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Abstract
The intensive care unit (ICU) is one of the most crucial and expensive resources in a health care system. While high fixed costs
usually lead to tight capacities, shortages have severe consequences. Thus, various challenging issues exist: When should an ICU
admit or reject arriving patients in general? Should ICUs always be able to admit critical patients or rather focus on high utilization?
On an operational level, both admission control of arriving patients and demand-driven early discharge of currently residing patients
are decision variables and should be considered simultaneously. This paper discusses the trade-off between medical and monetary
goals whenmanaging intensive care units bymodeling the problem as aMarkov decision process. Intuitive, myopic rule mimicking
decision-making in practice is applied as a benchmark. In a numerical study based on real-world data, we demonstrate that the
medical results deteriorate dramatically when focusing on monetary goals only, and vice versa. Using our model, we illustrate the
trade-off along an efficiency frontier that accounts for all combinations of medical and monetary goals. Coming from a solution that
optimizes monetary costs, a significant reduction of expected mortality can be achieved at little additional monetary cost.

Keywords Intensive care unit . Admission and discharge decisions . Markov decision process . Dynamic programming .

Operations research

Highlights

& We model the decision-making process in the ICU and
determine the optimal policy when a capacity shortage
happens.

& The policies suggest direct implications for ICU man-
agement, such as reserving a certain number of beds
for internal emergencies, or diverting ambulances if a

certain threshold of critical patients is currently in the
ICU.

& We discuss the trade-off between medical and monetary
goals and evaluate an efficiency frontier for both objectives.

1 Introduction

The intensive care unit (ICU) is one of the most crucial
and expensive resources in the health care system [1].
Specialized equipment and highly skilled staff provide
special care to the most severe and acute patients, lead-
ing to significant costs. In the US, costs for intensive
care represent about 16.9%–38.4% of total hospital cost,
which amounts to 5.2%–11.2% of national health ex-
penditures [2, 3]. In order to cut costs, hospitals have
aggressively reduced ICU beds [4]. As a consequence,
the demand exceeds the capacity on a regular basis.
Limited resources and increasing demand lead to over-
crowding in many ICUs. As a result of this, Boyd and
Evans [5] expect a shortfall of intensivist hours in the
United States of 22% by 2020, and that this shortfall
will increase to 35% by 2030.

ICU processes contain various uncertainties, which in-
crease the difficulty of ICU management [6]. For example,
the patient arrival pattern is hard to predict. Patients may be
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directly admitted to the ICU, arrive spontaneously after prob-
lems during a scheduled surgery, or transfer from the emer-
gency department (ED), if necessary with a stopover in the
operating room [7]. Among the patients in the ICU, the degree
and severity of the disease as well as its subsequent treatment
vary significantly. Furthermore, these health conditions will
change during the stay in the ICU rapidly and unexpectedly.
Thus, the length of stay (LOS) of an individual patient is hard
to predict [8].

Patients in need of ICU beds are critically ill by definition.
Most patients’ life-threatening conditions have to be treated
immediately because delayed ICU admission is associated
with higher mortality and additional resource expenditure
([9–11]). In this case, we don’t consider waiting as assumed
in current literature [12–14]. When an additional patient un-
expectedly needs intensive care treatment in a hospital with a
congested ICU, there are two options – both associated with a
major loss of time until sufficient treatment can be initiated.
First, the patient could be transferred to another department or
even another hospital with available ICU capacity. Until then,
the situation might lead to patients being treated in the ED
[11]. Second, a patient currently staying in the ICU is
discharged earlier than planned to make space for the new
patient. KC and Terwiesch [15] suggested such practice when
the system load is high. Early discharge, however, requires
bridging strategies including respective facilities. Many
ICUs, e.g., provide an intervention room to stabilize the pa-
tients’ conditions and bridge for a short time until the bed is
made available. Another option aims at surgical ICU patients
expanding their treatment within the operating theatre, e.g., in
the operating or recovery room. Such bridging approaches,
however, do not substantially resolve the congestion of the
respective ICU [12–14]. Neither of these options is desirable,
because the morbidity and mortality of patients might increase
[15]. Furthermore, patient pathways connect the ICU to other
units inside and outside the hospital [16]. Decisions made in
the ICU also influence upstream and downstream departments
[7]. Capacity shortages in the ICU can also cause congestion
of the patient flow within the entire hospital, e.g., by blocking
transferals from the ED. Additionally, overloaded staff and
decreased revenues are other possible negative effects. Thus,
making good admission and discharge decisions is crucial to
managing ICU capacities efficiently and simultaneously en-
suring a high service quality.

In many ICUs, including the case study hospital, a myopic
strategy (that is, only considering direct and immediate ef-
fects) of patient admission and discharge control is applied:
As long as free beds are available, any new arriving patient is
admitted. In case of capacity shortages, different myopic pol-
icies (such as the early discharging of existing patients or the
rejection of the arriving patient) are applied to minimize the
direct negative consequences that are typically evaluated
based on the judgment of the ICU physicians. Strategies

applied in practice are discussed in several papers [12,
17–19]. Although these myopic strategies are easy to imple-
ment, they have shortcomings. For example, when the last
available bed is assigned to a patient who might also be
diverted or delayed, the next arriving patient who cannot ei-
ther be diverted or delayed will cause an issue. The American
College of Critical Care Medicine defines and regularly up-
dates guidelines on ICU admission, discharge, and triage de-
cisions [20]. They identify the prioritization of patients and
management of scarce ICU resources as an open issue: Instead
of providing a clear recommendation, they conclude that “fur-
ther research is needed on all aspects of rationing critical care
resources to narrow the current gaps in allocating scarce
resources”.

To help answer these questions, we consider optimal ICU
admission and discharge policies in an analytical model. It
shows that capacity allocation and rationing issues are central
and at the heart of important operational questions: When
should an ICU admit or reject arriving patients? Should
ICUs reserve capacity in order to be able to admit critical
patients most of the time or rather focus on high utilization?
Should an arriving patient be admitted, although this necessi-
tates prematurely discharging another? Obviously, both ad-
mission control of arriving patients and demand-driven early
discharge of currently residing patients are operational deci-
sions and should be considered simultaneously. Naturally,
when employing additional staff in the ICU, more patients
can be treated. But the fixed cost of staffing will also be in-
creased, and the training cost should be considered as well.
Finally, the above-mentioned bridging approaches are an in-
herent precondition of such solutions. Actually, more staff and
ad hoc available facilities can be assumed as additional ICU
capacity. In our model, we assume that the capacity of the ICU
(both beds and staffing irrespectively the labelling) is fixed.
To do so, we use the stylized model of ICU admission and
discharge visualized in Fig. 1. As in Litvak et al. [18], patient
arrivals may be differentiated between three types: The first
type includes patients following elective surgeries, where the
nature of the surgery typically requires intensive care. The
arrival times of these patients depend, prima facie, on the
surgical schedule. However, the uncertainties in operating
room scheduling [21] as well as in the surgery process [22]
make the time of arrival at the ICU stochastic. The second type
comprises internal emergency patients. These patients have
already been admitted to the hospital, and unexpectedly re-
quire intensive care. Typical examples are routine surgical
procedures which become more complex and lead to the pa-
tient now requiring intensive care, or readmissions following
early discharges from the ICU. The final type of arriving pa-
tients describes external emergency patients, who are mostly
brought in by ambulance.

To admit a surgical patient to the ICU, many complex
criteria are needed to be considered, e.g., the preoperative
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health status, the invasiveness, the extent of surgery, the sur-
gical organ, and the degree of tissue trauma. The prediction is
complex and characterized by a considerable amount of un-
certainty. This dilemma is reflected in the fact that 70% of all
deaths after surgery in hospitals occur in normal wards rather
than in ICUs [23]. Due to the increasing use of Big Data
analyses in healthcare, machine learning algorithms have been
superior to traditional prediction accuracy scores [24].
Recently, suggested a highly accurate postoperative risk pre-
diction model for ICU admissions Jauk et al [25]. Even if
advanced models accurately predict the probability of postop-
erative ICU demand on a personalized level, the exact predic-
tion alone lacks operational benefit. The key question is
whether a hospital provides for n scheduled patients with a
predicted (even exact) individual ICU treatment probability pi
a total of n or n ∙ pi beds. Since probabilities for ICU demand
usually are right skewed distributed, the answer to this ques-
tion is critical. Nevertheless, any request for postoperative
ICU treatment is decided before elective surgery and, there-
fore, part of the scheduling process for major elective surgery.
Unexpected cancelation of the reservation always leads to re-
scheduling of surgery. Actually, the surgery-related factors
cannot be estimated sufficiently before surgery is completed.
They mainly contribute to the severity of ICU treatment,
which therefore has to be estimated at admission to the ICU
and need to be re-evaluated on each treatment day.

