1) and therefore the auxiliary problem coincides with
the original problem. Hence, �2(xini ,m1) is optimal for player 2 under the original problem
for any xini ∈ [xl , x̄).

We now consider the optimal control problem of player 1 in modem1 for a given strategy
�2(x,m1) of player 2. Considering the switching strategy �x̄ as given, the same arguments
as just applied to player 2 establish the optimality of �1(x,m1). Hence, what remains to be
shown is that switching to mode m2 for all x ≥ x̄ is optimal for player 1 given �2(x,m1).
It follows from (iv) and (v) and by continuity that any path from the initial state xini =
x̄ , which stays in the interval [xl , x̄], yields a value for player 1 that is not larger than

http://creativecommons.org/licenses/by/4.0/
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limx→x̄− V1(x,m1) = V1(x̄,m2) − κ . Hence, switching to mode m2 at x̄ yields at least the
same value as any such path staying in [xl , x̄].

Consider now a potentially optimal path from x̄ which stays in modem1 and has x(t) > x̄
for all t > 0. Taking into account the compactness of the state space and the monotonicity of
any optimal path, there must exist a steady state x̃ > x̄ , associated with a steady-state control
ũ1, of such a path and we must have

F1(x̃, (ũ1,�2(x̃,m1)))

r
≥ V (x̃,m2) − κ,

since otherwise it would be optimal for player 1 to switch to mode m2 at x̃ . Taking into
account that f (x̃, (ũ1,�2(x̃,m1))) = 0, we obtain

F1(x̃, (ũ1,�2(x̃,m1))) + ∂V1(x̃,m2)

∂x
f (x̃, (ũ1,�2(x̃,m1))) ≥ r(V (x̃,m2) − κ),

which contradicts condition (vii). This shows that under the given conditions no path from
x̄ which never jumps to mode m2 can be strictly better than switching to mode m2 at x̄ . The
same arguments establish that this holds also for any xini > x̄ .

Focusing on paths on which player 1 switches to mode m2, it can be shown that (vii)
implies that by for x > x̄ switching immediately is strictly better than marginally delaying
the switch to mode m2.

To see this, consider for some x(t) > x̄ the value in mode m1 of delaying the switch to
mode m2 from t to t + ε which is denoted by V ε

1 (x(t),m1):

V ε
1 (x(t),m1) = max

u1∈U1

∫ t+ε

t
F1(x(s), (u1,m1),�2(x(s),m1)),m1)ds

+e−rε(V1(x(t + ε),m2) − κ).

We need to show that V ε
1 (x(t),m1) < V1(x(t),m2)− κ for all (small) ε. Direct calculations

yield

lim
ε→0

V ε
1 (x,m1) − (V1(x,m2) − κ)

ε

= max
u1∈U1

[F1(x, (u1,�2(x,m1)),m1)

+∂V1(x,m2)

∂x
f (x, (u1,�2(x,m1)),m1)

]
− r(V1(x,m2) − κ)

< 0,

where the last inequality follows from condition (vii). Hence, for all x > x̄ it is optimal for
player 1 to immediately switch to mode m2.

Consider now a value xini < x̄ . Applying �1(x,m1) and switching to mode m2, once
the generated path hits, x̄ yields a value given by V1(xini ,m1). Due to (vi), we have
V1(xini ,m1) > V1(xini ,m2) − κ and therefore switching to mode m2 at xini is not optimal.
This shows that the switching strategy �x̄ is indeed optimal for player 1. �
Proof of Lemma 1 Assume that for a delay equilibrium profile P we have

lim
x→x̄−

[
F1(x, (�1(x,m1),�2(x,m1)),m1)

+∂V1(x,m2)

∂x
f (x, (�1(x,m1),�2(x,m1)),m1)

]
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> r(V1(x̄,m2) − κ) (13)

