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Abstract
Recently, a new approach to tackle cardinality-constrained optimization problems 
based on a continuous reformulation of the problem was proposed. Following this 
approach, we derive a problem-tailored sequential optimality condition, which is 
satisfied at every local minimizer without requiring any constraint qualification. We 
relate this condition to an existing M-type stationary concept by introducing a weak 
sequential constraint qualification based on a cone-continuity property. Finally, 
we present two algorithmic applications: We improve existing results for a known 
regularization method by proving that it generates limit points satisfying the afore-
mentioned optimality conditions even if the subproblems are only solved inexactly. 
And we show that, under a suitable Kurdyka–Łojasiewicz-type assumption, any 
limit point of a standard (safeguarded) multiplier penalty method applied directly 
to the reformulated problem also satisfies the optimality condition. These results are 
stronger than corresponding ones known for the related class of mathematical pro-
grams with complementarity constraints.
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1  Introduction

We consider cardinality-constrained (CC) optimization problems of the form

where f ∈ C1(ℝn,ℝ) , g ∈ C1(ℝn,ℝm) , h ∈ C1(ℝn,ℝp) , and ‖x‖0 denotes the num-
ber of nonzero components of a vector x. Throughout this paper, we assume that 
s < n since the cardinality constraint would otherwise be superfluous.

This class of problems has attracted great interest in recent years due to its abun-
dance of applications including portfolio optimization [8, 9, 11] and statistical 
regression [8, 14]. It should be noted, however, that these problems are difficult to 
solve, mainly due to the presence of the cardinality constraint defined by the map-
ping ‖ ⋅ ‖0 which, in spite of the notation used here, does not define a norm and is 
not even continuous. Even testing the feasibility of (1.1) is known to be NP-com-
plete [8].

One way to attack these problems is to reformulate them as mixed-integer prob-
lems. This reformulation is the backbone of many algorithms employing ideas from 
discrete optimization, see for example [8, 9, 13, 24, 30, 32].

A new approach to solve this type of problems was introduced recently in [12], 
see also [15] for a similar approach in the context of sparse optimization. There, 
(1.1) is reformulated as a continuous optimization problem with orthogonality-type 
constraints, for which first-order stationarity concepts called CC-M- and CC-S-sta-
tionarity are derived. However, in order to guarantee that these stationarity condi-
tions hold at a local minimizer of (1.1), one needs a constraint qualification. The 
regularization method from [17] is adapted to solve the reformulated problem and 
it is shown that any limit point of this method satisfies the CC-M-stationarity con-
dition provided that a constraint qualification called CC-CPLD holds at this limit 
point. Nevertheless, this convergence result is only proven for the exact case, i.e., 
under the assumption that an exact KKT point of the regularized subproblem can be 
computed in each iteration. Numerically, however, this is rarely the case. In the con-
text of mathematical programs with complementarity constraints (MPCC for short), 
it is known that, if we take inexactness into account, then the convergence theory 
for the this regularization method (like for most other regularization techniques) is 
weakened significantly [18].

Let us now describe the contributions of our paper. We first derive a sequential opti-
mality condition called CC-AM-stationarity for (1.1), which is the CC-analogue of the 
approximate Karush-Kuhn-Tucker (AKKT) condition for standard nonlinear optimiza-
tion problems (NLP) introduced in [3, 10, 25], see also [6, 26] for similar concepts in 
the context of MPCCs. We show that this first-order necessary optimality condition 
is satisfied at every local minimizer of (1.1) without requiring a constraint qualifica-
tion. In order to establish the relationship between CC-AM-stationarity and the CC-
M-stationarity condition introduced in [12, 31], we then propose a constraint qualifi-
cation called CC-AM-regularity based on a cone-continuity property. This constraint 
qualification is the CC-analogue of the AKKT-regularity introduced in [4, 5, 10]. Same 
as CC-M-stationarity, both new concepts CC-AM-stationarity and CC-AM-regularity 

(1.1)minx f (x) s.t. g(x) ≤ 0, h(x) = 0, ‖x‖0 ≤ s,
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depend only on the original cardinality-constrained problem (1.1) and not on the aux-
iliary variable introduced in the continuous reformulation. Subsequently, we prove that 
any limit point of the regularization method introduced in [12, 17] satisfies the CC-
AM-stationarity condition in both the exact and inexact case, i.e., also in the situation 
where the resulting NLP-subproblems are solved only inexactly. This indicates that the 
application of these methods for CC does not suffer from any drawback when we take 
inexactness into account, in contrast to the MPCC case. Finally, we show that, under 
a suitable Kurdyka-Łojasiewicz-type assumption, any limit point of a standard (safe-
guarded) augmented Lagrangian method [1, 10] applied directly to the reformulated 
problem also satisfies CC-AM-stationarity, see also [6] for a similar result obtained in 
the context of MPCCs. Since numerical results for the methods investigated here can 
already be found in some other papers [12, 21], our focus is on the theoretical back-
ground of these approaches.

The paper is organized as follows: We first recall some basic definitions and results 
in Sect. 2. Then we introduce the problem-tailored sequential optimality condition and 
related constraint qualification in Sects. 3 and 4, respectively. These sequential optimal-
ity conditions are then applied, in Sects. 5 and 6, to the regularization method and the 
augmented Lagrangian approach. We close with some final remarks in Sect. 7. There is 
also an appendix where we compare our sequential optimality condition with an exist-
ing one from [22], which is formulated specifically for the continuous reformulation, 
see Sect. 1.

Notation: For a given vector x ∈ ℝ
n , we define

Clearly we have {1,… , n} = I±(x) ∪ I0(x) and I±(x) ∩ I0(x) = � . Note that these defi-
nitions imply ‖x‖0 = �I±(x)� . Given a set C ⊆ ℝ

n , we denote the corresponding polar 
cone by C◦ ∶= {y ∈ ℝ

n ∣ yTx ≤ 0 for all x ∈ C} . We write Br(x) and Br(x) for an 
open and closed ball with radius r > 0 around x.

2 � Preliminaries

We first recall some basic definitions, cf. [27] for more details. For a multifunction 
Γ ∶ ℝ

l ⇉ ℝ
q the Painlevé-Kuratowski outer/upper limit of Γ(z) at ẑ ∈ ℝ

l is defined as

For a nonempty and closed set A ⊆ ℝ
n and a point x̂ ∈ A the Bouligand tangent cone 

and the Fréchet normal cone to A at x̂ are given by

I±(x) ∶= {i ∈ {1,… , n} ∣ xi ≠ 0} and I0(x) ∶= {i ∈ {1,… , n} ∣ xi = 0}.

lim sup
z→ẑ

Γ(z) ∶= {ŵ ∈ ℝ
q | ∃{(zk,wk)} → (ẑ, ŵ) with wk ∈ Γ(zk) for all k ∈ ℕ}.

TA(x̂) ∶=
�
d ∈ ℝ

n ��� ∃{x
k} ⊆ A, {tk} ⊆ ℝ+ ∶ {xk} → x̂, {tk} ↓ 0,

�
xk−x̂

tk

�
→ d

�
,

N
F
A
(x̂) ∶=

�
d ∈ ℝ

n ��� lim sup
x→x̂, x∈A

dT (x−x̂)

‖x−x̂‖ ≤ 0
�
= TA(x̂)

◦.
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The Fréchet normal cone for a set of particular interest in our framework is stated in 
the following result, whose proof follows from straightforward computations.

Lemma 2.1  Let C ∶= {(a, b) ∈ ℝ
2 | ab = 0} and (x, y) ∈ C . Then we have

Next, let us take a closer look at (1.1) and follow the approach introduced in [12]. 
To simplify the notation, we define the set X ∶= {x ∈ ℝ

n ∣ g(x) ≤ 0, h(x) = 0} . Now 
consider x ∈ ℝ

n , and define a corresponding y ∈ ℝ
n by setting yi ∶= 0 for i ∈ I±(x) 

and yi ∶= 1 for i ∈ I0(x) . Then ‖x‖0 = n − eTy , where e ∶= (1,… , 1)T ∈ ℝ
n . This 

leads to the following mixed-integer problem

and its relaxation

where ◦ denotes the Hadamard product. Note that (2.2) slightly differs from the con-
tinuous reformulation in [12] since we drop the constraint y ≥ 0 here, which leads to 
a larger feasible set. Nevertheless, it is easy to see that all results obtained in Sect. 3 
of [12] are applicable to our reformulation here as well. Let us now gather these 
results, cf. [12] for the proofs.

Theorem 2.2  Let x̂ ∈ ℝ
n . Then the following statements hold:

(a)	 x̂ is feasible for (1.1) if and only if there exists ŷ ∈ ℝ
n such that (x̂, ŷ) is feasible 

for (2.2).
(b)	 x̂ is a global minimizer of (1.1) if and only if there exists ŷ ∈ ℝ

n such that (x̂, ŷ) 
is a global minimizer of (2.2).

(c)	 If x̂ ∈ ℝ
n is a local minimizer of (1.1), then there exists ŷ ∈ ℝ

n such that (x̂, ŷ) 
is a local minimizer of (2.2). Conversely, if (x̂, ŷ) is a local minimizer of (2.2) 
satisfying ‖ŷ‖0 = s , then x̂ is a local minimizer of (1.1).

Note that the extra condition for the converse statement in Theorem 2.2 (c) is nec-
essary, in general, see [12, Example 3] for a counterexample.

We close this section by noting that, occasionally, some constraint qualifica-
tions defined in [31, Definition 3.5] will play some role within this paper. In par-
ticular, this includes the CC-ACQ and CC-GCQ condition, which are problem-tai-
lored modifications of the standard Abadie and Guignard CQs, respectively. Since 
their exact definitions require some overhead and the details are not relevant in our 

N
F
C
((x, y)) =

⎧
⎪⎨⎪⎩

ℝ × {0} if x = 0, y ≠ 0,

{0} ×ℝ if x ≠ 0, y = 0,

{(0, 0)} if x = 0, y = 0.

(2.1)min
x,y

f (x) s.t. x ∈ X, n − eTy ≤ s, y ∈ {0, 1}n, x◦y = 0

(2.2)min
x,y

f (x) s.t. x ∈ X, n − eTy ≤ s, y ≤ e, x◦y = 0,
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context, we refrain from stating their definitions here. We only stress that these are 
fairly mild constraint qualifications.

3 � A sequential optimality condition

Sequential optimality conditions like the AKKT conditions for NLPs have become 
very popular during the last few years, see [10]. In principle, these AKKT condi-
tions can also be applied to the optimization problem (2.2) by viewing this program 
as an NLP. But then too many points satisfy the AKKT property, see [22, Thm. 4.1], 
so that the AKKT conditions turn out to be an optimality condition, which is too 
weak for this problem (i.e., besides the local minima, many other feasible points 
satisfy the standard AKKT conditions). This means that suitable problem-tailored 
sequential optimality conditions are required for cardinality-constrained and related 
problems with “difficult” constraints.

