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Abstract
We introduce a new class of values for TU-games (games with transferable utility)

with a level structure, called LS-games. A level structure is a hierarchical structure

where each level corresponds to a partition of the player set, which becomes

increasingly coarse from the trivial partition containing only singletons to the

partition containing only the grand coalition. The new values, called Harsanyi

support levels solutions, extend the Harsanyi solutions for LS-games. As an

important subset of the class of these values, we present the class of weighted

Shapley support levels values as a further result. The values from this class extend

the weighted Shapley values for LS-games and contain the Shapley levels value as a

special case. Axiomatizations of the studied classes are provided.

Keywords Cooperative game � Level structure � (Weighted) Shapley

(levels) value � Harsanyi set � Dividends

1 Introduction

Many institutions, companies, governments, and so on are organized in hierarchical

structures. Typically, there is one unit at the top. In the following levels, each unit of

the parent level is divided into two or more subordinate units, which usually have a

lower rank than the higher ones. We can see a similar organizational structure in

supply chains in some respects, and queuing problems or electricity and other

networks often have hierarchical structures as well. Effectiveness increases by

sharing or pooling physical objects, resources, and information. A central

characteristic of all these forms of organization is that a cooperating unit can itself

be an actor to gain advantages of cooperation for the members of the unit. The

question arises: how should we share the benefits and allocate the costs?
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To distribute the profits of cooperating coalitions, the application of a cooperative

game seems to be a natural approach. Winter (1989) defined a model for cooperative

games with a level structure (LS-games). A level structure comprises a sequence of

coalition structures (the levels). At each level, the player set is partitioned into

components where each higher level is coarser than the previous one (see also

Fig. 1). Winter’s value (Winter, 1989) for LS-games, we call it Shapley levels value,

extends the Owen value (Owen, 1977), which is itself an extension of the Shapley

value (Shapley, 1953b). This value satisfies adaptations of the symmetry axioms,

satisfied by the Owen value, for values for LS-games.

To treat symmetric players differently when there are exogenous weights for the

players, Shapley (1953a) introduced the weighted Shapley values. Vidal-Puga

(2012) established a value for games with a coalition structure with weights given

by the size of the coalitions. With a step by step top–down algorithm, Gómez-Rúa

and Vidal-Puga (2011) extended it for games with a level structure. Besner (2019)

generalized this value to the class of the weighted Shapley hierarchy levels values

for arbitrary, exogenously given, weights. These values satisfy an extension of the

consistency property of the weighted Shapley values in Hart and Mas-Colell (1989).

Interestingly, the class of the weighted Shapley hierarchy levels values contains the

Shapley levels value but the values from this class do not satisfy the null player

axiom in general.

The weighted values for games with a coalition structure in Levy and Mclean

(1989) and McLean (1991) behave the other way round; they satisfy the null player

property but do not correspond to a consistency property in the above sense. Levy

and Mclean (1989) examine several classes of weighted values for games with a

coalition structure which use the same weight system as the weighted Shapley

values: either for the players within a component or the components themselves if

the components act as players. The combined use of such a weight system, both for

players and components, is only mentioned. This latter class of extensions of the

weighted Shapley values and an extension of the class of random order values

(Weber, 1988) for games with a coalition structure is discussed in McLean (1991).

Dragan (1992) called McLean’s extensions of the weighted Shapley values McLean

weighted coalition structure values. He presented a formula for them related to that

of the Owen value. For a fixed coalition structure, these values coincide with a

multiweighted Shapley value (Dragan, 1992).

Harsanyi (1959) introduced a new perspective on coalition functions. He used so-

called (Harsanyi) dividends, assigned to all feasible coalitions of a player set

according to the coalition function. Singletons receive the singleton worth as their

dividend and the dividend of each larger coalition S amounts to the worth of Sminus

the sum of all dividends of the proper subcoalitions of S. The weighted Shapley

values give the players as payoffs a share of the dividends from the coalitions in

which they are members. Two players’ shares of dividends from coalitions

containing both players are always in the same ratio. In comparison, the Harsanyi

solutions (Hammer et al., 1977; Vasil’ev, 1978) are more flexible. By these values,

two players can receive dividend shares from coalitions, containing both, in various

ratios for each coalition.
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In this article, we introduce the class of Harsanyi support levels solutions. To the

best of our knowledge, the values of this class are the first values for games with

level structure (LS-values) that extend the Harsanyi solutions. We represent each

Harsanyi support levels solution by a formula with dividends. The coefficients in the

formulas constitute a dividend sharing system, i. e., all coefficients are non-negative

and amount to one for each coalition. According to the definition of a Harsanyi

solution, each LS-value from this class corresponds to a Harsanyi solution for a

fixed level structure. Therefore, Harsanyi solutions inherit all properties (adapted for

LS-values) of these values for a fixed level structure.

Within the framework of LS-games, we can also consider the components of a

level as players in so-called induced LS-games. Winter (1989) has shown that the

Shapley levels value satisfies the level game property. This property means that the

payoff to a component in an induced LS-game is equal to the sum of the payoffs to

all players included in the component. We show that if an LS-value satisfies the

level game property and coincides for a fixed level structure with a Harsanyi

solution, the value is a member of the class of the Harsanyi support levels solutions.

As a corollary, our main result extends an axiomatization of the class of the

Harsanyi solutions by Vasil’ev (1981) and Derks et al. (2000) to a characterization

of the class of the Harsanyi support levels solutions.

Since the Harsanyi solutions are no random order values in general, we cannot

adopt the proof procedures for characterizations, e.g., in Winter (1989) or McLean

(1991). We base our proofs on dividends where two new lemmas are a significant

help.

As a further result, we present the class of the weighted Shapley support levels

values as a proper subset of the class of the Harsanyi support levels solutions. The

LS-values from this class coincide with the McLean weighted coalition structure

values on a level structure with only three levels if we count the partition containing

all singletons and the partition containing only the grand coalition as levels. To offer

a characterization for this class, we adapt an axiomatization of the class of the

weighted Shapley values in Nowak and Radzik (1995).

In the concluding section, it is briefly explained that the values presented in this

article can have an interesting solidarity characteristic: players who have formed a

group support the other group members even in situations where they are not active

and do not expect any direct reward for their support, as with the weighted Shapley

Hierarchy levels values. In this way, they differ fundamentally from solidarity-

based solution concepts such as the equal division value, the equal surplus division

value (Driessen and Funaki, 1991), the egalitarian Shapley values (Joosten, 1996) or

the solidarity value (Nowak and Radzik, 1994) and the Shapley-solidarity value

(Calvo and Gutiérrez, 2013).

The outline of the paper is structured as follows. Section 2 contains preliminaries.

As the main part, we introduce in Sect. 3 the Harsanyi support levels solutions with

an appropriate class axiomatization. In Sect. 4, we offer the weighted Shapley

support levels values as a further result. A numerical example in Sect. 5 compares

different values. Section 6 discusses the results and concludes with a fundamental

principle of group solidarity which is satisfied by our new values. The Appendix
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(Sect. 7) provides all the proofs, related properties and lemmas, and shows the

logical independence of the axioms in our axiomatizations.

2 Preliminaries

2.1 TU-games

Let R be the set of real numbers and Rþþ the set of all positive real numbers. We fix

a countably infinite set UA, the universe of atomic players. The set U, the universe of

all players1, is defined recursively:

(a) i 2 U for all i 2 UA.

(b) For all non-empty and finite subsets N � U, we have also N 2 U.

(c) Nothing is in U unless it can be shown to be there using (a) and (b).