We show that this implies that P is a forced switch delay equilibrium. More precisely, we
show that in this situation for sufficiently small ε > 0 and any strategy variation �̃2(.) for
player 2, satisfying the conditions given in the definition of a forced switch delay equilibrium
in Definition 1, there is an alternative strategy for player 1 with a later mode switch which is
a better response than (�1(.), �x̄ ) for player 1. To show this, we first observe that sticking
to the strategy profile (�1(.), �x̄ ) player 1 would switch to m2 at x̄ and hence the value
at x = x̄ would be given by V1(x̄,m2) − κ since �̃2(x,m2) = �2(x,m2) ∀x ∈ X . Now,
consider an alternative strategy (�̃1(.), �x̃ ) for player 1 with x̃ = x̄ + ε and

�̃1(x,m) =
⎧⎨
⎩

�1(x,m1) x /∈ [x̄, x̄ + ε),m = m1,

�̃x̄
1 := limz→x̄− �1(z,m1) x ∈ [x̄, x̄ + ε),m = m1,

�1(x,m2) x ∈ X ,m = m2.

The value for player 1 under this strategy for an initial state x = x̄ and mode m1 is given by

Ṽ1(x̄,m1) =
∫ τ̃ (ε)

0
e−r t F1(x, (�̃

x̄
1, �̃2(x,m1)),m1) + e−τ̃ (ε) (V (x(τ̃ (ε)),m2)) ,

where τ̃ (ε) is the timewhen the state hits x̃ under the profile (�̃1(x,m1), �̃2(x,m1))of player
controls. Since P is a delay equilibrium, we have f (x, (�1(x,m1),�2(x,m1)),m1) > 0
for all x ∈ (x̄ − ε, x̄) and by continuity for sufficiently small ε, we therefore must have
f (x, (�̃1(x,m1), �̃2(x,m1)),m1) > 0 on the interval [x̄, x̄ + ε). Hence, τ̃ (ε) is finite and
limε→0 τ̃ (ε) = 0. Defining�(ε) = Ṽ1(x̄,m1)−V1(x̄,m1), it is easy to see that this function
is continuous in ε with �(0) = 0 and

�′(0) = F1(x, (�
x̄
1, �̃2(x,m1)),m1)

+ ∂V1(x̄,m2)

∂x
f (x̄, (�x̄

1, �̃2(x,m1)),m1) − r(V1(x̄,m2) − κ)

= lim
x→x̄−

[
F1(x, (�1(x,m1),�2(x,m1)),m1)

+ ∂V1(x̄,m2)

∂x
f (x, (�1(x,m1),�2(x,m1)),m1)

]

− r(V1(x̄,m2) − κ)

> 0,

where the second line follows from the continuity of �̃1, �̃2 at x̄ and the inequality in the
last line from (13). Note that it is assumed here that V1(x,m2) is continuously differentiable
at x̄ . This shows that �(ε) > 0 for sufficiently small ε and that for such value of ε the
profile (�̃1(.), �x̃ ) is a better response for player 1 than (�1(.), �x̄ ) to all strategies �̃2

which are locally continuous at x̄ . Hence, P must be a forced switch delay equilibrium.
This implies that for any maximum delay equilibrium (4) has to hold. Furthermore, since
V1(x̄,m1) = V1(x̄,m2) − κ , we also have

rV1(x̄,m1) = lim
x→x̄−

[
F1(x, (�1(x,m1),�2(x,m1)),m1)

+ ∂V1(x̄,m2)

∂x
f (x, (�1(x,m1),�2(x,m1)),m1)

]
. (14)
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The HJB equation (iv) in mode m1 for x < x̄ implies

rV1(x,m1) =F1(x, (�1(x,m1),�2(x,m1)),m1)+
+ ∂V1(x,m1)

∂x
f (x, (�1(x,m1),�2(x,m1)),m1).

which by continuity of V1(.,m1) implies

rV1(x̄,m1) = lim
x→x̄−

[
F1(x, (�1(x,m1),�2(x,m1)),m1)

+ ∂V1(x,m1)

∂x
f (x, (�1(x,m1),�2(x,m1)),m1)

]
. (15)

Equations (14) and (15) together imply that the smooth pasting condition (5) holds. �
Proof of Proposition 2 Considering conditions (ii) and (viii) of Proposition 1, we have to show
that

lim
x→x̄− arg max

u1∈U1
g1(x, u1) = arg max

u1∈U1
g2(u1) (16)

with

g1(x, u1) = F1(x, (u1,�2(x,m1)),m1) + ∂V1(x,m1)