This was done, for example, in [23] for a very general class of problems. The 
concept there is based on the limiting normal cone and can, in principle, be special-
ized to our setting. Instead of recalling this general theory and then specializing the 
corresponding concepts, we decided to use a direct and very elementary approach in 
this (and the subsequent) section. We stress that our definition is based on the origi-
nal problem (1.1) in the x-space. The recent report [22] also introduces a sequential 
optimality condition for cardinality-constrained programs which, however, is essen-
tially based on the reformulated problem (2.2) in the (x, y)-space. Nevertheless, it 
turns out that our formulation is, in some sense, equivalent to the notion from [22]. 
Since this equivalence is not exploited in our subsequent analysis, we discuss the 
details in an appendix, see Sect. 1.

Definition 3.1  Let x̂ ∈ ℝ
n be a feasible point of (1.1). We say that x̂ is CC approxi-

mately M-stationary (CC-AM-stationary), if there exist sequences {xk} ⊆ ℝ
n , 

{𝜆k} ⊆ ℝ
m
+
 , {𝜇k} ⊆ ℝ

p , and {𝛾k} ⊆ ℝ
n such that 

(a)	 {xk} → x̂ and {∇f (xk) + ∇g(xk)�k + ∇h(xk)�k + �k} → 0,
(b)	 �k

i
= 0 for all i ∉ Ig(x̂) as well as �k

i
= 0 for all i ∈ I±(x̂) for all k ∈ ℕ.

Note that the two requirements �k
i
= 0 and �k

i
= 0 are assumed to hold for all 

k ∈ ℕ . Subsequencing if necessary, it is easy to see that this is equivalent to forcing 
these multiplier estimates to be zero only for all k ∈ ℕ sufficiently large. We further 
stress that Definition 3.1 makes no assumptions regarding the boundedness of the 
multiplier estimates.

If we define W ∶= {(x, y) ∈ ℝ
n ×ℝ

n ∣ x◦y = 0} , then the feasible set Z of (2.2) 
has the form

Z =

{
(x, y) ∈ W

||||
g(x) ≤ 0, h(x) = 0,

n − eTy − s ≤ 0, y − e ≤ 0

}
.
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The following theorem shows that CC-AM-stationarity is a first-order neces-
sary optimality condition for (1.1) without the need for some kind of constraint 
qualification.

Theorem 3.2  Let x̂ ∈ ℝ
n be a local minimizer of (1.1). Then x̂ is a CC-AM-station-

ary point.

Proof  Since x̂ is a local minimizer of (1.1), by Theorem  2.2, there exists ŷ ∈ ℝ
n 

such that (x̂, ŷ) is a local minimizer of (2.2). Hence, we can find an 𝜖 > 0 such that

Obviously (x̂, ŷ) is then the unique global minimizer of

Now pick a sequence {𝛼k} ⊆ ℝ+ such that {ak} ↑ ∞ , and consider for each k ∈ ℕ the 
partially penalized and localized problem

where

The objective function of (3.2) is continuously differentiable for all k ∈ ℕ . Fur-
thermore, the feasible set B𝜖((x̂, ŷ)) ∩W is nonempty and compact. Hence, for each 
k ∈ ℕ , (3.2) admits a global minimizer (xk, yk) . We thus have a sequence {(xk, yk)} in 
the compact set B𝜖((x̂, ŷ)) ∩W and can thus assume w.l.o.g. that {(xk, yk)} converges, 
i.e., there exists (x̄, ȳ) ∈ B𝜖((x̂, ŷ)) ∩W such that {(xk, yk)} → (x̄, ȳ) . We now want to 
show that (x̄, ȳ) = (x̂, ŷ) . Since (x̂, ŷ) ∈ Z , it is a feasible point of (3.2) for each k ∈ ℕ 
with 𝜋(x̂, ŷ) = 0 . Thus, we obtain for each k ∈ ℕ that

f (x̂) ≤ f (x) ∀(x, y) ∈ B𝜖((x̂, ŷ)) ∩ Z.

(3.1)min
x,y

f (x) +
1

2
‖(x, y) − (x̂, ŷ)‖2

2
s.t. (x, y) ∈ B𝜖((x̂, ŷ)) ∩ Z.

(3.2)min
x,y

f (x) + 𝛼k𝜋(x, y) +
1

2
‖(x, y) − (x̂, ŷ)‖2

2
s.t. (x, y) ∈ B𝜖((x̂, ŷ)) ∩W,

�(x, y) ∶=
1

2

‖‖‖(g(x)+, h(x), (n − eTy − s)+, (y − e)+)
‖‖‖
2

2

=
1

2

( m∑
i=1

max{0, gi(x)}
2

+

p∑
i=1

hi(x)
2 +max{0, n − eTy − s}2 +

n∑
i=1

max{0, yi − 1}2
)
.

(3.3)
f (xk) + 𝛼k𝜋(x

k, yk) +
1

2

���(x
k, yk) − (x̂, ŷ)

���
2

2
≤ f (x̂) + 𝛼k𝜋(x̂, ŷ)

+
1

2
‖(x̂, ŷ) − (x̂, ŷ)‖2

2
= f (x̂).
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Dividing (3.3) by �k and letting k → ∞ yields 𝜋(x̄, ȳ) ≤ 0 . This implies that 
(x̄, ȳ) ∈ B𝜖((x̂, ŷ)) ∩ Z and therefore, it is feasible for (3.1). Furthermore, we also 
obtain from (3.3) that

and hence, by letting k → ∞,

Since (x̂, ŷ) is the unique global solution of (3.1), we then necessarily have 
(x̄, ȳ) = (x̂, ŷ) . This shows that {(xk, yk)} → (x̂, ŷ) . We can thus assume w.l.o.g. that 
(xk, yk) ∈ B𝜖((x̂, ŷ)) ∩W for each k ∈ ℕ . This, in turn, implies that, for each k ∈ ℕ , 
(xk, yk) is a local minimizer of

By [27, Theorem 6.12], we then have for each k ∈ ℕ that

where

Observe that W = Cn, where C is the set from Lemma 2.1, and hence, by [27, Propo-
sition 6.41], we obtain  Now define, for each 
k ∈ ℕ,

Clearly, we have {𝛾k} ⊆ ℝ
n . Now suppose that i ∈ I±(x̂) . Since {xk

i
} → x̂i , we can 

assume w.l.o.g. that xk
i
≠ 0 for each k ∈ ℕ . Lemma 2.1 then implies (recall that 

(xk, yk) is feasible) that NF
C
((xk

i
, yk

i
)) = {0} ×ℝ and thus, by the definition of �k and 

(3.4), we have �k
i
= 0 for all k ∈ ℕ.

Now observe that, by definition, we have {𝜆k} ⊆ ℝ
m
+
 . Suppose that i ∉ Ig(x̂) . Then 

gi(x̂) < 0 . Since {gi(xk)} → gi(x̂) , we can assume w.l.o.g. that, for each k ∈ ℕ , we 
have gi(xk) < 0 , which in turn implies that max{0, gi(x

k)} = 0 and hence, in particu-
lar, �k

i
= 0 for all k ∈ ℕ.

f (xk) +
1

2

‖‖‖(x
k, yk) − (x̂, ŷ)

‖‖‖
2

2
≤ f (x̂)

f (x̄) +
1

2
‖(x̄, ȳ) − (x̂, ŷ)‖2

2
≤ f (x̂) = f (x̂) +

1

2
‖(x̂, ŷ) − (x̂, ŷ)‖2

2
.

min
x,y

f (x) + 𝛼k𝜋(x, y) +
1

2
‖(x, y) − (x̂, ŷ)‖2

2
s.t. (x, y) ∈ W.

(3.4)−

([
∇f (xk)

0

]
+ 𝛼k

[
∇x𝜋(x

k, yk)

∇y𝜋(x
k, yk)

]
+

[
xk − x̂

yk − ŷ

])
∈ N

F
W
((xk, yk)),

∇x�(x
k, yk) =

m∑
i=1

max{0, gi(x
k)}∇gi(x

k) +

p∑
i=1

hi(x
k)∇hi(x

k) and

∇y�(x
k, yk) = −max{0, n − eTyk − s}e +

n∑
i=1

max{0, yk
i
− 1}ei.

𝛾k ∶= −
(
∇f (xk) + 𝛼k∇x𝜋(x

k, yk) + xk − x̂
)
,

𝜆k
i
∶= 𝛼k max{0, gi(x

k)} ∀i = 1,… ,m,

𝜇k
i
∶= 𝛼khi(x

k) ∀i = 1,… , p.
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Using the definition of �k and {xk} → x̂ , we obtain

This completes the proof. 	�  ◻

It is also possible to bypass the continuous reformulation (2.2) and prove Theo-
rem  3.2 directly based on the original problem (1.1), using techniques from vari-
ational analysis. The reason why we did not do that here, is that the above proof also 
shows that every local minimizer of (2.2) is a CC-AM-stationary point. Now recall 
that (2.2) can have local minimizers, which are not a local minimizers of (1.1), see 
e.g. [12, Example 3]. This immediately implies that CC-AM-stationary points are 
not necessarily local minimizers of (1.1), i.e. the converse of Theorem 3.2 is false in 
general.

We close this section by considering the special case X = ℝ
n , i.e., we have the 

problem

In [7], a first-order necessary optimality condition for (3.5) called basic feasibility 
was introduced, see the reference for details. Here we only note that the notion of 
basic feasibility can be shown to be identical to our CC-AM-stationarity at any fea-
sible point x̂ satisfying ‖x̂‖0 = s , i.e., these two optimality conditions coincide in the 
interesting case, where the cardinality constraint is active.

4 � A cone‑continuity‑type constraint qualification

Let x̂ ∈ ℝ
n be feasible for (1.1). Then we define for each x ∈ ℝ

n the cone

Note that the index sets Ig(x̂) and I±(x̂) depend on x̂ and not x. With this cone, we can 
translate Definition 3.1 into the language of variational analysis, see also [4].

Theorem 4.1  x̂ feasible for (1.1) is CC-AM-stationary    ⟺    −∇f (x̂) ∈ lim supx→x̂ Kx̂(x).

