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Abstract
We propose a novel approach to calibrate the conditional value-at-risk (CoVaR) of
financial institutions based on neural network quantile regression. Building on the
estimation results, wemodel systemic risk spillover effects in a network context across
banks by considering the marginal effects of the quantile regression procedure. An
out-of-sample analysis shows great performance compared to a linear baseline spec-
ification, signifying the importance that nonlinearity plays for modelling systemic
risk. We then propose three network-based measures from our fitted results. First, we
use the Systemic Network Risk Index (SNRI) as a measure for total systemic risk. A
comparison to the existing network-based risk measures reveals that our approach
offers a new perspective on systemic risk due to the focus on the lower tail and to the
allowance for nonlinear effects. We also introduce the Systemic Fragility Index (SFI)
and the Systemic Hazard Index (SHI) as firm-specific measures, which allow us to
identify systemically relevant firms during the financial crisis.

Keywords Systemic risk · CoVaR · Quantile regression · Neural networks
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94 G. Keilbar, W. Wang

1 Introduction

The issue of systemic risk attracts a lot of attention from academics as well as from
regulators in the aftermath of the financial crisis of 2007–2009. Systemic risk refers to
banks and other economic agents with substantial importance to the financial system
due to their size (too big to fail) or their centrality within the financial network (too
interconnected to fail). A bankruptcy of a systemically important financial institution
can lead to themalfunctioning of the financial systemor central banks and governments
might be under pressure to interfere bybailingout respectivefirm.Due to these negative
externalities, it is a crucial task for central banks and supervising agencies to identify
systemically relevant firms.

A conventional quantitative risk measure is value-at-risk (VaR), which measures
maximum losses at a certain confidence level. The Basel II Accord introduced VaR
as a preferred measure for market risk. However, VaR is not capturing systemic risk
adequately, as it is not capable to analyse the interdependency among firms. Given the
subprime mortgage crisis in 2008, the Basel Committee on Banking Supervision has
revised its Accords to focus on strong governance and risk management. Basel III is
thus set up to control the systemic risk of the whole financial system, and it enforces
additional requirements for identifying systemic risk important banks and generates
demands on evaluating the interdependency of risk among banks. Adrian and Brunner-
meier (2016) came up with conditional value-at-risk (CoVaR), a systemic extension
of VaR. However, their original approach is restricted to analyse systemic risk in a
linear and bivariate context. Namely, they focus primarily on the risk contribution of
an individual financial firm to the entire system, controlling for variables indicating
general macroeconomic conditions.

This paper provides a new perspective for estimating CoVaR using neural networks.
Nonlinearity is an important issue for the prediction performance of risk measures
due to the complex dependency channels of financial institutions (Chao et al. (2015)).
Neural networks have proved to be a suitable method for fitting nonlinear functions.
Over the last years, neural networks have become state-of-the-art models for predic-
tion. They have been applied extensively and successfully to various fields, including
image classification (Simonyan and Zisserman 2014) as well as speech recognition
problems (Graves et al. 2013). Gu et al. (2020) and Bianchi et al. (2020) apply neural
networks and other machine learning methods to asset pricing with promising results.
We take the off-shelf neural network methodology and apply it to quantify financial
risk. Our findings show that the quantile neural network-based approach provides a
unique angle compared to the linear model for calibrating the systemic risk due to its
flexibility. In particular, we find better out-of-sample prediction with our fine-tuned
nonlinear neural network relative to the baseline linear quantile model of Koenker and
Bassett (1978, 1982).

We briefly summarize the steps of calibrating the systemic risk using a quantile
neural network procedure. In the first step, we estimate the VaR for each global sys-
temically important financial institution (G-SIB) from the USA by regressing their
stock returns on a set of risk factors using linear quantile regression. Next, we esti-
mate the CoVaRs of the same firms using neural network quantile regression. To
characterize the interdependency among banks, we regress the return of one asset on
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Modelling systemic risk using neural network quantile regression 95

the remaining returns, respectively, and aggregate the results into a systemic fit. By
approximating the conditional quantile with a neural network, we aim for capturing
possible nonlinear effects. To estimate risk spillover effects across banks, we calculate
the marginal effects by taking the derivative of the fitted quantile with respect to the
other banks’ stock returns, evaluated at their VaR. By doing so, we come up with
a network of spillover effects represented by an adjacency matrix. This adjacency
matrix is time-varying, i.e. we estimate a network for each window in our moving
window estimation procedure. In the final step, we propose three systemic risk mea-
sures building on the previous results. As a first measure, we propose the Systemic
Fragility Index, which identifies the most vulnerable banks in a given financial risk
network. The secondmeasure is the Systemic Hazard Index, which identifies the finan-
cial institutions which potentially pose the largest risk to the financial system. These
twomeasures characterize the firm-specific aspects of systemic risk. Thus, we propose
a third measure which estimates the total level of systemic risk, the Systemic Network
Risk Index.

