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Abstract
In recent times of noticeable climate change the consideration of external factors, such
asweather and economic key figures, becomes evenmore crucial for a proper valuation
of derivativeswritten on agricultural commodities. The occurrence of remarkable price
changes as a result of severe changes in these factors motivates the introduction of
different price states, each describing different dynamics of the price process. In order
to include external factors we propose a two-step hybrid model based on machine
learning methods for clustering and classification. First, we assign price states to
historical prices using K-means clustering. These price states are also assigned to
the corresponding data of external factors. Second, predictions of future price states
are then obtained from short-term predictions of the external factors by means of
either K-nearest neighbors or random forest classification. We apply our model to real
corn futures data and generate price scenarios via a Monte Carlo simulation, which
we compare to Sørensen (J Futures Mark 22(5):393–426, 2002). Thereby we obtain a
better approximation of the real futures prices by the simulated futures prices regarding
the error measures MAE, RMSE and MAPE. From a practical point of view, these
simulations can be used to support the assessment of price risks in risk management
systems or as decision support regarding trading strategies under different price states.
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1 Introduction

In recent years the consequences of severe natural and economic incidents havebecome
more noticeable for the cultivation of agricultural commodities. Particularly, the severe
development of climate-related factors, such as drought caused by heat waves, has
direct impact on planting and harvesting conditions of agricultural commodities. Such
drastic and unpredictable changes are further reflected in the price development of agri-
cultural commodity derivatives. The crucial role of external factors1 has been already
recognized in early research on price modeling and forecasting of these derivatives.
Based on several fundamentals such as stock inventories, temperature, production
levels and export demand Chatrath et al. (2002); Geman and Nguyen (2005), and
Hayenga et al. (1997) analyze the relation of these factors to the price development
of derivatives. Furthermore, there exists a vast number of research that examines the
role of reports from the United States Department of Agriculture (USDA) as being a
price-driving factor themselves for a broad range of agricultural commodities. Starting
from the literature in earlier years (Garcia et al. 1997; Summer and Mueller 1989) to
recent work based on the current economic situation, Boudoukh et al. (2007); Karali
(2012), and Karali et al. (2019) verify that these reports still represent an important
source of information for the price formation of these commodities. In a more general
setting, Broll and Eckwert (2008) model fundamentals as observable realizations of
a random variable that are assumed to be correlated with the development of futures
prices in a commodity market and thus have an impact on them.

Mathematical and statistical methods which establish the relation between fun-
damentals and the development of commodity prices include the formulation of
stochastic price processes (Geman and Nguyen 2005; Haug 2021; Schwartz 1997;
Zhu et al. 2009) as well as the construction of time series models (Garcia et al. 1997;
Karali et al. 2019).More advanced stochasticmodels have been developed in the scope
of electricity price modeling, where Benth and Meyer-Brandis (2009), Hess (2012)
and Hess (2020) model fundamentals such as carbon dioxide emission costs and tem-
perature by stochastic processes of Ornstein–Uhlenbeck type, among others. Also in
the domain of electricity price modeling and forecasting, more complex statistical
models can be found, where ARX-type time series are widely used in applications
(Kristiansen 2012; Nogales and Conejo 2006; Weron and Misiorek 2008).

However, due to the nonlinear relation between price-driving factors and the price
process, linear time series models are not able to fully capture the complex relations.
For this purpose, hybrid approaches that combine classical statistical models with
methods ofmachine learninghavebeendeveloped andhave recently gained attention in

1 In the literature, external factors are also denoted as fundamentals and we shall use these notions inter-
changeably.
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research pertaining to different markets. Besides the application of more sophisticated
machine learning methods based on artificial neural networks (ANN) (Fan et al. 2007;
González et al. 2005; Niu et al. 2010), simpler methods are as popular as their more
complex counterparts. Indeed, a comparison of ANNs and support vector machines
(SVM) in Sansom et al. (2003) shows better performance of SVMs in the context of
electricity price forecasting. Further analysis of hybrid models, also in the scope of
electricity price modeling and forecasting, can be found in Che and Wang (2010),
which combines SVMs with standard (linear) time series models. With a focus on
metal commodities and under consideration of price-driving factors,Kristjanpoller and
Hernández (2017) analyze the performance of ANNs in combination with a GARCH
model for forecasting price volatility. Finally, the use of machine learning methods
as a stand-alone tool for price modeling and forecasting tasks for different markets
has also been analyzed in the literature. In the context of electricity markets Fan et al.
(2007) and Niu et al. (2010) introduce a two-stage machine learning approach in order
to obtain short-term forecasts of day ahead electricity prices. In particular, different
methods of supervised and unsupervised learning are combined in order to obtain
direct price forecasts as outputs of the learning process.

We propose a two-step hybrid model that combines a well-established theoretical
pricemodel for agricultural commodities with the strengthsmachine learningmethods
offer. Based on historical data on futures prices and a selection of their price-driving
factors, our approach allows for a characterization of different price behavior and
development into different price states.
To make this more precise we explain its three major components as given in Fig. 1:

1. In the first step we apply a clustering algorithm to historical futures price data to
identify K price states of commodity futures, see block 1© in Fig. 1. Specifically, we
apply the K-means algorithm to historical futures log returns for the identification
of states of log returns.2 The clustering results then serve as input data for the
subsequent classification and calibration tasks.