Proof  “⇒ ”: By assumption, there exist sequences {xk}, {𝛾k} ⊆ ℝ
n , {𝜆k} ⊆ ℝ

m
+
 , and 

{𝜇k} ⊆ ℝ
p such that the conditions in Definition 3.1 hold. Now define

Then we have {uk} → 0 . Next we define

∇f (xk) +

m∑
i=1

𝜆k
i
∇gi(x

k) +

p∑
i=1

𝜇k
i
∇hi(x

k) +

n∑
i=1

𝛾k
i
ei = x̂ − xk → 0.

(3.5)min
x

f (x) s.t. ‖x‖0 ≤ s.

(4.1)Kx̂(x) ∶=

⎧
⎪⎨⎪⎩
∇g(x)𝜆 + ∇h(x)𝜇 + 𝛾

������

(𝜆,𝜇, 𝛾) ∈ ℝ
m
+
×ℝ

p ×ℝ
n,

𝜆i = 0 ∀i ∉ Ig(x̂),

𝛾i = 0 ∀i ∈ I±(x̂)

⎫
⎪⎬⎪⎭
.

uk ∶= ∇f (xk) + ∇g(xk)�k + ∇h(xk)�k + �k.
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Clearly, we have {wk} → −∇f (x̂) . Moreover, by the last two conditions in 
Definition 3.1, we also have wk ∈ Kx̂(x

k) for each k ∈ ℕ . Hence, we have 
−∇f (x̂) ∈ lim supx→x̂ Kx̂(x).

“⇐ ”: By assumption, there exist sequences {xk}, {wk} ⊆ ℝ
n such that {xk} → x̂ , 

{wk} → −∇f (x̂) , and wk ∈ Kx̂(x
k) for each k ∈ ℕ . Now, by (4.1), for each k ∈ ℕ , 

there exist (�k,�k, �k) ∈ ℝ
m
+
×ℝ

p ×ℝ
n such that

with �k
i
= 0 for all i ∉ Ig(x̂) and �k

i
= 0 for all i ∈ I±(x̂) . For these multipliers, we 

obtain

Thus, x̂ is a CC-AM-stationary point. 	�  ◻

Let us now recall the CC-M-stationary concept introduced in [12], where 
it was shown to be a first-order optimality condition for (1.1) under suitable 
assumptions.

Definition 4.2  Let x̂ ∈ ℝ
n be a feasible point of (1.1). We then say that x̂ is CC-M-

stationary, if there exist multipliers � ∈ ℝ
m
+
 , � ∈ ℝ

p , and � ∈ ℝ
n such that 

(a)	 0 = ∇f (x̂) + ∇g(x̂)𝜆 + ∇h(x̂)𝜇 + 𝛾,
(b)	 �i = 0 for all i ∉ Ig(x̂) as well as �i = 0 for all i ∈ I±(x̂).

The following translation is then obvious.

Lemma 4.3  x̂ feasible for (1.1) is CC-M-stationary    ⟺    −∇f (x̂) ∈ Kx̂(x̂).

This implies that CC-AM-stationarity is a weaker optimality condition than 
CC-M-stationarity.

Lemma 4.4  x̂ feasible for (1.1) is CC-M-stationary    ⟹    x̂ is CC-AM-stationary.

Proof  Since x̂ is CC-M-stationary, Lemma 4.3 implies −∇f (x̂) ∈ Kx̂(x̂)⊆ lim supx→x̂ Kx̂(x) . 
The assertion then follows from Theorem 4.1. 	�  ◻

The reverse implication is not true in general as the following example shows.

wk ∶= uk − ∇f (xk) = ∇g(xk)�k + ∇h(xk)�k + �k.

wk = ∇g(xk)�k + ∇h(xk)�k + �k

{∇f (xk) + ∇g(xk)𝜆k + ∇h(xk)𝜇k + 𝛾k} ={∇f (xk) + wk}

→ ∇f (x̂) − ∇f (x̂) = 0.
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Example 4.5  ([12], Page 423) Consider the problem

with the unique global minimizer ( 1
2
, 0)T . By Theorem  3.2, this point is CC-AM-

stationary. On the other hand, we have for any (�, �) ∈ ℝ+ ×ℝ that

Hence, it cannot be CC-M-stationary.

The following cone-continuity type condition is sufficient to bridge that gap.

Definition 4.6  A feasible point x̂ of (1.1) satisfies the CC-AM-regularity condition if

Theorem 4.7  Let x̂ ∈ ℝ
n be a CC-AM-stationary point of (1.1) and satisfy the CC-

AM-regularity condition. Then x̂ is CC-M-stationary.

Proof  Since x̂ is a CC-AM-stationary point, Theorem  4.1 yields 
−∇f (x̂) ∈ lim sup

x→x̂

Kx̂(x) . By Definition 4.6, we then have −∇f (x̂) ∈ Kx̂(x̂) . Hence, x̂ 

is CC-M-stationary by Lemma 4.3. 	� ◻

The following example shows that the origin, whenever it belongs to the feasi-
ble set, is always a CC-M-stationary point and satisfies CC-AM-regularity.

Example 4.8  Suppose that 0 ∈ ℝ
n is feasible for (1.1) and f ∈ C1(ℝn,ℝ) an arbitrary 

objective function. Then we have

This implies K0(0) = ℝ
n and thus −∇f (0) ∈ K0(0) . By Lemma 4.3 and Lemma 4.4, 

0 then is CC-M-stationary and CC-AM-stationary. Moreover, we have 
lim sup

x→0

K0(x) ⊆ ℝ
n = K0(0) , and therefore, 0 satisfies CC-AM-regularity as well.

Borrowing terminology from [4], Theorem 4.7 proves that CC-AM-regularity 
is a “strict constraint qualification” in the sense that it yields the implication “CC-
AM-stationarity ⟹ CC-M-stationarity”. The next result shows that CC-AM-reg-
ularity is actually the weakest condition, which guarantees that CC-AM-station-
ary points are already CC-M-stationary.

Theorem 4.9  Let x̂ ∈ ℝ
n be feasible for (1.1). Suppose that, for every continuously 

differentiable function f ∈ C1(ℝn,ℝ) , the following implication holds:

min
x∈ℝ2

x1 + 10x2 s.t. (x1 −
1

2
)2 + (x2 − 1)2 ≤ 1, ‖x‖0 ≤ 1

[
1

10

]
+ �

[
2(

1

2
−

1

2
)

2(0 − 1)

]
+ �

[
0

1

]
=

[
1

10 − 2� + �

]
≠

[
0

0

]
.

lim sup
x→x̂

Kx̂(x) ⊆ Kx̂(x̂).

I0(0) = {1,… , n} and I±(0) = �.
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Then x̂ satisfies CC-AM-regularity.

Proof  By Theorem 4.1 and Lemma 4.3, for each f ∈ C1(ℝn,ℝ) , the assumed impli-
cation (4.2) is equivalent to

To prove CC-AM-regularity, we need to show lim supx→x̂ Kx̂(x) ⊆ Kx̂(x̂) . To this end, 
consider an arbitrary ŵ ∈ lim sup

x→x̂

Kx̂(x) and define f (x) ∶= −ŵTx . Then 

f ∈ C1(ℝn,ℝ) with −∇f (x̂) = ŵ ∈ lim sup
x→x̂

Kx̂(x) . By assumption, this implies 

−∇f (x̂) = ŵ ∈ Kx̂(x̂) . This shows lim sup
x→x̂

Kx̂(x) ⊆ Kx̂(x̂) and completes the proof. 	� ◻

Suppose now that x̂ ∈ ℝ
n is a feasible point of (1.1). As noted in [12], x̂ is a 

CC-M-stationary point if and only if it is a KKT point of the tightened nonlinear 
program TNLP(x̂)

Taking a closer look at Definition 3.1 and using [10, Theorem 3.2] one can see that 
x̂ is a CC-AM-stationary point if and only if it is an AKKT-stationary point of (4.3). 
Moreover, it follows from (4.1) that x̂ satisfies CC-AM-regularity if and only if it 
satisfies AKKT-regularity with respect to (4.3). Recall from [12, Definition 4.8] that 
a feasible point x̂ of (1.1) is said to satisfy CC-CPLD, if it satisfies the correspond-
ing CPLD for TNLP(x̂ ). Using this observation and combining it with some existing 
results and implications regarding constraint qualifications for standard nonlinear 
programs, cf. [4, 5], we immediately obtain the following statements.

Corollary 4.10 

(a)	 If CC-CPLD holds in x̂ feasible for (1.1), then so does CC-AM-regularity.
(b)	 If g and h are affine-linear, then CC-AM-regularity holds in every feasible point 

of (1.1).

Observe that both CC-CPLD and CC-AM-regularity do not depend on the aux-
iliary variable y. In contrast to this, CC-ACQ and CC-GCQ are defined using (2.2) 
and thus depend on both (x̂, ŷ) . The following implications

are known from [31] for a feasible point (x̂, ŷ) of (2.2). For standard NLPs, it is 
known that AKKT-regularity implies ACQ, cf. [4, Theorem 4.4]. However, as the 
following example illustrates, for cardinality-constrained problems CC-AM-regular-
ity does not even imply CC-GCQ.

(4.2)x̂ is CC-AM-stationary ⟹ x̂ is CC-M-stationary.

−∇f (x̂) ∈ lim sup
x→x̂

Kx̂(x) ⟹ −∇f (x̂) ∈ Kx̂(x̂).

(4.3)min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0 (i ∈ I0(x̂)).

CC-CPLD in x̂ ⟹ CC-ACQ in (x̂, ŷ) ⟹ CC-GCQ in (x̂, ŷ)
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Example 4.11  ([12], Example 4) We consider

Then x̂ ∶= (0, 0)T is the unique global minimizer of the problem. By Example 4.8, 
it also satisfies CC-AM-regularity. On the other hand, if we choose ŷ ∶= (0, 1)T , it 
follows from [12] that (x̂, ŷ) does not satisfy CC-GCQ, even though (x̂, ŷ) is a global 
minimizer of the corresponding reformulated problem.

To close this section, let us remark on the relationship between CC-AM-station-
arity and another stationarity concept introduced in [12] called CC-S-stationarity. 
We first recall the definition of CC-S-stationarity.

Definition 4.12  Let (x̂, ŷ) ∈ ℝ
n ×ℝ

n be feasible for (2.2). Then (x̂, ŷ) is called CC-S-
stationary, if it is CC-M-stationary with �i = 0 for all i ∈ I0(ŷ).

As remarked in [12], CC-S-stationarity in (x̂, ŷ) corresponds to the KKT condi-
tions of (2.2) and implies CC-M-stationarity of x̂ . The converse is not true in gen-
eral, see [12, Example 4]. However, if (x̂, ŷ) is CC-M-stationary, then it is always 
possible to replace ŷ with another auxiliary variable ẑ ∈ ℝ

n such that (x̂, ẑ) is CC-S-
stationary, see [21, Prop. 2.3].