We denote by N the set of all non-empty and finite subsets of U. A cooperative

game with transferable utility (TU-game) is a pair (N, v) such that N 2 N is a set of

players and v : 2N! R; vð;Þ ¼ 0; a coalition function where 2N is the power set of

N. The subsets S � N are called coalitions, v(S) is the worth of coalition S, the set

of all non-empty subsets of S is denoted by XS, and the set of all TU-games with

player set N is denoted by VN .

Let N 2 N ; ðN; vÞ 2 VN and S � N. The dividends DvðSÞ (Harsanyi, 1959) are
defined inductively by

DvðSÞ :¼
vðSÞ �

P
R(S DvðRÞ; if S 2 XN; and

0; if S ¼ ;:

(

ð1Þ

A TU-game ðN; uTÞ 2 VN; T 2 XN , with uTðSÞ :¼ 1 if T � S and uTðSÞ :¼ 0

otherwise for all S � N is called a unanimity game. It is well known that any

coalition function v on N has a unique representation

v ¼
X

T2XN

DvðTÞuT : ð2Þ

(N, v) is called totally positive (Vasil’ev, 1975) if DvðTÞ� 0 for all T � N. Player
i 2 N is called a null player in (N, v) if vðS [ figÞ ¼ vðSÞ for all S � Nnfig; players
i; j 2 N; i 6¼ j; are called (mutually) dependent (Nowak and Radzik, 1995) in (N, v)
if vðS [ figÞ ¼ vðSÞ ¼ vðS [ fjgÞ for all S � Nnfi; jg, which is equivalent to

DvðS [ fkgÞ ¼ 0; k 2 fi; jg; for all S � Nnfi; jg: ð3Þ

For all N 2 N , a TU-value or solution / is an operator that assigns to any ðN; vÞ 2
VN a payoff vector /ðN; vÞ 2 RN .

1 Sets of players can also be players or their respective representatives (see, e.g., Kalai and Samet 1987

Section 7).
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By W :¼ ff : U ! Rþþg, wi :¼ wðiÞ for all w 2 W ; i 2 U, we define the

collection of all positive weight systems on U.

The following TU-values distribute the dividends of the coalitions proportionally

to the weights of the players included in these coalitions. For all N 2 N ; ðN; vÞ 2
VN; and each w 2 W , the (positively) weighted Shapley value Shw (Shapley,

1953a) assigns to any (N, v) a vector in RN defined as

Shwi ðN; vÞ :¼
X

S�N; S3i

wiP
j2S wj

DvðSÞ for all i 2 N: ð4Þ

As a special case of a weighted Shapley value, all weights are equal, the Shapley

value Sh (Shapley, 1953b) assigns to any ðN; vÞ 2 VN a vector in RN defined as

ShiðN; vÞ :¼
X

S�N; S3i

DvðSÞ
jSj for all i 2 N:

For all coalitions that include the same two players, for the weighted Shapley

values, the dividend shares for these players are always in the same ratio. This need

not be the case for the following TU-values, using sharing systems, where the ratio

of the dividend shares of two players may also be different for two different

coalitions containing both players. The collection K of all sharing systems k 2 K
on N is defined by

K :¼
n
k ¼ ðkS;iÞS2N ; i2S

�
�
�
X

i2S
kS;i ¼ 1 and kS;i � 0 for each S 2 N and all i 2 S

o
:

Hammer et al. (1977) and Vasil’ev (1978), independently of each other, defined a

class of TU-values. While Hammer et al. (1977) and, e. g., Derks et al. (2000) this

class call selectope2, Vasil’ev (1978), Vasil’ev and van der Laan (2002), and, e. g.,

del Pozo et al. (2011) refer to this class as Harsanyi set, abbreviated to H. For all

N 2 N ; ðN; vÞ 2 VN , and each sharing system k 2 K, the Harsanyi solution Hk 2
H assigns to any (N, v) a vector in RN defined as

Hk
i ðN; vÞ :¼

X

T�N;T3i
kT ;iDvðTÞ for all i 2 N:

By (4), it is immediate that the class of the weighted Shapley values is a proper

subset of the Harsanyi set.

2.2 LS-games

In the following, we have to restrict the amount of available player sets. We give

some (a few times recursive) definitions where the underlying atomic players of

players representing coalitions of players play an important role:

2 Derks et al. (2000) provide in the first place a set-theoretic view of the selectope. Thereby, the selectope

is the convex hull of so-called selector values and can be viewed as containing all the possible modes in

which the Harsanyi dividends of a game can be distributed to the players.
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An atomic player i 2 UA is called a sub-member of a player j 2 U if i ¼ j or i is
a sub-member of a player k 2 U; k 2 j. A player i 2 U is called a sub-player-
coalition of a player j 2 U if i ¼ j or i 2 k; k is a sub-player-coalition of j. A player

set N 2 N is called sub-member-disjoint if no atomic player i 2 UA is a sub-

member of any two sub-player-coalitions j; k; j 6¼ k; such that j; k 2 ‘; ‘ is a sub-

player-coalition of N.3 The set of all sub-member-disjoint player sets N 2 N is

denoted by N dis
.4

For any N 2 N dis
, a coalition structure B on N is a partition of the player set N,

i.e., a collection of non-empty, pairwise disjoint, and mutually exhaustive subsets of

N. Each B 2 B is called a component and BðiÞ denotes the component that contains

a player i 2 N. A level structure (Winter, 1989) on N is a finite sequence B :¼
fB0; . . .;Bhþ1g of coalition structures Br; 0� r� hþ 1; on N such that (see also

Fig. 1):

• B0 ¼
�
fig: i 2 N

�
,

• Bhþ1 ¼ fNg, and
• for each r; 0� r� h; Br is a refinement of Brþ1, i. e., BrðiÞ � Brþ1ðiÞ for all

i 2 N.

Br is called the rth level of B, B :¼ fBjB 2 Br for all Br 2 B; 0� r� hg is the set

of all components B 2 Br of all levels Br 2 B; 0� r� h, and LN denotes the set of

all level structures on the player set N.

For each B 2 B‘; 0� ‘� r� hþ 1; we denote by BrðBÞ the component of the rth
level containing B as a (not necessary proper) subset; BrðBÞ is called an ancestor of
B; if r ¼ ‘þ 1, BrðBÞ is also called parent of B. We call all components with the

same parent B 2 Br; 1� r� hþ 1; children of B and two different children of B are

called siblings in Br�1. We explicitly point out that a component, for different

levels, can be its own child or parent at the same time.

If we regard the components of the rth level, 0� r� h; as players and cancel all

levels below the rth level, we get the induced rth level structure Br :¼
�
Br0; . . .;Brhþ1�r� 2 LB

r

from B ¼ fB0; . . .;Bhþ1g. We give an illustrating

example.

Example 2.1 Let N ¼ f1; 2; 3g and B ¼ fB0;B1;B2g be given by B0¼
ff1g; f2g; f3gg; B1¼ ff1; 2g; f3gg; and B2¼ fNg. We regard, e.g., the compo-

nents of the first level as players. Then, the induced first level structure B1 ¼
3 For instance, j :¼ ffi; kg; fi; ‘gg; i; k; ‘ 2 U; can not be a player of a sub-member-disjoint player set.
4 To exclude from the outset inconsistencies in the worths or in the weighting of coalitions and associated

coalitions with the same sub-members, we will only consider player sets N 2 N dis
for games with a level

structure. For example, let N :¼
�
i; j; fi; jg

�
be a player set with three players where the third player is a

coalition. In a TU-game ðN; vÞ 2 VN , it does not matter if the worth vðfi; jgÞ of the coalition fi; jg of the

two players i; j 2 N differs from the worth vðffi; jggÞ of the singleton ffi; jgg of the player fi; jg 2 N. For
games with a level structure, we have an inconsistency in the induced first LS-game (see the definition

below) if the coalition fi; jg is there a player and we require that the induced first LS-game is given by (5).
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fB10;B11g from B is given by B10¼
��

f1; 2g
�
;
�
f3g

��
; and

B11¼
��

f1; 2g; f3g
��

:

For each N 2 N dis
, a TU-game ðN; vÞ 2 VN together with a level structure B 2

LN is an LS-game which is denoted by (N, v, B). We denote the set of all LS-games

on N by VLN .

