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Abstract
Despite advances in the field, we still know little about the socio-cognitive processes 
of team decisions, particularly their emergence from an individual level and transi-
tion to a team level. This study investigates team decision processes by using an 
agent-based model to conceptualize team decisions as an emergent property. It uses 
a mixed-method research design with a laboratory experiment providing qualitative 
and quantitative input for the model’s construction, as well as data for an output val-
idation of the model. First, the laboratory experiment generates data about individ-
ual and team cognition structures. Then, the agent-based model is used as a compu-
tational testbed to contrast several processes of team decision making, representing 
potential, simplified mechanisms of how a team decision emerges. The increasing 
overall fit of the simulation and empirical results indicates that the modeled decision 
processes can at least partly explain the observed team decisions. Overall, we con-
tribute to the current literature by presenting an innovative mixed-method approach 
that opens and exposes the black box of team decision processes beyond well-known 
static attributes.
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1 Introduction

Group and team decisions shape the corporate world, for example, through man-
agement boards or project teams.1 There is broad agreement that groups have the 
potential to make better decisions than individuals because they can aggregate 
diverse information, skills, and perspectives while, at the same time, compensate for 
limitations such as individual biases or mitigate problems of self-interested behav-
ior (DeVilliers et al. 2016; Schulz-Hardt et al. 2002). Teams are a vital element to 
ensure the flexibility and adaptability of organizations (Delgado et al. 2008). Never-
theless, groups and teams do not always outperform individuals. Group think theory, 
for example, describes dysfunctional interaction patterns that may result in poor 
decisions (Janis 1972, 1982; Esser 1998). Uniformity pressure, group homogeneity, 
or other social and contextual influences can suppress individual contributions or 
effective group decision making (Schulz-Hardt et al. 2002).

Against this backdrop, social and applied psychology literature investigated 
determinants of capable group and team decision making, related to social, behav-
ioral, cognitive, and contextual factors (Reader 2017). Previous research also dis-
cussed the properties of effective teams. For example, Katzenbach and Smith (2015) 
described them as teams that have an appropriate number of members with diverse 
skills and viewpoints, clearly defined goals, specific roles, and rules for members. 
More recently, team cognition literature studied team processes and team perfor-
mance (Mesmer-Magnus et al. 2017), going beyond the predominantly static attrib-
utes addressed by previous research. In this context, the term “cognition” describes 
cognitive processes such as learning, planning, reasoning, decision making, and 
problem solving at the team level. Capable team cognition processes may result in 
superior team performance, which is described as “collective intelligence” (Woolley 
et al. 2015). From the analytical perspective of team cognition theory, interactions 
between team members are central elements of the cognitive processes. Interactive 
team cognition theory emphasizes team cognition as an activity and not as a prop-
erty. It describes teams as dynamic cognitive systems in which “cognition emerges 
through interaction” (Cooke et al. 2013, p. 256).

Several scholars support the implied call for research on the socio-cognitive inter-
action processes in teams (Grand et  al. 2016; Crusius et  al. 2012; Woolley et  al. 
2010; Rousseau et al. 2006). This issue is also of significant managerial relevance, 
as these processes, including potential path dependencies, determine team perfor-
mance. Nevertheless, the processes and mechanisms of how cognition at the team 
level emerges from individual cognition remain, to a large extent, a “black box.” 
Hence, it is the aim of this study to show how team decision making can be studied 
as an emergent property using an agent-based model and how this can contribute to 

1 In line with the literature, we consider a team as a specific type of group. Miller (2003) describes a 
group as a system with dynamic social and work processes throughout the group’s lifetime. A team is 
considered as a collection of two or more individuals who pursue a common goal and share the responsi-
bility for outcomes (Cooke et al. 2013; Cohen and Bailey 1997; Kozlowski and Ilgen 2006). We use the 
term “group” when we explicitly refer to the literature on groups.
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a better understanding of team decision processes. In line with this perspective, this 
study contributes to the exploration of “how and why organizationally relevant out-
comes emerge rather than focus only on differences in what has already emerged” 
(Grand et al. 2016, p. 45).

This study presents a mixed-method approach with the potential to increase our 
understanding of the underlying socio-cognitive processes of team decision making. 
We use an agent-based approach to model team decisions as an emergent property, 
that is, we link individual cognition to team-level decisions. The agent-based model 
is combined with a laboratory experiment to provide input and output validation of 
its essential aspects. The experimental setup generates data about individual and 
team cognition structures and suggests typical decision processes triggered by these 
structures. Based on this empirical data, we use the agent-based model to analyze 
the mechanisms of how team decisions emerge from an individual level and advance 
to a team level. Given the empirical data on team decisions, we test the fit between 
the simulated results and the observed team decisions, and we assess whether the 
hypothesized decision processes provide a possible explanation for observed team 
results (Klingert and Meyer 2012; Smith and Rand 2017). These empirically sup-
ported processes can be refined in future and, in turn, be tested in forthcoming 
setups.

The paper is structured as follows. The first section describes the relevant liter-
ature and the use of the two main methods. Thereafter, we present the laboratory 
experiment and its main results. With these results, we develop the “team cognition 
matrix” as a measure for the observed cognitive structures. The identified, typical 
team cognition patterns in our data provide the basis for developing a team deci-
sion algorithm that we subsequently implement in an agent-based model. We test 
several decision submodels in a simulation experiment for a better understanding 
of the observed team decision processes and evaluate their predictive power. This is 
followed by a discussion of additional influencing factors and possible model modi-
fications. Finally, we provide a short conclusion and outlook.

2  Related literature and method

This study investigates the processes underlying team cognition and team decision 
making. Because of increasing task and technological complexity, individuals are 
unable to meet the resulting cognitive demands. Therefore, these growing cognitive 
demands require that cognition is a team effort (Cooke 2015). Ideally, each team 
member should complement the expertise and skills of the other members. Team 
cognition emerges fairly naturally when people work face-to-face in shared work-
spaces (Gutwin and Greenberg 2004). But team cognition is complex and more than 
the mere sum of the individual team members’ cognition; it emerges from the inter-
play of each team member’s individual cognition and the team processes (Cooke 
et  al. 2013; Hollan et  al. 2000; Hauke et  al. 2018). In this paper, both teams and 
groups in general are seen as dynamic systems of interacting individuals, modeled 
as agents. Team and group results emerge from the interactions of individuals.
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Teams have the potential to act intelligently as a collective. The term “intelli-
gence” was originally used to describe an individual’s ability to understand and 
learn from information, as well as to apply this ability to solve problems. Research-
ers have since produced a wide range of definitions of intelligence, depending on 
their approach and method. Terms like “IQ” and mental or cognitive ability are 
often used interchangeably. A widely used interpretation of intelligence is that of 
Gottfredson (1997) who defines it as a “very general mental capability that, among 
other things, involves the ability to reason, plan, solve problems, think abstractly, 
comprehend complex ideas, learn quickly and learn from experience.” In the 1980s, 
group intelligence became a research focus. As opposed to individual intelligence, 
“collective intelligence” or “shared intelligence” emerges from the collaboration and 
competition of individuals (Szuba 2001) and represents the combined intelligence of 
a group of individuals.

The emergence of collective intelligence has been the focus of several studies, as 
a non-linear, “complex feedback loop of individual-environment-individual interac-
tions” (Singh et  al. 2013, p. 187). Each individual contributes specific knowledge 
and skills, which can result in something more than the sum of its parts. Accord-
ingly, Lévy and Bononno (1997) describe collective intelligence as “a form of uni-
versally distributed intelligence, constantly enhanced, coordinated in real time, and 
resulting in the effective mobilization of skills.” Analogous to the general cognitive 
ability of individuals (called the “g-factor”), Woolley et al. (2010) proposed a col-
lective intelligence factor c that describes how well a group performs on a diverse 
range of tasks; a factor that can be used to predict future group performance. In turn, 
this c-factor can be explained via properties such as group diversity, the number of 
females in a group, and conversational turn-taking. Although these are static prop-
erties of groups, the authors regard them as indicators of relevant group cognition 
processes.

The decision making of groups differs in some respects from that of individuals. 
Hill (1982) documents that groups, compared to individuals, are more likely to be 
aggressive and inclined to take risks in choice dilemmas and gambling tasks. They 
are also less likely to accept responsibility due to dispersed rewards or punishments 
and are less engaged. The theory of social loafing (Karau and Williams 1993) states 
that individuals are inclined to put less effort into group work than into individual 
work, with the result that an increasing number of group members degenerate group 
outputs.