2. In the second component we link a selection of external factors to the commodity
price states by using a classification algorithm that assigns each set of values of the
external factors to a commodity price state, see block 2© in Fig. 1. More precisely,
we use the identified prices states from block 1© as classes on historical data of
the external factors for the training of the classification algorithm. As it is often
much easier to forecast the values of the external factors, we use their forecasts as
input to the selected classification model to predict the corresponding commodity
price states. In our analysis we consider the two classification algorithms K-nearest
neighbors (K-nn) and random forests (RF)with external data onweather and supply
and demand data on corn cultivation as external factors.

3. In the third component, for each cluster we calibrate the parameters needed as
input for the valuation formula of Sørensen (2002) for futures prices. We use the
clustering results from block 1© for the state-dependent calibration of the model
parameters given by an approximate version of the stochastic price model, see
block 3© in Fig. 1. Finally, we combine the classification and calibration results for

2 Actually, the notation of (log) return states would be more appropriate in this case. Yet, we keep referring
to these states as price states as we will use them for the simulation of futures prices.
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a Monte Carlo simulation of futures prices based on the predicted price states, see
block 4© in Fig. 1. These simulated prices can also be utilized for further scenario
analysis and computation of risk measures in risk controlling units of agricultural
commodity businesses, which, however, is beyond the scope of this paper.

The main benefit of hybrid models that combine stochastic modeling with machine
learningmethods lies in the incorporation of mathematical interpretability and domain
knowledge into a data-driven approach. Moreover, the two-step approach allows for
exploiting the strengths of supervised and unsupervised techniques in detecting non-
linear relationships between agricultural commodity prices and their driving factors.
Hybrid models were considered in Kristjanpoller and Hernández (2017) and two-step
machine learning approaches were used in Fan et al. (2007), and Niu et al. (2010).
However, in the literature we did not find an approach applying clustering and classi-
fication in combination with external factors for price modeling as proposed by us.

Our work is organized as follows: We describe the hybrid and machine learning-
based price state prediction model (ML price model) in detail in Sect. 2. A description
of futures price data and the price-relevant factors is given in Sect. 3. The application
of our model to real corn futures data and its empirical and simulation results are
presented in Sect. 4. A summary of our main results concludes the final section.

2 Amachine learning-based price state predictionmodel for the
valuation of futures prices

In this section we present the procedure of the proposed two-step hybrid price state
prediction model, which combines a classical stochastic price modeling approach
with machine learning-based methods of clustering and classification, as explained in
Introduction and illustrated in Fig. 1.

2.1 Standard price model and calibration technique for the valuation of
agricultural commodity futures

With Pt , t = 0, 1, . . . , T , denoting the spot price of agricultural commodities,3 we
followSørensen (2002) and consider the log price process pt = log(Pt )with dynamics
given by

pt = st + xt + zt . (1)

3 The spot price Pt at time t is generally defined as the price of (immediate) delivery of the commodity at
the same time t . However, for agricultural commodities no spot trading exists and the construction of the
spot price process is more of a theoretical definition in order to derive price formulas for the valuation of
agricultural commodity derivatives.
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Fig. 1 Workflow of the proposed machine learning-based price state prediction model for the simulation
of price paths by means of the identification and prediction of price states

Here the function

st =
S∑

k=1

(γk cos(2πkt) + γ ∗
k sin(2πkt)) (2)

defines the deterministic seasonal component with γk, γ
∗
k , k = 1, . . . , S, denoting

constant coefficients to be estimated. Choosing S = 2 as in Sørensen (2002), annual
and semi-annual seasonalities are considered. Furthermore, the state variables xt and
zt define stochastic processes with dynamics given by

dxt =
(

μ − 1

2
σ 2

)
dt + σdWxt (3)

dzt = −κztdt + νdWzt , (4)

where Wxt and Wzt denote Brownian motions correlated with constant correlation
coefficient ρ. Hence, the state variable xt is a Brownian motion with constant drift
μ − 1

2σ
2 and volatility parameter σ , whereas zt follows an Ornstein–Uhlenbeck pro-

cess with mean reversion level equal to zero, mean reversion speed κ and volatility
parameter ν. From an economic point of view, the dynamics of xt describe long-term
price changes affected by fundamental and permanent changes in the economy, e.g.,
given by a permanent change in supply and demand. In contrast, the dynamics of zt
describe short-term price changes, which are caused by temporary changes of external
factors, such as temperature and precipitation conditions.

For the valuation of derivative products, a risk neutral version of the stochastic
processes is required. Specifically, a change ofmeasure using the equivalentmartingale
measure Q implies an adjustment in the drifts by risk premium parameters λx and λz .
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The processes are given by

dxt =
(

α − 1

2
σ 2

)
dt + σdWQ

xt (5)

dzt = −(λz + κzt )dt + νdWQ
zt , (6)

where α:=μ − λx and, under Q, dWQ
xt and dWQ

zt are again increments of standard

Brownian motions correlated with dWQ
xt dW

Q
zt = ρdt .

Using the relation Ft (τ ) = E
Q
t (Pτ ), whereE

Q
t := E

Q(·|Pt )denotes the conditional
expectation under Q conditional on Pt , the price formula is given in Sørensen (2002)
by the explicit form of

Ft (τ ) = exp
(
sτ + Aτ−t + xt + zt e

−κ(τ−t)
)

, (7)

where Ft (τ ) denotes the price of the agricultural commodity futures at time t with
maturity τ and where

Aτ−t :=α(τ − t) − λz − ρσν

κ

(
1 − e−κ(τ−t)

)
+ ν2

4κ

(
1 − e−2κ(τ−t)

)
(8)

is a deterministic function of the model parameters. With ft (τ ):= log(Ft (τ )) defining
the log futures price at time t , we obtain a linear version of Eq. (7).