If we want to stress the property that a coalition T 2 XN; T ¼
S

B�T ;B2BrB; is the

union of components of the rth level from B, we denote T by Tr. Each such Tr is an

associated coalition to a coalition of all players B2 Br; B � Tr; in the induced rth
level structure, denoted by T r :¼ fB 2 Br : B � Trg and vice versa. This means that

a coalition and its associated coalition have the same sub-members. Thus, for each

N 2 N dis
, each LS-game ðN; v;BÞ 2 VLN , and each induced rth level structure

Br; 0� r� h; we have an associated LS-game ðBr; vr;BrÞ 2 VLB
r

, called induced
rth LS-game5, with a coalition function vr which is given by

vrðT rÞ :¼ vðTrÞ for all T r2 XBr

: ð5Þ

This means that a coalition in an induced LS-game that has the same sub-members

as a coalition from the original game also has the same worth as this associated

coalition. E.g., for the TU-game ðN; vÞ 2 VLN and B 2 LN in example 2.1, we have

v1
��

f1; 2g
��

¼ vðf1; 2gÞ.
Also induced LS-games for induced LS-games and so on are possible. We will

not go into this in detail. Note that, for all N 2 N dis
, each TU-game ðN; vÞ 2 VN

corresponds to an LS-game ðN; v;B0Þ 2 VLN with a trivial level structure B0 :

¼ fB0;B1g and we would like to point out that each LS-game ðN; v;BÞ 2 VLN

corresponds to a game with coalition structure (Aumann and Drèze, 1974; Owen,

1977) if B :¼ fB0;B1;B2g.
For all N 2 N dis

; an LS-value u is an operator on VLN that assigns to any LS-

game ðN; v; BÞ 2 VLN a payoff vector uðN; v; BÞ 2 RN .

ByWdis � W , we define the collection of all positive weight systems on U where,

for each w 2 Wdis, we have wi ¼ wj for all i; j 2 U if i and j have the same sub-

members. This means that, e.g., for an LS-game ðN; v;BÞ 2 VLN; N 2 N dis
; we

have that the weight wi of a player i 2 N is equal to the weight wfig of the singleton

fig 2 B0 in the zeroth LS-game.

We also want a corresponding relationship for sharing systems. The collection

Kdis � K of all sharing systems k 2 Kdis on N dis
is defined by

5 In Owen (1977), a corresponding game, for the special case r ¼ 1 and a level structure

B ¼ fB0;B1;B2g, is called a quotient game.
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Kdis :¼
n
k ¼ ðkS;iÞS2N dis

; i2S

�
�
�
X

i2S
kS;i ¼ 1 and kS;i � 0 for each S 2 N dis

and all i 2 S

such that for all S0 2 N dis
with jSj ¼ jS0j and for each i 2 S we have a j 2 S0

which has the same sub-members as i; we have kS;i ¼ kS0;j
o
:

This means that if we have two coalitions with the same number of players, and for

every player in the first coalition we have a player in the second coalition with the

same sub-members, then the related players should also have the same weight for

their respective coalitions.

2.3 Axioms

We refer to the following axioms for LS-values u which are mostly simple

adaptations of standard axioms for TU-values. All axioms below apply for all

N 2 N dis
. We do not repeat this phrase at the beginning of each axiom.

Efficiency, E. For all ðN; v;BÞ 2 VLN , we have
P

i2N uiðN; v;BÞ ¼ vðNÞ:
Efficiency requires that the sum of the payoffs should result in the total worth of

the game. The next property means that a player who contributes nothing to any

coalition should obtain no payoff.

Null player, N. For all ðN; v;BÞ 2 VLN and i 2 N such that i is a null player in

(N, v), we have uiðN; v;BÞ ¼ 0.

Additivity, A. For all ðN; v;BÞ; ðN; v0;BÞ 2 VLN , we have

uðN; v;BÞ þ uðN; v0;BÞ ¼ uðN; vþ v0;BÞ.
Additivity states that a player’s payoff from the sum of two games is the sum of

the player’s payoff for the two games. By the following axiom, all players receive a

non-negative payoff if all coalitions have non-negative dividends.

Positivity, Pos (Vasil’ev, 1975). For all ðN; v;BÞ 2 VLN such that (N, v) is totally
positive, we have uiðN; v;BÞ� 0 for all i 2 N.

Strict monotonicity, SMon (Megiddo, 1974). For all ðN; v;BÞ 2 VLN and a 2
Rþþ; we have uiðN; vþ a � uN ;BÞ[uiðN; v;BÞ for all i 2 N.

This property means that if the grand coalition improves its worth and the worth

of all other coalitions remains the same, all players should receive a higher payoff.

In our investigations, the next axiom plays an important role. It claims that the sum

of all players’ payoffs of a component coincides with this component’s payoff in an

induced LS-game where the component is regarded as a player.

Level game property, LG (Winter, 1989). For all ðN; v; BÞ 2 VLN; B ¼
fB0; . . .;Bhþ1g; B2 Br; 0� r� h; we have

X

i2B
uiðN; v;BÞ ¼ uBðBr; vr;BrÞ: ð6Þ

The following axiom says that if two siblings are symmetric in the induced rth LS-

game, the total payoff to all players of the first sibling is equal to the total payoff to

all players of the second sibling.
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Symmetry between components, Sym6 Winter (1989). For all ðN; v;BÞ 2
VLN;B ¼ fB0; . . .;Bhþ1g; two siblings Bk;B‘ 2 Br; 0� r� h; such that Bk;B‘ are

symmetric in ðBr; vrÞ 2 VBr

, we have
X

i2Bk

uiðN; v;BÞ ¼
X

i2B‘

uiðN; v;BÞ:

2.4 The Shapley levels value

The following formula is presented in Calvo et al. (1996, Eq. (1)).

For all N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; and T 2 XN; T 3 i;

define

KB;TðiÞ :¼
Yh

r¼0

Kr
B;TðiÞ; where Kr

B;TðiÞ :¼
1

jfB 2 Br : B� Brþ1ðiÞ; B \ T 6¼ ;gj
ð7Þ

be the reciprocal cardinality of the set that contains all children of the component of

the ðr þ 1Þth level containing player i, which contain at least one player from

coalition T. Then, the Shapley levels value7 (Winter, 1989) ShL assigns to any

ðN; v;BÞ a vector in RN defined as

ShLi ðN; v;BÞ :¼
X

T�N; T3i
KB;TðiÞDvðTÞ for all i 2 N: ð8Þ

It is easy to see that ShL coincides with Sh if B ¼ B0. Winter (1989) used the Owen

value (Owen, 1977) as a starting point for his LS-value. Therefore, Winter has

extended the efficiency, null player, symmetry and additivity axioms to axioms for

LS-values. He splits symmetry into symmetry between components and an indi-

vidual symmetry axiom. If we define a level structure as above, i. e., the singletons

are the elements of the lowest level, Winter (1989, remark 1.6) pointed out that we

can omit the individual symmetry axiom. In this sense, we present Winter’s first

axiomatization of the Shapley levels value8.

Theorem 2.2 (Winter, 1989) ShL is the unique LS-value that satisfies E, N, Sym,

and A.

It should be noted that there exist some further axiomatizations of the Shapley

levels value by Calvo et al. (1996), Khmelnitskaya and Yanovskaya (2007), Casajus

(2010), Álvarez-Mozos and Tejada (2011), and Besner (2019).