In [31, Theorem 4.2] it was shown that every local minimizer (x̂, ŷ) ∈ ℝ
n ×ℝ

n 
of (2.2), where CC-GCQ holds, is a CC-S-stationary point. By Theorem 3.2, Theo-
rem 4.7, and [21, Prop. 2.3], we obtain a similar result under CC-AM-regularity.

Corollary 4.13  Let x̂ ∈ ℝ
n be a local minimizer of (1.1) such that CC-AM-regularity 

holds at x̂ . Then there exists ŷ ∈ ℝ
n such that (x̂, ŷ) is a CC-S-stationary point of 

(2.2).

5 � Application to regularization methods

Let us consider the regularization method from [17], which was adapted for (2.2) in 
[20]. Let t ≥ 0 be a regularization parameter and define

As it was shown in [17, Lemma 3.1], this function is continuously differentiable 
with

min
x∈ℝ2

x1 + x2
2

s.t. x2
1
+ (x2 − 1)2 ≤ 1, ‖x‖0 ≤ 1.

𝜑 ∶ ℝ
2 → ℝ, 𝜑((a, b);t) ∶=

{
(a − t)(b − t) if a + b ≥ 2t,

−
1

2
[(a − t)2 + (b − t)2] if a + b < 2t.
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and �((a, b);0) is an NCP-function, i.e., �((a, b), 0) = 0 if and only if 
a ≥ 0, b ≥ 0, ab = 0.

Now, let t > 0 be a regularization parameter. In order to relax the constraint 
x◦y = 0 in (2.2) in all four directions, we define the following functions for all 
i ∈ {1,… , n}:

These functions are continuously differentiable and their derivatives with respect to 
(x, y) can be computed using ∇� and the chain rule.

For t > 0 , we now formulate the regularized problem NLPKS(t) as (see Fig. 1)

Note that our regularized problem slightly differs from the one used in [12] 
since we drop the constraint y ≥ 0 here and instead use two more regularization 
functions ΦKS

2,i
 and ΦKS

3,i
 . In the exact case, we obtain the following convergence 

result.

Theorem 5.1  Let {tk} ↓ 0 , x̂ ∈ ℝ
n , and {((xk, yk), �k,�k, �k, �

k, �1,k, �2,k, �3,k, �4,k)} be 
a sequence of KKT-points of NLPKS(tk) such that {xk} → x̂ . Then x̂ is a CC-AM-
stationary point of (1.1).

The proof of this result is similar to the inexact case, which we discuss next. 
Hence, we omit the details and refer to the proof of the related result in Theo-
rem 5.3. In order to tackle the inexact case, we first need to define inexactness. 
Consider a standard NLP

∇𝜑((a, b);t) =

⎧
⎪⎨⎪⎩

�
b − t

a − t

�
if a + b ≥ 2t,

�
−(a − t)

−(b − t)

�
if a + b < 2t

ΦKS
1,i
((x, y);t) ∶= �((xi, yi);t), ΦKS

2,i
((x, y);t) ∶= �((xi,−yi);t),

ΦKS
3,i
((x, y);t) ∶= �((−xi,−yi);t), ΦKS

4,i
((x, y);t) ∶= �((−xi, yi);t)

(5.1)
min
x,y

f (x) s.t. g(x) ≤ 0, h(x) = 0, n − eTy ≤ s, y ≤ e,

ΦKS
j,i
((x, y);t) ≤ 0 ∀i = 1,… , n ∀j = 1,… , 4.

Fig. 1   Illustration of the regu-
larization method
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where all functions are assumed to be continuously differentiable. The following 
definition of inexactness can be found e.g. in [18, Definition 1].

Definition 5.2  Let x ∈ ℝ
n and 𝜖 > 0 . We then say that x is an �-stationary point of 

(5.2), if there exists (�,�) ∈ ℝ
m ×ℝ

p such that

•	 ���∇f (x) +
∑m

i=1
�i∇gi(x) +

∑p

i=1
�i∇hi(x)

��� ≤ �,
•	 gi(x) ≤ �, �i ≥ −�, |�igi(x)| ≤ � ∀i = 1,… ,m,
•	 |hi(x)| ≤ � ∀i = 1,… , p.

In the context of MPCCs, it is known that inexactness negatively impacts the con-
vergence theory of this relaxation method, see [18]. The following result shows that 
this is not the case for cardinality-constrained problems.

Theorem  5.3  Let {tk} ↓ 0 , {�k} ↓ 0 , and {(xk, yk)} be a sequence of �k-stationary 
points of NLPKS(tk) . Suppose that {xk} → x̂ . Then x̂ is a CC-AM-stationary point.

Proof  By assumption, there exists {(�k,�k
, �k, �

k
, �1,k, �2,k, �3,k, �4,k)}

⊆ ℝ
m ×ℝ

p ×ℝ × (ℝn)5 such that 

(Ks1)	� ‖‖‖∇f (x
k) + ∇g(xk)�k + ∇h(xk)�k +

n∑
i=1

4∑
j=1

�
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk)

‖‖‖ ≤ �k,

(Ks2)	� ‖‖‖ − �ke + �k +

n∑
i=1

4∑
j=1

�
j,k

i
∇yΦ

KS
j,i
((xk, yk);tk)

‖‖‖ ≤ �k,

(Ks3)	� gi(xk) ≤ �k, �k
i
≥ −�k, |�k

i
gi(x

k)| ≤ �k ∀i = 1,… ,m,
(Ks4)	� |hi(xk)| ≤ �k ∀i = 1,… , p,
(Ks5)	� n − eTyk − s ≤ �k, �k ≥ −�k, |�k(n − eTyk − s)| ≤ �k,
(Ks6)	� yk

i
− 1 ≤ �k, �k

i
≥ −�k, |�k

i
(yk

i
− 1)| ≤ �k ∀i = 1,… , n,

(Ks7)	� ΦKS
j,i
((xk, yk);tk) ≤ �k , �

j,k

i
≥ −�k, |� j,k

i
ΦKS

j,i
((xk , yk);tk)| ≤ �k ∀i = 1,… , n, ∀j = 1,… , 4.

 Let us first note that {yk} is bounded. In fact, by ( Ks6 ), we have for each 
i ∈ {1,… , n} that yk

i
≤ 1 + �k for all k ∈ ℕ , hence {yk} is bounded from above. Tak-

ing this into account and using ( Ks5 ), i.e., n − s − �k ≤ eTyk , we also get that {yk} 
is bounded from below. Since {yk} is bounded, it has a convergent subsequence. 
By passing to a subsequence, we can assume w.l.o.g. that the whole sequence con-
verges, say {yk} → ŷ . In particular, we then have {(xk, yk)} → (x̂, ŷ).

Let us now prove that (x̂, ŷ) is feasible for (2.2). By ( Ks3 ) - ( Ks6 ), we obvi-
ously have g(x̂) ≤ 0 , h(x̂) = 0 , n − eT ŷ ≤ s , and ŷ ≤ e . Hence, it remains to 
prove that x̂◦ŷ = 0 . Suppose that this is not the case. Then there exists an index 
i ∈ {1,… , n} such that x̂iŷi ≠ 0 . W.l.o.g. let us assume x̂i > 0 ∧ ŷi > 0 , the other 
three possibilities can be treated analogously. Since {xk

i
+ yk

i
} → x̂i + ŷi > 0 and 

(5.2)min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0,
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{tk} ↓ 0 , we can assume w.l.o.g. that xk
i
+ yk

i
≥ 2tk for all k ∈ ℕ . Hence we have 

ΦKS
1,i
((xk, yk);tk) = (xk

i
− tk)(y

k
i
− tk) . From ( Ks7 ), we then obtain x̂iŷi ≤ 0 for the limit, 

which yields a contradiction since x̂iŷi > 0 in this case. Altogether, we can conclude 
that x̂◦ŷ = 0 and, therefore, (x̂, ŷ) is feasible for (2.2).

By Theorem 2.2, x̂ is then feasible for (1.1). Now define

By ( Ks1 ), we know that {wk} → 0 . For all i ∉ Ig(x̂) we know {gi(xk)} → gi(x̂) < 0 
and thus can assume w.l.o.g.

cf. ( Ks3 ). Letting k → ∞ , we then get {�k
i
} → 0 and, therefore, {�k

i
∇gi(x

k)} → 0 . 
Reformulating (5.3), we then obtain for each k ∈ ℕ

where the left-hand side tends to 0. Now define for each k ∈ ℕ

By ( Ks3 ), we then have {𝜆̂k} ⊆ ℝ
m
+
 . Since {�k} → 0 , we also have {�k∇gi(xk)} → 0 

for each i ∈ Ig(x̂) and reformulating (5.4) yields

where the left-hand side converges to 0. For all i ∈ I±(x̂) we know ŷi = 0 from 
the feasibility of (x̂, ŷ) for (2.2). Assume first that x̂i > 0 . Since {tk} ↓ 0 and 
{xk

i
± yk

i
} → x̂i ± ŷi = x̂i > 0 , we can assume w.l.o.g. that for all k ∈ ℕ the following 

is true:

(5.3)wk ∶= ∇f (xk) + ∇g(xk)�k + ∇h(xk)�k +

n∑
i=1

4∑
j=1

�
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk).

0 ≤ |�k
i
| ≤ �k

|gi(xk)|
∀k ∈ ℕ,

(5.4)

wk −
∑
i∉Ig(x̂)

𝜆k
i
∇gi(x

k) =∇f (xk) +
∑
i∈Ig(x̂)

𝜆k
i
∇gi(x

k) + ∇h(xk)𝜇k

+

n∑
i=1

4∑
j=1

𝛾
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk),

(5.5)𝜆̂k
i
∶=

{
𝜆k
i
+ 𝜖k if i ∈ Ig(x̂),

0 else.

wk −
∑
i∉Ig(x̂)

𝜆k
i
∇gi(x

k) +
∑
i∈Ig(x̂)

𝜖k∇gi(x
k) =∇f (xk) + ∇g(xk)𝜆̂k + ∇h(xk)𝜇k

+

n∑
i=1

4∑
j=1

𝛾
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk),

xk
i
+ yk

i
≥ 2tk: ΦKS

1,i
((xk, yk);tk) = (xk

i
− tk)(y

k
i
− tk), ∇xΦ

KS
1,i
((xk, yk);tk) = (yk

i
− tk)ei

xk
i
− yk

i
≥ 2tk: ΦKS

2,i
((xk, yk);tk) = (xk

i
− tk)(−y

k
i
− tk), ∇xΦ

KS
2,i
((xk, yk);tk) = −(yk

i
+ tk)ei

−xk
i
− yk

i
< 2tk: ΦKS

3,i
((xk, yk);tk) = −

1

2
[(xk

i
+ tk)

2 + (yk
i
+ tk)

2], ∇xΦ
KS
3,i
((xk, yk);tk) = −(xk

i
+ tk)ei

−xk
i
+ yk

i
< 2tk: ΦKS

4,i
((xk, yk);tk) = −

1

2
[(xk

i
+ tk)

2 + (yk
i
− tk)

2)], ∇xΦ
KS
4,i
((xk, yk);tk) = −(xk

i
+ tk)ei
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Using ( Ks7 ), we obtain the following for each case:

•	 |�1,k
i
ΦKS

1,i
((xk, yk);tk)| = |�1,k

i
(xk

i
− tk)(y

k
i
− tk)| ≤ �k . Since {xk

i
− tk} → x̂i > 0 , we 

can assume w.l.o.g. that |xk
i
− tk| > 0 for all k ∈ ℕ and thus 

 Hence {�1,k
i
(yk

i
− tk)} → 0 , which implies {�1,k

i
∇xΦ

KS
1,i
((xk, yk);tk)} → 0.