We use the Kalman filter maximum likelihood estimation procedure as described
in Sørensen (2002) to obtain the set of model parameters

�:=(μ, σ, κ, ν, ρ, α, λz, x0, γ1, γ
∗
1 , γ2, γ

∗
2 ). (9)

For a rigorous explanation of the parameter estimation technique using the Kalman
filter we refer the reader to Harvey (1990).

2.2 Identification of price states using clustering algorithms

We proceed with a detailed description of the machine learning methods that we
incorporate into the existing procedure of futures valuation.

For the identification of historical price states we choose the K -means algorithm.
Given a predefined number of clusters K and data d0, . . . , dT ∈ R

n, n ∈ N, the
algorithm groups the data into K clusters, such that dissimilarities of data within a
cluster are minimized. Subsequently, we use the Euclidean distance as a dissimilarity
measure. Further details regarding K -means and other clustering algorithms are given
in Hastie et al. (2001).

In our application we define each cluster to represent a specific price state. Specif-
ically, we obtain K disjoint subsets

Ci :={t ∈ {0, . . . , T }|dt ∈ cluster i}, i = 1, . . . , K , (10)
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containing time points corresponding to the data points which are assigned to the
cluster i . In order to obtain state-dependent model parameters for a pricing model,
we suggest using the Sørensen (2002) formula for the valuation of a futures contract
maturing at time τ , similar to theBlack-Scholes formula forEuropean call optionprices
at the stock market. Therefore, we restate Eq. (7) in terms of the subsets C1, . . . ,CK .
Given a cluster Ci we define the state-dependent version of Eq. (7) as

ft (τ, i):=sτ (i) + Aτ−t (i) + xt (i) + zt (i)e
−κ(i)(τ−t) (11)

for a futures contract maturing at time τ , t ∈ Ci and for i = 1, . . . , K . In particular,
the state dependence of the functions and processes sτ (i), Aτ−t (i), xt (i) and zt (i)
are given by their corresponding state-specific parameters constituting the parameter
vector

�(i):= (
μ(i), σ (i), κ(i), ν(i), ρ(i), α(i), λz(i), x0(i), γ1(i), γ

∗
1 (i), γ2(i), γ

∗
2 (i)

)
,

(12)

i = 1, . . . , K . Let us emphasize that we do not claim that formula (11) gives the log
price formula for a futures contract. We only use it as a calibration tool in order to
obtain the state-dependent parameters. This calibration procedure based on the clusters
is carried out K times in order to determine these state-specific parameter vectors�(i).

2.3 Prediction of price states using classification algorithms

As it is our central objective to predict future price states based on observations or
predictions of external factors, we aim at relating the external factors to the price states
by establishing a functional relationship to historical data. Note that we do not aim at
building a model that predicts the actual futures price based on the external factors.4

Here we focus on predicting which of the price states will be attained in the near
future. This information is then used to predict the actual price values by means of the
state-dependent stochastic price model and Monte Carlo simulation.

For this purpose we construct a function C : R
m �→ {l1, . . . , lK } that assigns

an output class C (bt ) to an input feature vector bt :=(bt1, . . . , btm) ∈ R
m for each

historical time point t = 0, . . . , T . Let lt ∈ {l1, . . . , lK } denote the price state at time t .
Our goal is to find a functionC that minimizes the distance between lt andC (bt ) in an
appropriate sense, resulting in a model selection and model-specific hyperparameter
optimization.

Specifically, we apply the K-nearest neighbors (K-nn) and random forest (RF)
classification algorithms, C Knn and C RF, respectively. The K-nn algorithm chooses
the K closest input feature vectors from the training set D:={(bt , lt ), t = 0, . . . , T }
according to a distance measure. Then the function C Knn predicts the class C Knn(b)
of a new feature vector b by majority vote among the classes corresponding to the
K closest input feature vectors. In contrast to the simple methodology defined by K -
nn, random forests constitute a more complex ensemble learning method that makes

4 Consequently, we build a classification rather than a regression model.
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use of multiple constructions of decision trees (DT). The idea of the DT algorithm
is to split the training set D into two subsets, using the best splitting criterion of the
form bti ≤ a for some a ∈ R and feature i ∈ {1, . . . ,m}. The procedure is repeated
iteratively for each resulting subset until some stopping criterion is reached. Finally,
the class C RF(b) is determined by a soft voting procedure, i.e., as the class with the
highest sum of predicted probabilities over all decision trees. We refer the reader to
Breiman (2001) and Hastie et al. (2001) for more details regarding the RF-algorithm
and the various choices of its hyperparameters.

For the training of the described classification algorithms, we use the clustering
results by assigning the identified price states to the input feature vectors given by
historical data of the external factors. Specifically, given the clusters C1, . . . ,CK as
defined in Eq. (10), we define the class for each input feature vector bt , t = 0, . . . , T ,
by lt :=i if t ∈ Ci for some i ∈ {1, . . . , K }. With this assignment we construct a
labeled set D:={(bt , lt ), t = 0, . . . , T }, defining the training set for the classification
algorithms.

3 Data and stylized facts

3.1 Futures prices and further transformations

The proposed ML price model is applied to futures contracts written on the agricul-
tural commodity corn. Note that our method can also be applied to other agricultural
commodities, where standardized derivative products exist.