6 This axiom is called coalitional symmetry in Winter (1989).
7 The value is also known as level(s) structure value or Winter’s (Shapley type) value. Our designation is

used, e. g., in Álvarez-Mozos et al. (2017)
8 Winter (1989) introduced his value axiomatically and used this axiomatization as a definition.
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3 Harsanyi support levels solutions

For TU-games, there are sometimes compelling reasons, not included in the

coalition function itself, to treat symmetric players differently. We can have fixed,

but for each coalition possibly different, metrics for each player, representing, e. g.,

the effort, commitment, qualification, or power of a player. Sometimes a player’s

influence on other players is stronger when another player is not on the team. Or a

player can only exert its influence if specific other players have joined the coalition

to support this player. The same reasoning can be applied to LS-games, where at

different levels the components can be considered as players. With the Shapley

levels value, the members of symmetric siblings always get the same payoff in total

(Sym). The following LS-values provide the opportunity to take into account the

previously mentioned external influences that are not reflected in the coalition

function.

Before we give a formal definition, we describe the payoff algorithm: Let N 2
N dis

; ðN; v;BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; and k 2 Kdis. By (2), v can be expressed

as a linear combination of unanimity games. Thus, we have a game vT :¼ DvðTÞuT
for each coalition T 2 XN which means that we have DvT ðTÞ ¼ DvðTÞ, DvT ðSÞ ¼ 0

for all S � N; S 6¼ T; and v ¼
P

T2XN vT .

In the game vT , each component Bh of the hth level that contains at least one

player i 2 T receives a share of DvðTÞ, proportional to its sharing weight kChT ;Bh ,

where ChT is the coalition that contains all such components Bh as elements. Then the

share of each component Bh involved is distributed among all its children Bh�1 � Bh

of the (h� 1)th level, containing at least one player i 2 T , proportional to their

sharing weights kCh�1
T ;Bh�1 , where Ch�1

T is the coalition that contains all such siblings

Bh�1 as elements, and so on for all levels. In the end, each player i 2 T gets its share,

‘‘supported‘‘ by the sharing weights of all its ancestors. To receive the total payoff

of a player, these payoffs are finally added up over all games vT where the player is

not a null player.

Definition 3.1 For all N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; k 2 Kdis,

and T 2 XN; T 3 i; 0� r� h; let

CrTðiÞ :¼
�
B : B 2 Br; B � Brþ1ðiÞ; B \ T 6¼ ;

�
ð9Þ

be the set that contains all children of the component of the ðr þ 1Þth level con-

taining player i, which contain at least one player from coalition T. Define

Kk
B;TðiÞ :¼

Yh

r¼0

kCrT ðiÞ;BrðiÞ: ð10Þ

Then, for each k 2 Kdis, the Harsanyi support levels solution HkSL assigns to any

ðN; v;BÞ a vector in RN defined as
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HkSL
i ðN; v; BÞ ¼

X

T�N; T3i
Kk
B;TðiÞDvðTÞ for all i 2 N: ð11Þ

The class of all Harsanyi support levels solutions is called Harsanyi support levels

set and is denoted by HSL.

Remark 3.2 We see that the Shapley levels value is a Harsanyi support levels

solution with a k 2 Kdis such that we have for each kCrT ðiÞ;BrðiÞ in (10) a Kr
B;TðiÞ in (7)

with kCrT ðiÞ;BrðiÞ ¼ Kr
B;TðiÞ.

Remark 3.3 For each N 2 N dis
; ðN; v; BÞ 2 VLN; k 2 Kdis; and for all T 2 XN;

T 3 i, we have
P

i2T K
k
B;TðiÞ ¼ 1 and Kk

B;TðiÞ� 0. Therefore, for fixed N and

B 2 LN , each HkSL2 HSL on ðN; v; BÞ coincides with a Hk0 2 H; k0 2 K; on

ðN; vÞ 2 VN, where k0T ;i ¼ Kk
B;TðiÞ for each T 2 XN and all i 2 T and the level

structure is disregarded.

To prepare our main result, we first assume that a sharing system k 2 Kdis is

exogenously given. We use a technical property for unanimity games with some

factor.

Let k 2 Kdis. Then an LS-value u satisfies k-balanced sharing between

components in unanimity games (with some factor), SCUk, if for each N 2
N dis

; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; and for all a 2 R and T2 XN; two

siblings Bk;B‘ 2 Br; 0� r� h; Bk;B‘ \ T 6¼ ;; and

CrTðBkÞ :¼
�
B : B 2 Br; B � Brþ1ðBkÞ; B \ T 6¼ ;

�
, we have

kCrT ðBkÞ;B‘

X

i2Bk

uiðN; a � uT ;BÞ ¼ kCrT ðBkÞ;Bk

X

i2B‘

uiðN; a � uT ;BÞ: ð12Þ

This property says that for two siblings which contain both at least one player from

T the ratio of the payoff totals to all players of the two siblings in the unanimity

game is equal to the ratio of the sharing weights of both siblings. The sharing

weights refer to the partition that has as elements all siblings containing players

from T.
The following proposition lists some axioms that are satisfied by a Harsanyi

support levels solution.

Proposition 3.4 Let k 2 Kdis. HkSL satisfies E, N, A, Pos, SCUk, and LG.

We present a first axiomatization that replaces Sym in Theorem 2.2 by SCUk.

Proposition 3.5 Let k 2 Kdis. HkSL is the unique LS-value that satisfies E, N, SCUk,
and A.

It follows that the Harsanyi support levels solutions have an exceptional status

among extensions of Harsanyi solutions for LS-games.
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Theorem 3.6 An LS-value u coincides for any fixed N 2 N dis
and B 2 LN with a

Harsanyi solution and satisfies LG if and only if u 2 HSL.

By Theorem 3.6 and the famous characterization9 of the Harsanyi set in Derks

et al. (2000) by E, N, Pos, and A, the following corollary is immediate.

Corollary 3.7 An LS-value u satisfies E, N, Pos, A, and LG if and only if u 2 HSL.

4 Weighted Shapley support levels values

For applications, the class of weighted Shapley values is an important subset of the

Harsanyi set. Therefore, we would like to highlight the following subset of the

Harsanyi support levels set that extends the class of weighted Shapley values for

LS-games. Each possible coalition is assigned a positive weight. In contrary to the

weighted Shapley hierarchy levels values (with the exception of the Shapley levels

value), these values satisfy the null player property.

Again, we briefly describe how the dividends are distributed by the following LS-

values. Let N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; and w 2 Wdis: The

dividends of each coalition T 2 XN are divided as follows: Each component Bh of

the hth level that contains at least one player i 2 T receives a share of DvðTÞ,
proportional to its weight wBh . Then the share of each component Bh involved is

distributed among all its children Bh�1 � Bh containing at least one player i 2 T ,
proportional to their weights wBh�1 , and so on for all levels. In the end, each player

i 2 T gets its share, ‘‘supported’’ by the weights of all its ancestors.

Definition 4.1 For all N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; w 2 Wdis;

and for all T 2 XN; T 3 i; define

Kw
B;TðiÞ :¼

Yh

r¼0

wBrðiÞ
P

B2Br :B�Brþ1ðiÞ;
B\T 6¼;

wB
: ð13Þ

Then, for each w 2 Wdis; the weighted Shapley support levels value ShwSL assigns

to any ðN; v;BÞ a vector in RN defined as

ShwSLi ðN; v; BÞ ¼
X

T�N; T3i
Kw
B;TðiÞDvðTÞ for all i 2 N: ð14Þ

The class of all weighted Shapley support levels values is denoted by WSSL.

Remark 4.2 If the weights for all coalitions are equal, (13) coincides with (7).

Therefore, the Shapley levels value is also a member of the class of the weighted

Shapley support levels values.