Hill (1982) documents that group sizes of three to six members are favored 
as larger groups perform less, and that a large proportion of group discussions is 
required for decision making. Hill also reviewed three decision strategies: (1) truth 
wins, where members realize that a particular option is superior, (2) majority rules, 
where the majority decides on the solution, and (3) where decisions are otherwise 
made through equiprobability. He found that low-ability groups are more likely to 
outvote a member who has the correct ranking position. By contrast, in high-ability 
groups, the best member makes the decision supported by one or more of the others 
(truth wins).

The ability, gender, and team-mindedness of the participants also affect the 
success of teamwork. Hill (1982) asserted that the performance of groups with 
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mixed cognitive abilities are generally superior to that of individuals. Male 
groups improved more in concept attainment tasks, while female groups improved 
more in information processing tasks. He also observed that groups achieve bet-
ter results when the members prefer to work as a group rather than as individuals 
(affiliation preference).

Devine and Philips (2001) investigated the influence of individual cognitive 
ability on team performance through several meta-analyses of the cognitive score 
of the best and lowest score, the group mean score, and the standard deviation of 
scores. They found that whereas the standard deviation was unrelated to perfor-
mance, the other three scores had moderate positive relationships through best 
member score r = 0.208, lowest member score r = 0.246, and mean member score 
r = 0.294 (Devine and Philips 2001).

Another relevant factor is the homogeneity or diversity of a group, for exam-
ple, in age, gender, culture, or background. Diverse groups have a broader range 
of skills and information and can, therefore, achieve better results. To explain 
how a group’s diversity affects its success, Van Knippenberg et al. (2004) devel-
oped a framework which incorporated both decision making and social categori-
zation perspectives on work-group diversity and performance. The authors found 
that the main positive factor was the broader range of information and abilities. 
Different task demands – for example, complex creative tasks – benefit from 
increased diversity, while repetitive and routine tasks suffer from it. Diversity is 
also more likely to be positive if members are motivated and have a high task 
ability. Still, a greater similarity between members also reduces intergroup bias, 
which could otherwise hinder teamwork (Van Knippenberg et al. 2004).

As soon as people become part of a group, the members establish a form of 
conduct among themselves. This conduct can either hinder the decision process 
by reducing effort, withholding information, and resulting in coordination losses, 
or it can increase the group’s effectiveness by pooling the members’ efforts, 
skills, and knowledge (Hackman and Morris 1975). Some studies propose possi-
ble ways to improve team cognitive abilities. For example, Willems (2016) claims 
that team members can improve their cognition when they perform similar tasks, 
assume similar responsibilities, and interact intensively (Willems 2016). Accord-
ing to Moreland and Myaskovsky (2000), a positive correlation exists between 
group performance and group members’ familiarity with each other’s abilities 
and expertise. Moreover, they argue that training, which includes team building, 
strategy creation, improved situation awareness, stress management, collabora-
tion, and cooperation, has a positive impact on attendees’ cognitive skills (Helm-
reich 2000).

Engel et al. (2014) examined the relationship between social sensitivity and suc-
cessful teamwork. They measured the participants’ social sensitivity with the “Read-
ing the Mind in the Eyes” test, which quantifies a person’s ability to assess other 
people’s emotions by identifying facial expressions. They found that the proportion 
of women correlates with the collective intelligence of the group (r = 0.23), which 
in turn was explained by their higher social sensitivity scores. The correlation held 
even if the meetings were not face-to-face but online, with r = 0.41 (Engel et  al. 
2014).
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Finally, the term “decision dynamics” is often used interchangeably with 
“opinion” or “consensus dynamics.” It indicates how individuals influence each 
other’s opinions, leading to either consensus or dissent. Models on opinion 
dynamics differ in many respects, including linearity and opinion type, as well 
as regime activation and updating (Deffuant et al. 2000; Hegselmann and Krause 
2002; Urbig et al. 2008). Besides, it is also necessary to consider related areas 
in computer-based decision modeling, such as fuzzy logic (Ji et al. 2007) or the 
estimation model of group decision making (Klein et al. 2018).

Overall, the literature has identified a substantial number of individual and 
group attributes, all of which can positively affect team performance. Recent 
studies also emphasized that teams are dynamic systems, and that team perfor-
mance emerges from the interactions of the individual team members. Neverthe-
less, the identified attributes remain mainly static and the exact mechanisms of 
how team cognition emerges from the individual level remain largely a “black 
box.”

Against this backdrop, this study uses agent-based modeling to study team 
cognition processes. Although agent-based modeling has matured and gained 
ground in different disciplines (Hauke et  al. 2017; Wall and Leitner 2020), it 
still cannot be considered a mainstream method (Klein et al. 2018). A particu-
lar advantage of agent-based modeling is “its ability to represent key elements 
of group dynamics, such as organizational structure and individual heterogene-
ity” (Smaldino et  al. 2015, p. 301). Compared to mainly verbal descriptions, 
formal modeling can increase precision. In particular, it allows a multiple-level 
modeling of an organization, especially to capture potentially complex interac-
tions between the levels (Smaldino et al. 2015). Agent-based modeling can also 
be used to formally specify and test potential mechanisms. In this paper, we 
use these comparative advantages of agent-based modeling to develop and test 
implementations of potential socio-cognitive processes, which translate individ-
ual assessments into collective decisions. It can be seen as an instance of theory 
development using agent-based modeling (Lorscheid et  al. 2019; Grimm and 
Railsback 2012; Heine et al. 2005). Our dual intention is to outline the general 
approach through which agent-based modeling can contribute to this, and to take 
the first step in this direction.

Our research uses a mixed-method approach. Data generated through a labo-
ratory experiment are used for both the input and output validation of the model. 
In particular, we use the empirical data at the individual level regarding cog-
nition and team structure and validate the model-generated decisions at the 
team level with the empirical data. Until recently, only a few papers explored 
the potential of combining experimental research and agent-based modeling. 
For example, Smith and Rand (2017) used agent-based modeling to explore the 
macro implications of their experimental findings in the context of job-search 
behavior. Klingert and Meyer (2018) used the data of previously published labo-
ratory experiments to develop a micro validation of different trading strategies 
for an agent-based investigation of different market mechanisms. Both examples 
used experimental research to increase the validity of agent-based modeling and 
its conclusions.
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3  Laboratory experiment

The core of the laboratory setup is a team building game (Knox 2016). The team 
task is to rank 15 items (mirror, oil, water, army ration, plastic sheeting, chocolate 
bar, fishing kit, nylon rope, seat cushion, shark repellent, rum, radio, map, mosquito 
net, sextant). The scenario of this ranking task is a hypothetical accident at sea. Fire 
leads to an emergency in which the team has to abandon a sinking ship. The 15 listed 
items are possible objects to transfer from the sinking ship to a lifeboat. The task is 
to evaluate the items in terms of their relevance to survival. A handout describes the 
story line, along with the list and explanation of the items.

Each team consists of three to five participants, which is a suitable team size 
according to Hill (1982).2 The participants were mainly recruited from an Industrial 
Engineering and Management (M.Sc.) program and an international MBA program, 
as well as through workshops with international researchers in the field of social 
simulation (mainly PhD level). As far as possible, attention was paid to the heteroge-
neity of the team configurations in terms of gender, age, nationality, and educational 
background. In the first phase of the experiment, each participant is asked to rank all 
items individually on a ranking chart, within a time limit of ten minutes and with-
out any contact with other participants. In the second phase, after completing the 
individual ranking, the team convenes to discuss and agree on a joint team ranking, 
which it notes on another ranking chart. This discussion has a time limit of 20 min.3 
The team discussions are audio recorded to provide information on the team’s inter-
action dynamics, such as conversational turn-taking or leadership. Finally, following 
this team discussion, the game is over4 and the individual and team rankings are 
evaluated.

The experimental setup makes provision for an evaluation of both the individ-
ual performance and the team performance. For this, we use an expert evaluation 
of the items as a benchmark. The individual and team performance measures are 
identified by calculating how closely the individual and team decisions match the 
expert opinion. The individual performance score is the sum of the absolute dif-
ferences between the individual ranking positions and the expert ranking positions. 
The resulting distances for all 15 items are summed as a score for each individual. 
The lower the score, the better the performance (and inversely). The team perfor-
mance score uses the same calculation method by summing the absolute differences 
between the team ranking positions and the expert ranking.