In the case of an internal emergency, an already hospital-
ized patient will be transferred to the ICU – in case of conges-
tion, emergency care has to be provided in another department
of the hospital. These patients’ medical history is given in the
hospital chart. But it does not hold true for the current cause of
the deterioration of the condition. Importantly, even during the
recent COVID-19 pandemic, such patients are not transferred
to other hospitals. Instead, other ICU patients in more stable
conditions are transferred. External emergency patients with a
request for ICU treatment are at their best discussed with the

out-hospital emergency team resulting in working diagnoses
and an estimate of the worst complication to be averted.
Actually, their physical status is unknown before admission
to the ICU. In the case of congestion, ambulances are diverted
to other hospitals with available ICU capacity.

Consequently, almost every ICU patient’s health status is
reliably determined at admission to the ICU but not earlier.
Our model dichotomizes the grade of severity, whichmaps the
current human-based decision algorithm best: high-severity
and low-severity patients. High-severity patients are charac-
terized by a more critical condition, going along with a longer
expected LOS compared to low-severity patients. During their
stay at the ICU, the health status of high-severity patients may
improve to the low-severity status, and the conditions of low-
severity patients might also worsen. Moreover, both types of
patients are regularly discharged from the ICU; in case their
condition further improves, they are transferred to another
unit, or in case of death. Please note that the model can be
extended straightforwardly to include more arrival types that
enable amore differentiated advanced estimation of a patient’s
health status by considering, for example, “safe” electives
(e.g. hand surgery, young people) and “risky” electives (e.g.
heart surgery, elderly), with different probabilities of the pa-
tient’s status being high-severity. The options of admission
and discharge control are admitting or rejecting an arriving
patient, and early discharging an existing patient (“early dis-
charge”). Both rejection and early discharge result in negative
effects to patients and hospitals, both from a medical and a
monetary point of view.

In this paper, we employ a discrete time Markov decision
process (MDP). This modeling approach is standard in com-
parable stochastic dynamic problems with subsequent, inter-
dependent decision opportunities. The objective is to mini-
mize the negative consequences of capacity shortages.
Denied admissions and early discharges are penalized. We
evaluate the policy resulting from theMDP in two case studies

Fig. 1 The patient flow in the
ICU
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capturing different management objectives – a medical and a
monetary perspective – based on real-world data from a large
German teaching hospital. The results show that the optimal
policy from our MDPmodel can considerably reduce the neg-
ative effects from a medical perspective – the mortality due to
capacity shortages may be reduced by 21% in our case study
compared to myopic policies. In contrast, myopic policies
mimicking intuitive decisions seem to work well from a mon-
etary perspective. However, both perspectives are not
aligned and may lead to considerably different decisions
and results. Focusing on monetary instead of medical
goals, for instance, leads to an increase of expected
mortality of nearly 50%. To illustrate the trade-off be-
tween both perspectives, we draw an efficiency frontier
that includes a representative sample of combinations of
medical and monetary goals. We discuss the impact of
different combinations of cost parameters on solutions
and on the robustness of our model in case of over-
or underestimation of cost parameters.

Our approach provides a novel contribution in two
directions: First, it enables an analytical demonstration
of the trade-offs between medical and monetary goals
when designing admission and discharge policies in
ICUs. The impact of different goals is large, and decid-
ing on the percentage of resources to be spent on inten-
sive care is of great societal importance. Second, our
model provides optimal holistic policies combining ad-
mission and discharge decisions in an ICU based on
realistic assumptions. Those policies may lead to direct
implications for ICU management, such as reserving a
certain number of beds for internal emergencies, or di-
verting ambulances if a certain threshold of critical pa-
tients is currently in the ICU. The policies our stylized
model produces are of a low complexity level, which
means that they can be printed out and be directly used
by ICU managers. Thus, there are no requirements on
certain information systems that have to be in place in
order to implement such policies in practice.

The remainder of the paper is organized as follows.
After reviewing the literature on ICU admission and
discharge problems in Section 2, we describe the prob-
lem and present the MDP model in Section 3. Section 4
explains the data for the case studies. Section 5 contains
the results of the case studies. We describe the optimal
policies of a medical and a monetary objective, analyze
their performance, and briefly discuss strategic implica-
tions. We perform sensitivity analyses in Section 6, in-
cluding an efficiency frontier discussion that looks at
combinations of medical and monetary goals by consid-
ering 32 different scenarios with different combinations
of cost parameters, and a study on the robustness of our
model to over- and underestimation of cost parameters.
Finally, Section 7 concludes the paper.

2 Related literature

ICU admission and discharge control problems have been
studied both by medical and management scholars. Several
papers in medical journals (mostly based on retrospective em-
pirical analyses) demonstrate that both delayed admission and
demand-driven early discharge result in negative medical out-
comes. Chalfin et al. [26] state that patients should be admitted
to the ICU as soon as possible, as rejections or delays lead to
undesirable consequences. There are plenty of studies
discussing the effects of early discharge and readmission in
the medical literature. The researchers agree that patients
discharged early face additional risks of health deterioration,
which might lead to readmission to the ICU. A few studies
indicate that these patients tend to have higher mortality than
first-time admitted patients [27–29]. To monitor the time to
readmission, Helm et al. [30] estimate a readmission density
function in order to optimize a post-discharge monitoring
schedule and staffing plan. Furthermore, Chrusch et al. [31]
conclude that high utilization levels of ICUs may increase
readmission rates and mortality rates. Iapichino et al. [32]
agree that higher occupancy levels (indicating higher severity
levels) lead to higher mortality rates. Consistent with those
studies, Bouneb et al. [33] find that bed availability is a main
driver for ICU refusals, and that these refusals lead to an
increase in mortality; Louriz et al. [34] report an increase of
mortality levels of around 10pp (percentage points) in case of
refused ICU admission.

Operations research/management science plays an impor-
tant role in identifying ways to manage ICU capacity efficient-
ly and in ensuring desired levels of service quality. An over-
view of the related literature concerning ICU management
problems published since 1980 can be found in Bai et al. [7].

Several papers discuss the patient flow in ICUs by applying
empirical approaches. KC and Terwiesch [15] analyze dis-
charge and readmission processes with econometric statistical
methods. They demonstrate that early discharging ICU pa-
tients leads to higher ICU readmission rates. Focusing on pa-
tients admitted via the ED, Kim et al. [35] evaluate the effect
of ICU admissions on patient outcomes by analyzing a large
dataset. They conclude that the admission probability is
strongly impacted by ICU capacities – the probability of being
admitted significantly decreases with increasing ICU utiliza-
tion. They demonstrate that admitting patients has preferable
outcomes; for instance, readmissions or transfers can be sig-
nificantly decreased. Thus, admission policies might have a
considerable impact on patient outcomes. Based on their em-
pirical findings, they model the admission control problem as
a discrete version of the Erlang loss model, similar to Shmueli
et al. [36], and apply a simulation to estimate the benefit of
alternative admission policies. A threshold rule that leads to
admission of patients based on the health status and the re-
maining free capacities shows promising results – the benefits
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of applying such a policy clearly exceed those of creating an
additional bed. Hu et al. [37] focus on ICU admission deci-
sions of internal emergency patients using a data set of 21
hospitals. While they find that early admissions of internal
emergencies can significantly reduce negative medical conse-
quences such as mortality, admitting patients proactively can
also congest ICUs, leading to an increase of early discharges.
A study focusing on the effects of occupancy levels on ICU
LOS is carried out by Long and Mathews [38]. They divide
the time a patient occupies an ICU bed in a real “service time”,
where care is provided, and a “boarding time”, where patients
are basically ready to leave but wait to be discharged. This
boarding time correlates with occupancy levels of both hospi-
tal wards and the ICU – it increases with increasing ward
occupancy, and decreases with increasing ICU occupancy.
Interestingly, the effect of high ward occupancy seems to
overweight the effect of high ICU occupancy, as in those
situations, long boarding times are observed. Miedaner and
Sülz [39] study 18 German neonatal intensive care units to
analyze whether the ICUs should have a narrow focus and
admit a homogeneous patient cluster or whether they should
admit a pool of patient clusters. With an empirical study, they
found that the organizational units providing services for com-
plex patients should not have a narrow focus, but should rather
provide services for related patient segments.