9 A similar axiomatization can be found already in Vasil’ev (1981) (see Vasil’ev and van der Laan, 2002;

Dehez, 2017).
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Remark 4.3 For all N 2 N dis
and level structures B 2 LN; B ¼ fB0; . . .;Bhþ1g, a

weighted Shapley levels value ShwSL coincides with a Harsanyi support levels

solution HkSL where we have

kCrT ðiÞ;BrðiÞ ¼
wBrðiÞ

P
B2Br :B�Brþ1ðiÞ;

B\T 6¼;
wB

for all T 2 XN:

ShwSL coincides with Shw if B ¼ B0 and, if B ¼ fB0;B1;B2g, the Kw
B;TðiÞ coincide

with the ‘‘kSi ’’ given in Dragan (1992, Sec. 2(e)). Therefore, in this case, the ShwSL

coincide with the McLean weighted coalition structure values (Levy and Mclean,

1989; McLean, 1991; Dragan, 1992).

Dependent players are always symmetric but not vice versa. Therefore, our next

axiom can be seen as a weighted weakening of Sym. The version for TU-values of

this axiom comes from Nowak and Radzik (1995, Axiom A4 (w-Mutual

Dependence)).

Let w 2 Wdis. Then an LS-value u satisfies w-weighted dependence between

components, Depw, if for all N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; two

siblings Bk;B‘ 2 Br; 0� r� h; such that Bk;B‘ are dependent in ðBr; vrÞ 2 VBr

, we

have

X

i2Bk

uiðN; v;BÞ
wBk

¼
X

i2B‘

uiðN; v;BÞ
wB‘

:

The meaning of this axiom is that if two siblings are dependent in the rth LS-game

the ratio of the sum of all players’ payoffs from the two siblings is equal to the ratio

of the weights of both siblings. It follows an extension of the mutual dependence

axiom in Nowak and Radzik (1995, Axiom 7).

Mutual dependence between components, MDep : For all N 2 N dis
; ðN; v;BÞ,

ðN; v0;BÞ 2 VLN;B ¼ fB0; . . .;Bhþ1g; two siblings Bk;B‘ 2 Br; 0� r� h; such that

Bk;B‘ are dependent in ðBr; vrÞ 2 VBr

and ðBr; v0rÞ 2 VBr

, we have
�X

i2Bk

uiðN; v;BÞ
�X

i2B‘

uiðN; v0;BÞ ¼
�X

i2B‘

uiðN; v;BÞ
�X

i2Bk

uiðN; v0;BÞ:

This axiom considers games where two siblings are dependent in two induced rth
LS-games. Then this axiom states that the ratio of the payoff totals to all players of

the siblings remains invariant for such games if none of the sums is zero. The

following proposition lists some axioms that are satisfied by a weighted Shapley

support levels value.

Proposition 4.4 Let w 2 Wdis. ShwSL satisfies E, N, A, LG, SMon, Depw, and
MDep.
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The next proposition can be seen as an extension of characterizations of the

weighted Shapley values with exogenously given weights in Nowak and Radzik

(1995).

Proposition 4.5 Let w 2 Wdis. ShwSL is the unique LS-value that satisfies E, N,
Depw, and A.

Our last theorem axiomatizes the class of all weighted Shapley support levels

values. It is closely related to an axiomatization of the class of weighted Shapley

values in Nowak and Radzik (1995, Theorem 2.4, Remark 2.3).

Theorem 4.6 An LS-value u satisfies E, N, SMon, A, and MDep if and only if

u 2 WSSL.

5 Example

We give a numerical example to compare the distributions for different values. Let

ðN; v; BÞ 2 VLN; N :¼ f1; 2; 3; 4; 5; 6; 7; 8; 9g; and B ¼ fB0;B1;B2;B3g; with B1 :

¼ ff1; 2g; f3; 4g; f5; 6g; f7g; f8; 9gg; B2 :¼ ff1; 2; 3; 4g; f5; 6; 7g; f8; 9gg (see

Fig. 1).

The coalition function v is given by the following dividends:

Dvðf3gÞ ¼ 1; Dvðf1; 2gÞ ¼ 2; Dvðf1; 2; 3gÞ ¼ 6;
Dvðf5; 6; 7gÞ ¼ 6; Dvðf1; 2; 5; 7gÞ ¼ 2; Dvðf1; 2; 3; 8; 9gÞ ¼ 5;
Dvðf5; 6; 7; 8; 9gÞ ¼ 6; Dvðf1; 2; 3; 5; 6; 7; 8; 9gÞ ¼ 12;

and all other coalitions have zero dividends in v.

For reasons of simplicity, we choose a weight system w 2 Wdis such that wS :¼
jSj for all S 2 XN .

Furthermore, we denote by i# the number of all sub-members of a player i 2 U.

We use a level sharing system k 2 Kdis, given by kB2;f1;2;3;4g :¼ 0:4;

kB2;f5;6;7g :¼ 0:3; kB2;f8;9g :¼ 0:3, and, for all other S 2 N dis
; S 6¼ S0 such that jS0j ¼

{1} {2} {3} {4} {5} {6} {7} {8} {9}

{1,2} {3,4} {5,6} {7} {8,9}

{1,2,3,4 {} 5,6,7} {8,9}

{1,2,3,4,5,6,7,8,9} Level: 3

2

1

0

Fig. 1 Structure of the components in different levels

123

118 M. Besner



jB2j and for each i 2 S0 we have a j 2 B2 which has the same sub-members as i, we
have

kS;i :¼
i#

P
j2S j

#
for all i 2 S:

It should be mentioned that here the weighted Shapley hierarchy levels value ShwHL

coincides with the LS-value presented in Gómez-Rúa and Vidal-Puga (2011). We

obtain Table 1. Note that player 4 is a null player, players 1 and 2 and players 8 and

9 respectively are dependent in (N, v), and components f5; 6g and f7g are depen-

dent players in ðB1; v1Þ.
The payoffs to the dependent players in (N, v) are equal, they have the same

weights. The components which are dependent players in ðB1; v1Þ have different

weights. Thus, the payoffs to players 5 and 6 do not sum up to the payoff to player 7

for ShwHL, ShwSL or HkSL. We see that the Shapley levels value benefits player 7 who

has not joined a team with other players in the first level. The payoffs to players 8

and 9 are higher by HkSL than by ShwHL or ShwSL since HkSL takes into account the

higher weight of the component f8; 9g within B2 in the level sharing system k
compared to that in the weight system w.

6 Conclusion and discussion

The rapidly increasing volume of collected data and global networking make it

possible and necessary to share benefits between cooperating actors, often

hierarchically structured. According to the above examinations, for the distribution

of the generated surpluses, the presented LS-values of the new classes provide an

alternative to the Shapley levels value and the weighted Shapley hierarchy levels

values. A close examination of the definition of the Shapley levels value, given by

(8), shows that in unanimity games, it is not advantageous for the individual player

to merge into components: all components which are siblings have the same weight,

even if a sibling is a singleton (see also the payoff to player 7 in Table 1).

Table 1 Comparison of different values

Value Payoff to the players (rounded)

1 2 3 4 5 6 7 8 9

Sh(N, v) 6 6 5.5 0 5.2 4.7 5.2 3.7 3.7

ShLðN; v;BÞ 4.625 4.625 7.25 0 3.75 3.25 7 4.75 4.75

ShwHLðN; v;BÞ 5.1524 5.1524 7.1690 1.3357 4.9847 4.6524 4.8190 3.3667 3.3667

ShwSLðN; v;BÞ 5.2381 5.2381 8.3333 0 5.1048 4.5333 4.8190 3.3667 3.3667

HkSLðN; v;BÞ 5.1048 5.1048 8.0667 0 4.9714 4.4 4.6857 3.8333 3.8333
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The same need not apply to the LS-values of our new classes and the weighted

Shapley hierarchy levels values: the greater the weight of a component, the higher

the payoff in a unanimity game. By the weighted Shapley hierarchy levels values,

null players also receive a positive payoff if they are part of an involved component

(see Table 1) which can be seen as a reward for their contribution to the

component’s weight.