We consider the time period of 2015-01-01 to 2019-12-31 of weekly observations
on futures prices on corn, which are traded at the Chicago Board of Trade (CBOT).
This data has been retrieved from the financial data provider Refinitiv (2020). Futures
on agricultural commodities are characterized by their maturity in specific months
only. In the case of corn, maturity and thus delivery of the product are only available
for the months March, May, July, September and December.

For the identification of (historical) price states we consider different transforma-
tions of the original log futures prices. First, in order to obtain easily interpretable as
well as reasonable price states that can be detected and distinguished by the clustering
algorithm, we transform the log futures prices with maturity τ ∈ N to their price
changes by

rt (τ ):= log(Ft (τ )) − log(Ft−1(τ )) = ft (τ ) − ft−1(τ ), t ∈ {1, . . . , τ }. (13)

Second, we follow Sørensen (2002) and define the compounded time series
{ f̃t (m)}t≥0,m = 1, 2, . . . of futures categorized with respect to their proximity to
maturity. That is, given a time point t , the futures ’m-th closest to maturity’ is defined
as the futures in them-th position tomature.5 This transformation is particularly needed
for the calibration procedure described in Sect. 2.1. We define the compounded time
series of log price changes {r̃t (m)}t≥0 in an analogous way. Figures 2 and 3 depict the

5 In this order, the data set changes whenever the future ’1st closest to maturity’ matures at time point τ1t
and the futures ’2nd closest to maturity’ becomes the futures ’1st closest to maturity’ and so on.
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Fig. 2 Compounded, weekly time series of corn log futures prices, each categorized with respect to their
proximity to maturity over the full sample period 2015-01-01 to 2019-12-31

development of f̃t (m) and r̃t (m) for m = 1, 5, 10, i.e., of the futures ’1st,’ ’5th’ and
’10th closest to maturity,’ respectively. Table 1 complements the graphs with the cor-
responding summary statistics of the categorized futures. In this context we note that
the model assumption of normally distributed log prices/log price changes is a fairly
common and standard claim used in many existing works on futures price modeling
and its evaluation with empirical data (Schwartz 1997; Schwartz and Smith 2000).
In particular it is the underlying assumption of the model in Sørensen (2002) that we
apply within our approach.

In the following we highlight some stylized facts of the price structure and behavior
of agricultural commodity prices, which are crucial for an appropriate price modeling.

Yearly seasonality pattern: In line with observations and existing works on the mod-
eling of (agricultural) commodities (Benth and Koekebakker 2008; Brennan 1958;
Fama and French 1987; Geman andNguyen 2005; Sørensen 2002) we assume com-
modity prices to exhibit a yearly and sub-annual seasonal pattern. In fact, this price
behavior is related to the harvest cycle of agricultural commodities. First, we can
expect the price to increase before the harvest season starts, when uncertainty about
the outcome is greatest. Then, during the harvest season we can expect a decrease
in price fluctuations as the outcome can be better measured and estimated. Obvi-
ously, the harvest conditions and results depend strongly on external factors, such
as temperature and precipitation conditions. From Fig. 2 we can observe this yearly
seasonal pattern for the majority of years depicted. In particular, log prices increase
at the beginning of the year and reach their highest annual value in summer, before
they sharply decrease in the second half of the year. A similar observation applies
to the time series of log price changes, with the highest amplitude and values in the
spring and summer months.

123



1072 P. Oktoviany et al.

Fig. 3 Compounded, weekly time series of corn log futures price changes, each categorized with respect
to their proximity to maturity over the full sample period 2015-01-01 to 2019-12-31

Stronger variability for short-term futures:We observe stronger variability in the log
prices and their changes for futures maturing in the short-term. Hereby we define
short-term futures to be futures contracts with an average maturity of up to 12
months, i.e., futures within the categories up to ’5th closest to maturity.’ In both
figures this is strongly visible for the compounded time series of futures ’1st closest
to maturity’ and ’5th closest to maturity.’ This observation is further supported by
the standard deviations in Table 1. Besides seasonality effects which may cause
these fluctuations, we assume that additional, temporary changes in external factors
have great impact on the magnitude of changes in the prices. As a consequence, we
assume the development of futures maturing in the short-term are more strongly
affected by temporary information on external factors.

Thus, for the subsequent analysis we consider only futures that are contained within
the categories up to ’5th closest to maturity,’ i.e., m ≤ 5.

3.2 Introduction of external factors

For the prediction of price states we focus on the following external factors, which are
commonly considered for the pricing of agricultural commodity futures (Geman and
Nguyen 2005; Garcia et al. 1997; Karali 2012; Karali et al. 2019).