Our empirical findings confirm that systemic risk increased sharply during the
height of the financial crisis in 2008. We also observe a high level of systemic risk
at the end of 2011 due to the uncertainty surrounding the European debt crisis. By
comparing our systemic risk measure to the existing approaches for network-based
interconnectedness, we find that our method offers a novel perspective due to the
focus on the lower tail of the return distribution and due to the allowance for nonlinear
dependencies. An out-of-sample comparison shows the superiority of our approach
over a baseline model based on linear quantile regression. This leads to the conclu-
sion that nonlinear effects are crucial for the modelling of systemic risk. Finally, we
identify systemically relevant financial institutions during the financial crisis using
our SFI and SHI measures. An advantage of our approach is the ability to capture the
asymmetries of systemic risk, by differentiating between firms that affect and firms
that are affected by the financial system. We also discover a risk cluster of four banks,
which corresponds to the list of banks that received the largest funding in the course
of the bank bailout of 2008.

This paper is an addition to the existing literature on systemic risk. Hautsch et al.
(2014) modified the estimation of CoVaR further to analyse systemic risk in a multiple
equation set-up using the LASSO. Härdle et al. (2016) followed up this set-up, and
extended it to a nonlinear regression setting. In the meanwhile, there are numerous
other methods for calibrating systemic risk. Acharya et al. (2017) built an economic
model of systemic risk and measured the systemic risk externality of a financial insti-
tution by the systemic expected shortfall. Brownlees and Engle (2017) developed a
systemic risk measure capturing the capital shortage given its degree of leverage and
marginal expected shortfall. Diebold and Yılmaz (2014) analysed the connectedness
of financial firms in a network context using forecast variance decompositions in a
vector autoregressive framework. Bianchi et al. (2019) proposed a Markov-switching
graphical SUR model to model systematic and systemic risk.

There is a growing literature on econometric analysis using neutral networks.White
(1988) started to investigate the usefulness of adopting a neural network for economic
prediction. Unfortunately, the message is that even with simple neural networks the
prediction performance is not ideal due to the overfitting issues. Kuan and White
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96 G. Keilbar, W. Wang

(1994) provided a further overview of neural networks with some basic concepts and
theory. White (1992) provided the theoretical foundations of a nonparametric quantile
neural network approach allowing for cases of dependent data. In terms of economic
risk prediction, Taylor (2000) is concerned with predicting conditional volatility by
adopting a quantile neural network approach. Xu et al. (2016) considered a quantile
neural network procedure for evaluating VaR in the stock market. Cannon (2011)
focused on the computational perspective of a quantile neural network.

The remainder of this paper is organized as follows. Section 2 provides a brief
introduction to neural networks in general and neural network quantile regression in
particular. Section 3 describes in detail the methodology of this paper. After establish-
ing the research framework step by step, we present the results in Section 4. Section
5 discusses the results and concludes.

2 Neural network quantile regression

2.1 Neural network sieve estimation

Neural networks attract increasing attention due to their success in a variety of predic-
tion problems. Often described as a black box, single hidden layer neural networks can
be seen as a special case of the nonparametric sieve estimator, see Grenander (1981)
and Chen (2007). With increasing sample size n the complexity of the estimator of hθ

is required to increase appropriately fast. The structure of the neural network sieve is
as follows, with t = 1, 2, · · · , n,

Yt = hθ (Xt ) + εt

=
Mn∑

m=1

wo
mψ

(
K∑

k=1

wh
k,mXk,t + bhm

)
+ bo + εt

(1)

where Yt is the dependent variable, Xt is a K -dimensional vector of independent
variables and εt is an error term. The nonlinear activation function ψ(·) is assumed
to be fixed and known. Typical choices are sigmoid functions, e.g. ψ(z) = tanh(z) or
the ReLU (rectifier linear unit) function, ψ(z) = max(z, 0). There are two types of
parameters, hidden layer parameterswh

k,m and bhm and output layer parameterswo
m and

bo. The sieve parameter space �n expands with n. In particular, the number of basis
functions (i.e. the number of hidden nodes) goes to infinity, Mn → ∞ as n → ∞.
Single layer neural networks have proved to be universal function approximators, as
shown by Cybenko (1989) for sigmoid activation functions and Hornik et al. (1989)
for the general case of bounded, non-constant activation functions. Sonoda andMurata
(2017) extend the universal approximation property to unbounded activation functions,
which includes the popular ReLU function.