∂x
f (x, (u1,�2(x,m1)),m1) (17)

g2(u1) = F1(x̄, (u1,�2(x̄,m2)),m2) + ∂V1(x̄,m2)

∂x
f (x̄, (u1,�2(x̄,m2)),m2). (18)

The derivatives with respect to u1 for the expressions to be maximized in the two modes
read:

∂F1(x, (u1,�2(x,m1)),m1)

∂u1
+ ∂V1(x,m1)

∂x

∂ f (x, (u1,�2(x,m1)),m1)

∂u1
∂F1(x̄, (u1,�2(x̄,m2)),m2)

∂u1
+ ∂V1(x̄,m2)

∂x

∂ f (x̄, (u1,�2(x̄,m2)),m2)

∂u1
.

Due to the assumption of mode independent and separable control effects, we have

∂F1(x, (u1,�2(x̄,m1)),m1)

∂u1
= ∂F1(x, (u1,�2(x̄,m2)),m2)

∂u1
and

∂ f (x, (u1,�2(x̄,m1)),m1)

∂u1
= ∂ f (x, (u1,�2(x̄,m2)),m2)

∂u1
.

for all u1 ∈ U1. Denote by

g3(u1) =
(
F1(x̄, (u1, û2),m1) + ∂V1(x̄,m2)

∂x
f (x̄, (u1, û2),m1)

)

with û2 = limx→x̄− �2(x,m1). Recalling g1 and g2 from (17) and (18), it follows directly
from our arguments above that g′

2(u1) = g′
3(u1) for all u1 ∈ U1. Therefore,

arg max
u1∈U1

g2(u1) = arg max
u1∈U1

g3(u1).

The assumption that the right-hand side of condition (ii) in Proposition 1 has a single max-
imizer implies that the argmax of g2 is unique, which means that also the argmax of g3 has
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only a single element. Furthermore, using (5) we obtain

lim
x→x̄− g1(x, u1)

= F1(x̄, (u1, lim
x→x̄− �2(x,m1)),m1)+ lim

x→x̄−
∂V1(x,m1)

∂x
f (x̄, (u1, lim

x→x̄− �2(x,m1)),m1)

= F1(x̄, (u1, û2),m1) + ∂V1(x̄,m2)

∂x
f (x̄, (u1, û2),m1)

= g3(u1).

Since both g1 and g3 are continuous with respect to x and u1, it follows that

lim
x→x̄− arg max

u1∈U1
g1(x, u1) = arg max

u1∈U1
g3(u1),

where we have used that the argmax of g3 has only one element. Hence,

lim
x→x̄− arg max

u1∈U1
g1(x, u1) = arg max

u1∈U1
g2(u1),

and since φ1(x,m1) is a maximizer of g1 and φ1(x̄,m2) is the maximizer of g2, this proves
the proposition. �
Proof of Proposition 3 We define as g(αn) = f (αn, (�1(αn,m1),�2(αn,m1))) the right-
hand side of the state dynamics under the equilibrium profile. Assume first that there exists
a state α∗

n ∈ (0, ᾱn) such that in a neighborhood around α∗
n we have g(αn) > 0 for all

αn < α∗
n and g(αn) < 0 for all αn > α∗

n . Then, this neighborhood is invariant under the state
dynamics and for initial values αn(0) in this neighborhood the threshold ᾱn is never reached
and therefore the game never switches to mode m2. Given that m2 is never reached, any
positive investment u1 > 0 is clearly suboptimal for player 1, which contradicts g(αn) > 0
for αn < α∗

n .
Therefore, the only remaining possibility for a scenario in which the direction of the state

dynamics changes in the interval [0, ᾱn) is that there exists a unique point α∗
n ∈ (0, ᾱn) such

that g(αn) > 0 ∀αn > α∗
n and g(αn) < 0 ∀αn < α∗

n . Assume that such an MPE exists and
(�̃1(α

1
n,m1), �̃2(α

1
n,m1))) is the strategy profile giving rise to this pattern. We denote the

value functions of the two firms corresponding to this profile by Ṽi (αn,m1), i = 1, 2.
The proof now proceeds by showing first that limε→0 Ṽ2(α∗

n − ε,m1) > limε→0 Ṽ2(α∗
n +

ε,m1) and, second, that in light of this inequality the optimal strategy of player 2 at a state
α∗
n + ε for sufficiently small ε has to be such that g(α∗

n + ε) < 0, which contradicts our
assumption and therefore rules out the existence of a state α∗

n with the properties given above.
To show that

lim
ε→0

Ṽ2(α
∗
n − ε,m1) > lim

ε→0
Ṽ2(α

∗
n + ε,m1) (19)