•	 |�2,k
i
ΦKS

2,i
((xk, yk);tk)| = |�2,k

i
(xk

i
− tk)(y

k
i
+ tk)| ≤ �k . As above, we obtain 

{�2,k
i
(−yk

i
− tk)} → 0 and, {�2,k

i
∇xΦ

KS
2,i
((xk, yk);tk)} → 0 .

•	 |�3,k
i
ΦKS

3,i
((xk, yk);tk)| = |�3,k

i
(−

1

2
)[(xk

i
+ tk)

2 + (yk
i
+ tk)

2]| ≤ �k . If we define 
�k ∶= | − 1

2
[(xk

i
+ tk)

2 + (yk
i
+ tk)

2]| , then {𝛽k} →
1

2
x̂2
i
> 0 . Hence, we can assume 

w.l.o.g. that 𝛽k > 0 for each k ∈ ℕ and obtain 

This implies {�3,k
i
} → 0 and thus {�3,k

i
∇xΦ

KS
3,i
((xk, yk);tk)} = {�

3,k

i
(−(xk

i
+ tk))ei} → 0.

•	 |�4,k
i
ΦKS

4,i
((xk, yk);tk)| = |�4,k

i
(−

1

2
)[(xk

i
+ tk)

2 + (yk
i
− tk)

2]| ≤ �k . As above, we 
obtain {�4,k

i
} → 0 and thus {�4,k

i
∇xΦ

KS
4,i
((xk, yk);tk)} → 0.

For the case x̂i < 0 , we can analogously prove

Putting things together, we obtain

Defining

for each k ∈ ℕ , we obtain

and {Ak} → 0 . From the structure of ∇xΦ
KS
j,i

 , we know ∇xΦ
KS
j,i
((xk, yk);tk) ∈ span{ei} 

for all i ∈ I0(x̂) and all j = 1,… , 4 . Consequently, there exists 𝛾̂k
i
∈ ℝ for all i ∈ I0(x̂) 

such that

0 ≤ |�1,k
i
(yk

i
− tk)| ≤

�k

|xk
i
− tk|

→ 0.

0 ≤ |�3,k
i
| ≤ �k

�k
.

{�
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk)} → 0 ∀j = 1,… , 4.

lim
k→∞

∑
i∈I±(x̂)

4∑
j=1

𝛾
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk) = 0.

Ak ∶=wk −
∑
i∉Ig(x̂)

𝜆k
i
∇gi(x

k) +
∑
i∈Ig(x̂)

𝜖k∇gi(x
k)

−
∑

i∈I±(x̂)

4∑
j=1

𝛾
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk)

Ak = ∇f (xk) + ∇g(xk)𝜆̂k + ∇h(xk)𝜇k +
∑
i∈I0(x̂)

4∑
j=1

𝛾
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk)
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If we define 𝛾̂k
i
∶= 0 for each i ∈ I±(x̂) , we obtain for all k ∈ ℕ,

By (5.5) and since {Ak} → 0 , it then follows that x̂ is a CC-AM-stationary point. 	� ◻

Combining Theorem 5.3 with Theorem 4.7 and [21, Prop. 2.3] allows the follow-
ing conclusions:

Corollary 5.4  If, in addition to the assumptions in Theorem 5.3, x̂ also satisfies CC-
AM-regularity, then x̂ is CC-M-stationary. Furthermore, there exists a ẑ ∈ ℝ

n such 
that (x̂, ẑ) is CC-S-stationary.

In light of Corollary 4.10, the results obtained in this section are stronger than the 
result from [12], not only because we take inexactness into account, but also we only 
need to assume CC-AM-regularity instead of CC-CPLD.

6 � Application to augmented Lagrangian methods

In this section, we consider the applicability of a standard (safeguarded) augmented 
Lagrangian method for NLPs as described in [1, 10] directly to the reformulated 
problem (2.2). Let us first describe the algorithm. For a given penalty parameter 
𝛼 > 0 , the Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian for (2.2) is 
defined by

where (�,�, � , �, �) ∈ ℝ
m
+
×ℝ

p ×ℝ+ ×ℝ
n
+
×ℝ

n and

is the shifted quadratic penalty term, cf. the proof of Theorem 3.2. The algorithm, 
applied to (2.2), is then as follows.

Algorithm 6.1  (Safeguarded Augmented Lagrangian Method)  

4∑
j=1

𝛾
j,k

i
∇xΦ

KS
j,i
((xk, yk);tk) = 𝛾̂k

i
ei.

Ak = ∇f (xk) + ∇g(xk)𝜆̂k + ∇h(xk)𝜇k + 𝛾̂k.

L((x, y), �,�, � , �, �;�) ∶= f (x) + ��((x, y), �,�, � , �, �;�),

�((x, y), �,�, � , �, �;�)

∶=
1

2

�������

⎛⎜⎜⎝

�
g(x) +

�

�

�
+
, h(x) +

�

�
,
�
n − eTy − s +

�

�

�
+
,�

y − e +
�

�

�
+
, x◦y +

�

�

⎞⎟⎟⎠

�������

2

2
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(S0)	� Initialization: Choose parameters 𝜆max > 0 , 𝜇min < 𝜇max , 𝜁max > 0 , 𝜂max > 0 , 
𝛾min < 𝛾max , � ∈ (0, 1) , 𝜎 > 1 , and {𝜖k} ⊆ ℝ+ such that {�k} ↓ 0 . Choose ini-
tial values 𝜆̄1 ∈ [0, 𝜆max]

m, , 𝜇̄1 ∈ [𝜇min,𝜇max]
p , 𝜁1 ∈ [0, 𝜁max] , 𝜂̄1 ∈ [0, 𝜂max]

n , 
𝛾̄1 ∈ [𝛾min, 𝛾max]

n , 𝛼1 > 0 and set k ← 1.
(S1)	� Update of the iterate: Compute (xk, yk) as an approximate solution of

          satisfying

(S2)	� Update of the approximate multipliers:

(S3)	� Update of the penalty parameter: Define

         If k = 1 or

          set �k+1 = �k . Otherwise set �k+1 = ��k.

(S4)	� Update of the safeguarded multipliers: Choose 𝜆̄k+1 ∈ [0, 𝜆max]
m , 

𝜇̄k+1 ∈ [𝜇min,𝜇max]
p , 𝜁k+1 ∈ [0, 𝜁max] , 𝜂̄k+1 ∈ [0, 𝜂max]

n , 𝛾̄k+1 ∈ [𝛾min, 𝛾max]
n.

(S5)	� Set k ← k + 1 , and go to ( S1).

To measure the infeasibility of a point (x̂, ŷ) ∈ ℝ
n ×ℝ

n for (2.2), we consider the 
unshifted quadratic penalty term

Clearly, (x̂, ŷ) is feasible for (2.2) if and only if 𝜋0,1((x̂, ŷ)) = 0 . This, in turn, implies 
that (x̂, ŷ) minimizes �0,1((x, y)) and thus ∇𝜋0,1((x̂, ŷ)) = 0 . In this respect, the follow-
ing result follows from [10, Theorem 6.3] or [19, Theorem 6.2].

Theorem 6.2  Let (x̂, ŷ) ∈ ℝ
n ×ℝ

n be a limit point of the sequence {(xk, yk)} gener-
ated by Algorithm 6.1. Then ∇𝜋0,1((x̂, ŷ)) = 0.

min
(x,y)∈ℝ2n

L((x, y), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄
k, 𝛾̄k;𝛼k)

(6.1)‖∇(x,y)L((x
k, yk), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄

k, 𝛾̄k;𝛼k)‖ ≤ 𝜖k.

𝜆k ∶= max{0, 𝛼kg(x
k) + 𝜆̄k}, 𝜇k ∶= 𝛼kh(x

k) + 𝜇̄k,

𝜁k ∶= max{0, 𝛼k(n − eTyk − s) + 𝜁k}, 𝜂
k ∶= max{0, 𝛼k(y

k − e) + 𝜂̄k},

𝛾k ∶= 𝛼kx
k
◦yk + 𝛾̄k

Uk ∶=min
{
− g(xk),

𝜆̄k

𝛼k

}
, Vk ∶= min

{
− (n − eTyk − s),

𝜁k

𝛼k

}
, Wk

∶=min
{
− (yk − e),

𝜂̄k

𝛼k

}
.

(6.2)

max

�‖Uk‖, ‖h(xk)‖, ‖Vk‖,‖Wk‖, ‖xk◦yk‖
�

≤ � max

�‖Uk−1‖, ‖h(xk−1)‖, ‖Vk−1‖,‖Wk−1‖, ‖xk−1◦yk−1‖
�
,

�0,1((x, y)) ∶= �((x, y), 0, 0, 0, 0, 0;1).
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Hence, even if a limit point is infeasible, we have at least a stationary point of 
the constraint violation. In general, for the nonconvex case discussed here, we can-
not expect more than this. The remaining part of this section therefore considers the 
case where a limit point if feasible.

A global convergence analysis of Algorithm  6.1 for cardinality-constrained 
problems can already be found in the [21], where the authors establish conver-
gence to CC-M-stationary points under a problem-tailored quasi-normality condi-
tion. Here, our aim it to verify that Algorithm 6.1, at least under suitable assump-
tions, satisfies the sequential optimality conditions introduced in this paper. Note 
that this result is independent from the one in [21] since the quasi-normality con-
dition from there is not related to our sequential regularity assumption, cf. [4] for 
a corresponding discussion in the NLP case.