In the analytical domain, queueing theory and Markov
models are the methods mostly applied to ICU admission
and discharge control problems. Three of these models apply
different variations of queuing theory: Griffiths et al. [40]
model the ICU admission control problem as an M/H/c/
∞/FIFO (first-in-first out) model, and similarly, Kim et al.
[41] apply an M/M/c multi-server system to analyze admis-
sion control processes. Shmueli et al. [36] apply a similar
M/M/c model to compare myopic first-come-first-served pol-
icies to those where only patients with a certain incremental
benefit are admitted. They demonstrate that higher rejection
rates can lead to preferable medical outcomes. Finally, Chan
and Yom-Tov [42] set up an Erlang-R queueing model to
make discharge decisions.

MDP plays an important role not only for ICUs, but also
for various other hospital departments, such as operating
rooms, EDs, and inpatient wards. Barz and Rajaram [43] use
an MDP for admission control in a hospital. To accept emer-
gency patients under multiple resource constraints, they de-
cide whether to accept or reject elective patients. Approximate
dynamic programming-based heuristics are used to solve the
model. Samiedaluie et al. [44] study the admission policies in
a neurology ward by an infinite horizon dynamic program-
ming approach. Multiple types of patients are classified based
on their medical characteristics. The large scale case study
solved by approximate dynamic programming (ADP) prove
that the optimal policies can reduce the overall deterioration in
patients’ health status. Zonderland et al. [45] develop an

MDP-based decision support tool to schedule the admission
of elective and semi-urgent surgeries, considering the capacity
of operating rooms. Similarly, Yang et al. [46] optimize the
admission policy for surgery patients considering capacity
constraints in the surgical ICU. The patients are grouped based
on the surgeon performing the surgery. They apply a heuristic
solution method to solve the MDP. Even in regular wards,
hospitals face the problem of insufficient capacity.
Thompson et al. [4] manage ward capacity by transferring
patients between different floors in the hospital. To optimize
floor choice, they develop and implement an MDP-based de-
cision support system. Gocgun and Puterman [47], Gupta and
Lei [48] and Yu et al. [49] apply an MDP appointment sched-
uling model to optimize the utilization of medical resources,
and also solve it using approximate dynamic programming. Li
et al. [50] apply dynamic programming as well to schedule
limited resources to a large number of jobs. Xie et al. [51]
implement a nested policy based on dynamic programming
solutions to schedule the appointments for a medical diagnos-
tic facilities.

Four papers using Markov models in an ICU context are
most closely related to our work. Dobson et al. [52] use a
Markov chain model to evaluate ICU performance of an ex-
ogenously given, intuitive decision rule. They model time as
discrete days and define patients by their remaining LOS,
which, they argue, is in reality deterministic for most patients.
If a patient arrives at a full ICU, the one with the shortest
remaining LOS (even possibly the new arrival) is discharged
early. Chan et al. [12], Li et al. [53], and Li et al. [14] use finite
horizon, discrete time MDPs to derive optimal ICU policies.
More specifically, Chan et al. [12] consider a planning horizon
of one week and use a state space containing the number of
patients of several types that are in the ICU. These patient
types are defined by their expected initial LOS that is deter-
mined by a patient’s condition when he/she enters the ICU.
Patients do not change their type and the types have different
probabilities for a regular discharge in one time period. In each
time period, the decision problem is whether and which pa-
tient to discharge early. They only briefly discuss rejections of
external emergency patients, but suggest in their outlook the
consideration of ICU admission decisions to enable a more
holistic view. In contrast, Li et al. [53] study ICU admission
decisions with a planning horizon of one day. Because of this
short horizon, they assume that patients’ health conditions do
not change and there are no regular discharges. They distin-
guish two patient types based on the initial health status. The
health condition of type 1 patients is more severe (diagnosed
with sepsis, respiratory failure, or problems with the central
nervous system) and they are always admitted, even if a
(healthier) type 2 patient must be discharged early because
the ICU is full. Type 2 patients may be admitted if there are
free beds. However, if a type 2 patient is first admitted and
later early discharged, it would have been better not to admit
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him/her. Thus, the decision problem considered is whether to
accept an arriving type 2 patient given the current state of the
ICU. The authors show that a threshold-type policy is optimal,
that is, type 2 patients are only admitted if a certain number of
beds is free and that this threshold decreases over time.
However, this decrease is obviously an artefact of the artifi-
cially limited planning horizon. Controlling for start- and end-
of-horizon effects, a time-homogeneous problem probably
features a stationary solution. Threshold-based policies are
often observed in real-life ICU decision making. Li et al.
[14] focus on the maximization of the survival benefits by
optimizing the ICU planning with early discharge from an
engineering perspective. Their classification of patients fol-
lows Li et al. [53]. Although a longer time horizon of ten days
is considered, patients still do not change their health status.
Unfortunately, there are some disconnects between text and
model (e.g. the probability of any health status change is in-
dependent of the ICU occupation), which may be caused by
the need for simplifications to enable the analytical derivation
of structural properties. Surprisingly, the optimal policy de-
rived implies some situations where only the less critical type
2 patients are admitted, but the more critical type 1 patients are
rejected.

The papers that are most connected to our work are Kim
et al. [35] in the empirical literature, and Li et al. [53] and Li
et al. [14] in the modeling literature. We see our approach as
complementary to Kim et al. [35]. While they analyze a huge
dataset to derive information on admission policies and con-
sequences of those, our approach analytically models such
policies. Contrary to Kim et al. [35], our model does not focus
on patients admitted via the ED only, but also includes pa-
tients with scheduled surgeries or internal emergencies.
Compared to the last two papers mentioned above, our model
is based on less restrictive assumptions to capture important
problem characteristics. In particular, our state space contains
patients’ current health status (high- or low-severity), and,
thus, we consider health status changes while staying in the
ICU: some patients recover and some get worse. Furthermore,
in line with Chan et al. [12], we derive the probability of
regular discharges from the current patient mix in the ICU.
Finally, none of the papers discussed above considers the
effects of medical and monetary goals, and the underlying
trade-off decisions.

3 Problem description andmodel formulation

Both admission control and demand-driven early discharge
decisions are included in the MDP model. In case a patient
arrives at a congested ICU, there are two possible options: to
reject the new patient and to discharge an existing patient early
to make room for the new patient. However, both options can
lead to negative consequences. Therefore, our objective is to

find the optimal decision policy in order to minimize negative
consequences of capacity shortage, which can be assessed
from a medical or monetary perspective.

3.1 Problem setting

We model the problem as a (stationary) discrete time Markov
decision process as illustrated in Fig. 2. The objective is find-
ing the admission and discharge policy that minimizes aver-
age total cost.

We assume an infinite time horizon, and define a time
period small enough that at most one patient arrives within
each time period. The sequence of events is as follows: At
time t ∈ {1, 2…}, time period t begins and all information
indexed with t is available. The ICU with a total capacity of
B beds is occupied by xj,t low-severity (j = 1) and high-severity
(j = 2) patients and a new patient of type i ∈ {1, 2, 3} (elective
surgery, internal emergency, and external emergency) just ar-
rived. If no patient arrived, we set i = 0. Now, admission of
this patient and early discharge of an existing patient are de-
cided. Please note that deciding on an arriving patient is for
illustration purposes only. These decisions are equivalent to
the hospital deciding in advance what it would do with an
arriving patient. In practice, electives as well as external emer-
gencies would not arrive and be rejected but would rather be
canceled or diverted in advance.