The large sample properties of neural networks have been studied extensively in the
literature.Notably,Chen andWhite (1999) showconsistency and asymptotic normality
of the nonparametric neural network sieve estimator under certain regularity condi-
tions. Given that the number of basis functions grows appropriately with increasing
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Modelling systemic risk using neural network quantile regression 97

sample size, the root mean square convergence rate to an unknown (suitably smooth)
true function is of order op(n−1/4). This rate is crucial to obtain root-n asymptotic
normality for plug-in estimators (Chen and Shen (1998)).

All of the above results concern with neural networks with a single hidden layer.
The approximation theory and the asymptotic results of deep neural networks, i.e.
neural networks with more than one hidden layer, are less understood compared to the
shallow neural network case. Johnson (2018) shows that deep neural networks with
limited width are not universal function approximators. Rolnick and Tegmark (2017)
prove that deep neural networks can learn polynomial functions more efficiently (in
terms of number of nodes required) than shallow ones.

2.2 Neural network sieves and quantile regression

Predominantly, neural networks have been applied to classification and mean regres-
sion problems. However, an extension to a quantile regression setting is straightfor-
ward. Consider the linear quantile regression equation for a fixed quantile level τ , as
formulated in Koenker and Bassett (1978, 1982).

Yt = Xtβ + εt , t = 1, . . . , n (2)

with Qτ (εt |Xt ) = 0. In this setting the dependent variable Yt is modelled as a linear
function of independent variables Xt . The linear quantile estimator is then the solution
to the following minimization problem:

min
β

n∑

t=1

ρτ (Yt − Xtβ) (3)

where ρτ (z) = |z| · |τ − I(z < 0)| is the quantile loss function. This minimization
problem can be formulated as a linear program and can thus be solved by simplex or
interior point algorithms. Neural network quantile regression is a nonlinear general-
ization of this regression framework. Instead of using a linear function, the conditional
quantile is approximated by a neural network sieve estimator as defined in 2.1. The
resulting optimization problem is nonconvex and cannot be solved by linear program-
ming methods:

min
θ

n∑

t=1

ρτ {Yt − hθ (Xt )} . (4)

A possible alternative is to use the gradient-based backpropagation algorithm of
Rumelhart et al. (1988). The asymptotic properties of nonparametric neural network
estimators for the conditional quantile are analysed in White (1992). Under certain
regularity conditions the estimator is consistent, see Appendix A. This result holds
both for i.i.d. and dependent data.
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98 G. Keilbar, W. Wang

2.3 Regularizationmethods

Neural networks are prone to overfitting due to their high capacity. An effective tool to
counteract overfitting lies in the choice of the structure and the hyperparameters of the
neural network. In our single hidden layer setting, the most important hyperparameter
is the number of hidden nodes, Mn . Other relevant parameters are the number of
epochs and the specification of the learning algorithm. Typically, hyperparameters are
selected according to a cross-validation criterion. A different approach is to put an
extra penalty term on the weight parameters, wh

k,m and wo
m . We are considering both

L1 and L2 penalties which we summarize under the term elastic net (Zou and Hastie
(2005)). This penalization method leads to the following optimization problem:

min
hθ

n∑

t=1

ρτ {Yt − hθ (Xt )} + λ1‖(wh�
k,m, wo�

m )�‖1 + λ2‖(wh�
k,m, wo�

m )�‖22 (5)

where ‖ · ‖1 is the L1-norm, ‖ · ‖2 is the L2-norm. λ1 and λ2 are regularization
parameters. A different method to prevent overfitting is the dropout method, proposed
by Hinton et al. (2012) and Srivastava et al. (2014). In each iteration of the back-
propagation algorithm, a given node is only considered with a probability 1 − p.
Consequently, each node is excluded with a probability p which is defined as the
dropout rate. The motivation for this is to counteract memorization of the data by
preventing co-adaptation of the nodes. Dropout is referred to be an ensemble method,
as the final model is a result of training multiple models with reduced capacity.