These measures allow a comparison of individual performance and team perfor-
mance, regarding the task. To quantify this, we introduce the performance measures 
“team result,” “team intelligence,” and “team stupidity” (Table 1). These measures 

2 More details on the data set and the participants are provided in Appendix A. When considering the 
design of the game and the performance measures used, it should be kept in mind that the purpose of the 
experiment is not to test specific hypotheses but to generate empirical data for the validation and calibra-
tion of the agent-based model.
3 The time limits for the game rounds are set according to the original rules of the team building game.
4 Further adaptations could include another individual ranking after the team discussion to analyze the 
change of individual decisions and to explicate hidden knowledge that was not part of the team ranking.
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were adopted from Cooke and Kernaghan (1987) and extended by us to evaluate the 
team result. The average of the individual scores provides a benchmark to analyze 
whether the team interactions result in a gain or a loss in comparison to the indi-
vidual results. In addition, if the team score is lower than the best individual score, 
the team succeeded in achieving a better result than all team members individually. 
In this example, we identify a case of team intelligence. On the contrary, if the team 
score is higher than the worst individual score, the team performed worse than all 
individual team members and we identify a case of team stupidity.

Considering the experimental results (Table 2), we observe a wide range of team 
performances. Of the 26 teams, 23 benefited from the team interaction. These teams 
have a better score than the average of all individual scores. We identify team intel-
ligence for nine teams. In three of these teams we even see large increases, from − 10 
to − 18, in comparison to the best individual score (see team IDs 24, 9, 1). The three 
worst-performing teams in the data set have a loss in team performance, meaning 
that the team score was worse than the average score of all individuals. We also 
analyzed the effects of team size on team performance. In our data set, an increase 
in the team size from four to five leads to an improvement of average team results 
from − 10.2 to − 12.5 and reduces average team stupidity from − 24.2 to − 32.6.

4  Team cognition matrix

The individual and team ranking charts of the laboratory experiment explicate the 
individual and the resulting team-level socio-cognitive structures underlying the 
decision-making process. These structures provide data for the analysis of the emer-
gent process from different perspectives, such as the relative ranking positions in a 
team or the distances of ranking positions per item.

For the evaluation of the team structures for each of the 15 ranking items, we 
developed the team cognition matrix (Fig. 1). This matrix provides an overview of 
the team’s cognition structure per ranking item. The matrix is quadratic, with n rows 
and n columns. The order n of the matrix depends on team size g. The matrix ele-
ments are absolute distances between ranking positions. We use absolute distances 
to evaluate the performance, as the direction of deviations is not in focus. Rows and 
columns with indices from 1,1 to g,g (A) contain distances between two individual 
ranking positions for all team members and all possible pairwise combinations. The 
elements in the row and column with the index g + 1 show the distances between the 
respective individual ranking position and the team decision (B). The elements in 

Table 1  Team performance measures

Performance measures Calculation Interpretation

Team result team_score − avg(individual_scores)  < 0 → gain
 > 0 → loss

Team intelligence team_score − min(individual_scores)  < 0 → team intelligence
Team stupidity team_score − max(individual_scores)  > 0 → team stupidity
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the row and column with the index g + 2 contain the distances between the individ-
ual ranking positions and the expert ranking (C). The main diagonal has zero values, 
as these elements are self-referential. The entries in the matrix are filled symmetri-
cally identical over the main diagonal to simplify the analytical process.

Figure 2 shows an example of a team cognition matrix based on the laboratory 
experiment data set. The left part of the Figure indicates the individual rankings and 
team ranking for the item “fishing kit” and the team with team-ID 6 (here labeled 

Table 2  Team performance results in laboratory experiments

N = 109 participants, 26 teams, sorted by team result

ID Team size Team score Individual scores Team

Min Max Result Intelligence Stupidity

24 5 30 48 68  − 28.0  − 18.0 −38.0
9 5 40 58 90  − 27.2  − 18.0  − 50.0
1 4 28 38 58  − 22.5  − 10.0  − 30.0
17 4 50 54 102  − 22.5  − 4.0  − 52.0
26 5 42 34 94  − 21.6 8.0  − 52.0
25 5 36 34 86  − 19.6 2.0  − 50.0
13 4 40 28 96  − 19.5 12.0  − 56.0
19 3 38 52 64  − 19.3  − 14.0  − 26.0
14 4 46 44 82  − 16.0 2.0  − 36.0
11 4 52 56 74  − 15.0  − 4.0  − 22.0
5 4 48 36 74  − 11.5 12.0  − 26.0
10 4 42 42 68  − 11.0 0.0  − 26.0
2 4 46 44 72  − 10.0 2.0  − 26.0
23 4 46 34 72  − 10.0 12.0  − 26.0
12 4 52 58 66  − 10.0  − 6.0  − 14.0
3 4 46 36 70  − 8.0 10.0  − 24.0
6 4 66 64 82  − 7.0 2.0  − 16.0
16 4 46 50 56  − 6.5  − 4.0  − 10.0
4 4 60 44 82  − 6.5 16.0  − 22.0
18 3 42 44 52  − 5.3  − 2.0  − 10.0
21 5 56 40 74  − 3.2 16.0  − 18.0
15 4 42 38 50  − 3.0 4.0  − 8.0
7 5 56 46 76  − 2.4 10.0  − 20.0
8 4 72 48 80 1.0 24.0  − 8.0
22 4 68 42 78 4.0 26.0  − 10.0
20 5 80 38 80 14.4 42.0 0.0
Min 28 28 50  − 28.0  − 18.0  − 56.0
Max 80 64 102 14.4 42.0 0.0
Mean 48.9 44.2 74.9  − 11.0 4.6  − 26.0
Median 46 44 74  − 10 2  − 25
SD 12.2 8.0 13.0 9.0 13.0 15.0
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“A”). The experimental setup specifies 15 ranking items. Consequently, the range 
of possible distance values in the matrix is the interval of [1,14]. The team, in this 
example, has four members. Team member A1 ranked the item on position 1. This 
ranking position leads to the following distances to the other team members: 13 to 
team member A2, 3 to team member A3, and 4 to team member A4. These values 
are the first four elements of the first row in the team cognition matrix (the right-
hand section of Fig. 2). The next value of this row shows the distance of A1 to the 
team decision, being four positions away from the team ranking position 5. The 
expert opinion on the relative relevance of the “fishing kit” is ranking position 7. 
The last value of the first row shows the distance of the individual ranking by A1 to 
this benchmark ranking, being six positions away. Accordingly, the matrix contains 
all distances for all team members. Additionally, the element on ag+1,g+2 shows the 
distance between the team ranking (here: 5) and the benchmark ranking (here: 7).

Looking at this exemplary team cognition matrix in Fig. 2, we identify two indi-
viduals being very close to each other in their ranking positions (A3 and A4), while 
another team member is far away from the other individual ranking positions (A2). 
The fourth individual A1 has a small to medium-range distance to A3 and A4. 
Given these distances, we can identify a general heterogeneity of individual rank-
ing positions for the “fishing kit” in this team.5 At the same time, there is a majority 

0 a1,2 a1,3 … a1,g a1,g+1 a1,g+2

a2,1 0 a2,3 … a2,g a2,g+1 a2,g+2

a3,1 a3,2 0 … a3,g a3,g+1 a3,g+2

… … … … … … …
ag,1 ag,2 ag,3 … 0 ag,g+1 ag,g+2

ag+1,1 ag+1,2 ag+1,3 … ag+1,g 0 ag+1,g+2

ag+2,1 ag+2,2 ag+2,3 … ag+2,g ag+2,g+1 0

A B C

Fig. 1  Team cognition matrix (TCM) – Overview of the cognitive structure of a single team with team 
size g, filled for a single ranking item. A distances of individual decisions to other team member deci-
sions, B distances of individual decisions to team decision, and C distances of individual decision to 
expert decision (performance measure)

0 13 3 4 4 6
13 0 10 9 9 7
3 10 0 1 1 3
4 9 1 0 0 2
4 9 1 0 0 2
6 7 3 2 2 0

A Item: Fishing kit, Team: A (team-ID 6) B C

Individual rankings
A1 1

A2 14

A3 4

A4 4

Team ranking
A 5

Expert ranking

Performance (A) 7

Fig. 2  Ranking results and the resultant team cognition matrix for “fishing kit” and team-ID 6 (here 
labeled “A”)

5 More details on the distribution of distances and the evaluation measures of distances follow in Sect. 6.
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with very close ranking positions of 4 and 5, and the team agreed on ranking posi-
tion 5. This indicates the possible occurrence of a majority decision on this ranking 
position. The majority and team decision were also closer to the benchmark than 
the other team member ranking positions. Thus, the better decision prevails in this 
example.

The matrix structure allows for such an evaluation of emergent results from indi-
vidual to team levels. We analyze and identify the individual and team cognition 
structure characteristics, their frequency of occurrence, and their explanatory power. 
In addition, this model provides a formal link to the team decision submodels in our 
agent-based model.