The decisions are captured by the binary action vector at

¼ arejt ; aedis1;t ; a
edis
2;t

� �
whose elements indicate rejecting the ar-

riving patient and early discharging of a low-severity patient
or a high-severity patient, respectively. Rejecting a type i ar-
rival leads to penalty costs of creji and early discharging an

existing patient of health status j costs cedisj . Since the bed

preparation time for new patients is relatively short, we ignore
it for new patients as current ICU modeling literature suggests
[12, 14, 54]. Therefore, an early discharge can make room for
a new patient. As mentioned before, only after a new patient is
admitted to the ICU, his/her health status jt + 1 ∈ {1, 2} be-
comes known. This is because if the patient was not admitted,
for example, the ambulance would be diverted and we would
never know about that. Furthermore, both types of patients
can be regularly discharged.

Moreover, patients’ health status may change. A number
yj,t+1 of patients are regularly discharged and zj,t+1 patients change
their status from j to (3− j). Technically speaking, the new infor-
mation ωt+1 = (jt+1, y1,t+1, y2,t+1, z1,t+1, z2,t+1, it+1) becomes
available. If the current patient is admitted, his/her health
status jt + 1 is observed. The information also includes the
possible arrival of the next patient it + 1. In the following,
we present the elements of the MDP model in detail. All
parameters and variables of the model are listed in Table 1.
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3.2 State, action and policy

We use the pre-decision state which captures the state of the
system immediately before a decision is taken. The state
St = (x1,t, x2,t, it) at the beginning of time period t is defined by
three elements: the number of low-severity (x1,t) and high-
severity (x2,t) patients in the ICU as well as the type of the
arriving patient it. We set it = 0 if there is no arrival and assume

that while the arrival type is known at arrival, the health status
can only be diagnosed when the patient is admitted at the ICU.

The action vector at ¼ arejt ; aedis1;t ; a
edis
2;t

� �
consists of binary

elements indicating whether the arriving patient is rejected

(arejt ¼ 1 ), as well as whether a low-severity patient
(aedis1;t ¼ 1 ) or a high-severity patient (aedis2;t ¼ 1 ) is discharged

early.We are interested in a decision rule or policy π that gives

Fig. 2 Sequence of events

Table 1 Parameters and variables of the MDP model

Patient indices i: arriving patient’s type (i=1: elective surgery; i=2, internal emergency; i=3, external emergency; i=0, no arrival)
j: index for health status: (j=1, low-severity; j=2, high-severity)

Cost parameters creji : rejection cost of a patient type i∈{1,2,3} (when the request arrives, only the arrival type is known)
cedisj : early discharge cost of patient with health status j∈{1,2}
c ¼ crej1 ; crej2 ; crej3 ; cedis1 ; cedis2

� �
: cost vector

Distribution parameters h=[hi, j]2×3: probabilities that a type i patient has health status j if admitted
pdisj : probability that a given patient of status j is regularly discharged in one period
pchaj : probability that a given patient of status j changes the health status in one period
λi: probability that a type i patient arrives, no arrival with probability λ0=1−∑iλi

Other parameters B: total capacity of ICU (number of beds)
T: length of time horizon (index t∈{1,…,T})

Action variables arejt : binary decision variable indicating whether to reject the arriving patient (arejt ¼ 1 )
aedisj;t : binary decision variable indicating whether to early discharge a patient with health status j (aedisj;t ¼ 1 )
at ¼ are jt ; aedis1;t ; a

edis
2;t

� �
¼ Aπ Stð Þ: action vector decided at time t with policy π

State variables xj,t: number of patients with health status j in ICU at time t
it: the arrival type of the new patient at period
St=(x1, t,x2, t,it): state vector at period t

Stochastic information jt+1: health status of new patient (a patient of type i has health status j with probability hi, j, known if admitted in t)
yj,t+1: number of regular discharges of type j patients during period t. y j;tþ1∼B xj;t−aedisj;t ; p

dis
j

� �
zj,t+1: number of patients of type j patients who change their health status during period t. z j;tþ1∼B xj;t−aedisj;t ; p

cha
j

� �
it+1: the arrival type of the new patient at period t+1 (a patient is of type i with probability λi)
ωt+1=(jt+1,yj, t+1,zj, t+1, it+1): vector of information that becomes available at the end of period t
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a best action at for every state St. Thus, the action is a function
of the state: at = Aπ(St).

3.3 Stochastic events, transformation function and
transition probabilities

Stochastic events include four parts. During period t, the infor-
mation ωt + 1 = (jt + 1, y1, t + 1, y2, t + 1, z1, t + 1, z2, t + 1, it + 1) be-
comes available. If patient it was admitted to the ICU, his/her
health status jt + 1 ∈ {1, 2} becomes known. A number yj,

t + 1 of patients is regularly discharged and zj, t + 1 pa-
tients change their health status, for j = 1, 2. Finally, a
new patient it + 1 might arrive.

The new state St + 1 at the beginning of the next period t + 1
is a function of the previous state St, the action at and the new
information ωt + 1. It is given by the following transformation
function, which could be easily generalized to more health
statuses (please note that sgn(it) takes a value of 1 if a patient
arrives (it > 0), and 0 if no patient arrives (it = 0)):

Stþ1 St; at;ωtþ1ð Þ ¼
x1;t þ sgn itð Þ ˙ 1−arejt

� �
˙ 2− jtþ1

� �
−aedis1;t −y1;tþ1−z1;tþ1 þ z2;tþ1;

x2;t þ sgn itð Þ ˙ þ 1−arejt

� �
˙ jtþ1−1
� �

−aedis2;t −y2;tþ1−z2;tþ1 þ z1;tþ1;
itþ1

0
@

1
A: ð1Þ

Both the patients’ arrivals and LOS contain uncertainties
that are difficult to model. Although some researchers argue
that there are no suitable distributions to model the arrival
pattern and LOS in the ICU [55], and especially the LOS is
not reliably predictable for individual patients [8], most papers
in the literature apply theoretical distributions. We apply
memoryless distributions for arrival rates and lengths of stay,
an assumption that proved to be suitable in the literature [7].

Regarding the elements of ωt + 1, we model the following
dependencies and distributions:

& The new patient’s health status jt + 1 depends on his/her
type it. Parameters hi, j give the probability that a type i
patient has health status j if admitted and are grouped into
a matrix h = [hi, j]3 × 2. In case a patient is not admitted, the
status is meaningless and, technically, an arbitrary one
realizes.

& The number of regular discharges yj, t + 1 depends on
the number of type j patients in the ICU, that is,
x j;t−aedisj;t . Each patient is regularly discharged (in-

cluding transfers and events of death) with pdisj , in-

dependently from the other patients. Thus, the num-
ber of regular discharges yj, t + 1 follows a binomial

distribution: y j;tþ1∼B xj;t−aedisj;t ; pdisj
� �

.

& Analogously, the number of patients who change their status
zj, t+ 1 depends on the number of patients in the ICU as well,
that is, also x j;t−aedisj;t . Each patient’s health status improves

or deteriorates with probability pchaj in one period, indepen-

dent of the other patients. Thus, zj, t + 1 follows a binomial

distribution: z j;tþ1∼B xj;t−aedisj;t ; p
cha
j

� �
. In addition, the sum

of regular discharges yj, t + 1 and patients who change their
status zj, t+ 1 cannot exceed the number of patients in the
ICU, that is, x j;t−aedisj;t ≥y j;tþ1 þ z j;tþ1

& Finally, with probability λi, a new patient of type i arrives
and with probability λ0 = 1 −∑iλi, there is no arrival. We
group these into the parameter vector λ = (λ1, λ2, λ3).

Thus, the stochastic distributions are described by the fol-
lowing set of parameters: h; pdisj ; pchaj ;λ.