On the contrary, the LS-values of the Harsanyi support levels set (and, thus, also

the weighted Shapley support levels values) always leave null players without

benefits. Again, it can be a great competitive advantage for the players to join

forces. First, for those who form a cooperating subgroup within the carrier of a

unanimity game. And then for all players who belong to coalitions with positive

dividends within the whole coalition function. Here, the players of a component can

‘‘support‘‘ each other in changing unanimity games, even if they do not belong to

the carrier. Nevertheless, null players do not receive any payoff, even if they

contribute to the total weight of components. However, we can also interpret this in

the spirit of cooperative game theory: ‘‘As a null player in this game, I support you

with all my power, even if I have nothing of it at first. But I know that you as a null

player in another game will support me with all your power, even if you have

nothing of it there.’’

This ‘‘support’’ is a fundamental principle of solidarity in all societies. E.g., it

forms the business model of all associations and insurance companies. It can be

disadvantageous, to kick a null or dummy player out of a group where everyone can

rely on each other! This also means that an adaptation for LS-values of the well-

known null player out property in Derks and Haller (1999) is violated, which says

that removing a null player from the game does not change the payoff to the other

players. An exception is the Shapley levels value. Although it belongs to both the

weighted Shapley support levels values and the weighted Shapley hierarchy levels

values, null players are not paid and cannot support the corresponding group with

their power (weight). Here the groups are powerless in the sense that each group,

regardless of size and importance which is not reflected in the coalition function, has

the same weight. Despite the fact that additivity is usually considered to be of little

economic importance (see, e.g., Casajus and Huettner (2014)), it takes on a new

quality in the context of group formation, group solidarity, and the Harsanyi support

levels solutions.

Appendix

Logical independence

Remark 7.1 The axioms in Corollary 3.7 are logically independent.
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Proof

• E, N, Pos, A: The axiomatization must also be valid for B ¼ B0. In this case, the

axioms in Corollary 3.7 coincide with the corresponding axioms for TU-values

(and an always satisfied axiom LG). It is well known that these axioms for TU-

values are logically independent and, therefore, none of the corresponding

axioms can be redundant.

• LG: For all N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; w 2 Wdis; and for

all T 2 XN; T 3 i; define

Aw
B;TðiÞ :¼

Yh

r¼0

wBrðiÞ\T
P

B2B‘:B�B‘þ1ðiÞ;
B\T 6¼;

wB\T
:

Then, the LS-values ShwAL, which assign to any ðN; v;BÞ a vector in RN

defined as

ShwALi ðN; v; BÞ ¼
X

T�N; T3i
Aw
B;TðiÞDvðTÞ for all i 2 N;

satisfy obviously E, N, Pos, and A, but not LG in general10.

Remark 7.2 The axioms in Proposition 4.5 and Theorem 4.6 are logically

independent:

Proof The proof is omitted since it is analogous to the proof of Remark 7.1.

Additional axioms and lemmas, used in the proofs

The first axiom is defined for TU-values, coincides with SCUk in the case of a trivial

level structure, and is used in the proof of Theorem 3.6.

k-balanced sharing in unanimity games (with some factor), SUk
TU : Let k 2 K. For

all N 2 N ; ðN; vÞ 2 VN; a 2 R; T 2 XN; and i; j 2 T , we have

10 Let ðN; uS; BÞ 2 VLN; w 2 Wdis such that the weights are given as in Table 2, N :¼ f1; 2; 3; 4; 5g; and
B ¼ fB0;B1;B2;B3g with B1 :¼ ff1; 2g; f3; 4g; f5gg; B2 :¼ ff1; 2; 3; 4g; f5gg, and ðN; uSÞ be the

unanimity game with carrier S :¼ f1; 2; 3; 5g. It follows, ShwALf1;2;3;4gðB2; u2S;B2Þ ¼ 7
12
6¼ 1

2
¼

P
i2f1;2;3;4g Sh

wAL
i ðN; uS;BÞ and LG is not satisfied.

Table 2 Weights of the coalitions

S {1} {2} {3} {4} {5} {1,2} {1,3} {1,4}

wS 1 1 1 1 5 3 3 3

S {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

wS 3 3 3 5 5 5 5 7
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kT ; j/iðN; a � uTÞ ¼ kT ; i/jðN; a � uTÞ:

The following axiom is a weakening of SCUk and is also used in the proof of

Theorem 3.6. Property (12) has to be satisfied only for singletons.

k-balanced sharing between singletons in unanimity games (with some factor),

SSUk: Let k 2 Kdis. For each N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; and

for all a 2 R and T2 XN; i; j 2 T such that j 2 B1ðiÞ; and

C0TðfigÞ :¼
�
B : B 2 B0; B � B1ðiÞ; B \ T 6¼ ;

�
, we have

kC0T ðfigÞ; fjguiðN; a � uT ;BÞ ¼ kC0T ðfigÞ; figujðN; a � uT ;BÞ:

Our first lemma states that each non-empty coalition S for each level is a subset of

only one coalition that is a union of components from this level which have a non-

empty intersection with S.

Lemma 7.3 Let N 2 N dis
; ðN; v; BÞ 2 VLN; and B ¼ fB0; . . .;Bhþ1g: For each level

Br2 B; 0� r� h, each S 2 XN is a subset of exactly one coalition Tr2 XN; Tr¼

S
B � Tr; B 2 Br;

B \ S 6¼ ;
B: Thus, we can also uniquely designate each S 2 XN as STr .

Proof Each coalition Tr2 XN is a union of components B 2 Br. Br is a partition,

and so each player i 2 S; S 2 XN; is contained in only one component B 2 Br.

Therefore, for each coalition S 2 XN there is exactly one coalition Tr2 XN which is

a union of all components B 2 Br containing at least one player i 2 S. h

The second lemma shows that for each coalition T in an induced level structure

the dividend in the induced LS-game is equal to the sum of the dividends in the

original game from all coalitions S of the original level structure which are subsets

of a coalition T associated to T and have the property of the previous lemma with

respect to coalition T.

Lemma 7.4 Let N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; Br2 B; 0� r� h,

and STr be the coalitions from lemma 7.3 with associated coalition Tr. Then, we

have in the rth LS-game ðBr; vr;BrÞ for each T r2 XBr

, associated to a Tr2 XN;

DvrðT rÞ ¼
X

STr�Tr

DvðSTrÞ: ð15Þ

Proof Let t ¼ jfB 2 Br : B � Trgj the number of components B 2 Br which are

subsets from a coalition Tr2 XN with associated T r2 XBr

. We use induction on the

size t; 1� t� jBrj:
Initialization: Let t ¼ 1. Tr is a component B 2 Br. We have
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DvrðT rÞ¼
ð1Þ
vrðT rÞ¼

ð5Þ
vðTrÞ¼

ð1Þ

X

S�Tr

DvðSÞ ¼
Lem:

7:3

X

STr�Tr

DvðSTrÞ:

Induction step: Assume that (15) holds for an arbitrary t̂� 1 (IH). Let now T̂ r2 XBr

with associated T̂
r 2 XN; t̂ ¼ jfB 2 Br : B � T̂

rgj and Tr ¼ T̂
r [ B̂; B̂ 2 Br; B̂ 6� T̂

r
.