5  Measuring team cognition

Along with this structure, we measured and reported team cognition matrices for 
each team and item in the laboratory experiment, resulting in 390 matrices for 15 
items and 26 teams. These matrices provide information on the distances between 
team member rankings (representing the homogeneity of the cognitive structures), 
the distances between individual and team rankings (representing the degree of con-
sensus between individual and team rankings), and the distances from the bench-
mark (representing the individual and team performances). On closer inspection, 
the analysis reveals four reoccurring team cognition structures: consensus, majority, 
parties, and compromise (Fig. 3). For the identification of these types, we focus on 
the individual distances between team member rankings (the areas within the dotted 
lines).

In the example of case 1 (consensus), all members of team 23 individually ranked 
“water” as the most relevant item for survival. Consequently, all values are zero; the 
cognitive structure among the team members is homogeneous. We refer to this case 
as a “consensus.” The distances between individual rankings and team decisions 
reveal the degree of agreement between the individual rankings and team ranking. 

0 0 0 0 0 12121110102
0 0 0 0 0 012 0 1 2 2 9
0 0 0 0 0 112 1 0 1 1 10
0 0 0 0 0 212 2 1 0 0 11
0 0 0 0 2120 2 1 0 0 11

011110191022222

0 1 7 7 0 97501 3 8
1 0 6 6 1 42050 2 3
7 6 0 0 202767 4 1
7 6 0 0 024967 6 1
0 1 7 7 0 1 3 2 4 6 0 5

051138016601

ytirojaM:2esaCsusnesnoC:1esaC

Case 4: CompromiseCase 3: Parties

Group 23 (item "mosquito net")

Group 4 (item "map")

Group 17 (item "radio")

Group 23 (item "water")

Fig. 3  Four identified team cognition structures
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In case 1, these values are zero for all team members. The team agreed on “water” 
being the most relevant item.

Overall, we observe a consensus pattern (case 1) in 15.1% of all ranking deci-
sion scenarios. From this situation, it is potentially easier to come to an agreement 
when individual positions are close to each other, as reflected in this example. In 
the laboratory experiment, we frequently observe this situation for the item “water.” 
Given the qualitative data from observations and audio records, the decision on this 
item is often the first and most straightforward decision. Regarding the performance, 
this decision reached individual and team scores of 2, as the expert opinion ranked 
“water” in position three.

More complicated situations occur if the positions are further apart from one 
another. Case 2 shows the team cognition structure for team 4 and the item “map.” 
As evident, there is a majority of three team members with close ranking posi-
tions, and one team member with large distances being ten to twelve positions away 
from the team. Consequently, we call this case a “majority.” We frequently find this 
majority structure, more specifically in 46.7% of all ranking decisions.6 Looking 
at the distances between individual and team rankings in the empirical example of 
Fig. 3, we find that the majority determined the team decision.

Case 3 illustrates another typical team cognition structure, with the team mem-
bers split into two parties. Here, the two team members of each of the two parties 
have close ranking positions, but the subgroups as such are far away from each other 
(by six and seven ranking positions). This is a frequently observed structure that we 
call “party.” In our data set, we identify both successful winning and unsuccess-
ful winning parties. 24.4% of all ranking decisions had a party structure. We often 
observe that a particular party gets its way and defines the team decision. In this 
example, Team 17 ranked the item “radio” close to one of the two parties.

Finally, in 13.9% of all ranking items, we identify situations in which the indi-
vidual ranking positions are scattered to such an extent that no majority or no party 
split of ratings is formed. This decision structure is called a “compromise.” Case 4 
represents such an example for team 23 and the item “mosquito net.” If no majority 
emerges, teams often find a compromise between individual ranking positions.

6  Agent‑based model of team cognition

To further explicate the potential link between socio-cognitive structures and sub-
sequent team decisions, we use the identified team cognition patterns to implement 
potential decision dynamics in a simulation study. By doing so, our aim is to test 
their predictive power for the emergent team outcome and performance. We apply 
agent-based simulation (Macal 2016; Smaldino et al. 2015; Secchi 2015) and endow 

6 Interestingly, for the item “map,” the majority of team 4 was not correct in comparison to the expert 
opinion. We identify a team score of 11. The individual with a single opinion, however, was very close 
to the benchmark with an almost perfect individual score of 1. We find both correct and wrong majority 
decisions in the data.
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the agents with team decision rules that use the team cognition structures as crite-
ria for the team decision. For the implementation of the simulation model and the 
analysis of the empirical and simulated data, we use the programming language R.7 
The data analysis of the laboratory experiment and the simulation output analysis 
runs through the same code lines in R. This procedure reduces errors and facilitates 
the validation process.

The simulation provides a computational testbed to investigate team processes 
and to develop theory in this field via agent-based modeling (Lorscheid et al. 2019; 
Grimm and Railsback 2012; Heine et  al. 2005). As a first step, we use a random 
decision model to create a benchmark to evaluate the performance of the individuals 
and the groups in the laboratory experiment (see Sect. 6.1). We also use this model 
to perform an error variance analysis to determine the number of required simu-
lation runs. In the second step (see Sect. 6.2), we analyze the predictive power of 
the different implemented team decision models. Finally, as a third step (Sect. 6.3), 
we discuss potential model refinements, such as the effects of the interdependencies 
among the items.

6.1  Performance evaluation based on a random model

We start with a random decision model as a benchmark to evaluate the empirical 
results.8 In essence, this model is based on the random drawing of ranking positions 
per item. The model provides an orientation to the expected values and the range of 
the performance measures for purely random decisions.

The random model is implemented as follows: First, to rank each item, a ran-
dom ranking position is drawn from a uniform distribution Ω = [1,15]. Thereafter, 
a cleaning step is run through every ranking position, starting with the first ranking 
item, to check for duplicates in ranking positions. To eliminate these duplicates, the 
algorithm randomly selects one of the duplicate occupancies and sets it at the next 
ranking position.

This stochastic model has many possible combinations. Therefore, to obtain sta-
ble and representative results, the number of repetitive draws via simulation runs 
is important (Lorscheid et  al. 2012). For this reason, we perform an error vari-
ance analysis to determine the number of runs for the subsequent simulation model 
experiments (see Appendix B). Accordingly, we set the number of runs at 5226. 
This provides a good balance between further decreases of variance and the com-
putational costs of more runs, and avoids the risk to overpower by adding too many 
runs, which affects the significance of the results (Secchi and Seri 2016).

7 The R code and data are available from Iris Lorscheid (2021, May 23). “Team Cognition” (Version 
1.0.0). CoMSES Computational Model Library. Retrieved from: https:// www. comses. net/ codeb ases/ 
59e20 39b- 3ebb- 413a- bf34- 5c8c9 f441b e2/ relea ses/1. 0.0/.
8 The benchmark model could alternatively be analytically modelled as a stochastic urn model without 
replacement. In our research process, we start with the random simulation model as benchmark that is 
then stepwise extended to the decision models. Through this systematic approach, we stepwise extend 
the external model validity and evaluate the results of these changes.

https://www.comses.net/codebases/59e2039b-3ebb-413a-bf34-5c8c9f441be2/releases/1.0.0/
https://www.comses.net/codebases/59e2039b-3ebb-413a-bf34-5c8c9f441be2/releases/1.0.0/
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The random model can be used as a benchmark for both the experimental results 
and the implemented decision models. In this section, we evaluate the performance 
at the individual and team levels in the laboratory experiment in comparison to the 
performance of a random process. To operationalize performance, we again use the 
distance of the ranking positions relative to the expert ranking position.

First, at the level of individual decisions, we compare key descriptive statis-
tics (mean, median, min, and max) of the performance scores from the laboratory 
experiment with those of the random model. The median of the score in the ran-
dom model benchmark is 76, the mean score is 74.86, and the standard deviation 
12.56. In the laboratory experiment we have a median score of 60, a mean score of 
60.07, and a standard deviation of 14.90 for the rankings at the level of individu-
als. Thus, the individual rankings improve in comparison to the random benchmark 
by − 14.79. The maximum possible score and thus the worst score in the random 
simulation model is 112. The minimum theoretical achievable score is 0. The actual 
best score for all 15 items observed in the simulated random model is 22,9 whereas it 
is 28 in the laboratory experiment.

Considering the team level results of the laboratory experiment, we find a better 
performance for teams than at the individual level. The mean of all team scores in 
the empirical data set of 26 teams is 48.85, the median is 46, and the standard devia-
tion is 12.21. Comparing the median scores, the group almost doubles the overall 
improvement (− 30) to the individual results (− 16), which indicates the capabil-
ity of team decisions. In this line, the team decision process leads to better overall 
results in comparison to the random model by − 26.01 on average.