Weather data: We retrieve data on temperature and precipitation from the (financial)
data provider Refinitiv (2020).We consider time series data on temperature and
precipitation available on a daily resolution. In addition, for each country, these
measurements exist on regional levels, such that averaging of the regional data is
necessary in order to obtain information in aggregated form on a country level.
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Table 1 Summary statistics of the compounded time series of (a) log futures prices and (b) log futures price
changes, each categorized according to ’m-th closest to maturity’

m Time to maturity Mean Std. deviation Skewness Kurtosis

(a) Compounded time series of log futures prices

1 1.3093 5.9093 0.0589 0.5564 1.2107

2 3.9429 5.9328 0.0556 0.5750 1.1156

3 6.4902 5.9537 0.0534 0.6313 1.1399

4 9.0346 5.9716 0.0516 0.6530 1.2811

5 11.6542 5.9862 0.0482 0.6653 1.4907

6 14.3580 5.9996 0.0432 0.4985 1.5571

7 16.9872 6.0076 0.0320 −0.3939 0.8229

8 19.5361 6.0151 0.0283 −0.1934 0.5883

9 22.0787 6.0201 0.0279 −0.1328 0.0820

10 24.6975 6.0235 0.0278 0.0525 0.2867

(b) Compounded time series of log futures price changes

1 1.3093 −0.0021 0.0245 −0.1987 2.4302

2 3.9429 −0.0023 0.0235 −0.0762 2.9036

3 6.4902 −0.0021 0.0224 −0.0448 3.0409

4 9.0346 −0.0018 0.0208 −0.0809 3.1745

5 11.6542 −0.0016 0.0192 −0.1152 3.6794

6 14.3580 −0.0010 0.0172 0.0738 3.7742

7 16.9872 −0.0009 0.0137 0.0154 1.8186

8 19.5361 −0.0009 0.0125 −0.0148 1.6168

9 22.0787 −0.0008 0.0117 −0.0319 1.8502

10 24.6975 −0.0006 0.0110 0.0285 1.7634

Time to maturity is given in months and the mean value is given in US cents per bushel. The summary
statistics are calculated based on 260 weekly observations in the time period 2015-01-01 to 2019-12-31 for
each m

Supply and demand data: We use monthly data being published by USDA (2020b).
We consider seven time series of supply data and three time series of demand data.
All quantities are given in million metric tonnes.

Table 2 gives a detailed overview on the categorized external factors. Furthermore,
we limit our consideration of the time series data in both categories to the most rele-
vant corn-producing countries. Taking into account recent reports USDA (2020a), we
restrict our application to data available on the countries USA, Brazil and Argentina.6

In total, having ten time series on country level, we end up considering 30 different
time series for the subsequent prediction of price states in Sect. 4.3. For illustrational
purposesTable 8 inAppendix summarizes themain descriptive statistics of the external
factors for the USA. The main benefit of these factors is the availability of short-term
forecasts of their values, in our case of future weather as well as supply and demand
conditions.

6 In the case of weather data, we further restrict the data to these countries’ corn cultivation areas only.
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Table 2 Overview of the categories, sub-categories and data with respect to the external factors used in the
machine learning-based price state prediction model

Category Sub-category External factors

Weather data Temperature Mean min. temperature

Mean max. temperature

Precipitation Mean precipitation

Supply and demand data Supply Beginning Stocks

Production

Imports

Ending stocks

Demand Domestic feed

Domestic total

Exports

Temperature is given in °C, precipitation in mm and all quantities of supply and demand in million metric
tonnes

In order to examine whether a linear relationship between the selected factors and
futures prices exists, we perform a linear correlation analysis. Table 3 shows a selec-
tion of linear correlations between external factors for the USA and the compounded
log futures prices in the short-term. The analysis suggests a low positive correlation
between weather data and log futures prices, whereas the linear relationship between
the supply and demand data and the log futures prices is characterized by low negative
correlations.7

Consequently, we can assume that these external factors do not exhibit a strong
linear relationship with the log futures prices and for that reason we do not consider
linear classification algorithms or other linear statistical methods in our approach.
And yet, a statistically significant nonlinear relationship may still exist. Hence, we
focus on the application of nonlinear models. In fact, this might be the main benefit
of the classification algorithms we are considering, which are able to detect nonlinear
relationships between the futures prices and the price-driving external factors.
As we will see in Sect. 4, our model can be used for a detailed characterization of
potential future price developments. In the context of classification, we will also refer
to the external factors as features.

4 Empirical and simulation results

In this section we present the application and the corresponding results of the proposed
ML price model. We apply our model to corn futures data and external factors in the
full sample period 2015-01-01 to 2019-12-31. The full sample period is divided into a

7 With the exception of a few values regarding the external factors beginning stocks and exports.

123



Amachine learning-based price state prediction model… 1075

Table 3 Linear pairwise correlation analysis between log futures prices categorized by ’m-th closest to
maturity’ and a selection of external factors for the USA

External factors/m 1 2 3 4 5

Mean min. temperature 0.0785 0.1126 0.1625 0.1928 0.1642

Mean max. temperature 0.0662 0.1025 0.1557 0.1869 0.1615

Mean precipitation 0.0466 0.0532 0.0777 0.1029 0.1050

Beginning Stocks −0.0178 0.0408 0.0850 0.0931 0.0768

Production −0.2804 −0.2681 −0.2664 −0.2608 −0.2376

Imports −0.2844 −0.2699 −0.2719 −0.2792 −0.2867

Domestic Feed −0.4365 −0.4206 −0.4210 −0.4234 −0.4261

Domestic Total −0.2128 −0.1559 −0.1226 −0.1179 −0.1217

Exports −0.0554 −0.0176 0.0063 0.0024 −0.0089

Ending Stocks −0.2909 −0.2905 −0.2917 −0.2746 −0.2375

The correlations are computed based on the full sample period 2015-01-01 to 2019-12-31

training sample period8 2015-01-01 to 2018-12-31 and a test sample period9 2019-01-
01 to 2019-12-31.The training sample period is subsequently used for the identification
of historical price states in Sect. 4.1, the calibration of the state dependent parameter
sets in Sect. 4.2 and for the training of the classification models in Sect. 4.3. The test
sample period is then used for the prediction of the unknown price states in Sect. 4.3
and based on this for the simulation of price scenarios in Sect. 4.4.