We have t ¼ t̂ þ 1 and it follows

DvrðT rÞ ¼
ð1Þ

X

Qr�T r

DvrðQrÞ ¼
ð1Þ
ð5Þ

vðTrÞ �
X

Qr(T r

DvrðQrÞ

¼
ð1Þ
ðIHÞ

DvðTrÞ þ
X

S(Tr

DvðSÞ �
X

Qr(Tr;

Qr�Br

X

SQr�Qr

DvðSQr Þ

¼
Lem:
7:3

DvðTrÞ þ
X

S(Tr

DvðSÞ �
X

S(Tr;

S6¼STr

DvðSÞ

¼ DvðTrÞ þ
X

STr(Tr

DvðSTrÞ ¼
X

STr�Tr

DvðSTr Þ:

h

Proofs

Proof of Proposition 3.4

Let N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; k 2 Kdis, and Kk

B;T be the

expressions according to Def. 3.1.

� E, N, A, Pos: It is well known that all Hk2 H; k 2 K; satisfy the mentioned

axioms for TU-values. Thus, the claim follows by Remark 3.3.

� LG: Let B2 Br; 0� r� h: If r ¼ 0, (6) trivially is satisfied because the zeroth

LS-game corresponds to the original LS-game.

Let now 1� r� h. Obviously, by (9), we have for all S � N; S \ B 6¼ ;;

X

j2B; j2S

Yr�1

‘¼0

kC‘S ðjÞ;B‘ðjÞ ¼ 1: ð16Þ

In the game ðBr; vr;BrÞ, we have for all T r2 XBr

,T r3 B, associated Tr, and an

arbitrary i 2 B,

Kk
Br ;T rðBÞ ¼

cð9Þ
ð10Þ

Yh

‘¼r

kC‘Tr ;B‘ðiÞ: ð17Þ

Let i 2 B be fixed and STr 2 XN the coalitions from Lemma 7.3 with related
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coalitions Tr. Note, if i 2 STr , we have B� Tr. For all STr ; STr 3 i; r� ‘� h; we
have

kC‘STrðiÞ;B
‘ðiÞ ¼

cð9Þ
Lem:7:3

kC‘Tr ðiÞ;B‘ðiÞ:
ð18Þ

It applies, B‘ðiÞ ¼ B‘ðjÞ for all j 2 B and r� ‘� h. For all STr 3 i, it follows,

X

j2B;
j2STr

Kk
B;STr ðjÞ ¼

ð10Þ

X

j2B;
j2STr

Yh

‘¼0

kC‘STrðjÞ;B
‘ðjÞ ¼ð18Þ

X

j2B;
j2STr

Yr�1

‘¼0

kC‘STrðjÞ;B
‘ðjÞ

Yh

‘¼r

kC‘Tr ðiÞ;B‘ðiÞ
¼
ð16Þ

Yh

‘¼r

kC‘Tr ðiÞ;B‘ðiÞ ¼ð17ÞK
k
Br ;T r ðBÞ:

ð19Þ

Finally, we get the following:

X

j2B
HkSL

j ðN; v;BÞ ¼
ð11Þ

X

j2B

X

S�N;

S3j

Kk
B;SðjÞDvðSÞ ¼

Lem:
7:3

X

j2B

X

STr�N;

STr3j

Kk
B;STr ðjÞDvðSTrÞ

¼
X

STr � N

X

j2B;
j2STr

Kk
B;STr ðjÞDvðSTr Þ ¼

ð19Þ

X

STr � N;
T r 3 B

Kk
Br ;T rðBÞDvðSTrÞ

¼
Lem:
7:3

X

T r�Br; T r3B
Kk
Br ;T r ðBÞ

X

STr�Tr

DvðSTr Þ

¼
Lem:
7:4

X

T r�Br; T r3B
Kk
Br ;T r ðBÞDvrðT rÞ ¼

ð11Þ
HkSL

B ðBr; vr;BrÞ:

� SCUk: Let a 2 R; T2 XN; k; ‘ 2 N; Brð‘Þ � Brþ1ðkÞ; 0� r� h;

BrðkÞ;Brð‘Þ \ T 6¼ ;; and CrTðBrðkÞÞ :¼
�
B : B 2 Br; B � Brþ1ðBrðkÞÞ; B \ T 6¼ ;

�
.

If kCrT ðBrðkÞÞ;BrðkÞ ¼ 0 or kCrT ðBrðkÞÞ;Brð‘Þ ¼ 0, (12) is satisfied by (10) and (11). Other-

wise, if r ¼ 0, we have,

HkSL
k ðN; a � uT ;BÞ
kC0T ðfkgÞ; fkg

¼
ð11Þ

Kk
B;TðkÞ

kC0T ðfkgÞ; fkg
a ¼
ð9Þ
ð10Þ

Kk
B;Tð‘Þ

kC0T ðfkgÞ; f‘g
a ¼ HkSL

‘ ðN; a � uT ;BÞ
kC0T ðfkgÞ; f‘g

:

Analogously, in the rth LS-game, 0� r� h, we have

HkSL
BrðkÞðB

r; ða � uTÞr;BrÞ
kCrT ðBrðkÞÞ;BrðkÞ

¼
Lem: 7:3

Lem: 7:4

HkSL
Brð‘ÞðB

r; ða � uTÞr;BrÞ
kCrT ðBrðkÞÞ;Brð‘Þ

and the claim follows by LG. h
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Proof of Proposition 3.5

Let N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; k 2 Kdis; S 2 XN , and u be an

LS-value that satisfies all axioms of Proposition 3.5. Due to Proposition 3.4, (2), and

A, it is sufficient to show that u is uniquely defined on the game vS :¼ DvðSÞ � uS:
If B 2 Br; B \ S ¼ ;, we have, by N,

X

i2B
uiðN; vS;BÞ ¼ 0 for all r; 0� r� h: ð20Þ

We use induction on the size m; 0�m� h; for all levels r; 0� r� h, with

m :¼ h� r.
Initialization: Let m ¼ 0 and so r ¼ h. It follows for all i 2 S with

Qh
‘¼r kC‘S ðiÞ;B‘ðiÞ [ 0, a such i always exists, and all B 2 Br; B \ S 6¼ ;; and

B � Brþ1ðiÞ,
P

j2B ujðN; vS;BÞ ¼
SCUk

kCr
S
ðiÞ;B

kCr
S
ðiÞ;BrðiÞ

P
j2BrðiÞ ujðN; vS;BÞ

)
X

B2Br;
B\S 6¼;

X

j2B
ujðN; vS;BÞ ¼

X

B2Br;
B\S6¼;

kCrS ðiÞ;B
kCrS ðiÞ;BrðiÞ

X

j2BrðiÞ
ujðN; vS;BÞ ¼

cð20Þ
E

DvðSÞ

)
X

j2BrðiÞ
ujðN; vS;BÞ ¼

Yh

‘¼r

kC‘S ðiÞ;B‘ðiÞDvðSÞ:

ð21Þ

By SCUk and (21), we have for all B 2 Br; B \ S 6¼ ;; and B � Brþ1ðiÞ with
Qh

‘¼r kC‘S ðiÞ;B‘ðBÞ ¼ 0;

X

j2B
ujðN; vS;BÞ ¼ 0 ¼

Yh

‘¼r

kC‘S ðiÞ;B‘ðBÞDvðSÞ: ð22Þ

Induction step: Assume that (21) and (22) hold to u with an arbitrary m� 1,

0�m� 1� h� 1 (IH). It follows for all i 2 S with
Qh

‘¼r kC‘S ðiÞ;B‘ðiÞ [ 0,

X

B 2 Br; B \ S 6¼ ;;
B � Brþ1ðiÞ

X

j2B
ujðN; vS;BÞ ¼

SCUk

X

B 2 Br; B \ S 6¼ ;;
B � Brþ1ðiÞ

kCrS ðiÞ;B
kCrS ðiÞ;BrðiÞ

X

j2BrðiÞ
ujðN; vS;BÞ

¼
ð20Þ
ðIHÞ

Yh

‘¼rþ1

kC‘S ðiÞ;B‘ðiÞDvðSÞ

)
X

j2BrðiÞ
ujðN; vS;BÞ ¼

Yh

‘¼r

kC‘S ðiÞ;B‘ðiÞDvðSÞ:

Analogously, for all B 2 Br; B \ S 6¼ ;; with
Qh

‘¼r kC‘S ðiÞ;B‘ðBÞ ¼ 0; we have
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X

j2B
ujðN; vS;BÞ ¼ 0 ¼

Yh

‘¼r

kC‘S ðiÞ;B‘ðBÞDvðSÞ:

Therefore, u is uniquely defined on vS (take m ¼ h and so r ¼ 0). h

Proof of Theorem 3.6

Let N 2 N dis
and B 2 LN be fixed.