In addition, we considered the performance of individual items, as they might dif-
fer from item to item, for a more nuanced understanding of the underlying processes. 
The top boxplot A in Fig. 4 shows the distribution of performance of the benchmark 
simulation model for each item. The items are plotted on the x-axis in the order of 
the expert ranking, starting with the highest ranked item “mirror” and the least rel-
evant item “sextant” at position 15. Given the ranking structure from 1 to 15 and the 
operationalization of performance, the individual items are limited differently. Items 
that lie in the middle range of the expert ranking have a smaller possible deviation to 
empirical ranking positions than items that lie at the edge. The central item “nylon 
rope” has a maximum score of 7. By contrast, the items “mirror” or “sextant” have a 
possible maximum score of 14. Accordingly, the distributions of the scores obtained 
from the random model are wider at the borders and more restricted in the middle 
range. The resulting different ranges of scores per item apply equally to the empiri-
cal and simulated rankings.

In Fig. 4, the two boxplots B and C depict the performance of the individual and 
team-level decisions in the laboratory experiments. Table 3 identifies the differences 
between the three data sets. Here, as well, we mainly find improvements in the score 
distributions for individual and team rankings, as previously identified through the 
aggregated statistical measures.

9 The reason why the theoretical optimum of 0 was not reached in the simulated model resides in the 
large number of combinations of 15! – which is significantly larger than the performed 5226 runs.
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In respect of the box plot B for the individual decisions, there is evidence of a 
good performance for the items “water” (mean = 2.12, sd = 1.46), “army ration” 
(mean = 2.32, sd = 1.94), and “nylon rope” (mean = 2.35, sd = 1.77). The narrow dis-
tribution indicates a similar initial evaluation of these items among all participants. 

Fig. 4  Evaluation of random ranking scores (A) vs. individual random ranking scores (B) vs. team rank-
ing scores (C) using boxplots. Note that in this figure the item abbreviations are the following: mir (mir-
ror), oil (oil), wat (water), arm (army ration), pla (plastic sheeting), cho (chocolate bar), fis (fishing kit), 
nyl (nylon rope), cus (seat cushion), sha (shark repellent), rum (rum), rad (radio), map (map of the atlan-
tic ocean), mos (mosquito net), and sxt (sextant)
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For the other items, the distribution scale is broader, for example “map” (sd = 3.61), 
“mirror” (sd = 4.46), and “sextant” (sd = 4.40). For these items, the decisions are 
based on more diverse ranking positions.

The boxplot for the team decisions (C) confirms that the teams benefit from the 
collective decision-making process and attain better results than the individual par-
ticipants. Here, we do find an interesting development for the first two items, “mir-
ror” and “oil.” The individual decisions on these two items do not perform better 
but slightly worse than the random model (by 0.52 for mirror and by 0.93 for oil).10 
Irrespective, considering the team decisions for these items, we find evidence of an 
improvement of the team decision performance relative to the individual perfor-
mance (−2.14 by for mirror and by −1.45 for oil). This indicates the existence of 
instances of “truth wins” as identified by Hill (1982), particularly for the item “mir-
ror.” The discussion drew the participants closer to the expert ranking than the indi-
viduals were able to do on their own. Overall, in comparison to the random model, 
a positive effect on team performance is documented for both individual knowledge 
and the subsequent team processes.

6.2  Comparative analysis of team decision models

This section focuses on the process of team decision making, which in turn leads to 
the better performances documented in the previous section. Specifically, we address 
the process of how a team arrives at a collective decision from the individual assess-
ments. Given the complexity and richness of team decision processes (Hill 1982), 
this is a long-term endeavor. However, our dual intention in this paper is to outline 
the general approach through which agent-based modeling can contribute to this, 
and to take the first step in this direction.

As a starting point, we propose team decision models to reproduce the empirical 
data. To provide a suitable approach for a better understanding of the team deci-
sion process, we implement several submodels of team decision making in a sim-
ulation experiment and evaluate their predictive power. While a submodel ideally 
approximates the empirically observed team decisions, it is already useful to see 
how much the respective decision algorithms are an improvement on simple models. 
The results of alternative submodels provide additional benchmarks to assess the 
predictive power of our decision algorithm. This practice of testing different sub-
models with reference to empirically observed patterns is considered a key element 
in theory development using agent-based modeling (Lorscheid et al. 2019; Grimm 
and Railsback 2012; Heine et al. 2005).

Following Lorscheid et al. (2012), Table 4 explicates the design logic of our com-
putational experiments. In the simulation experiments, we analyze three submodels 

10 Since both elements are in the first two positions of the expert ranking, the possible empirical devia-
tions can reach far into the back-ranking positions and thus we empirically identify a worse result than 
with a random evaluation. In the empirical results, “water” and “army ration” are more to the front and, 
as a result, they displace the distribution of the ranking positions of “oil” and “mirror” by forcing them to 
the back.
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(independent variable) and evaluate their distance from the empirical data. Here, 
we calculate the empirical distances as absolute distances from the simulated team 
rank positions to empirical rank positions for each item i and each simulated team t 
(dependent variable). The decision space (control variable) of the simulated agents 
is set at 15 ranking positions according to the empirical scenario, the consensus 
limit to 3 and the number of runs to 5226 (see Appendix B). In the following sec-
tions, we consider the individual submodels and assess the predictive power of each, 
respectively.

6.2.1  Random

As a first submodel, we implement the decision model “Random” as a benchmark. 
In this model, random teams of random individuals are formed to make random 
decisions. This submodel provides a benchmark to specify the potential value range, 
determine the decision scenario, and to evaluate how much randomness we iden-
tify in the empirical decisions. For the evaluation, the team decisions of the random 
model are compared with the empirical team ranking positions.

In this random model, a random generator draws on a uniform distribution of 
items, ranking their positions from 1 to 15. One might therefore expect uniform dis-
tances between all of the items. The first row of Table 5 shows the resulting values 
of the predictive power of Random. In the mean values, we see fluctuating values in 
the range of 4.34–6.53. In order to understand these variations, we need to consider 
the opposite side of the measured distances, namely the empirical ranking positions 
of the teams (Fig. 5A).

Depending on the dispersion of empirical team decisions, the comparison with 
random decisions is larger or smaller. The largest distance of the random model to 
the lab results is for “water” (6.53). For this item we only found a single team deci-
sion in the empirical team data: all teams rated “water” as the most relevant item, 
thereby placing it in position 1. All other items are on ranking positions greater than 
or equal to 2. Consequently, we observe that this item has a low predictive power 
in the random model. However, for the item “nylon-rope” or “chocolate bar,” large 
variations are apparent in the team decisions. Correspondingly, for these items, the 
deviation of the random model is at a smaller value of 4.34 and 4.48. For the item 

Table 4  Design of the simulation experiments for team decision submodels

Control variable “consensus limit” is only part of the TCM decision model.

Independent Variable Control Variables Dependent Variable

Team decision submodels Decision space: 15 Empirical distance
Random, ZI, TCM abs(simulated_rank_posi-

tionit—empirical_rank_
positionit))

Consensus limit: 3
Number of runs: 5226
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“oil,” we come close to the theoretically expected value of 4.67.11 The mean of all 
items is higher at 4.96.

The results, as expected, confirm the random model’s low predictive power. 
Overall, this presents us with a first indication that individual knowledge and cogni-
tive team processes matter; aspects that are addressed by the next submodels.

6.2.2  Zero‑intelligence agents representing a simple majority

The second submodel is a Zero Intelligence (ZI) model. The concept of Zero-Intel-
ligence (ZI) Agents (Gode and Sunder 1993) was originally developed for trading 
scenarios, in which agents without any strategy traded randomly on the market. 

Fig. 5  Distribution of empirical ranking positions after team decisions in the laboratory experiment (A) 
vs. distribution of simulated ranking position based on the TCM model (B)

11 For the frequency distribution of all possible distances within an equally distributed ranking from 1 to 
15, we calculate an expected distance for random draws of 4.67.
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Surprisingly, in this setting, they produced rather good results. We apply this con-
cept to analyze a team decision without a detailed strategy.

The decision model involves a random selection of a single, individual ranking 
position from the team for each item. The team compositions correspond with the 
empirical teams of the laboratory experiment, with the inclusion of the individual 
knowledge of the team members. The teams consist of the same number of individu-
als with the same knowledge structure combinations as in the laboratory experiment. 
Content wise, the model implements a simple type, random majority mode: the 
probability of selecting a ranking position increases with the number of shared or 
similar individual positions in the team, as the model randomly draws an individual 
evaluation of a team member. The restriction that each ranking position can only 
occur once still holds, implying a subsequent cleaning step that eliminates double 
entries. In this case, the same randomized cleaning step is applied as described in 
Sect. 6.1 regarding the random model.