3 Methodology to calibrate systemic risk

In this section, we explain the details of our systemic risk analysis. Our methodology
involves four steps. The first step is concerned with the estimation of VaR based on a
linear quantile regression using a set of risk factors as explanatory variables. The results
are used in the next step to estimate the CoVaR for each financial institution using
a quantile regression neural network. Next, we calculate marginal effects to model
systemic risk spillover effects, resulting in a time-varying systemic risk network. In
the final step, we propose three systemic risk measures based on this systemic risk
network.

Step 1: estimation of VaR

VaR is defined as the maximum loss over a fixed time horizon at a certain level of
confidence. The Basel II Accord introduced VaR as the preferred measure for market
risk. The calculation of VaR functions as the basis for capital requirements of financial
institutions. Mathematically, it is the τ -quantile of the return distribution:

P(Xi,t ≤ VaRτ
i,t ) = τ, (6)
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Modelling systemic risk using neural network quantile regression 99

where Xi,t is the return of a financial firm i at time t and τ ∈ (0, 1) is the quantile
level. There exist numerous ways to estimate VaR. We refer to Kuester et al. (2006)
for an extensive overview. One example is to assume a parametric model, and the
most popular formulation involves the estimation of the latent volatility process via the
GARCHmodel. Other approaches are based on the direct estimation of the conditional
quantiles. Chernozhukov and Umantsev (2001) combine linear quantile regression
with extreme value theory (EVT) to estimate VaR for extreme quantile levels. Chao
et al. (2015) and Härdle et al. (2016) estimate VaR by using linear quantile regression
on a set of macro-state variables.

In this study, we compare three different specifications. First, we consider the
dynamic quantile approach of Engle and Manganelli (2004), which is called CAViaR.
The VaR is modelled as a latent process. We consider the symmetric absolute value
(SAV) specification,

VaRSAV ,τ
i,t = βi,1 + βi,2 VaR

SAV ,τ
i,t−1 +βi,3|Xi,t−1|. (7)

Here, the current level of VaR is determined by its lagged value as well as by the
absolute value of the lagged return. Second, we consider the asymmetric slope (AS)
CAViaR specification,

VaRAS,τ
i,t = βi,1 + βi,2 VaR

AS,τ
i,t−1 +βi,3(Xi,t−1)

+ + βi,4(Xi,t−1)
−. (8)

This specification allows for different responses to negative and positive returns.
Finally, we consider the approach of Härdle et al. (2016). The VaR of each firm i
is estimated by linear quantile regression using a set of macro-state variables Mt−1.

Xi,t = αi + γi Mt−1 + εi,t , (9)

where the conditional quantile of the error term Qτ (εi,t |Mt−1) = 0. The VaR estimate
is the fitted value of the quantile regression,

VaRLQR,τ
i,t = α̂i + γ̂i Mt−1. (10)

VaR is a frequently used measure for understanding the critical risk level for an
individual financial institution. The drawback of VaR is that it cannot account for
dependency in a systemic context. Estimating VaR as an individual risk measure is a
necessary first step to prepare for calibrating conditional risk.

Step 2: Estimation of CoVaR with neural network quantile regression

CoVaR was introduced as a systemic extension of standard VaR by Adrian and Brun-
nermeier (2016). Similar to VaR, it is a risk measure defined as a conditional quantile
of the return distribution. But deviating from the VaR concept, CoVaR is contingent
on a specific financial distress scenario. The motivation for using CoVaR is the identi-
fication of systemically important banks. For the distress scenario, we assume that all
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100 G. Keilbar, W. Wang

other firms are at their VaR. By doing this, we follow the reasoning of Hautsch et al.
(2014) and Härdle et al. (2016).

P(X j,t ≤ CoVaRτ
j,t |X− j,t = VaRτ− j,t ) = τ, (11)

where X− j,t is a vector of returns of all firms except j at time t and VaRτ− j,t is the
corresponding vector of VaRs.

CoVaR can be estimated as a fitted conditional quantile, building on the results for
the VaRs obtained in step 1. Chao et al. (2015) and Härdle et al. (2016) find evidence
for nonlinearity in the dependence between pairs of financial institutions. Hence,
linear quantile regression might not be an appropriate procedure to estimate the risk
spillovers, as the interdependencies are potentially different in a state of worsening
market conditions. The conditional quantile function of one bank on another may react
nonlinearly to the change of critical level of another firm.We therefore propose the use
of neural network quantile regression. The flexibility of the approach allows detecting
possible nonlinear dependencies in the data.