3.4 Cost function and value function

The one-step cost function C(St, at) captures the cost of deci-
sion at in state St:

C St ; atð Þ ¼ crejit ˙ arejt ˙ sgn itð Þ þ ∑ jc
edis
j ˙ aedisj;t

∞
; if x1;t; x2;t ≥0∧x1;t þ x2;t ≤B
; otherwise

�
:

ð2Þ

Rejecting a type i arrival leads to penalty costs of creji
and discharging an existing patient of health status j
early costs cedisj . Note that the first line of (2) refers to

feasible states. The second line prevents that an action
is chosen that leads to an infeasible state via costs of
infinity (for example, more than B beds occupied). We
group the cost parameters into the vector

c ¼ crej1 ; crej2 ; crej3 ; cedis1 ; cedis2

� �
. The “costs” in this model

are an abstract concept, and its implications depend on
the “cost” perspective applied. For instance, costs could
be defined to be the negative effects to the patient
health condition, or lost profits from a monetary per-
spective. Now, we can define the objective function.
As we minimize average total cost, this is

Vt Stð Þ ¼ min
π

lim
T→∞

1

T
Eω ∑

T

t¼1
C St;Aπ Stð Þð Þ

� �
ð3Þ

with St = St + 1(St, A
π(St),ωt + 1).
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4 Model input: Medical and monetary
perspective of admission and discharge
consequences

Based on historical data from a large German teaching hospi-
tal and the current literature, we estimate model parameters,
namely a set of distribution parameters and the cost parameter
vector c. The used patient-related data is either anonymized
data or aggregated data, not requiring any patient informed
consent in accordance with the European General Data
Protection Regulation (EU directive - 2016/679). In
Subsection 4.1, we analyze patient arrivals and the evolution
of their health status (corresponding to the lengths of their
stays) and derive the distribution parameters. In Subsection
4.2, we consider the cost vector c based on two different ob-
jectives of optimization, namely a medical and a monetary
perspective.

4.1 Analysis of historical arrival and LOS data

We obtained three months’ worth of data concerning patient
arrivals and discharges within an ICU of a large German
teaching hospital. There are in total B = 35 beds in this ICU,
and 514 patients were admitted during this time period. For
each patient, we know his/her arrival type and LOS. Arrivals
are highly fluctuating and range from 1 to 12 patients per day.
The utilization level is high (about 95%).

We define the length of a time period as one hour, so that
we can assume that there is at most one arrival per period. In
the following, we shortly sketch how we obtained the required
parameters h; pdisj ; pchaj ;λ from real-life data.

4.1.1 Arrival process

We analyze the historical data and conclude that Poisson pro-
cesses are adequate to describe the arrival process for all three
patient types. However, in the historical data, we know only
the number of admitted patients without any records on the
number of rejected patients. According to the literature
[56–58], the percentage of patients being denied admission
to the ICU ranges between 20% and 60%. Consistent with
McManus et al. [59], who analyzed rejection rates in relation
to ICU utilization, we increase the historical admission num-
bers by a factor of 1.25 (that is, assuming an admission rate of
0.8) to calculate the arrival probabilities. In each time period,
there can be an arrival of an elective surgery, an internal emer-
gency patient, an external emergency patient, or no arrival. As
we have the arrival type in the data, we can directly calculate
the following probabilities:

λ ¼ λ1;λ2;λ3ð Þ
¼ 0:088; 0:153; 0:059ð Þ and; accordingly;λ0 ¼ 0:700:

A visual comparison of historic arrivals and the theoretical
predictions (before increasing the parameters by 1.25) is illus-
trated in Fig. 3.

4.1.2 Health status evolution

In a first step, we directly determined the empirical
distribution of the LOS for each patient type from the
data (solid lines in Fig. 4). In a second step, we cali-
brated the stochastic model outlined in Section 3.3 to
these distributions. Figure 4 shows a good fit between
the historical (solid lines) and the theoretical (dashed
lines) LOS distributions.

More technically, we used a grid search to choose the prob-
abilities h; pdisj , and pchaj for each patient type such that the

resulting probability distribution function of the LOS distribu-
tion most closely resembles the empirically observed one.
Distance was defined as the sum of the absolute distances
for each day. In doing so, we again assume that all patients
are admitted (as only this is contained in our data) and no early
discharges occurred. We obtained the following distribution
parameters:

h¼
0:9980 0:002
0:5426 0:4574
0:5141 0:4859

2
4

3
5; pdisj ¼ 0:0177

0:0024

� �
; pchaj

¼ 0:0019
0:0014

� �
; λ¼ 0:088; 0:153; 0:059ð Þ:

Thus, the share of high-severity patients depending on the
arrival type is as follows: h1, 2 = 0.2% of elective surgery
patients, h2, 2 = 45.74% of internal emergency patients, and
h3, 2 = 48.59% of the external emergency patients are high-
severity patients. Note that most elective surgeries result in
low-severity patients.

The probability of a regular discharge in the next period is
pdis1 ¼ 1:77% for a low-severity patient and pdis2 ¼ 0:24% for
a high-severity patient. In our case study, the capacity of the
ICU is B = 35 beds. No matter how many low-severity pa-
tients are in the ICU, the probability of regularly discharging
more than three low-severity patients is below 0.3%.
Therefore, to simplify the solution of the MDP in this case
study, we only consider three or less regular discharges in
each time period, that is y1, t + 1 ≤ 3. With the same logic, we
find that the probability of regularly discharging more than
one high-severity patient is below 0.3%. Therefore, we can
assume that at most one high-severity patient is regularly
discharged, i.e. y2, t + 1 ≤ 1. This considerably reduces the
number of state transitions to consider without simplifying
too much. Of course, these simplifications depend on ICU size
and the probabilities. If the ICU capacity is orders of magni-
tude bigger, then considering 2 or more simultaneous
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discharges may be necessary. But based on our knowledge,
we feel this assumption should be widely applicable.

The probability that a low-severity patient worsens to high-
severity is pcha1 ¼ 0:19%, while the probability that a high-

severity patient improves to low-severity is pcha2 ¼ 0:14%.
Again, we analyze the probabilities for all possible numbers
of health status changes. For example, it can be shown for our
data set that the probability of z2, t + 1 health status changes
from high- to low-severity is highest if the ICU is full of high-
severity patients (x2;t−aedis2;t ¼ 35 ) and decreases in z2, t + 1 for

our data. For z2, t + 1 = 2, it is only 0.2%. On the contrary, when
x1;t−aedis1;t ¼ 35, the probability of z1, t + 1 = 2 is 0.1%. Thus, to

simplify the computation of the state transitions, we assume
that at most 1 patient of each type (zj, t + 1 ≤ 1) will change the
health status during one time period.

4.2 Definition of costs

Our model minimizes the costs, that is, negative consequences
of capacity shortages within the ICU. Obviously, there is no
global definition of negative consequences. In the following,
we define two possible perspectives: A medical perspective

that minimizes the increase of mortality rates, and a monetary
perspective that minimizes the negative effects on hospital
profits due to lost revenues and additional costs. This offers
the opportunities to discuss the value of our MDP approach
compared to myopic heuristics in both perspectives, the con-
sequences of optimizing the medical perspective on monetary
performance indicators and vice versa, and possible structures
of systems where both perspectives are aligned.

Contrary to lengths of stays and arrival rates as discussed in
Section 4.1, data on the direct consequences of capacity short-
ages on mortality rates or hospital profits are typically not
available. Besides, they depend on the specific case: mortality
rates depend on the level of care and the patient mix. Effects
on profits depend on the reimbursement system and contrac-
tual specifications. For our case study, we chose the following
approach: Regarding the medical perspective, we derive real-
istic ranges from the literature, and discuss the value for our
case study with the case hospital’s ICU manager. Regarding
the monetary perspective, we rely on the Diagnosis Related
Groups system of Germany for the year 2017, the same year
which is relevant for our hospital case study. This system
publishes cost components based on 1,144 diagnosis groups
covering 2.5 million patients. Thus, possible revenues and
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costs for treatments covering surgeries or intensive care can be
derived. In case of rejecting internal emergencies or
discharging patients early, additional nursing care might be
required. Here, we rely on full cost averages for nurses in
Germany. As specified in the previous section, ICU manage-
ment may choose five possible actions – each with an associ-
ated cost – to deal with capacity shortages, depending on the
type of an arriving patient and the patients within the ICU. In
the online appendix, we discuss howwe derived the values for

the cost vector c ¼ crej1 ; crej2 ; crej3 ; cedis1 ; cedis2

� �
for the medical

(cmed) in Appendix B.1 and the monetary perspective (cmon) in
Appendix B.2. The selected cost vectors for the medical and
the monetary perspective are as follows:

cmed ¼ cre j1;med ; c
re j
2;med ; c

re j
3;med ; c

edis
1;med; c

edis
2;med

� �

¼ 1pp; 15pp; 3pp; 2pp; 10ppð Þ:

cmon ¼ cre j1;mon; c
re j
2;mon; c

re j
3;mon; c

edis
1;mon; c

edis
2;mon

� �

¼ 9; 200 €; 5; 800 €; 4; 100€; 700 €; 6; 500 €Þ:ð

Please note that a) the choice of parameter values might
differ from hospital to hospital, and that b) some parameters
might not be determined accurately. In the online appendix,
we provide a detailed sensitivity analysis based on different
parameter combinations (Appendix E.1) and parameter
misspecification (Appendix E.2).