The second row of Table 5 reports the predictive power of the ZI model. Over-
all, its performance is better than that of the random model, as reflected by a mean 
empirical distance of 3.22 for all items. In this context it should be noted that we find 
a different picture for the item “water” than in the random model. Whereas “water” 
had the least predictive power in the random model, in the ZI model it has the most 
predictive power with the smallest empirical distance of 0.76. For this item, a simple 
random majority model already provides a good prediction.

The highest value for distances are evident for the items “map” (4.25), “sextant” 
(3.95), “mirror” (3.94), and “oil” (3.92). This indicates that the selection of these 
items did not result from majority decisions but were decided on by means of other 
discussion processes not included in this model. The teams formed new opinions 
that are not represented in most of the individual assessments. In the team discus-
sions’ observations, we find evidence that these items had been considered for a long 
time. In a subsequent study, this finding should be further examined with quantified 
measures on the number of arguments exchanged per item. Overall, the ZI model 
provides a substantial improvement and therefore insight into the extent to which 
majorities influence and explain team decisions.

6.2.3  Decision algorithm team cognition matrix (TCM)

The third team decision model is based on the identified patterns of the team cogni-
tion matrix (subsequently abbreviated as TCM). This submodel includes more com-
plex, empirically measured structures in the decision process (Sect. 5). As described 
below, the structures provide a refined algorithm for team decision making.

Overall, the TCM team decision process has three phases: the identification of the 
team cognition structure per item (phase 1), the decision on a team ranking position 
per item (phase 2), and the cleaning of the ranking to avoid duplicates (phase 3). The 
model runs through all of these phases for each item and each team.

In phase 1, the algorithm evaluates if the cognitive structure represents the cate-
gory “consensus”, “majority”, “party”, or “compromise”. The control variable “con-
sensus limit” supports the identification of the team’s cognition-structure category. 
The distance between two individual ranking positions must be smaller than or equal 
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to the consensus limit, so that this distance is assessed to be “close enough” to con-
firm consensus between the two positions. This comparison of distance and consen-
sus limit constitutes the core decision for the structural evaluation of each team cog-
nition matrix in the simulated team decision. In the current simulation experiments, 
we set the value of the consensus limit at 3.12 When all individual, absolute-ranking 
position distances in a team are smaller than the consensus limit, the program identi-
fies consensus in the team. If this is not the case, the algorithm continues and checks 
if a majority of team members have close ranking positions below this limit. If so, 
the algorithm identifies a majority structure for this item. Otherwise, if no majority 
structure is identified, the program proceeds to check if the team splits into two par-
ties of ranking positions. In this case, the model evaluates a party structure. If the 
simulation does not find a party structure, it means that none of the three chosen 
categories matched and then the socio-cognitive structure of the item is assigned to 
the fourth type; labeled a compromise decision.

In phase 2, the identified category of phase 1 determines the chosen team ranking 
position of the respective item. If the team exhibits consensus in the individual rank-
ing positions, it agrees on a randomly chosen,13 individual ranking position within 
the consensus range. Otherwise, if the team has a majority, one of the individual 
rankings from the majority determines the team decision. If there is no majority but 
a party structure in the team for an item, a randomly chosen party wins, and one of 
the individual rankings in the winning party defines the team ranking position. This 
represents a random selection of one of the two parties, which has no further rela-
tion to other factors in the current model’s version (additional factors might be indi-
vidual characteristics such as dominant individuals or spokespersons). We account 
for this stochasticity by repeating the simulation of team decisions several times. If 
the cognitive structure belongs to “others,” the team opts for a compromise, being 
the average of all individual ranking positions for this item. We often observe this 
heuristic at the end of discussions when the team has not reached an agreement on 
open items and then jointly agrees on an evaluation positioned in the center.

Phase 3 involves a cleaning step for the TCM decision model to avoid dupli-
cates. In contrast to the previous models, this model includes priorities for rank-
ing positions based on the cognitive structure. Depending on the individual 
knowledge combination in the team, items are prioritized so that they main-
tain their rank and not shift due to competing ratings. As observed in the labo-
ratory experiments, teams were more certain about items on which there were 

12 The value 3 is a compromise to capture not only equal ranking positions as consensus, but also rank-
ing positions that are close to one another. A sensitivity analysis shows that lower values of the consen-
sus limit tend to weaken the predictive power of several items, while higher values tend to strengthen the 
predictive power. But there are no consistent effects for all items. This confirms the power of majority 
decisions as identified by Hill (1982). In a future analysis, we aim to systematically analyze variations 
of consensus limits to identify varying sizes of majorities that determine decisions made at a team level. 
This will be another, different team decision submodel, the predictive power of which is to be evaluated 
in comparison to the other models.
13 We intend considering alternative selection strategies in future research, such as choosing the indi-
vidual ranking position that appears most frequently within the consensus range.
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more agreement. Accordingly, teams retained these ranking positions, while the 
ranking positions of the items that produced more controversy were more likely 
subject to change. Fitting in with this team process, items resulting from a con-
sensus decision (15.1% of all cases) have a higher priority in the TCM model 
than majority decisions (46.7%), items with majorities have a higher priority than 
party decisions (24.4%), and compromise decisions (13.9%) have the lowest pri-
ority for retaining their ranking positions in the case of duplicates. Items with the 
same ranking position and the same priority class are selected randomly and are 
moved.

Panel B (Fig. 5) graphically depicts the resulting team ranking positions of the 
TCM model. By considering the distributions and comparing them with the empiri-
cal ranking positions, we identify many items with the same tendencies regarding 
high, medium, or low median values. However, we also identify broader distribu-
tions in the simulated data set than in the empirical data set; an outcome that is 
partly driven by the large number of observations in the simulation

According to the empirical data, all teams ranked “water” as their highest prior-
ity. Looking at the simulated data, we find a ranking position greater than 1 (at rank-
ing positions between 3 and 6) in 1.9% of all team decisions on “water.” In all of 
these cases the team decision was a party decision, meaning that this decision was 
not determined by the majority. A review of the individual empirical data shows that 
in 25 cases the study’s participants rated the item “water” in lower-ranked positions. 
As the decision algorithm’s calculation is based on empirical team compositions, 
some simulated groups followed these individual evaluations.

The comparative analysis (Table  5) shows that both submodels provide an 
improvement over the random benchmark and that the TCM model has a smaller 
empirical distance (mean = 2.87) than the ZI model (mean = 3.22). Overall, both 
models succeed in providing a certain approximation to the team decisions. Con-
sidering the improvements for each item, we find that the TCM model has simi-
lar or better values than the ZI model. By comparing the ZI and TCM models, we 
find that the latter is generally up to −0.85 better than the ZI model. We notice an 
improvement in eleven items. Only four items show no or only a small decrease in 
the predictive power of the TCM model compared to the ZI model (highest value 
0.15). The biggest improvement in predictive power concerns the item “sextant” 
(− 0.85 from ZI to TCM). Other items with better results for TCM are “army ration” 
(− 0.82), “map” (− 0.77), and “water” (− 0.68). Collectively, TCM adds complexity 
to the simple majority model of ZI, referring to potential team processes and these 
aspects have a positive effect on the predictive power of TCM.

The best result is for the item “water” (−5.77 from Random to ZI and −6.45 from 
Random to TCM). The empirical data confirms the existence of a broad consensus 
among all teams and individuals that this item must be ranked high. We notice a 
similar picture for the item “army ration.” At the lower end, we identify weak pre-
dictive power for the item “mirror” (−0.50 from Random to ZI and −0.48 from Ran-
dom to TCM), and results between −0.7 and −1.0 for the items “chocolate bar,” 
“oil,” and “plastic sheeting.” For these items, we observe diverse perspectives on the 
part of the team participants and no knowledge in the individual data, implying that 
the decision model cannot come to a better conclusion.
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Table 6 provides another perspective of TCM’s predictive power by listing the 
frequencies of the respective empirical distances per item. This analysis evaluates 
how close the simulated group decisions come to the empirical group decisions and 
for which share of ranking decisions. This comparison is possible for each group in 
the laboratory experiment because the simulation selects the team decisions for the 
same team constellations as in the empirical data. We find that in 19% of all rank-
ing decisions, the simulation matches the empirical team decision with a distance of 
zero. In 66% of the cases the distance remains at a maximum of 3 and in 89% of the 
cases at a maximum of 6.