The conditional quantile of bank j’s returns is regressed on the returns of all other
banks and using a neural network as defined in Section 2.2:

X j,t = hθ (X− j,t ) + ε j,t ,

=
Mn∑

m=1

wo
mψ

⎛

⎝
K∑

k �= j

wh
k,mXk,t + bhm

⎞

⎠ + bo + ε j,t ,
(12)

with the conditional quantile of error term Qτ (ε j,t |X− j,t ) = 0. To calculate the
CoVaR of firm j , the fitted neural network has to be evaluated at the distress scenario:

CoVaRτ
j,t = ĥθ (VaR

τ− j,t ), (13)

where ĥθ is the estimated neural network. Nonlinearity is introduced by the use of the
nonlinear activation function. CoVaR can be interpreted as the hypothetical τ -quantile
of the loss distribution if we are in a hypothetical distress scenario. In our case, this
distress scenario is all other firms being at their VaR.

Step 3: calculation of risk spillover effects

Based on the weights estimated by the neural network quantile regression procedure,
it is now possible to obtain risk spillover effects between each directed pair of banks.
We propose to estimate the spillover effects by taking the partial derivative of the
conditional quantile of firm j’s return with respect to the return of firm i .

∂Qτ (X j,t |X− j,t )

∂Xi,t
= ∂

∂Xi,t

Mn∑

m=1

wo
m ψ

⎛

⎝
K∑

k �= j

wh
k,mXk,t + bhm

⎞

⎠ + bo. (14)
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In the case of a sigmoid tangent activation function, we have

∂Qτ (X j,t |X− j,t )

∂Xi,t
=

Mn∑

m=1

wo
mwh

i,mψ ′
⎛

⎝
K∑

k �= j

wh
k,mXk,t + bhm

⎞

⎠ (15)

with

ψ ′(z) = 2

(exp−z/2 + expz/2)2
. (16)

In the case of a ReLu activation function, we have

∂Qτ (X j,t |X− j,t )

∂Xi,t
=

Mn∑

m=1

wo
mwh

i,mI

⎛

⎝
K∑

k �= j

wh
k,mXk,t + bhm > 0

⎞

⎠ , (17)

where I(·) is the indicator function. Note that the non-differentiability of the ReLU
function is not an issue in practice since the input of the function is zerowith probability
zero. Aswe are interested in the lower tail dependence, we consider themarginal effect
evaluated at the distress scenario as defined in the previous subsection:

∂Qτ (X j,t |X− j,t )

∂Xi,t

∣∣∣∣
X− j,t=VaRτ− j,t

=
Mn∑

m=1

wo
mwh

i,m ψ ′
⎛

⎝
K∑

k �= j

wh
k,m VaRτ

k,t +bhm

⎞

⎠ . (18)

Calculating such amarginal effect for each directed pair of firms yields an off-diagonal
adjacency matrix of risk spillover effects at time t :

At =

⎛

⎜⎜⎜⎝

0 a12,t . . . a1K ,t

a21,t 0 . . . a2K ,t
... . . .

. . .
...

aK1,t aK2,t . . . 0

⎞

⎟⎟⎟⎠ , (19)

with elements defined as absolute values of marginal effects:

a ji,t =
⎧
⎨

⎩

∣∣∣∣
∂Qτ (X j,t |X− j,t )

∂Xi,t

∣∣∣
X− j,t=VaRτ− j,t

∣∣∣∣ , if j �= i

0, if j = i
. (20)

Note that the risk spillover effects are not symmetric in general, thus a ji,t �= ai j,t .
This adjacency matrix specifies a weighted directed graph modelling the systemic risk
in the financial system.
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102 G. Keilbar, W. Wang

Step 4: Network analysis of spillover effects

To further analyse the systemic relevance of the financial institutions, we can calculate
several network measures building on the work of Diebold and Yılmaz (2014). They
measure the connectedness of financial firms in terms of variance decomposition in
a vector autoregressive framework. Their methodology is thus limited to capturing
linear spillover effects.

First, the total directional connectedness to firm j at time t is defined as the sum of
absolute marginal effects of all other firms on j .

C j←·,t =
K∑

i=1

a ji,t . (21)

Analogously, one can define the total directional connectedness from firm i at time t
as the sum of absolute marginal effects from i to all other firms.

C·←i,t =
K∑

j=1

a ji,t . (22)

Lastly, Diebold and Yılmaz (2014) define the total connectedness at time t as the sum
of all absolute marginal effects.