4.1 Identification of historical price states using K-means

We apply the K-means clustering algorithm tomulti-dimensional historical time series
of futures log price changes {dt }t=0,1,...,T with

dt :=(r̃t (1), r̃t (2), . . . r̃t (5)) ∈ R
5 (14)

in the training sample period. For our procedurewe need to choose an appropriate num-
ber K ≥ 1 of clusters. Taking into account the computation of within sum of squared
distances (WSS), the silhouette coefficient (Rousseeuw 1987) and the Bayesian infor-
mation criterion (BIC) (Schwarz 1978; Pelleg andMoore 2000), we suggest K = 2 as
the most plausible choice for our data.10

8 This constitutes the training set used for CV and training of the ML models.
9 We use the terminology of a test sample period in the context of simulations of price paths and their
comparison with the observed prices as presented in Sect. 4.4.
10 For WSS we support our decision by visualization of the values in terms of K and the choice of K could
be narrowed down to K ∈ {2, 4}. Taking the silhouette coefficient into account (0.5300 for K = 2 versus
0.5385 for K = 4), K = 4 would be preferred over K = 2. On the other hand, considering the BIC we
obtain BIC(2) = −1065.4462 versus BIC(4) = −1190.3750 and K = 2 would be preferred over K = 4
as we aim to maximize this criterion. Moreover, let us emphasize that more than two clusters would result
in very inhomogeneous cluster sizes and we would then run into an imbalanced class problem. This is
particularly the case for K = 4 clusters which results in a strongly imbalanced data set with one cluster
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Fig. 4 Compounded time series {r̃t (1)}t=0,1,...,T of log futures price changes in the category ’1st closest to
maturity,’ clustered in K = 2 different price states over the training sample period 2015-01-01 to 2018-12-31

Figure 4 shows the clustering results included in the compounded time series
{r̃t (1)}t=0,1,...,T of log price changes corresponding to the compounded time series
of futures ’1st closest to maturity.’11 Specifically, the color of each data point shows
the assignment of this time point to the two clusters. In addition, Table 4 shows the
summary statistics of the different price states. In our application we identify each
cluster with a specific price state described in the table. Indeed, the definition of the
price states is well reflected by the corresponding average values of log price changes.
The majority of the data is assigned to the cluster (red circle) which we define to be
the high price state. In this state, log price changes are predominantly positive, with
few time points exhibiting negative price changes. On the contrary, the low price state
(blue square) contains only negative price changes. With 117 data points in the high
and 90 data points in the low price state, the data set is well balanced.

4.2 Parameter calibration for different price states

We perform the calibration procedure for each of the K = 2 different price states we
identified using K -means. For each price state the parameter estimates are given in
Table 5. Additionally, in order to evaluate our model’s performance, we further run
the calibration procedure for the benchmark model given in Sørensen (2002).

containing only 5 out of 207 data points. In particular, for the smaller clusters our calibration and price
prediction method would not work well and the overall quality of our method would decrease. Finally, two
clusters do also have a natural interpretation as the two states of low and high price changes.
11 In fact, these futures are the most liquid and most relevant futures for trading decisions or strategies of
a company in the agricultural commodity business.
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Table 4 Summary statistics of the K = 2 price states detected by K-means, based on the compounded
time series {r̃t (1)}t=0,1,...,T of log futures price changes in the category ’1st closest to maturity’ over the
training sample period 2015-01-01 to 2018-12-31

Price state Avg. log price change Std. deviation No. observations

High (red circle) 0.013301 0.015370 117

Low (blue square) −0.022454 0.016353 90

Table 5 Optimal parameters from the calibration procedure of corn futures log prices, based on the bench-
mark model by Sørensen and the ML price model

Price state Sørensen ML price model

Low High

μ 4.0264e−05 −0.0059 0.0048

σ 0.0160 0.0140 0.0150

κ 0.0147 0.0129 0.0119

ν 0.0123 0.0127 0.0141

ρ 0.5303 0.4147 0.1013

α 0.0006 0.0005 0.0002

λz −0.0014 −0.0018 −0.0020

σε 0.0033 0.6553 0.7195

γ1 0.0009 0.0007 0.0005

γ ∗
1 −0.0021 −0.0016 −0.0012

γ2 −0.0012 −0.0009 −0.0007

γ ∗
2 −0.0021 −0.0016 −0.0012

Log-Likelihood −3830.2175 −1670.5576 −2087.2645

No. observations 207 90 117

Except for the long-termdrift parameterμ, the calibrated parameters of bothmodels
are within a similar range. The estimated mean reversion speed κ as well as the short-
and long-term volatilities σ and ν, respectively, do not differ significantly between
both models. Also, both models suggest a positive correlation, with stronger values
for the benchmark model and the low price state in the ML price model. The market
price of risks α and λz are close to zero and again of similar range for both models.
Finally, we make the same observation for the seasonality parameters γ1, γ

∗
1 , γ2 and

γ ∗
2 .