Finally, we performed a Kolmogorov–Smirnov test (Fig. 6) for a more detailed 
look at ranking positions at the item level. In this test, we compared the distribu-
tions of the empirical team ranking positions with the simulated team ranking posi-
tions per item. The analysis shows that, for some items, a similar distribution of the 
empirical power can be seen across all ranking positions (see, e.g., “fishing kit,” 
“nylon rope,” or “seat cushion”). Some items are better predicted by the simulation 

Fig. 6  Comparison of the distribution of the empirical team ranking positions (solid line) with the distri-
bution of the simulated team ranking positions (dotted line)
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on some than on other item positions (e.g., “mirror,” “plastic sheeting,” or “choc-
olate bar”). The smallest deviations between the distributions are reported by the 
Kolmogorov–Smirnov test for the items “water” (D = 0.02, p = 1), “nylon rope” 
(D = 0.13, p = 0.81), and “seat cushion” (D = 0.13, p = 0.80). We do not find any evi-
dence of systematic over or underestimation of the model.

Overall, we see the first approximations of the decision models to the empiri-
cal data. The predictive power of Random provides a benchmark, as it represents 
predictions based on random team constellations and random team decisions. It is 
a “zero model” in respect of which we do not assume any strategies, knowledge, or 
rationality (Railsback and Grimm 2012). Starting from this benchmark, we contin-
ued the research process by extending the model to the ZI and TCM models with 
improved empirical validity. We contend that they at least partially represent indi-
vidual knowledge and empirical team dynamics. We assume a certain logic behind 
the empirical team decisions in the laboratory experiment, which we would like to 
approximate and understand step by step. The ZI model captures the idea that the 
more individuals share a similar ranking, the greater the probability that this deter-
mines the team decision. The TCM model includes more detailed information on 
team cognition structures and on the potential decision processes triggered by these 
structures. A further step in this direction would be to add a “truth wins” component 
to the models, representing the notion that discussions tend to converge on truth.

We recognize the step-by-step approximation achieved by the ZI and TCM mod-
els. In the next section we discuss additional observations derived from the labora-
tory experiments and indicate how they affect the submodels and ideally increase 
their predictive power.

6.3  Effects of the cleaning step and other explorations

We forthwith discuss additional factors that influence the decision process, leading 
to the identification of small variations in a particular submodel, and suggest how 
the submodels could be extended by future research.

6.3.1  Cleaning step

At the outset, we considered the interdependence of the item positions. Participants 
in the laboratory experiments faced the task of assigning all 15 ranking positions 
only once. Therefore, items that were equally rated in importance had to be ranked 
in sequence. The same process was also implemented in the simulation by a clean-
ing step. After the first evaluation of the items based on the decision rules of the 
respective model (Random, ZI, or TCM), the team result was checked for duplicates 
in the ranking positions. In the Random and ZI model, one of the duplicates was 
randomly drawn and moved downward by one ranking position (Sect. 6.1). This was 
repeated for all multiple assignments. The TCM model added priorities based on the 
teams’ cognitive structure regarding the particular item, as observed in empirical 
observations.
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The effect of this cleaning step on the predictive power of the TCM submodel is 
indicated in Table 7, based on the comparative before-after change of mean empiri-
cal distances in respect of each item. The data indicate the overall smaller effects 
of this model’s modification, since all values are below + / − 0.4. Regarding a pos-
sible interpretation, it should be kept in mind that the items are sequenced along 
the expert-ranked order. For the most important items, the cleaning step leads away 
from the empirical results. Based on the priority-based shift of positions, the mod-
el’s predictive power improves for less relevant items. The items in the center area 
exhibit larger shifts in both directions.

According to the observations in the laboratory experiment, the items’ order of 
discussion – in most cases – started with the individually highest-evaluated items, 
continued with the items that were individually evaluated as least important, and 
concluded with the remaining items. Consequently, items at a medium level of pri-
ority shifted most in the rankings.

6.3.2  Consensus and majority

Another observation is that consensus and majority are only two of the observed 
team cognition structures (61.80%). Nevertheless, they constitute the core element 
of the current TCM model. Therefore, it is worth considering the predictive power 
of the related decision types (majority and consensus decisions) by contrasting them 
with the model’s other, lower prioritized types (party and compromise decisions). 
Figure 7 compares the predictive power of these two decision types by separating 
the data sets, accordingly.

The graph shows that, in many cases, the distribution of empirical distances for 
majority and consensus decisions is narrower with smaller variance than that of the 
other team decision heuristics, for example, the items “oil,” “fishing kit,” or “sex-
tant.” For “oil” we observe a mean empirical distance of 3.26 and a standard devia-
tion of 2.00 for consensus and majority decisions, and a mean of 4.37 and a standard 
deviation of 3.07 for the other heuristics. For “sextant” we observe a more extreme 

Fig. 7  Comparison of the predictive power of the majority and consensus decision types (white) with the 
predictive power of the party and compromise decision types (grey) using boxplots
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change, namely a change from consensus and majority decisions (mean = 2.22, 
sd = 1.83) to party and compromise decisions (mean = 3.98, sd = 3.65). However, 
there are a few other examples where the situation is different. For the items “choco-
late bar” and “rum”14 the majority decision appears not to perform better.

We find that, to a certain extent, decision type correlates with predictive power. 
Table 8 shows the Pearson correlation coefficients between the measures “empiri-
cal distance” and “decision type” for all 15 items. Decision type was coded by the 
values 1 for consensus, 2 for majority, 3 for party decision, and 4 for compromise. 
In this analysis we find medium correlations for “water” (0.40**), “army ration” 
(0.38**), and “fishing kit” (0.36**), as well as for “shark repellent” (0.28**), “map” 
(0.22**), and “sextant” (0.28**). No correlations were found for “plastic sheeting” 
(0.10), “chocolate bar” (− 0.09), “seat cushion” (−0.06) and “rum” (0.09). This 
again indicates that there must be additional explanations for the decisions.

6.3.3  Dominant individuals and exchange of arguments

Our analysis, for the most, shows that a focus on consensus and majority decisions 
leads to a further increase in predictive power. The social process and communica-
tion enhance team cognition, which was also reflected in the simulation model. By 
contrast, we found other cases where the TCM prediction fell short. From the obser-
vations of the laboratory experiments’ team dynamics, we learned that the discus-
sions also show irrational behavior that goes beyond our models. Hence, the team 
dynamics of a particular task must contain more mechanisms than consensus and 
majority. Based on the laboratory experiments, we therefore identify two additional 
points on which further analyses and model refinements should focus: the roles that 
individuals play in the discussion process and the various process paths in the dis-
cussion (exchange of arguments).

We observed that dominant speakers can influence team decisions. As they pre-
sent their arguments with confidence, other team members are impressed and follow 
their recommendations. However, this self-confidence does not always reflect the 
state of knowledge. This was obvious in the case of observed team stupidity. After 
the experiment, when the group was asked who the spokesperson and most influen-
tial member was during the discussion, the members identified the person with the 
weakest individual ranking pattern. Similar processes that go beyond the communi-
cation and exchange of arguments and that are based on individual characteristics 
have the potential effect of weakening predictive power, as they are currently not 
represented in the simulation models.

In the recorded and transcribed team discussions we identified differences in the 
group processes, such as the exchange of arguments in respect of ranking positions. 
To further analyze this, we coded the arguments from the recordings. If a participant 

14 Mean values and standard deviation for consensus and majority decisions on “chocolate bar”: 
mean = 4.27, median = 4, and sd = 2.26, and “rum”: mean = 3.44, median = 3, and sd = 2.39 vs. mean 
values and standard deviation for compromise and party decisions on “chocolate bar”: mean = 3.36, 
median = 3, and sd = 2.55, and “rum”: mean = 2.85, median = 3, and sd = 2.13.
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argued for a ranking position of an item, it was noted accordingly. The result of this 
analysis is a table that presents the exchange of arguments, along with information 
on who argued in what sequence for which item and which position. Another rel-
evant aspect is the point in time when the team decided on a ranking position during 
this exchange. This was also documented. The resulting sequence is the first deeper 
look into the discussion process, such as the frequency of argumentation or jumps 
between the items during the discussion. This analysis also provides an indication 
of which team member prepared decisions in advance, how often and when, while 
the other members remained passive and silent. We provide a video illustrating this 
analysis in the supplementary material; an analysis that can be extended in future 
research.