Just like in [6, Theorem 5.1], we require the generalized Kurdyka-Łojasiewicz 
(GKL) inequality to be satisfied by �0,1 at a feasible limit point (x̂, ŷ) of Algo-
rithm 6.1. Some comments on the GKL inequality are due. A continuously differ-
entiable function F ∈ C1(ℝn,ℝ) is said to satisfy the GKL inequality at x̂ ∈ ℝ

n if 
there exist 𝛿 > 0 and 𝜓 ∶ B𝛿(x̂) → ℝ such that lim

x→x̂
𝜓(x) = 0 and for each x ∈ B𝛿(x̂) 

we have �F(x) − F(x̂)� ≤ 𝜓(x)‖∇F(x)‖ . According to [2, Page 3546], the GKL ine-
quality is a relatively mild condition. For example, it is satisfied at every feasible 
point of the standard NLP (5.2) provided that all constraint functions are analytic. 
If we view (2.2) as a standard NLP, then all constraints involving the auxiliary 
variable y are polynomial in nature and therefore analytic. Thus, if the nonlinear 
constraints gi and hi are analytic, the GKL inequality is then automatically satis-
fied. In the rest of this section, we consider a feasible limit point (x̂, ŷ) of the 
sequence {(xk, yk)} generated by Algorithm 6.1 and prove that x̂ is a CC-AM-sta-
tionary point, if the GKL inequality is satisfied by �0,1 at (x̂, ŷ).

Before we proceed, we would like to note that, just like in the case of the pre-
vious regularization method, the existence of a limit point of {xk} actually already 
guarantees the boundedness of {yk} on the same subsequence. Hence, we essen-
tially only need to assume the convergence of {xk} and we can then extract a limit 
point (x̂, ŷ) of {(xk, yk)} . A proof of this observation is given in [21]. But for sim-
plicity, we assume in our next result that the sequence {(xk, yk)} has a limit point.

Theorem 6.3  Let (x̂, ŷ) ∈ ℝ
n ×ℝ

n be a limit point of the sequence {(xk, yk)} gener-
ated by Algorithm 6.1 that is feasible for (2.2). Assume that �0,1 satisfies the GKL 
inequality at (x̂, ŷ) , i.e., there exist 𝛿 > 0 and 𝜓 ∶ B𝛿((x̂, ŷ)) → ℝ such that 
lim

(x,y)→(x̂,ŷ)
𝜓((x, y)) = 0 and for each (x, y) ∈ B𝛿((x̂, ŷ)) we have

Then x̂ is a CC-AM-stationary point.

Proof  Observe that by (S2) we have for each k ∈ ℕ

(6.3)�𝜋0,1((x, y)) − 𝜋0,1((x̂, ŷ))� ≤ 𝜓((x, y))‖∇𝜋0,1((x, y))‖.

∇xL((x
k, yk), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄

k, 𝛾̄k;𝛼k) = ∇f (xk) + ∇g(xk)𝜆k + ∇h(xk)𝜇k + 𝛾k◦yk.
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Moreover, using (6.1) and {�k} ↓ 0 , we have

Now, by (S2) , we also have {𝜆k} ⊆ ℝ
m
+
 . Furthermore, the sequence of penalty param-

eters {�k} is nondecreasing and satisfies

We distinguish two cases.
Case 1: {�k} is bounded. Then ( S3 ) implies �k = �K for all k ≥ K with some suffi-

ciently large K ∈ ℕ . In particular, (6.2) then holds for each k ≥ K . This, in turn, 
implies that {‖Uk‖} → 0 . Consider an index i ∉ Ig(x̂) . By definition, {𝜆̄k} is 
bounded. Thus, { 𝜆̄k

i

𝛼k
} is bounded as well and therefore has a convergent subsequence. 

Assume w.l.o.g. that { 𝜆̄k
i

𝛼k
} converges and denote with ai its limit point. We therefore 

get 0 = limk→∞ |Uk
i
| = |min{−gi(x̂), ai}| . Since −gi(x̂) > 0 , this implies ai = 0 . 

Consequently, we have {gi(xk) +
𝜆̄k
i

𝛼k
} → gi(x̂) + ai = gi(x̂) < 0 and thus by (S2) for all 

k ∈ ℕ large

Now consider an i ∈ I±(x̂) . By assumption, (x̂, ŷ) is feasible for (2.2), which implies 
ŷi = 0 . By assumption, {�k} is bounded. Moreover, {𝛾̄k

i
} is also bounded by defi-

nition. Hence, by (S2) , {�ki } is bounded as well, which implies {�k
i
yk
i
} → 0 . Let us 

define 𝛾̂k ∈ ℝ
n for all k ∈ ℕ by

Then by (6.4) we have

where the left-hand side tends to 0. This, along with (6.6), implies that x̂ is 
CC-AM-stationary.

Case 2: {�k} is unbounded. Since {�k} is nondecreasing, we then have {�k} ↑ ∞ . 
Consider an index i ∉ Ig(x̂) , i.e. with gi(x̂) < 0 . By the boundedness of {𝜆̄k

i
} , we 

obtain �k
i
= 0 for all k ∈ ℕ sufficiently large. Condition (6.1) implies

Since {�k} → 0 and {∇f (xk)} → ∇f (x̂) , the right hand side is convergent and there-
fore bounded. Thus, {𝛼k∇𝜋((xk, yk), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄

k, 𝛾̄k;𝛼k)} is bounded as well. Now 
observe that

(6.4){Ωk} ∶= {∇f (xk) + ∇g(xk)�k + ∇h(xk)�k + �k◦yk} → 0.

(6.5)𝛼k ≥ 𝛼1 > 0 ∀k ∈ ℕ.

(6.6)𝜆k
i
= max{0, 𝛼kgi(x

k) + 𝜆̄k
i
} = 0.

𝛾̂k
i
∶=

{
𝛾k
i
yk
i

if i ∈ I0(x̂),

0 if i ∈ I±(x̂).

Ωk −
∑

i∈I±(x̂)

𝛾k
i
yk
i
ei = ∇f (xk) + ∇g(xk)𝜆k + ∇h(xk)𝜇k +

∑
i∈I0(x̂)

𝛾k
i
yk
i
ei

= ∇f (xk) + ∇g(xk)𝜆k + ∇h(xk)𝜇k + 𝛾̂k,

‖‖‖𝛼k∇(x,y)𝜋((x
k, yk), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄

k, 𝛾̄k;𝛼k)
‖‖‖ ≤ 𝜖k +

‖‖‖‖‖

(
∇f (xk)

0

)‖‖‖‖‖
.
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where

Using the Lipschitz continuity of the mapping t ↦ max{0, t} , we obtain

•	 |||max
{
0, 𝛼kgi(x

k) + 𝜆̄k
i

}
−max

{
0, 𝛼kgi(x

k)
}||| ≤ 𝜆̄k

i
 for all i = 1,… ,m,

•	 |||max
{
0, 𝛼k(n − eTyk − s) + 𝜁k

}
−max

{
0, 𝛼k(n − eTyk − s)

}||| ≤ 𝜁k,
•	 |||max

{
0, 𝛼k(y

k
i
− 1) + 𝜂̄k

i

}
−max

{
0, 𝛼k(y

k
i
− 1)

}||| ≤ 𝜂̄k
i
 for all i = 1,… , n.

This, along with the boundedness of the safeguarded multipliers and the conver-
gence of the sequence {(xk, yk)} , then implies that {zk} is bounded. Using the relation

it follows that {�k∇�0,1((xk, yk))} is also bounded, say ‖�k∇(x,y)�0,1((x
k, yk))‖ ≤ M for 

some constant M > 0 . Now, by the feasibility of (x̂, ŷ) , we have 𝜋0,1((x̂, ŷ)) = 0 . Since 
{(xk, yk)} → (x̂, ŷ) , we can assume w.l.o.g. that (xk, yk) ∈ B𝛿((x̂, ŷ)) for all k ∈ ℕ , 
where � denotes the constant from the GKL inequality. Then (6.3) implies that

𝛼k∇(x,y)𝜋((x
k, yk), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄

k, 𝛾̄k;𝛼k)

=

m∑
i=1

𝛼k max
{
0, gi(x

k) +
𝜆̄k
i

𝛼k

}(∇gi(x
k)

0

)
+

p∑
i=1

𝛼k
(
hi(x

k) +
𝜇̄k
i

𝛼k

)(∇hi(x
k)

0

)

+ 𝛼k max
{
0, n − eTyk − s +

𝜁k

𝛼k

}( 0

−e

)
+

n∑
i=1

𝛼k max
{
0, yk

i
− 1 +

𝜂̄k
i

𝛼k

}( 0

ei

)

+

n∑
i=1

𝛼k
(
xk
i
yk
i
+

𝛾̄k
i

𝛼k

)( yk
i
ei

xk
i
ei

)

= 𝛼k∇(x,y)𝜋0,1((x
k, yk)) + zk

zk ∶=

m∑
i=1

(
max

{
0, 𝛼kgi(x

k) + 𝜆̄k
i

}
−max

{
0, 𝛼kgi(x

k)
})(∇gi(x

k)

0

)

+

p∑
i=1

𝜇̄k
i

(
∇hi(x

k)

0

)

+
(
max

{
0, 𝛼k(n − eTyk − s) + 𝜁k

}
−max

{
0, 𝛼k(n − eTyk − s)

})( 0

−e

)

+

n∑
i=1

(
max

{
0, 𝛼k(y

k
i
− 1) + 𝜂̄k

i

}
−max

{
0, 𝛼k(y

k
i
− 1)

})( 0

ei

)

+

n∑
i=1

𝛾̄k
i

(
yk
i
ei

xk
i
ei

)
.

𝛼k∇(x,y)𝜋0,1((x
k, yk)) = 𝛼k∇(x,y)𝜋((x

k, yk), 𝜆̄k, 𝜇̄k, 𝜁k, 𝜂̄
k, 𝛾̄k;𝛼k) − zk,

|�k�0,1((xk, yk))| ≤ �((xk, yk))
‖‖‖�k∇(x,y)�0,1((x

k, yk))
‖‖‖ ≤ �((xk, yk))M.
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Since {�((xk, yk))} → 0 , we conclude that {�k�0,1((xk, yk))} → 0 . Now consider an 
i ∈ I±(x̂) . By the definition of �0,1 , we obviously have 0 ≤ �k(x

k
i
yk
i
)2 ≤ 2�k�0,1((x

k, yk)) 
for each k ∈ ℕ . Letting k → ∞ , we then obtain {�k(xki y

k
i
)2} → 0 . Now since x̂i ≠ 0 , 

we can assume w.l.o.g. that xk
i
≠ 0 for all k ∈ ℕ . Then

By the feasibility of (x̂, ŷ) we have {yk
i
} → ŷi = 0 . Since {𝛾̄k

i
} is bounded, we then 

obtain

The remainder of the proof is then analogous to the case where {�k} is bounded and 
we conclude that x̂ is a CC-AM-stationary point. 	�  ◻

Similiarly to the relaxation method, combining Theorem 6.3 with Theorem 4.7 
and [21, Prop. 2.3] immediately allows the following conclusions:

Corollary 6.4  If, in addition to the assumptions in Theorem 6.3, x̂ also satisfies CC-
AM-regularity, then x̂ is CC-M-stationary. Furthermore, there then exists a ẑ ∈ ℝ

n 
such that (x̂, ẑ) is CC-S-stationary.