12

12 In an additional analysis, we also apply our model to seasonally adjusted log futures prices. Although
different clustering, classification and calibration results are suggested, our model was also able to perform
better than the benchmark model in terms of the error measures we consider in Sect. 4.4.
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Table 6 Specification of the best K -nn and random forest classification models, trained and selected on the
training sample period 2015-01-01 to 2018-12-31 and using the external factors described in Sect. 3.2

K-nearest neighbors Random forest

Hyperparameters no. neighbors = 1 no. DT = 1000

distance measure = Euclidean impurity measure = Entropy

max. depth = 3

max. no. of features = 4

CV score 0.6262 0.6553

Different CV methods were compared and the best results are presented

4.3 Prediction of price states using K-nearest neighbors and random forest
classification

For the prediction of price states using the K -nn and RF-algorithm we define the
training set D = {(bt , lt ), t = 0, . . . , T } with input feature vector bt ∈ R

30 given by
the values of the aforementioned external factors and lt ∈ {Low,High} given by the
definition of the two clusters. Then, based on D we train and select the classification
models by hyperparameter optimization via grid search based on cross-validation
(CV) methods. To be more precise, we apply several CV methods, such as K-fold
cross-validation,13 to the classification model in order to minimize the classification
error with regard to the hyperparameters over the prespecified parameter grid. For
each CV method we then choose the classification model with the corresponding
parametrization that has the highest CV score, given by the averaged accuracy score.14

For both classification algorithms, K -nn and RF, the respective best model along with
the hyperparameters we vary by means of grid search is presented in Table 6. These
specified classification models are subsequently used to make price state predictions
in the defined test sample period.

Figure 5 illustrates the price state predictions assigned to three of the features used
with the highest feature importance.15 The price states are encoded by the same color
scheme as in Fig. 4. Both classification models predict both price states with a similar
pattern over the test sample period. Over the year, the majority of data points are
assigned to the high state (red circle). Yet, both classification models predict a change
of price states in the summer period (blue square). Specifically, starting from June
2019, a change from the high to the low price state is predicted, which mostly persists
until the end of September 2019 (with the exception of one data point when using
K-nn). Furthermore, when choosing the K-nn-model for price state prediction, there
is an additional, short change of price states occurring in February 2019.

13 See Müller et al. (2016) and Gron (2017) for more details on different CV methods.
14 The accuracy score is defined as the fraction of correctly predicted classes by the classifier.
15 Feature importance measures the contribution and thus the importance of the feature in the classification
procedure. In the RF algorithm, feature importance is a byproduct of splitting the bootstrapped sub-samples
of the training set by a selection of appropriate features. Check for Gini importance or mean decrease in
impurity (MDI) for a rigorous description of the method.
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Fig. 5 Prediction of price states using the K-nn and RF classification model in the test sample period 2019-
01-01 to 2019-12-31. For illustrative purposes, we depict the price state prediction of the external factors
with the highest feature importance

We conclude this section with a remark on the external randomness in our approach
and a comparison to regime switching models.

Remark 1 It may seem that our procedure uses deterministic price states. In fact, we
would like to point out that in the underlying mathematical model the external factors
are represented by stochastic processes, constituting the source of randomness in the
underlying theoretical price state process. The trained classifier then maps realizations
of the external factors via a non-random functional relationship to the predictions of
the corresponding price states.
An alternative approach could be based onMarkov regime switching. Regime switch-
ing models, however, do not contain external factors. The relation to future values in
regime switching models is random as one considers the conditional distribution of
future values given the current state.

4.4 Simulation results and comparison of the price models

We combine the calibration and classification results for the purpose of Monte Carlo
simulation of log futures prices. To this end we apply each classifier to realizations
of the external factors in the test sample period, resulting in predictions of the corre-
sponding price states. For illustrative purposes, Fig. 5 shows three paths of external
factors in the test sample period and the corresponding price state predictions, which
are obtained separately from the K-nn and RF-algorithm. Having assigned a price state
lt ∈ {Low,High} at each day t in the test sample period by means of the classifiers, we
then use the corresponding state-dependent parameter estimates given in Table 5 to
simulate futures prices with the help of the price formula by Sørensen (2002). Along
with the simulation of log futures prices based on our model, we also simulate price
paths based on the benchmark model given in Sørensen (2002).
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(a)

(b)

Fig. 6 [0.05, 0.95]-confidence band around the mean simulated price path, based on 10,000 simulation
results of corn futures log prices with maturity (a)March 2019 and (b) December 2019. Simulated futures
log prices based on the ML price model with K-nn (left) and RF classification (middle), as well as the
benchmark model by Sørensen (2002) (right) are compared to the observed values. The simulations are
generated for the test sample period 2019-01-01 to 2019-12-31

For theML price models with K-nn and RF classification, as well as the benchmark
model, Fig. 6 shows the simulated mean path along with the [0.05, 0.95]-confidence
band based on 10,000 simulations of the futures contracts maturing inMarch 2019 and
December 2019.16 Furthermore, we compare these predicted prices with the observed
prices.
Considering the mean path of the simulated prices for the corn futures with maturity
in March 2019 we obtain the best approximation of the observed log prices by the ML
price model with K-nn classification. Together with the benchmark model it captures
the downward price movement, whereas the ML price model with RF classification

16 As for the last day of the training period 2015-01-01 to 2018-12-31, the futures with maturity March
2019 and December 2019 are the futures ’1st closest to maturity’ and ’5th closest to maturity,’ respectively.
In practice, futures with maturities ranging within these categories are indeed the most relevant ones for
short-term trading decisions and actions.
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Table 7 Different errormeasures for theMLpricemodelwithK-nn andRF classification and the benchmark
model by Sørensen (2002)