Overall, this section illustrates how the combination of laboratory experiments 
and agent-based modeling can contribute to a better understanding of team deci-
sion processes. Given the complexity of the issue, this is a long-term endeavor, with 
this paper indicating and performing the first steps. Subsequently, other alternative 
submodels must be developed and tested (Lorscheid et al. 2019; Grimm and Rails-
back 2012; Heine et  al. 2005), which could also incorporate behavior that directs 
team decisions away from the correct ranking, among others the behavior of domi-
nant individuals. The focus on contrasting alternative theories corresponds with the 
principles of inductive “strong inference” (Platt 1964). Theoretical development and 
maturation come into play when repeating the cycle of formulating and testing alter-
native submodels, which are fostered by the availability of new data and patterns.

7  Conclusion

This paper addressed the socio-cognitive processes of teams and, more specifi-
cally, the emergence of decisions at the individual and team levels. We proposed a 
research process that addresses team decisions as an emergent property, using agent-
based modeling that connects individual cognition to team-level decisions. We vali-
dated our model with a laboratory experiment using a ranking task. The experiment 
provided data on the individual and team rankings, as well as quantitative and quali-
tative data on the dynamics of the team decision. We introduced a team cognition 
matrix as a measure of the underlying socio-cognitive structure of teams. By apply-
ing this concept to the experimental data, we identified four categories of team deci-
sion dynamics. These categories formed the basis of the decision algorithm that we 
implemented in an agent-based simulation model. Through this simulation model, 
we tested several submodels of team decision making, representing potential, sim-
plified mechanisms of how team cognition emerges from individual cognition. The 
increasing overall fit of the simulation and the empirical results supports the hypoth-
esis that the modeled decision processes can partly explain the observed team deci-
sions. The combination of the applied methods explicates possible micro processes 
driving decision making in teams, for example in boards or committees.

Overall, this study has shown that, fundamentally, group decision making has the 
potential to reveal the correct decision. There is a tendency to reach a true conclu-
sion through the exchange of arguments and communication, recognizable as better 



1462 I. Lorscheid, M. Meyer 

1 3

group performance. However, there are also processes that lead away from rational-
ity and accurate decision making, involving dominant individuals or a lack of argu-
mentation. We provided a first indication of the influence of these processes on team 
cognition.

This paper contributes in at least three ways to the current literature on interac-
tive team cognition and collective intelligence. First, it develops a process-oriented 
model of team decision making. Although the collective intelligence literature 
emphasizes the importance of processes, these processes are mainly represented by 
static variables such as team members’ social sensitivity or equal shares of conver-
sational turn-taking (e.g., Woolley et al. 2010; Cooke et al. 2000). By contrast, the 
paper adopts a micro perspective of team cognition and creates a dynamic model 
using agent-based modeling (Smaldino et al. 2015). In this respect, this article also 
provides an example and indication of the benefits of combining laboratory experi-
ments and simulation modeling (Klingert and Meyer 2012; Smith and Rand 2017). 
Using this mixed-method approach, empirical investigations and formal modeling 
can iteratively inform each other. Overall, this should increase our knowledge of 
team decision processes and contribute to theory development (Lorscheid et  al. 
2019; Grimm and Railsback 2012; Heine et al. 2005).

Second, the paper develops and tests a measure of team cognition structures by 
introducing the concept of a team cognition matrix. This concept can be useful to 
complement existing measures of team cognition in the collective intelligence lit-
erature. An advantage of our proposed measure is that the team cognition matrix 
is a quantitative representation of the problem’s social and cognitive aspects, to be 
solved by the team members. Besides, this measure is more process oriented, as it is 
linked to typical decision processes that are triggered by these structures.

Third, this paper identifies four categories of typical team cognition structures. 
These team cognition structures are empirically accessible and lead to testable 
hypotheses, which future research can refine. Building on the insights of Hill (1982), 
the identified team cognition structures and the corresponding decision algorithms 
also have immediate practical value as teams may exhibit this course of team deci-
sion dynamics when anyone observes or participates in team discussions. The cat-
egories allow for a critical reflection on both beneficial and dysfunctional team 
dynamics. The ubiquity of teams and team decisions in firms underscores the poten-
tial impact of these results on and their benefits for management.

This paper is the first step in modeling the emergence of team cognition. It 
provides a basis that can also include other social settings. Our approach shows 
a way of finding possible explanations for “how and why organizationally rel-
evant outcomes emerge” (Grand et al. 2016, p. 45), and how to identify under-
lying patterns. Future research should test and refine the hypotheses about the 
four identified structures and the decision processes they trigger. Alternative and 
refined process models should also be developed and tested. This includes mod-
eling interdependencies among items and the implementation of rules such as 
“truth wins.” All of this can help to explain the delta concerning the empiri-
cal results that are not currently explained by the decision algorithm. Analyz-
ing communication processes appears to be particularly promising as a next step 
to refine the model and to increase its predictive power. Additional simulation 
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experiments could potentially reveal further links between cognition patterns 
and team performance. It is also possible to vary the experimental setting. Simi-
larly, further empirical research outside the laboratory and the analysis of result-
ing team cognition matrices in different contexts could help to identify common 
patterns and to produce new data on team decisions and relevant micro-level 
processes.

Appendix A

Table 9 provides additional data about our laboratory experiment.

Table 9  Data set description of 
the laboratory experiment

To the extent possible, the teams were set up heterogeneously in 
terms of gender, age, and nationality
a European Countries: Germany (68), the United Kingdom (2), 
France (1), Russia (1), Serbia (1), and Turkey (1)
b Others: Barbados (1), China (1), India (1), Indonesia (1), Malaysia 
(1), Nepal (1), and Nigeria (1)

Description N

Total sample
 No. of participants 109
 No. of teams 26

Gender
 Male 80
 Female 29

Age
  ≤ 20 3
 21–30 91
 31–40 5
 41–50 5
 51–60 4

  > 60 1
Team sizes
 3 participants per team 2
 4 participants per team 17
 5 participants per team 7

Nationalities
 Europe (5  countriesa) 74
 North America 4
 South/Middle America 6
 Iran 3
  Othersb 7
 NA 15
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Appendix B

Error variance analysis

The error variance analysis supports the identification of the number of runs in sim-
ulation experiments that is necessary to achieve a stable and representative result 
from the simulation’s stochastic process (Lorscheid et al. 2012). The standard error 
serves as a central measure. This measure relates the standard deviation to the 
square root of the number of observations (N) and therewith corrects the confidence 
interval for smaller N.
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Fig. 8  Error variance analysis—standard error of ranking positions for an increasing number of runs

Table 10  Error variance analysis—statistics

Runs 100 200 300 400 500 750 1,000 1200 1400

Mean 7.04 7.45 7.26 7.65 7.85 7.45 7.31 7.47 7.49
Standard error 0.42 0.30 0.25 0.22 0.19 0.17 0.14 0.13 0.12
Median 7.00 8.00 7.00 8.00 8.00 7.00 7.00 7.00 7.00
Standard deviation 4.19 4.21 4.32 4.36 4.27 4.51 4.27 4.37 4.36
Variance 17.74 17.80 18.75 19.04 18.24 20.38 18.28 19.15 18.99
Skewness 0.16 0.03 0.13  − 0.02  − 0.08 0.11 0.10 0.06 0.05
Kurtosis  − 1.03  − 1.15  − 1.19  − 1.24  − 1.15  − 1.30  − 1.16  − 1.27  − 1.26

Runs 1600 1800 2000 3000 4000 5000 7500 10,000 24,000

Mean 7.46 7.41 7.38 7.48 7.59 7.66 7.82 7.81 8.00
Standard error 0.11 0.11 0.10 0.08 0.07 0.06 0.06 0.04 0.03
Median 7.00 7.00 7.00 7.00 7.00 8.00 8.00 8.00 8.00
Standard deviation 4.36 4.36 4.34 4.31 4.32 4.31 4.28 4.28 4.32
Variance 19.05 19.00 18.81 18.56 18.65 18.59 18.33 18.32 18.67
Skewness 0.06 0.07 0.09 0.09 0.05 0.04 0.01 0.01 0.00
Kurtosis  − 1.25  − 1.24  − 1.24  − 1.21  − 1.22  − 1.22  − 1.21  − 1.20  − 1.21
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Figure 8 depicts the standard error of the ranking positions when increasing the 
number of random ranking repetitions. As can be seen, the measure decreases and 
stabilizes with more repetitions and larger sample sizes. Table 10 indicates the sta-
tistics for increasing numbers of repetitions to identify the score’s error variance. We 
identify a stabilization of variance between 5000 and 7500 runs. More than 5000 
simulation runs appear to be a good compromise between further increases in accu-
racy and the computational costs of more runs. In our simulation, we performed 201 
runs for each of the 26 empirical teams, leading to 5226 teams in total performing 
78,000 ranking decisions. Regarding the number of runs, we had 5226 runs for the 
team decisions in the model, with each defining a team ranking across the 15 items 
(Table 10).
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