5 Case study: Implications of admission
and discharge policies

We tested the performance of our MDP-based approach and a
myopic benchmark mimicking intuitive decision making in
practice for both the medical and monetary perspective. In
particular, we implemented the following two approaches:

1) MDPo (o ∈ {med, mon}) is the optimal policy following
from the MDP approach described in Section 3 optimiz-
ing the medical or monetary perspective, that is with the
medical (cmed) or monetary (cmon) cost vector.
Technically, we used a finite horizon approximation with
horizon T to calculate the stationary policy from the value

function Vt Stð Þ ¼ min
at

1

T−t þ 1
˙ C Stð

�
; atÞ þ T−t

T−tþ1 ˙

Eωt Vtþ1 Stþ1 Stðð½ ; at ;ωtþ1ÞÞ�g with the boundary con-
dition VT + 1(ST + 1) = 0. This MDP was first solved via
backwards induction (see Appendix A), which involves

the calculation of Bþ 1ð Þ Bþ2ð Þ
2:4 states per time period, that

is 2664 states for B = 35. The time horizon was sufficient-
ly large such that the ICU is in a steady state in the first
time periods and, therefore, the optimal policy reported

here does not depend on the time period. In our experi-
ments, we used T = 168 and observed time-independent
actions for the first 5 time periods. The runtime for this
one-week horizon was about 30 min without
parallelization, which is negligible, as the optimization
needs to be run only once for a set of parameters.

2) Myopico (o ∈ {med, mon}) is the benchmark policy fol-
lowing from an intuitive, hands-on approach. This policy
mimics the decision making in practice and reflects the
status quo in our case study hospital. It only takes imme-
diate costs into account. For example, Chan et al. [11]
applied a similar myopic heuristic. More precisely, as
opposed to the minimization of immediate C(St, at) and
future costs Eωt Vtþ1 Stþ1 St; at;ωtþ1ð Þð Þ½ � in the MDP’s
value function (3), Myopic minimizes only C(St, at). In
our setting, this results in the following simple decision
rules:

Decision rule 1: If no patient arrives, do nothing.
Decision rule 2: If there are free beds, accept any
arriving patient without early discharging.
Decision rule 3: If there is no free bed, select the
cheapest alternative among rejecting the arriving pa-
tient or early discharge of a low-/high-severity pa-
tient from the ICU.

All policies were evaluated by simulation for a one-year
horizon comprising 8760 1-h time periods with randomly gen-
erated arrivals, health status changes, etc. To eliminate start-
of-horizon effects, we simulated an additional 1000 time pe-
riods before this evaluation horizon because preliminary tests
showed that after about 600 time periods, start-of-horizon ef-
fects were not visible any more. The values reported are aver-
ages over 1000 simulation runs. Wherever appropriate, we
also state the 95% confidence intervals of these means. The
experiments were implemented using JAVA version 8 and ran
on a computer with 3.20GHz CPU, 12 GB RAM, and 64-bit
Windows 7.

5.1 Policies resulting from the medical perspective

Figure 5 shows an overview of the policies resulting from
Myopicmed (upper row) and MDPmed (lower row). For each
possible state S = (x1, x2, i), it shows the action a ¼
arej; aedis1 ; aedis2

� �
taken. The columns represent the type of

the arriving patient (i ∈ {1, 2, 3} for elective surgery, internal
emergency, and external emergency, respectively). If no pa-
tient arrives, no action is taken, as discharging one of the
existing patients early only has negative consequences and
can be done later, if necessary. The axes represent the occu-
pancy of the ICU. The vertical axis is the number of low-
severity patients and the horizontal axis is the number of
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high-severity patients in the ICU. For example, the lower right
square represents an ICU full of high-severity patients (x1 = 0,
x2 = 35). Now, four policies representing the relevant combi-
nations of actions exist (all other actions are dominated):

1. The patient is admitted, and no patient is early discharged
(light shade).

2. The patient is admitted, and a low-severity patient is early
discharged (medium shade).

3. The patient is admitted, and a high-severity patient is early
discharged (bright shade with “+”).

4. The patient is rejected, and no patient is early discharged
(dark shade).

Remember that the relationship of the rejection and
early discharge costs in this scenario is

creji¼1 < cedisj¼1 < creji¼3 < cedisj¼2 < creji¼2. The Myopicmed policy

is quite similar for all arrival types. In all cases, patients
are admitted as long as empty beds exist (light shade
below the diagonal). In case of a fully occupied ICU
(represented by the diagonal), the action depends on the
arriving patient: Elective surgeries (i = 1) will be always
canceled, internal emergencies (i = 2) will always be ad-
mitted leading to early discharges (if possible, of low-
severity patients), while external emergencies (i = 3) will
be admitted if low-severity patients can be early
discharged. In case only high-severity patients are in
the ICU the external emergency patient will be rejected.

The MDPmed policy is identical for internal emergencies
(i = 2), which are again always admitted. However, it differs
for scheduled elective surgery patients (i = 1) and external
emergencies (i = 3). In case the ICU contains many high-
severity patients, these patients are rejected even if free beds
exist. The effect is more pronounced for elective surgeries,
from whom a free bed is already reserved even if only eight

Fig. 5 Comparison of the policies ofMyopicmed (upper row) andMDPmed (lower row)
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high-severity patients are in the ICU (x1 = 26, x2 = 8). In the
most extreme case, with only high-severity patients in the
ICU, elective surgeries will be canceled if no more than nine
free beds exist, and external emergencies will be rejected if no
more than four free beds exist. This is driven by the high cost
of early discharging a high-severity patient and her/his longer
expected stay in the ICU. Thus, even with some free beds, the
MDP policy does not ‘risk’ having a full ICU in the future and
rather rejects an elective surgery.

5.2 Policies resulting from the monetary perspective

Second, we compare the myopic and MDP policies based on
the monetary cost perspective (Myopicmon andMDPmon). The
relationship of the rejection and early discharge costs in this

scenario is cedisj¼1 < creji¼3 < creji¼2 < cedisj¼2 < creji¼1. Note that the

rejection cost of an elective surgery patient is now the most
expensive cost, while it was lowest in the medical perspective.

Both Myopicmon and MDPmon yield almost identical poli-
cies in this scenario (Fig. 6). If possible, all patients are admit-
ted. If the ICU is full, the least critically ill patient is
discharged early. The only exception is the case where only
high-severity patients are in a full ICU, and an internal emer-
gency (i = 2) or an external emergency patient (i = 3) arrives.
While Myopicmon rejects this patient, MDPmon admits the pa-
tient and discharges a high-severity patient early.

5.3 Performance analysis of admission and discharge
policies

In this subsection, we analyze the performance of the policies
described above over a one-year horizon using a simulation
with 1000 runs. On average, 2628 patients arrived at the ICU
during this year. We first describe ICU occupancy for
MDPmed and MDPmon using heatmaps and then share perfor-
mance indicators like utilization and compare them toMyopic.
The heatmap in Fig. 7 shows the relative frequency of the ICU
occupancy usingMDPmed. Again, the vertical axis denotes the
low-severity patients and the horizontal axis denotes the high-
severity patients. Obviously, the ICU is never close to empty
(the white area) and in the majority of time, around 1 to 10
low-severity and 23 to 34 high-severity patients are in the ICU
(The 0.0 in the figure illustrates a probability below 0.1%).
Overall, 82% of the patients in the ICU have the high-severity
status, although they only account for roughly 20% of all
admitted patients. This reflects the fact that high-severity pa-
tients stay longer. The key take-away here with regard to the
interpretation of the policies shown in Fig. 5 is that an ICU full
of high-severity patients (almost) never happens, but a full
ICUwith high-severity and low-severity patients is quite com-
mon (27.7%). There is frequently (41.3%) a high utilization
level with only 1 or 2 free beds. Thus, the bed-reserving

property by rejecting elective surgery patients that distin-
guishes MDPmed from Myopicmed is clearly relevant.
However, bed-reserving by rejecting external emergencies
does not create a large effect.