, we first observe that in light of g(αn) < 0 for all αn ∈ [0, α∗
n) and α∗

n < ᾱn the new product
is never introduced under this investment profile. Therefore, any optimal investment strategy
for firm 2 must have �̃2(αn,m1) = 0 for all αn ∈ [0, α∗

n) and therefore for any αn < α∗
n we

must have

Ṽ2(αn,m1) = V∞
2 (αn,m1) =

(
1 + νo

2

) (qm1
2o )2

r
.

Hence,

lim
ε→0

Ṽ2(α
∗
n − ε,m1) =

(
1 + νo

2

) (qm1
2o )2

r
.
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Furthermore, taking into account that for αn(0) > α∗
n , the threshold ᾱn is reached in finite

time under the strategies (�̃1(αn,m1), �̃2(αn,m1)), at which point the game switches to
mode m2. Hence, we obtain

lim
ε→0

Ṽ2(α
∗
n + ε) =

∫ τ

t=0
e−r t

(
1 + νo

2

)
(qm1

2o )2 − ξ2(�2(αn,m1))dt

+
∫ ∞

t=τ

e−r t
(
1 + νo

2

)
qm2
2o (αn)

2 − ξ2(�2(αn,m2))dt,

where τ is the point in time when the mode switches from m1 to m2. Taking into account
that ξ2(u) ≥ 0 ∀u ≥ 0, it is sufficient for proving (19) to show that qm2

2o (αn) < qm1
2o for all

αn ≥ 0. To see this, we first observe that inserting αn = 0 and α0
n = 3ηαo

3+νo
into (10) gives

qm2
2o (0) = qm1

2o . Furthermore,

∂qm2
2o

∂αn
= ∂qm2

2o

∂α0
n

= − ηνo

(1 − η2)(6 + 5νo) + 3(νo + νn) + (2 + νn)ν2o + 4νoνn
< 0,

and therefore, due to our assumption that α0
n >

3ηαo
3+νo

we have qm2
2o (αn) < qm1

2o for all αn ≥ 0.
This establishes that the inequality (19) holds.

To complete the proof, we show that there exists an alternative strategy �̂2(αn,m1) such
that for an initial value αn(0) = α∗

n + ε̂ for sufficiently small ε̂ the generated value for firm
2 is larger than Ṽ2(α∗

n + ε̂) if firm 1 sticks to �̃1(αn,m1). In particular, we define

�̂2(αn,m1) =
{

�̃2(αn,m1) αn /∈ [α∗
n , α

∗
n + ε̂]

1
γ
�̃1(αn,m1) αn ∈ [α∗

n , α
∗
n + ε̂]

Under the strategy profile (�̃1, �̂2), we have α̇n = −δαn < 0 for αn ∈ [α∗
n , α

∗
n + ε̂]. Hence,

for αn(0) = α∗
n + ε̂ the state α∗

n is reached at t = τ(ε̂) := ln(α∗
n+ε̂)−α∗

n
δ

. The value for firm 2
generated by this strategy for αn(0) = α∗

n + ε̂ therefore reads

V̂2(α
∗
n + ε̂) =

∫ τ(ε̂)

0
e−r t

(
1 + νo

2

)
(qm1

2o )2

−ξ2(�̂2(αn,m1))dt + e−rτ(ε̂)V̂2(α
∗
n ,m1) (20)