Ct = 1

K

K∑

i=1

K∑

j=1

a ji,t . (23)

The total connectedness is a measure for the connectedness level of the entire system
without differentiating the roles of individual nodes of the network. Building on this
network analysis, we refine the approach by incorporating VaR and CoVaR in the
measurement of the systemic risk relevance. In particular, we propose the Systemic
Fragility Index (SFI) and the Systemic Hazard Index (SHI) to rank financial institutions
according to their relevance.

SF I j,t =
K∑

i=1

(
1 + |VaRτ

i,t |
) · a ji,t , (24)

SH Ii,t =
K∑

j=1

(
1 + |CoVaRτ

j,t |
)

· a ji,t . (25)

The SFI is a measure for the risk exposure of a financial institution j . It increases if
those adjacency weights pointing to j are large and also if the VaRs of firms i (i.e.
the risk factors for j) increase. This implies that the SFI will increase in times of
financial distress. The index can be used by regulators to identify banks which have a
high exposure to the tail risk in the financial system.
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Modelling systemic risk using neural network quantile regression 103

The SHI is a measure for the risk contribution of firm i to the whole system.
It depends on the out-going adjacency weights from i weighted by the other firms’
CoVaRs. Thus, the SHI tends to be large if the other firms are already affected bywhole
system, weighted by their CoVaR. The SFI and the SHI are firm-specific. It should be
noted that our approach allows to model asymmetries. For instance, a firm which has
a high tail risk exposure does not need to have a large impact on the whole system and
vice versa. In contrast to the original CoVaR approach of Adrian and Brunnermeier
(2016), our approach of identifying systemically important financial institutions has
two advantages. First, we are able to capture possible nonlinear relationships in the
data. Second, our approach operates in a network context which goes beyond the
pairwise analysis proposed in the original CoVaR methodology.

As a third measure, we propose the Systemic Network Risk Index (SNRI), a measure
for the total systemic risk in the financial systemwhich depends on themarginal effects,
the outgoing VaRs, and the incoming CoVaRs. It is a measure for tail connectedness
focusing a lower quantile level.

SN RIt =
K∑

i=1

K∑

j=1

(1 + |VaRτ
i,t |) · (1 + |CoVaRτ

j,t |) · a ji,t . (26)

Lastly, we define the adjusted adjacency matrix,

Ãt =

⎛

⎜⎜⎜⎝

0 ã12,t . . . ã1K ,t

ã21,t 0 . . . ã2K ,t
... . . .

. . .
...

ãK1,t ãK2,t . . . 0

⎞

⎟⎟⎟⎠ (27)

with elements defined as:

ã j i,t =
{
a ji,t · (1 + |VaRτ

i,t |) · (1 + |CoVaRτ
j,t |), if j �= i

0, if j = i
. (28)

The adjusted adjacency matrix accounts for the level of outgoing VaRs and incoming
CoVaRs and is an improved representation of risk spillover effects. Systemic spillover
effects are thus determined by the marginal effects of the neural network quantile
regression procedure as well as by the VaRs and CoVaRs of the considered banks.

4 Empirical study: US G-SIBs

4.1 Data

For the empirical application of our systemic riskmethodology, we are focusing on the
global systemically important banks (G-SIBs) from the USA selected by the Financial
StabilityBoard (FSB), seeTable 1.These eight banks constitute systemic risk relevance
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Table 1 List of G-SIBs in the USA

Financial Institution NYSE symbol

Wells Fargo & Company WFC

JP Morgan Chase & co. JPM

Bank of America Corporation BAC

Citygroup C

The Bank of New York Mellon Corporation BK

State Street Corporation STT

Goldman Sachs Group, Inc. GS

Morgan Stanley MS

to the global financial system and are deemed to be too-big-to-fail. We consider daily
log returns in a time period between 4 January 2007 and 31 May 2018. The data is
obtained from Yahoo Finance.

In addition to these stock return data,we consider daily observations of the following
set of macro-state variables:

i) Implied Volatility Index (VIX), from Yahoo Finance;
ii) the weekly S&P500 index returns, from Yahoo Finance;
iii) Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Trea-

sury Constant Maturity from Federal Reserve Bank of St. Louis;
iv) 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity

from Federal Reserve Bank of St. Louis.

These macro-variables are the common risk factors for the estimation of VaR in the
first step of our systemic risk methodology.

4.2 Model selection and out-of-sample performance

The estimation of CoVaR based on neural network quantile regression involves several
tuning parameters. Most importantly, we have to make a choice about the activation
function and determine the sizes and structure of the neural network. We recalibrate
these tuning parameters at the start of each year in a data-driven way. We propose the
following moving-window model selection and evaluation procedure.