While the regularization method from Sect. 5 generates CC-AM-stationary limit 
points without any further assumptions, the augmented Lagrangian approach dis-
cussed here requires an additional condition (GKL in our case). A counterexample 
presented in [2] for standard NLPs explains that one has to expect such an additional 
assumption in the context of augmented Lagrangian methods. In this context, one 
should also take into account that the regularization method is a problem-tailored 
solution technique designed specifically for the solution of CC-problems, whereas 
the augmented Lagrangian method is a standard solver for NLPs. In general, these 
standard NLP-solvers are expected to have severe problems in solving CC-type 
problems due to the lack of constraint qualifications and due to the fact that KKT 
points may not even exist. Nonetheless, the results from this section show that the 
standard (safeguarded) augmented Lagrangian algorithm is at least a viable tool for 
the solution of optimization problems with cardinality constraints. We also refer to 
[16] for a related discussion for MPCCs.

7 � Final remarks

In this paper, we introduced CC-AM-stationarity and verified that this sequential 
optimality condition is satisfied at local minima of cardinality-constrained optimi-
zation problems without additional assumptions. Since CC-AM-stationarity is a 
weaker optimality condition than CC-M-stationarity, we also introduced CC-AM-
regularity, a cone-continuity type condition, and showed that CC-AM-stationarity 

lim
k→∞

𝛼kx
k
i
(yk

i
)2 = lim

k→∞

1

xk
i

𝛼k(x
k
i
yk
i
)2 =

1

x̂i
⋅ 0 = 0.

{𝛾k
i
yk
i
} = {(𝛼kx

k
i
yk
i
+ 𝛾̄k

i
)yk

i
} = {𝛼kx

k
i
(yk

i
)2} + {𝛾̄k

i
yk
i
} → 0.
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and CC-M-stationary are equivalent under CC-AM-regularity. We illustrated that 
CC-AM-regularity is a rather weak assumption, which is satisfied under CC-CPLD 
and – contrary to NLPs – does not imply CC-ACQ or CC-GCQ.

As an application of the new optimality condition, we showed that the problem-
tailored regularization method from [17] generates CC-AM-stationary points in both 
the exact and the inexact case and without the need for additional assumptions. As 
a direct consequence, we see that in the inexact case the regularization method still 
generates CC-M-stationary points under CC-AM-regularity. This is in contrast to 
MPCCs, where the convergence properties of this method deteriorate in the inexact 
setting. Additionally, we proved that limit points of a standard (safeguarded) aug-
mented Lagrangian approach satisfy CC-AM-stationarity under an additional mild 
condition.

Besides the regularization method from [17], there exist a couple of other regu-
larization techniques that can be applied or adapted to cardinality-constrained prob-
lems, e.g., the method by Scholtes [28] and the one by Steffensen and Ulbrich [29]. 
Regarding the local regularization method [29], we have a complete convergence 
theory similar to Sect. 5, but decided not to include the corresponding (lengthy and 
technical) results within this paper since, structurally, they are very similar to the 
corresponding theory presented here. On the other hand, we have to admit that, so 
far, we were not successful in translating our theory to the global regularization [28], 
and therefore leave this as part of our future research.

Equivalence of Sequential Constraint Qualifications

In [22], a sequential optimality condition called AW-stationarity was introduced. 
This condition was based the relaxed reformulation of (1.1) from [12], i.e.

which is (2.2) with the additional constraint y ≥ 0 . To compare CC-AM-stationarity 
with AW-stationarity we first recall the definition of AW-stationarity from [22].

Definition A.1  Let (x̂, ŷ) ∈ ℝ
n ×ℝ

n be feasible for (A.1). Then (x̂, ŷ) is called 
approximately weakly stationary (AW-stationary) for (A.1), if there exist sequences 
{(xk, yk)} ⊆ ℝ

n ×ℝ
n , {𝜆k} ⊆ ℝ

m
+
 , {𝜇k} ⊆ ℝ

p , {𝜁k} ⊆ ℝ+ , {𝛾k} ⊆ ℝ
n , {𝜈k} ⊆ ℝ

n , and 
{𝜂k} ⊆ ℝ

n
+
 such that 

(a)	 {(xk, yk)} → (x̂, ŷ),
(b)	 {∇f (xk) + ∇g(xk)�k + ∇h(xk)�k + �k} → 0,
(c)	 {−�ke − �k + �k} → 0,
(d)	 ∀i ∈ {1,… ,m} ∶

{
min{−gi(x

k), �k
i
}
}
→ 0,

(e)	
{
min{−(n − s − eTyk), �k}

}
→ 0,

(f)	 ∀i ∈ {1,… , n} ∶
{
min{|xk

i
|, |�k

i
|}} → 0,

(g)	 ∀i ∈ {1,… , n} ∶
{
min{yk

i
, |�k

i
|}} → 0,

(h)	 ∀i ∈ {1,… , n} ∶
{
min{−(yk

i
− 1), �k

i
}
}
→ 0.

(A.1)min
x,y

f (x) s.t. x ∈ X, n − eTy ≤ s, 0 ≤ y ≤ e, x◦y = 0,
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Next we derive an equivalent formulation of CC-AM-stationarity.

Proposition A.2  Let x̂ ∈ ℝ
n be feasible for (1.1). Then x̂ is CC-AM-stationary if and 

only if there exist sequences {xk} ⊆ ℝ
n , {𝜆k} ⊆ ℝ

m
+
 , {𝜇k} ⊆ ℝ

p , and {𝛾k} ⊆ ℝ
n such 

that

(a)	 {xk} → x̂,
(b)	 {∇f (xk) + ∇g(xk)�k + ∇h(xk)�k + �k} → 0,
(c)	 ∀i ∈ {1,… ,m} ∶

{
min{−gi(x

k), �k
i
}
}
→ 0,

(d)	 ∀i ∈ {1,… , n} ∶
{
min{|xk

i
|, |�k

i
|}} → 0.

Proof  “⇒ ”: Assume first that x̂ is CC-AM-stationary. We only need to prove that 
the corresponding sequences also satisfy conditions (c) and (d). For all i ∉ Ig(x̂) we 
have gi(xk) < 0 and �k

i
= 0 for all k large. For all i ∈ Ig(x̂) we have {gi(xk)} → 0 and 

�k
i
≥ 0 for all k ∈ ℕ . In bibliographystyle cases 

{
min{−gi(x

k), �k
i
}
}
→ 0 follows 

and hence assertion (c) holds. To verify part (d), note that for all i ∈ I±(x̂) we have 
�k
i
= 0 for all k ∈ ℕ and for all i ∈ I0(x̂) we know xk

i
→ 0 . In both cases we obtain {

min{|xk
i
|, |�k

i
|}} → 0.

“⇐ ”: Suppose now that there exist sequences {xk} ⊆ ℝ
n , {𝜆k} ⊆ ℝ

m
+
 , 

{𝜇k} ⊆ ℝ
p , and {𝛾k} ⊆ ℝ

n such that conditions (a) – (d) hold. If we define 
Ak ∶= ∇f (xk) + ∇g(xk)�k + ∇h(xk)�k + �k for each k ∈ ℕ , then {Ak} → 0 . For all 
i ∉ Ig(x̂) we know {−gi(xk)} → −gi(x̂) > 0 and 

{
min{−gi(x

k), �k
i
}
}
→ 0 , which 

implies {�k
i
} → 0 . For each k ∈ ℕ , define 𝜆̂k ∈ ℝ

m by

Then {𝜆k} ⊆ ℝ
m
+
 implies {𝜆̂k} ⊆ ℝ

m
+
 and by definition we have 𝜆̂k

i
= 0 for all i ∉ Ig(x̂) 

and all k ∈ ℕ . Next we define

Here {�k
i
} → 0 for all i ∉ Ig(x̂) implies {Bk} → 0 . For all i ∈ I±(x̂) we know 

{|xk
i
|} → |x̂i| > 0 and 

{
min{|xk

i
|, |�k

i
|}} → 0 , which implies {�k

i
} → 0 . For each 

k ∈ ℕ define 𝛾̂k ∈ ℝ
n by

Then clearly we have 𝛾̂k
i
= 0 for all i ∈ I±(x̂) and all k ∈ ℕ . Now define for each 

k ∈ ℕ

𝜆̂k
i
∶=

{
0 if i ∉ Ig(x̂),

𝜆k
i

if i ∈ Ig(x̂).

Bk ∶= Ak −
∑
i∉Ig(x̂)

𝜆k
i
∇gi(x

k) = ∇f (xk) + ∇g(xk)𝜆̂k + ∇h(xk)𝜇k + 𝛾k.

𝛾̂k
i
∶=

{
0 if i ∈ I±(x̂),

𝛾k
i

if i ∈ I0(x̂).

Ck ∶= Bk −
∑

i∈I±(x̂)

𝛾k
i
ei = ∇f (xk) + ∇g(xk)𝜆̂k + ∇h(xk)𝜇k + 𝛾̂k.
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Here {�k
i
} → 0 for all i ∈ I±(x̂) implies {Ck} → 0 . Thus, we conclude that x̂ is CC-

AM-stationary with the corresponding sequences {xk}, {𝜆̂k}, {𝜇k} , and {𝛾̂k} . 	�  ◻

Recall from [12] that feasibility of (x̂, ŷ) ∈ ℝ
n ×ℝ

n for (A.1) implies feasibility 
of x̂ for (1.1). An immediate consequence of Definition A.1 and Proposition A.2 
is thus the following.

Theorem A.3  Let (x̂, ŷ) ∈ ℝ
n ×ℝ

n be a feasible point of (A.1). If (x̂, ŷ) is AW-station-
ary, then x̂ is CC-AM-stationary.

The converse is also true as the following result shows.

Theorem A.4  Let x̂ ∈ ℝ
n be a feasible point of (1.1). If x̂ is a CC-AM-stationary 

point, then for all ŷ ∈ ℝ
n such that (x̂, ŷ) is feasible for (A.1), it follows that (x̂, ŷ) is 

AW-stationary.