March 2019 December 2019

ML-KNN ML-RF Sørensen ML-KNN ML-RF Sørensen

MAE 0.0372 0.0420 0.0427 0.0779 0.0812 0.0948

RMSE 0.0512 0.0593 0.0581 0.1041 0.1074 0.1269

MAPE 0.6908 0.7229 0.7668 1.5192 1.5620 1.6726

The error measures are computed based on 10,000 simulations of log futures prices with maturity March
2019 and December 2019 for the test sample period 2019-01-01 to 2019-12-31

suggests an upward price movement. Additionally, the ML price model with K-nn
classification results in a better approximation of the prices due to the price state
change it predicts for February 2019. As for the corn futures maturing in December
2019, both ML price models give better approximations of the observed values than
the benchmark model. This is mainly demonstrated in the summer period of 2019,
where both ML price models are able to mimic the sharp price movements, again due
to the predicted changes of price states. In contrast to this, the benchmark model only
suggests a downward trend of prices, with difficulties in capturing the significant price
movements in the summer period. Comparing only the ML price models among each
other, the K-nn classification again gives a slightly better model as it gives a better
approximation of the observed log-prices at the beginning of the year 2019.

In addition to the graphical analysis, in order to evaluate the models’ performance,
we calculate error measures based on these 10, 000 simulated price scenarios. In
particular, we compute the common error measures mean absolute error (MAE), root
mean squared error (RMSE) andmean percentage absolute error (MAPE).We provide
the results of the evaluation in Table 7. These error measures underline the main
observations highlighted in the graphical analysis. First, theMLpricemodelwithK-nn
classification performs best in terms of the error measures, irrespective of the futures’
maturity.17 Second, the performance of the ML price model with RF classification
is twofold. While it has the worst RMSE-value for the corn futures with shortest
maturity in March 2019, it achieves better error measures than the benchmark model
for the futures with longer maturity in December 2019. Finally, we conclude that in
most of the cases the benchmark model by Sørensen (2002) can be outperformed
by our price model that includes applications of suitable machine learning methods.
Clearly, the main benefit of our suggested model lies in the introduction of different
price states, whose prediction is enabled by the incorporation of price-driving factors.
Particularly, the ability to specify the parameter calibration in different price states
enables a better approximation of the price dynamics in terms of simulated price paths
and error measures.

17 Indeed, this statement holds also true for other corn futures we analyze, with maturities July 2019,
September 2019, March 2020, May 2020, July 2020, September 2020 and December 2020.

123



1082 P. Oktoviany et al.

5 Conclusion

We have proposed a two-step hybrid model that incorporates information on external
factors into the simulation of futures prices on corn. The identification of historical
price states and the availability of forecasts of the external factors enable us to pre-
dict prospective price states by means of the K-nearest neighbors and random forest
algorithms.

As shown in the simulation study, our model is a useful tool to generate price
scenarios, particularly in strongly fluctuating periods. Further, in terms of the numer-
ical simulations and error measures, it represents an improvement to the benchmark
model, with a more accurate price modeling of futures on corn and other agricultural
commodities.

From the viewpoint of application, our hybrid model can be introduced into the risk
management system of companies involved in the agricultural commodity business.
Embedded into the system, price risks in different price states can be evaluated using
Monte Carlo simulations based on our model. Furthermore, our model can be applied
in order to develop trading strategies and decisions, which may differ depending on
the current forecasts of external factors.

Further considerations of more complex clustering and classification algorithms
can improve the model. In addition, a careful choice of external factors that are related
to the agricultural commodity futures is another possibility to improve the model’s
performance.

We conclude by emphasizing that our model is universally applicable for other
markets and corresponding products. Specifically, our model is not limited to the
assessment of futures prices, in that it can be applied to other (derivative) products. It
is also not limited to the agricultural commodity market and can be applied to various
other markets. In fact, the only assumptions needed for our approach are different
empirically observable price states and the existence of forecasts of the external factors
that are related to the considered product. We believe that these requirements are
fulfilled in many markets of interest, in particular for energy-related sectors. As for
the electricity market, our model may be used for the price modeling of short-term
products, such as day ahead electricity prices or short-term futures. In this context,
possible external factors expected to influence the price development are, for example,
temperature as well as wind and solar power, for which forecasts are readily available.
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Appendix

For illustrational purposes of the external factors we consider in the application of our
model Table 8 summarizes the main descriptive statistics of the external factors for
the USA.

Table 8 Summary statistics of the external factors for the USA

External factors Mean Std. deviation Min Median Max

Mean min. temperature 5.3626 9.8680 −18.7280 6.1728 20.6786

Mean max. temperature 15.4969 11.5537 −11.8004 17.1536 34.4846

Mean precipitation 2.4231 1.7477 0.0317 2.1665 7.6914

Beginning Stocks 49.6963 7.8696 31.2900 51.5000 60.2000

Production 362.9712 13.7936 343.6800 361.0900 386.7500

Imports 1.1161 0.2454 0.6400 1.2700 1.4000

Domestic Feed 137.5631 3.6030 131.4500 137.8000 144.1500

Domestic Total 311.1514 7.0626 300.8800 314.5900 322.0900

Exports 51.5829 6.0051 41.9100 49.5300 62.8700

Ending Stocks 51.0486 7.5127 39.6600 48.9900 63.1900

Temperature is given in °C, precipitation inmm, all quantities of supply and demand inmillionmetric tonnes.
The summary statistics are calculated based on 261 weekly observations in the time period 2015-01-01 to
2019-12-31
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