Following the common approach in the literature, e.g. Gu et al. (2020), Bianchi
et al. (2020), we repeatedly divide our sample into three disjoint subsamples. These
subsamples are consequential to maintain the time series structure of the data. The first
sample is called the training set, which is denoted by T1. The training set is used to
estimate theweight and bias parameters of the neural network for each candidatemodel
specification. The performance is then evaluated using the validation set, denoted by
T2. The tuning parameters are optimized by choosing the model specification which
minimizes the objective function. This division into training and validation sets is an
effective way to counteract overfitting. However, the validation fit is not truly out-of-
sample since it is used to select the tuning parameters. Therefore, we finally consider
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Fig. 1 Visualization of the rolling window model selection scheme. Training data (blue), validation data
(orange) and test data (red)

the last subsample as the test set, which is denoted by T3. The test set is used to get
an unbiased estimate of the method’s performance.

To evaluate the predictive performance of our method, we calculate the out-of-
sample average quantile loss, (AQLoos),

AQLoos = 1

|T3|
∑

t∈T3
ρτ

{
X j,t − Q̂τ

(
X j,t |X− j,t

)}
. (29)

The tuning parameters include: the number of nodes in the neural network, the L1
and L2 penalty terms on the weight parameters and the dropout probability p. We
recalibrate the tuning parameters for each financial firm at the start of the year. We
choose a sample size of 200 and 50 days for the training and validation data sets,
respectively. This corresponds to 1 year of daily data. We evaluate the performance
on the subsequent 250 days in the test set. By recalibrating the tuning parameters
annually, we end up with ten windows in total. A visualization of the sample splitting
scheme can be found in Fig. 1. In the following, we summarize the steps of our model
selection and the evaluation procedure.

Step 1: Split the data into training (T1), validation (T2) and test set (T3) for each
window.

Step 2: For each bank j and eachwindow, fit the conditional quantile of X j contingent
on X− j using T1.

Step 3: Choose the model specification which minimizes the average quantile loss
based on T2 .

Step 4: Calculate AQLoos based on the tuned neural network using T3.
Finally, we compare the predictive performance of our neural network quantile

regression procedure to a simple baselinemodel based on the linear quantile regression,

X j,t = β0 +
K∑

i �= j

Xi,tβi + ε j,t , (30)

with Qτ (εt |X− j,t ) = 0. The baseline model is estimated on training and validation
data sets T1 and T2. The estimation does not involve any tuning parameters so we
can make use of the combined data set. The out-of-sample forecast performance is
then evaluated using the holdout data T3. We apply the test of Diebold and Mariano
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Table 2 Results of the Diebold–Mariano test comparing the neural network to the linear baseline model

Firm WCF JPM BAC C BK STT GS MS

DM statistic −3.86 −2.44 −3.12 −3.27 −3.31 −2.76 −1.56 −2.88

p value 0.000 0.008 0.001 0.001 0.001 0.003 0.059 0.002

Table 3 Out-of-sample average quantile loss of the candidate models for every financial institution (×103)

Firm WCF JPM BAC C BK STT GS MS

CaViaR SAV 2.42 2.47 3.39 3.40 2.48 3.05 2.49 3.26

CaViaR AS 2.63 2.60 3.50 3.46 2.73 3.10 2.58 3.45

LQR 2.16 2.20 2.90 2.89 2.15 2.73 2.10 2.76

(2002) to compare the forecast performance. The test statistic is based on the quantile
loss differentials between the neural network and the linear baseline model and has an
asymptotic standard normal distribution. We choose a significance level of 1%. The
test results are reported in Table 2.

For all of the financial institutions in our sample, the neural network fit performs
better than the linear quantile regression fit. The outperformance of the neural network
forecast is statistically significant for the majority of banks (seven out of eight). Only
for Goldman Sachs the Diebold–Mariano fails to reject the null hypothesis of similar
forecast performance. Overall, the use of a more complex model like a neural network
appears to be recommendable. A plausible explanation for this is that a linear model is
not capable to capture the complex interdependencies of financial firms under distress.

For the selection of the VaR approach used in the first step of our systemic risk anal-
ysis, we compare the predictive performance of the three candidate models introduced
in Section 3. We consider a sliding window of 250 days, which is used for estimation
to predict the next day’s conditional 5% quantile of the returns. The results are dis-
played in Table 3. For every bank in our sample, the linear quantile approach performs
best. Results from the Diebold–Mariano test show that the difference is significant at
the 1% confidence level after accounting for the multiple testing issue by using the
Bonferroni correction for critical values. In the following, all VaR calculations are
based on the linear quantile approach.