Proof  Assume that x̂ is CC-AM-stationary. Then there exist sequences {xk} ⊆ ℝ
n , 

{𝜆k} ⊆ ℝ
m
+
 , {𝜇k} ⊆ ℝ

p , and {𝛾k} ⊆ ℝ
n such that conditions (a) – (d) in Proposition 

A.2 hold. Now consider an arbitrary ŷ ∈ ℝ
n such that (x̂, ŷ) is feasible for (A.1) and 

define

for each k ∈ ℕ . Hence conditions (a) – (d) and (f) in Definition A.1 are trivially sat-
isfied. Using the feasibility of yk = ŷ , it is easy to see that the remaining conditions 
also hold. Consequently, (x̂, ŷ) is AW-stationary. 	�  ◻

An obvious advantage of CC-AM-stationarity over AW-stationarity is that it 
does not depend on the artificial variable y. Hence, CC-AM-stationarity is a gen-
uine optimality condition for the original problem (1.1). Indeed, one can even 
derive CC-AM-stationarity directly from (1.1) without referring to the relaxed 
reformulation by using the Fréchet normal cone of the set {x ∈ ℝ

n ∣ ‖x‖0 ≤ s}.
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yk ∶= ŷ, 𝜁k ∶= 0, 𝜈k ∶= 0, 𝜂k ∶= 0

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


210	 C. Kanzow et al.

1 3

References

	 1.	 Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods 
with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007). https://​doi.​org/​
10.​1137/​06065​4797. (ISSN 1052-6234)

	 2.	 Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for con-
strained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010). 
https://​doi.​org/​10.​1137/​09077​7189. (ISSN 1052-6234.)

	 3.	 Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth con-
strained optimization. Optimization 60(5), 627–641 (2011). https://​doi.​org/​10.​1080/​02331​93090​
35787​00. (ISSN 0233-1934)

	 4.	 Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification 
and algorithmic consequences. SIAM J. Optim. 26(1), 96–110 (2016). https://​doi.​org/​10.​1137/​
15M10​08488. (ISSN 1052-6234)

	 5.	 Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and 
sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 
(2018). https://​doi.​org/​10.​1287/​moor.​2017.​0879. (ISSN 0364-765X)

	 6.	 Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for 
mathematical programs with complementarity constraints and algorithmic consequences. SIAM 
J. Optim. 29(4), 3201–3230 (2019). https://​doi.​org/​10.​1137/​18M12​1040X. (ISSN 1052-6234)

	 7.	 Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and 
algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013). https://​doi.​org/​10.​1137/​12086​9778. 
(ISSN 1052-6234)

	 8.	 Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Com-
put. Optim. Appl. 43(1), 1–22 (2009). https://​doi.​org/​10.​1007/​s10589-​007-​9126-9. (ISSN 
0926-6003)

	 9.	 Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. 
Math. Program. 74((2, Ser. A)), 121–140 (1996). https://​doi.​org/​10.​1016/​0025-​5610(96)​00044-5. 
(ISSN 0025-5610)

	10.	 Birgin, E. G., Martínez, J. M.: Practical augmented Lagrangian methods for constrained optimiza-
tion, volume 10 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics 
(SIAM), Philadelphia, PA, 2014. ISBN 978-1-611973-35-8. https://​doi.​org/​10.​1137/1.​97816​11973​
365

	11.	 Branda, M., Bucher, M., Červinka, M., Schwartz, A.: Convergence of a Scholtes-type regularization 
method for cardinality-constrained optimization problems with an application in sparse robust port-
folio optimization. Comput. Optim. Appl. 70(2), 503–530 (2018). https://​doi.​org/​10.​1007/​s10589-​
018-​9985-2. (ISSN 0926-6003)

	12.	 Burdakov, O.P., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: 
reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 
26(1), 397–425 (2016). https://​doi.​org/​10.​1137/​14097​8077. (ISSN 1052-6234)

	13.	 Di Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F., Sciandrone, M.: A concave optimization-based 
approach for sparse portfolio selection. Optim. Methods Softw. 27(6), 983–1000 (2012). https://​doi.​
org/​10.​1080/​10556​788.​2011.​577773. (ISSN 1055-6788)

	14.	 Dong, H., Ahn, M., Pang, J.-S.: Structural properties of affine sparsity constraints. Math. Program. 
176((1–2, Ser. B)), 95–135 (2019). https://​doi.​org/​10.​1007/​s10107-​018-​1283-3. (ISSN 0025-5610)

	15.	 Feng, M., Mitchell, J.E., Pang, J.-S., Shen, X., Wächter, A.: Complementarity formulations of �
0

-norm optimization problems. Pac. J. Optim. 14(2), 273–305 (2018). (ISSN 1348-9151)
	16.	 Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods 

applied to optimization problems with degenerate constraints, including problems with complemen-
tarity constraints. SIAM J. Optim. 22(4), 1579–1606 (2012). https://​doi.​org/​10.​1137/​12086​8359. 
(ISSN 1052-6234)

	17.	 Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with comple-
mentarity constraints with strong convergence properties. SIAM J. Optim. 23(2), 770–798 (2013). 
https://​doi.​org/​10.​1137/​10080​2487. (ISSN 1052-6234)

	18.	 Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation meth-
ods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 
253–275 (2015). https://​doi.​org/​10.​1287/​moor.​2014.​0667. (ISSN 0364-765X)

https://doi.org/10.1137/060654797
https://doi.org/10.1137/060654797
https://doi.org/10.1137/090777189
https://doi.org/10.1080/02331930903578700
https://doi.org/10.1080/02331930903578700
https://doi.org/10.1137/15M1008488
https://doi.org/10.1137/15M1008488
https://doi.org/10.1287/moor.2017.0879
https://doi.org/10.1137/18M121040X
https://doi.org/10.1137/120869778
https://doi.org/10.1007/s10589-007-9126-9
https://doi.org/10.1016/0025-5610(96)00044-5
https://doi.org/10.1137/1.9781611973365
https://doi.org/10.1137/1.9781611973365
https://doi.org/10.1007/s10589-018-9985-2
https://doi.org/10.1007/s10589-018-9985-2
https://doi.org/10.1137/140978077
https://doi.org/10.1080/10556788.2011.577773
https://doi.org/10.1080/10556788.2011.577773
https://doi.org/10.1007/s10107-018-1283-3
https://doi.org/10.1137/120868359
https://doi.org/10.1137/100802487
https://doi.org/10.1287/moor.2014.0667


211

1 3

Sequential optimality conditions for cardinality‑constrained…

	19.	 Kanzow, C., Steck, D., Wachsmuth, D.: An augmented Lagrangian method for optimization prob-
lems in Banach spaces. SIAM J. Control Optim. 56(1), 272–291 (2018). https://​doi.​org/​10.​1137/​
16M11​07103. (ISSN 0363-0129)

	20.	 Kanzow, C., Mehlitz, P., Steck, D.: Relaxation schemes for mathematical programs with switching 
constraints. Optim. Method Softw. (2019). https://​doi.​org/​10.​1080/​10556​788.​2019.​16634​25

	21.	 Kanzow, C., Raharja, A. B., Schwartz, A.: An augmented Lagrangian method for cardinality-con-
strained optimization problems. Technical report, Institute of Mathematics, University of Würzburg, 
December (2020)

	22.	 Krulikovski, E.  H.  M., Ribeiro, A.  A., Sachine, M.: A sequential optimality condition for math-
ematical programs with cardinality constraints. ArXiv e-prints, (2020). ArXiv:​2008.​03158

	23.	 Mehlitz, P.: Asymptotic stationarity and regularity for nonsmooth optimization problems. J. Nons-
mooth Anal. Optim. (2020). https://​doi.​org/​10.​46298/​jnsao-​2020-​6575

	24.	 Murray, W., Shek, H.: A local relaxation method for the cardinality constrained portfolio optimiza-
tion problem. Comput. Optim. Appl. 53(3), 681–709 (2012). https://​doi.​org/​10.​1007/​s10589-​012-​
9471-1. (ISSN 0926-6003)

	25.	 Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP 
methods. SIAM J. Optim. 10(4), 963–981 (2000). https://​doi.​org/​10.​1137/​S1052​62349​73266​29. 
(ISSN 1052-6234)

	26.	 Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, 
new constraint qualifications, and algorithmic consequences. Optim. Methods Softw. (2019). https://​
doi.​org/​10.​1080/​10556​788.​2019.​17026​61

	27.	 Rockafellar, R.T., Wets, R. J.-B.: Variational analysis, volume 317 of Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Ber-
lin, (1998). ISBN 3-540-62772-3.https://​doi.​org/​10.​1007/​978-3-​642-​02431-3

	28.	 Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with 
complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

	29.	 Steffensen, S., Ulbrich, M.: A new relaxation scheme for mathematical programs with equilibrium 
constraints. SIAM J. Optim. 20(5), 2504–2539 (2010)

	30.	 Sun, X., Zheng, X., Li, D.: Recent advances in mathematical programming with semi-continuous 
variables and cardinality constraint. J. Op. Res. Soc. China 1, 55–77 (2013)

	31.	 Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for 
optimization problems with cardinality constraints. Math. Program. 160((1–2, Ser. A)), 353–377 
(2016). https://​doi.​org/​10.​1007/​s10107-​016-​0986-6. (ISSN 0025-5610)

	32.	 Zheng, X., Sun, X., Li, D., Sun, J.: Successive convex approximations to cardinality-constrained 
convex programs: a piecewise-linear DC approach. Comput. Optim. Appl. 59(1–2), 379–397 
(2014). https://​doi.​org/​10.​1007/​s10589-​013-​9582-3. (ISSN 0926-6003)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1137/16M1107103
https://doi.org/10.1137/16M1107103
https://doi.org/10.1080/10556788.2019.1663425
http://arxiv.org/abs/2008.03158
https://doi.org/10.46298/jnsao-2020-6575
https://doi.org/10.1007/s10589-012-9471-1
https://doi.org/10.1007/s10589-012-9471-1
https://doi.org/10.1137/S1052623497326629
https://doi.org/10.1080/10556788.2019.1702661
https://doi.org/10.1080/10556788.2019.1702661
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1007/s10107-016-0986-6
https://doi.org/10.1007/s10589-013-9582-3

	Sequential optimality conditions for cardinality-constrained optimization problems with applications
	Abstract
	1 Introduction
	2 Preliminaries
	3 A sequential optimality condition
	4 A cone-continuity-type constraint qualification
	5 Application to regularization methods
	6 Application to augmented Lagrangian methods
	7 Final remarks
	References