The heatmap in Fig. 8 shows that a situation where
MDPmon admits the patient and early discharges a high-
severity patient actually occurs in some events (in about
2.0% of the time periods, lower right square). Using
MDPmon, the ICU is fully occupied in 54.6% of the time pe-
riods, more than twice as often as in the medical perspective.
The ICU is almost full (1 or 2 free beds) in 33.4% of the time
periods, thus, having more than 2 free beds is quite rare. We
skip the visualization of the heatmaps for the myopic policies.
As can be seen in Table 2, the resulting utilization levels are
quite similar to MDPmon. Table 2 summarizes performance
indicators for both approaches and perspectives together with
their 95% confidence intervals. First, we discuss the monetary
perspective, where myopic policies perform well, before we
turn to the medical perspective, where the MDP policies lead
to significant improvements.

In the monetary cost setting, the early discharge of low-
severity patients has much lower costs compared to rejecting
patients. Thus, bothMDPmon andMyopicmon admit all patients
and early discharge low-severity patients if necessary. Even
though both policies are nearly identical (see Section 5.2),
MDPmon outperforms Myopicmon regarding monetary cost by
7.8%.

However, this changes for the medical perspective. Here,
MDPmed reserves more capacity for critical patients, and starts
rejecting scheduled surgery and external emergency patients if
too many high-severity patients are treated in the ICU (see
Section 5.1). Thus, the average utilization is considerably low-
er compared to Myopicmed (94.7% versus 97.4%). Moreover,
the effects differ: While the average increase in mortality due
to capacity shortages is 2453pp per year forMyopicmed, using
MDPmed decreases this figure to 1931pp This means a reduc-
tion in additional annual mortality by 21% – thus, on average,
5.2 patients will die less every year due to the MDP policy.

Comparing the two objectives for the MDP policies
(MDPmon and MDPmed), the differences are striking.
Applying the monetary perspective, the one-year mortality
due to capacity shortages rises from 1931pp to 2855pp, but
the lost profits decrease from 7.1 million € to 1.1 million €.
That is, the difference of those two objectives is losing around
9.2 patients’ lives against losing 6 million €. The reason for
the mismatch between the medical and the monetary perspec-
tive lies within the reimbursement system.

In Fig. 9, we plot the five events’ costs with the dimensions
medical costs (additional mortality rate in pp) on the vertical
axis and monetary costs (lost profits in Euro) on the horizontal
axis. Medical and monetary consequences are aligned if they
have a linear relationship. In our case, there is a major mis-
match with regard to rejecting elective surgery patients. This
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action is at the same time the most favorable from a medical
perspective and the least favorable from a monetary perspec-
tive. A smaller mismatch occurs with the rejection of external
emergencies. To induce that hospitals who are profit maxi-
mizers also maximize medical quality, reimbursement sys-
tems should make sure that these mismatches are eliminated.
Here, one might consider decreasing the monetary costs of
rejecting external emergency patients and especially elective
surgery patients, while the monetary costs of early discharging
patients or rejecting internal emergency patients might be
increased.

The results of our approach vary if different parameters are
selected. As mentioned in the previous section, we provide a
detailed sensitivity analysis based on different parameter com-
binations (Appendix E.1) and parameter misspecification
(Appendix E.2) in the online appendix.

6 Scenario analysis

The admission and discharge policies discussed in the
previous section were based on two sets of cost estima-
tions for our case hospital. In this section, we take a
broader look by varying capacities and costs in simulation
(1000 simulation runs each). We consider two different
variations of scenarios: First, we derive strategic implica-
tions by changing the available number of ICU resources:
What are the benefits (costs) of adding (removing) one
additional bed? Second, we drop the assumption of either
considering purely the medical or the monetary perspec-
tive, and allow combinations of both. Based on 20 costs
settings consisting of linear combinations of medical and
monetary costs, we derive an efficiency frontier. In the
online appendix, we consider two more variations. In

Fig. 6 Comparison of the policies ofMyopicmon (upper row) andMDPmon (lower row)
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Appendix B.1, we consider different cost parameter set-
tings for the medical costs by increasing or decreasing
each cost parameter by 50%, leading to 32 additional sce-
narios. Thus, we can demonstrate the value of our model
based on different cost settings. In Appendix B.2, we
analyze the impact of estimation errors on performance
by comparing policies based on those 32 additional cost
scenarios, while the costs of our case studies represent the
ground truth. This sensitivity analysis demonstrates the
cases where our model performance is robust, and those
where wrong cost estimations lead to severe conse-
quences. Please note that the appendix relates to classical
sensitivity analyses. As high uncertainty is typically asso-
ciated with the estimation of medical consequences, we
concentrate on medical costs in these analyses. We do
not perform a dedicated sensitivity analysis for the arrival
rates, as this is to some extend already captured by the
variation of ICU capacity.

6.1 Strategic implications

Besides calculating optimal admission and discharge policies,
the model can also serve to obtain insights on a strategic level,
for example, regarding the dimensioning of ICU capacity. The
model computes admission and discharge policies to mini-
mize costs (that could be medical or monetary) based on a
given capacity. Thus, by varying this capacity, we can esti-
mate the benefits or costs of capacity changes. To this end, we
run our model to determine the optimal policies for both the
medical and the monetary perspective for capacities of 30 to
40 beds, and apply the simulation to report the medical (in-
crease in mortality rate) and the monetary (lost profits) results
in Appendix C. The impact of capacity changes is quite linear.
If the medical perspective is optimized, decreasing the capac-
ity to 30 beds leads to an additional mortality of 700pp –
meaning that, on average, 7 more patients die due to capacity
shortages. In case the monetary performance is optimized, the
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Table 2 Comparison of
performance indicators ofMyopic
and MDP (pp: percentage points)

Optimized
Goal

Approach Medical
cost [pp]

Monetary cost [€] Utilization
rate [%]

Rejection
rate [%]

Early
discharge
rate [%]

Medical MDPmed 1931 ± 197 7,160,950 ± 433,651 94.7 ± 0.6 32.6 ± 1.9 17.8 ± 2.5

Myopicmed 2453 ± 280 4,259,490 ± 420,612 97.4 ± 0.5 14.5 ± 1.3 38.6 ± 3.6

Monetary MDPmon 2855 ± 319 1,143,772 ± 156,391 97.4 ± 0.5 0 ± 0 47.0 ± 3.6

Myopicmon 3172 ± 412 1,239,946 ± 186,341 98.4 ± 0.4 2.0 ± 0.7 46.5 ± 3.3
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additional mortality increases to 1128pp, resulting in more
than 11 additional mortalities. The additional monetary oppor-
tunity losses to the hospital due to a decrease from 35 to 30
beds are about 0.6 million Euros (monetary perspective opti-
mized) up to 1.3 million Euros (medical perspective opti-
mized). Consistent with these results, the utilization is slightly
increased from 94.7% to 94.9% in the medical setting, and
increased from 97.4% to 98.2% in the monetary setting.
Increasing the capacity from 35 to 40 beds leads to improve-
ments: The number of additional lives saved ranges from 6.1
(medical perspective optimized) to 9.7 (monetary perspective
optimized), and the reduction of monetary opportunity losses
ranges from 0.4 million € (monetary perspective optimized) to

1.7 million € (medical perspective optimized). The utilization
drops from 94.7% to 93.8% in the medical setting and from
97.4% to 95.8% in the monetary setting. It is interesting to see
that the positive effects seem to be stronger for the perspective
that is not optimized – in cases with fewer capacity shortages,
the trade-off between medical and monetary consequences
seems to disappear. However, fixed costs clearly increase with
capacity. Besides costs for new equipment, different (non-
continuous) staffing requirements must be considered.

Furthermore, we can also change the point of view and ask
how many beds we can save by switching from myopic to
MDP policies (Fig. 10). More precisely, the same cost level
can be obtained with fewer beds. Especially when focusing on
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the medical perspective, the MDP saves between two and five
beds compared to the myopic policy at the same cost level. For
instance, implementing the myopic policy in the ICU with 34
beds results in an expected mortality due to capacity shortages
of around 2600pp The same figure is achieved when
implementing the MDP policy with a capacity of only 30
beds. Focusing on monetary goals, the differences are less
pronounced. Thus, the approach may help to provide valuable
input when making capacity dimensioning decisions. Besides
strategic level planning, when making operational decisions,
such as closing beds in the ICU because of staff shortages, it
can help as well to show the resulting consequences in both
medical and monetary perspectives.