Furthermore, since under this profile we have α̇n < 0 at αn = α∗
n , therefore V̂2(α∗

n ,m1) =
limε→0 Ṽ2(α∗

n − ε,m1). Taking into account that limε̂→0 τ(ε̂) = 0, we therefore obtain from
(19) and (20) that

lim
ε̂→0

V̂2(α
∗
n + ε̂,m1) = lim

ε→0
Ṽ2(α

∗
n − ε,m1) > lim

ε→0
Ṽ2(α

∗
n + ε,m1)

holds. Accordingly, for sufficiently small ε̂ we have V̂2(α∗
n + ε̂,m1) > Ṽ2(α∗

n + ε̂,m1), which
contradicts our assumption that �̃2(αn,m1) is the optimal feedback strategy of firm 2. This
completes the proof of the proposition. �
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Appendix B: Derivation of the Cournot EquilibriumQuantities and
Profits

We first treat mode m2. In order to determine the market profit of firm 1 in m2, we observe
that from

π
m2
1 = pm2

o qm2
1o + pm2

n qm2
1n − νo

2

(
qm2
1o

)2 − νn

2

(
qm2
1n

)2
the three following first-order conditions are obtained

qm2
1o = αo − qm2

2o − 2ηqm2
1n

2 + νo
(21)

qm2
2o = αo − qm2

1o − 2ηqm2
1n

2 + νo
(22)

qm2
1n = α0

n + αn − qm2
1o − ηqm2

2o − ηqm2
1o

2 + νn
(23)

The equilibrium quantities (10) are obtained by solving this set of equations for
qm2
1o , qm2

2o , qm2
1n . In order to obtain the expression (11) for the profit, we observe that the

first-order conditions for firm 1 (21,23) can be rewritten as

pm2
o = (1 + νo)q

m2
1o + ηqm2

1n

pm2
n = (1 + νn)q

m2
1n + ηqm2

1o .

Using this, we obtain

π
m2
1 = pm2

o qm2
1o + pm2

n qm2
1n − νo

2

(
qm2
1o

)2 − νn

2

(
qm2
1n

)2

=
(
1 + ν2o

2

)
(qm2

1o )2 +
(
1 + ν2n

2

)
(qm2

1n )2 + 2ηqm2
1o q

m2
1n ,

which coincides with (11). The expression for the profit of firm 2 is obtained analogously.
To obtain the value of αUB

n , we take into account that firm 1, which is active on both mar-
kets, produces less of the established product than firm 2. Hence, the relevant condition is

qm2
1o (αn) > 0, which implies αn < αUB

n := (2+νn)(1+νo)+η2

η(3+2νo)
αo − α0

n .

The equilibrium quantities (8) in modem1 are obtained by setting q
m2
1n = 0 in (21,22) and

solving for q1o, q2o. The expression (9) for the profit is obtained in the same way as described
for mode m2 above.

Appendix C: Analysis of theMPE in Linear Strategies in Modem2

In mode m2, the two firms interact through a linear quadratic differential game with
a one-dimensional state. Standard arguments (see [5]) establish that a pair of functions
Vi (.,m2), i = 1, 2 satisfying the Hamilton–Jacobi–Bellman equations

rVi (αn,m2) = max
ui

[
Fi (αn, ui ,m2) + ∂Vi

∂αn
(u1 − γ u2 − δαn))

]
, i = 1, 2 (24)

and the transversality conditions

lim
t→∞ e−r t Vi (αn) = 0, i = 1, 2 (25)



Dynamic Games and Applications (2022) 12:363–393 391

constitute value function of a MPE. Maximizing the right-hand side of the HJB equations
yields

ui = 1

ci

∂Vi
∂αn

, i = 1, 2. (26)

Due to the linear-quadratic structure, the infinite time horizon and the time-autonomous
nature of the game, we assume the following form for the value function:

Vi = Ci + Diαn + Eiα
2
n, i = 1, 2. (27)

Comparison of coefficients yields the following system of 6 algebraic equations which are
solved by standard numerical methods:

rC1 = 1

2

(
D2
1

c1
+ 2D1D2γ

2

c2

α2
o(2 + νn + η2(−2 + νo))(1 + νo)

2(−4η2 + (2 + νn)(2 + νo))

K

)

r D1 = − D1δ + 2D1E1

c1
+ 2(D2E1 + D1E2)γ

2

c2

− αoηνo(1 + νo)(2 + νo)(4η2 − (2 + νn)(2 + νo))