): By Remark 3.3 and Proposition 3.4, each u 2 HSL on ðN; v; BÞ 2 VLN

coincides with a Harsanyi solution / 2 H on ðN; vÞ 2 VN and satisfies LG.
(: Obviously, if we use the coinciding axioms for TU-values in Proposition 3.5, we

have characterizations of Harsanyi solutions with exogenously given sharing systems

k 2 K. Note that these axiomatizations hold for all N 2 N and, especially, for games

which are defined on the same player sets as used for induced LS-games of the original

LS-game on a fixedN 2 N dis
; B 2 LN. Thus, each/ 2 H satisfies the standard axioms

E TU , N TU , A TU for TU-values, and SUk
TU for some k 2 K. Any LS-value u that

coincides with a Harsanyi solution on N 2 N dis
; B 2 LN; must also coincide with a

Harsanyi solution in the induced LS-games. Therefore, any LS-value u that coincides

with a Harsanyi solution must satisfy the simply transferred versions for LS-values of

these axioms:E,N,A, andSSUk0 for some k0 2 Kdis and also in corresponding induced

LS-games. Note that SSUk0 is implied by SUk, and SCUk is implied by SSUk0 and LG

for some k; k0 2 Kdis for any fixed N 2 N dis
; B 2 LN. Thus, all the axioms of

Proposition 3.5 must be satisfied and we have u 2 HSL. h

Proof of Corollary 3.7

The claim follows immediately due to the axiomatization of the Harsanyi set (Derks

et al., 2000) by the versions for TU-values of E, N, Pos, and A and Theorem 3.6. h

Proof of Proposition 4.4

Let N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; w 2 Wdis; and Kw

B;T be the

expressions according to Def. 4.1.

� E, N, A, LG: The claim follows directly by Remark 4.3 and Proposition 3.4.

� SMon : The claim follows immediately by (14).

� Depw: Let k; ‘ 2 N; 0� r� h; Brð‘Þ � Brþ1ðkÞ and BrðkÞ;Brð‘Þ be dependent in
ðBr; vrÞ 2 VBr

. If r ¼ 0, then k; ‘ are dependent in ðN; vÞ 2 VN and we get
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ShwSLk ðN; v;BÞ
wfkg

¼
ð14Þ

X

T�N; T3k

Kw
B;TðkÞ
wfkg

DvðTÞ ¼
ð3Þ

X

T�N; fk;‘g�T

Kw
B;TðkÞ
wfkg

DvðTÞ

¼
cDef :

4:1

X

T�N; fk;‘g�T

Kw
B;Tð‘Þ
wf‘g

DvðTÞ ¼ ShwSL‘ ðN; v;BÞ
wf‘g

:

Thus, we have also in the rth LS-game, 0� r� h,

ShwSLBrðkÞðB
r; vr;BrÞ

wBrðkÞ
¼

ShwSLBrð‘ÞðB
r; vr;BrÞ

wBrð‘Þ

and the claim follows by LG.
� MDep : The claim follows immediately by Depw. h

Convention 7.5 To avoid cumbersome case distinctions in the proof of Proposition

4.5, if we consider only one single component isolated as a player, we define the

component dependent on itself. Then Depw is trivially satisfied.

Proof of Proposition 4.5

Let N 2 N dis
; ðN; v; BÞ 2 VLN; B ¼ fB0; . . .;Bhþ1g; w 2 Wdis; S 2 XN , and u be

an LS-value that satisfies all axioms of Theorem 4.5. Due to Proposition 4.4, (2),

and A, it is sufficient to show that u is uniquely defined on the game

vS :¼ DvðSÞ � uS:
By Lemma 7.3, for each level r; 0� r� h; exists exactly one coalition Tr

S with

associated T r
S� Br; which is the smallest coalition of all Rr; Rr � S; with associated

Rr� Br and so in each game
�
Br; vrS;Br

�
2 VLB

r

, we have Dvr
S
ðT r

SÞ ¼ DvðSÞ and

Dvr
S
ðRrÞ ¼ 0 for Rr � Br; Rr 6¼ T r

S. Therefore, by (3), possibly using Conv. 7.5,

all components B 2 Br; B \ S 6¼ ;; are dependent in ðBr; vrSÞ. If B 2 Br; B \ S ¼ ;,
we have, by N,

P
i2B uiðN; vS;BÞ ¼ 0.

We use induction on the size m; 0�m� h; for all levels r; 0� r� h, with

m :¼ h� r.
Initialization: Let m ¼ 0 and so r ¼ h. For an arbitrary i 2 S, we get

X

B2Bh;
B\S6¼;

X

j2B
ujðN; vS;BÞ ¼

Depw

X

B2Bh;
B\S6¼;

wB

wBhðiÞ

X

j2BhðiÞ
ujðN; vS;BÞ¼

E
DvðSÞ

)
X

j2BrðiÞ
ujðN; vS;BÞ

¼
Yh

k¼h�m

wBkðiÞ
P

B2Bk :B�Bkþ1ðiÞ;
B\S 6¼;

wB
DvðSÞ:

ð23Þ

Induction step: Assume that (23) holds to u with an arbitrary m� 1, 0�m�
1� h� 1 (IH). It follows, for an arbitrary i 2 S,
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X

B2Br;B\S 6¼;;
B�Brþ1ðiÞ

X

j2B
ujðN; vS;BÞ ¼

Depw

X

B2Br;B\S6¼;;
B�Brþ1ðiÞ

wB

wBrðiÞ

X

j2BrðiÞ
ujðN; vS;BÞ

¼
ðIHÞ

Yh

k¼h�mþ1

wBkðiÞ
P

B2Bk :B�Bkþ1ðiÞ;
B\S6¼;

wB
DvðSÞ

)
X

j2BrðiÞ
ujðN; vS;BÞ

¼
Yh

k¼h�m

wBkðiÞ
P

B2Bk:B�Bkþ1ðiÞ;
B\S 6¼;

wB
DvðSÞ:

Therefore, u is uniquely defined on vS (take m ¼ h and so r ¼ 0). h

Proof of Theorem 4.6

By Proposition 4.4, we only have to show the way back.

Let N 2 N dis
; ðN; v;BÞ 2 VLN;B ¼ fB0; . . .;Bhþ1g; and u be an LS-value that

satisfies E, N, SMon, A, and MDep. By SMon and N, we have uiðN; uN ;BÞ[ 0 for

all i 2 N. Take a w 2 Wdis such that wB :¼
P

i2B uiðN; uN ;BÞ for all B 2 B. By
MDep, we have for all Bk;B‘ 2 Br; 0� r� h; such that B‘ � Brþ1ðBkÞ; and Bk;B‘

are dependent in ðBr; vrÞ 2 VBr

,

X

i2Bk

uiðN; v;BÞ
wBk

¼
X

i2B‘

uiðN; v;BÞ
wB‘

and Depw is satisfied. The claim follows by Proposition 4.5. h
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