6.2 Trade-off between medical and monetary costs

The case study in Section 5 demonstrated that different cost
perspectives lead to different policies. While we previously
focused on either the medical or the monetary perspective,
we now honor the fact that these are two extreme cases. In
reality, this is a problem with two objectives which are both
simultaneously important to the decision maker. Thus, we
now numerically construct an efficient frontier (line with “x”
in Fig. 11) that contains policies which are optimal for a cer-
tain weighted combination of the medical and monetary per-
spectives. Note that in order to have comparable figures, we
rescale monetary costs by a factor of 1/1,000 in this analysis.
All points to the right/above the frontier are inefficient because
at least one perspective can be improved without worsening
the other. As our cost function is linear, this frontier can be
easily constructed by considering convex combinations of the
two cost perspectives’ parameters. To obtain points on this
frontier, we first calculated 11 cases with different weightings
of the two perspectives by increasing the relative weight for
medical costs from 0 (case 0) to 1 (case 10) in ten steps of 0.1.

In order to capture all parts of the efficient frontier, we addi-
tionally inserted 10 non-equidistant cases between the afore-
mentioned (e.g. case 8a with a weight of 0.825 for medical
costs). For each case, the resulting optimal policy is evaluated
in simulations as before, and medical as well as monetary
costs are recorded. The policy is quite insensitive to the
weights in some areas (e.g. cases 0, 1, and 2 with relative
weights of medical costs of 0 to 0.2), resulting in very similar
cost values for these cases. In other areas, a small change in
weights (e.g. cases 8e and 8f with relative weights for medical
costs of 0.8915 and 0.8916, respectively) results in a change in
the policy with big effects on costs. More information and
resulting policies are given in Appendix D.

As its weight increases from case 0 to case 10, the
resulting total medical costs decrease from 2855pp to
1931pp, which means that, on average, 9.2 patients die
less due to capacity shortages. The reverse is also true:
If we put stronger emphasis on the monetary perspective,
monetary costs decrease, while mortality increases. As
usual, this trade-off is not linear. When starting to increase
the weight on medical costs in the first nine cases, the
medical perspective can be improved at relatively low
monetary costs: By decreasing the medical costs from
2,855pp to 2445pp (saving around four patients, that is,
44% of the potential decrease of medical costs) the mon-
etary costs only increase from 1.14 to 1.51 million €
(costing around 370,000 €, that is, 6% of the potential
increase of monetary costs). After case 9, improving the
medical perspective gets more expensive – now, the poli-
cies start to reject external emergencies and scheduled sur-
gery patients. Switching from case 9 to case 10 will save
in expectation one life (decrease of medical costs from
2069pp to 1931pp), and will lead to a monetary cost
increase of 3.2 million € (increase of monetary costs from
3.98 million € to 7.16 million €).
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In addition to the MDP policies, Fig. 11 also contains the
results of the myopic policies (line with circles). These policies
myopically decide on weighted costs. Obviously, the policy
rarely changes as the weights vary. Here, the policies only
change if the order of costs change. When we compare the
performance of the MDP and the myopic policy in all 20 cases,
the potential of the MDP solution becomes obvious:
Considering case 9 with a myopic policy as a benchmark (re-
member that the myopic policy resembles policies used in prac-
tice), we could either reduce mortality by around four patients
(from 2453pp to 2069pp), combined with a slight reduction of
costs by moving to case 9 with the MDP solution, or reduce
costs by 2.75 million € (from 4.26 to 1.51 million €), keeping
the medical costs constant, by moving to case 8 with the MDP
solution. We draft the resulting policies in Appendix D. The
most noticable change is that the MDP starts to reserve beds by
deferring external emergencies (starting from case 2), and by
canceling scheduled surgeries (especially in case 8a, where the
high monetary costs of such policies are not considered) when
moving from monetary- to medical-oriented policies.

According to the sensitivity analysis based on different pa-
rameter combinations (Appendix E.1), our model has signifi-
cant benefits in most of the considered test cases, there are a few
cases where the MDP does not reserve beds, and its use does
not lead to a considerable improvement compared to a myopic
policy. The sensitivity analysis of parameter misspecification
(Appendix E.2) shows that erroneous estimation of cost param-
eters may indeed lead to dramatic results. The worst impact on
medical costs was observed for combinations of overestimation
of rejection costs and underestimation of the cost of early dis-
charges, while results are otherwise relatively robust.

7 Conclusion and future research

Congestion problems in ICUs lead to dramatic negative ef-
fects on patients’ health. Both rejections of arriving patients

and early discharges of existing patients lead to worse out-
comes. This paper proposes a method to define admission
and early discharge policies that minimize these negative con-
sequences. Our approach applies a discrete-time Markov de-
cision process that is solved to optimality for realistic in-
stances. We demonstrate that by minimizing the medical con-
sequences, the approach significantly outperforms a myopic
policy as applied by most hospitals in practice. Besides, we
demonstrate that different objectives lead to different policies.
If, for example, monetary profits are optimized, the medical
outcome is strongly affected. We extend this logic to develop
an efficiency frontier covering medical and monetary perspec-
tives, and thereby contribute to the ongoing discussion on the
trade-off between medical quality and monetary costs. We
further provide robustness checks and situations in medical
perspective where our approach is sensitive to cost changes
and to cost estimation errors. Our model provides particularly
high potential in cases with low medical costs for rejecting
external emergencies and high costs for early discharging low-
severity patients. It is relatively robust against underestimation
of rejection costs for scheduled surgeries and external emer-
gencies and overestimation of early discharge cost of high-
severity patients. However, the opposite case, that is, overes-
timation of rejection costs and underestimation of early dis-
charge costs, leads to inferior results.

Various applications of our approach exist. Themajor one is a
framework to develop recommendations for admission and dis-
charge control on a tactical decision level. One could, for exam-
ple, use it to develop simple guidelines. Such decision rules may
have the form that if a certain number of high-severity patients
are treated in the ICU, no more elective surgeries will be sched-
uled that require postoperative ICU treatment, or define occupan-
cy levels where coordinating units are informed to divert am-
bulances with external emergencies to other hospitals.
The policies as we illustrate them could be printed out
and the ICU manager could have them as a poster in
the ICU – no additional information systems would be

0

1

23-8f

9-10

0

1

2

3

4

5

6

7

8

1,900 2,100 2,300 2,500 2,700 2,900 3,100

M
on

et
ar

y 
Co

st
 [M

IO
. €

]
Medical cost [pp]

MDP
myopic

Fig. 11 The trade off between
medical and monetary cost

Managing admission and discharge processes in intensive care units 683



required. An additional application is to use the ap-
proach as decision support for capacity dimensioning
on strategic and operational decision level. It provides
insights on the consequences of capacity shortages, and
allows decision makers to consider different objectives
within the admission and discharge policies. In both
cases, our approach has direct managerial applications.

We believe that managing ICU admissions and discharges is
of great importance, and has large potential for future research.
To focus on the trade-off between medical and monetary goals,
and to allow easy implementation of our proposed policies in
practice, we aggregated situations (e.g. day and night shift) and
patient types. From a modeling point of view, adding a higher
level of complexity could be of interest – even though this might
reduce the ease of implementation. Possible extensions include a
time-dependent arrival and discharge process (e.g., discharge at
specific time of the day, arrival rates vary on different time slots
and weekday), a more detailed clustering of patient types (e.g.,
cluster patients according to the specific symptoms and objective
criteria), and the modelling of re-admissions or delayed admis-
sions of rejected or discharged patients. These extensions may
lead to a more complex model that cannot be solved to optimal-
ity. Thus, approximation schemes such as approximate dynamic
programming may be necessary. Another approach may be to
consider variations of the setting. For example, our results have
shown that in a full ICU, there is usually at least one low-severity
patient. If themedical perspective is optimized, there are at least 3
low-severity patients with a probability of about 85%, while this
figure is lower for the monetary perspective. Thus, if inferior
beds with a lower level of care for low-severity patients are
considerably cheaper, a multi-tiered ICU should be considered.
Last but not the least, the control policies implemented in the
ICU might influence the other departments as well, and the in-
terdependencies of the ICU on the rest of the hospital is an
interesting topic to study.
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