K

rE1 = 2E2
1

c1
+ 4E1E2γ

2

c2

− −(2 + νn)(1 + νo)
2(3 + νo)

2 + η2(3 + 2νo)(6 + νo(9 + 2νo)) + 4δE1K

2K

rC2 = 1

2

(
2D1D2

c1
+ D2

2γ
2

c2
+ α2

o(2 + νo)
(
(2 + νn)(1 + νo) − η2(2 + νo)

)2
K

)

r D2 = − D2δ + 2(D2E1 + D1E2)

c1
+ 2D2E2γ

2

c2

+ αoηνo(2 + νo)(−(2 + νn)(1 + νo) + η2(2 + νo))

K

rE2 = 2E2(−δ + 2E1

c1
+ E2γ

2

c2
) + η2ν2o (2 + νo)

2K
(28)

where
K = (

(2 + νn)(1 + νo)(3 + νo) − η2(6 + 5νo)
)2

(29)

The corresponding equilibrium feedback functions in mode m2 are then given by

�i (αn,m2) = 1

ci
(Di + 2Eiαn).

Appendix D: Characterization of theMaximumDelay Equilibrium

In the maximum delay equilibrium, the unknown variables to be determined are the threshold
ᾱn and the control of player 2 in mode m1 for αn = ᾱn . In particular, we denote by um1

2
equilibrium feedback of player 2 in mode m1 at αn = ᾱmd

n . Then, requiring that inequality
(3) holds as an equality yields

r(V1(ᾱ
md
n ,m2) − κ) = lim

ε→0

[
F1

(
ᾱmd
n ,�1

(
ᾱmd
n − ε,m1

)
,m1

)
+
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+∂V1(ᾱmd
n ,m2)

∂αn
f
(
ᾱmd
n ,�1

(
ᾱmd
n − ε,m1

)
,�2

(
ᾱmd
n − ε,m1

)) ]

= F1
(
ᾱmd
n ,�1

(
ᾱmd
n ,m2

)
,m1

)
+

+∂V1(ᾱmd
n ,m2)

∂αn
f (ᾱmd

n ,�1

(
ᾱmd
n ,m2

)
, um1

2 ),

where we have used that due to the smooth pasting condition the control of player 1 is
continuous at αn = ᾱmd

n .
Moreover, considering the limit of theHJB equation of player 2 inmodem1 forαn → ᾱmd

n
yields, again using the continuity of the control of player 1,

lim
ε→0

[
rV2(ᾱ

md
n − ε,m1) − F2(ᾱ

md
n − ε,�2

(
ᾱmd
n − ε,m1

)
,m1)

− ∂V2(ᾱmd
n − ε,m1)

∂αn
f (ᾱmd

n − ε,�1

(
ᾱmd
n − ε,m1

)
,�2

(
ᾱmd
n − ε,m1

)
)
]

= rV2(ᾱ
md
n ,m2) − F2(ᾱ

md
n , um1

2 ,m1)

−λ(ᾱmd
n , um1

2 ) f (ᾱmd
n ,�1

(
ᾱmd
n ,m2

)
, um1

2 ) = 0 (30)

with λ(ᾱmd
n , um1

2 ) = limε→0
∂V2(ᾱmd

n −ε,m1)

∂αn
. To determine λ(ᾱmd

n , um1
2 ), we use that the

first-order condition for the optimal control of player 2 in mode m1 for αn < ᾱmd
n is given

by

∂F2(αn, u2,m1

∂u2
+ ∂V2(αn,m1)

∂αn

∂ f (αn,�1(αn,m1), u2)

∂u2
= 0,

which yields λ(ᾱmd
n , um1

2 ) = −
(

∂F2(ᾱmd
n ,u

m1
2 ,m1)

∂u2

)
/

(
∂ f (ᾱmd

n ,�1(ᾱ
md
n ,m2),u

m1
2 )

∂u2

)
, where again

we have used the equality of the control of player 1 across the twomodes atαn = ᾱmd
n . Taking

into account the functional formsof F2 and f in ourmodel,weobtainλ(ᾱmd
n , um1

2 ) = − c2u
m1
2

γ
.

Inserting this expression yields the second line in (12).
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