4.3 Estimation results

4.3.1 VaR and CoVaR

As explained in Section 3, the analysis is carried out in four steps. In the first two
steps, VaR and CoVaR are estimated for each firm, using linear quantile regression
and neural network quantile regression, respectively. To account for potential non-
stationarity, we employ a sliding window estimation framework for both measures.
The window size is chosen to be 250 observations (representing 1 year of daily stock
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Fig. 2 Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural network quantile
regression (red line) for Wells Fargo
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Fig. 3 Fitted quantile regression neural network for Wells Fargo on 13 March 2008. Red connections
indicate negative weights, blue connections indicate positive weights

returns). We choose a quantile level of τ = 5%, which is the standard in the related
literature, see Hautsch et al. (2014) and Härdle et al. (2016). A lower value for the
quantile level leads to less reliable estimates, due to the inverse relation of the variance
and the density of the error term. As a sensitivity analysis, we also report the results
for τ = 1%, see Figs. 11 and 12 in Appendix B. The results are robust with respect to
the choice of the quantile level.

The estimation results for Wells Fargo are visualized in Fig. 2. The estimated
VaR and CoVaR follow a similar pattern. In the course of the financial crisis both
risk measures explode, indicating an increase in systemic risk during this period. A
second persistent spike appears in the second half of 2011 caused by the European
debt crisis. In the following, both VaR and CoVaR stabilize with a few non-persistent
spikes. Similar patterns can be found in the estimation results for the other financial
institutions (see Fig. 13 in Appendix B). An example of a fitted neural network is
visualized in Fig. 3.
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(a) (b)

(c) (d)

Fig. 4 Time average of risk spillover effects across banks for different time periods

4.3.2 Risk spillover network

Based on the estimation results of the neural network quantile regression procedure
and on the fitted VaRs and CoVaRs, we calculate the directional spillover effects for
each pair of banks over our prediction horizon. The result is a time-varying weighted
adjusted adjacency matrix (as defined in Equation 27). This risk spillover network
provides insights into the cross section and the time dynamics of systemic risk. Figure
4 visualizes the evolution of the network in the course of the financial crisis. The first
half of 2008 shows a moderate level of lower tail connectedness. This setting changes
dramatically in the second half of 2008 with the bankruptcy of Lehman Brothers. As a
consequence, the United States Department of the Treasury was compelled to bail out
financial institutions to avoid a total collapse of the financial system. Also, the Federal
Reserve Bank had to adjust its monetary policy. The time average of the adjacency
matrix for 2009 shows a continuing state of financial distress. However, compared to
the previous periods one can visually identify a risk cluster in the lower left part of
the adjacency matrix. Finally, 2010 shows a decline in systemic risk spillover effects
caused by a regained trust in the financial system. Figure 5 restricts the visualization
to the largest edges of the financial risk network. As a first observation, spillover
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(a) (b)

(c) (d)

Fig. 5 Time average of risk spillover effects across banks after thresholding (̃a ji > 0.4) for different time
periods

effects across banks tend to be symmetric. If bank i has a large impact on bank j ,
the converse is also very likely. A second observation is the identification of the risk
cluster mentioned above. This cluster includes four financial institutions, Citigroup,
Bank of America, JP Morgan and Wells Fargo. This cluster coincides with the list of
the largest beneficiaries of the bailout program in 2008 and 2009.

4.3.3 Network risk measures

In this subsection, we estimate the systemic risk measures using the results from
the previous steps. First, we consider the Systemic Network Risk Index (SNRI), as a
measure for total systemic risk in the financial system. Figure 6 shows the development
over time. As expected, we see a sharp increase in systemic risk during the financial
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Fig. 6 Time series of the SNRI
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Fig. 7 Plot of SNRI (black line), the Granger causality measure of Billio et al. (2012) (red line) and
total connectedness of Diebold and Yılmaz (2014) (blue line). Dashed vertical line marks the bailout and
acquisition of Bear Stearns by JPMorgan on 14March 2008, the dotted vertical line indicates the bankruptcy
of Lehman Brothers on 15 September 2008

crisis in the second half of 2008. A second peak appears in the second half of 2011
as a result of the uncertainties associated with the European debt crisis. After a short
period of stabilization, we see another rise in systemic risk from 2014 till 2016. In
contrast to the previous peaks, this increase appears to be more gradual.

We now discuss the systemic risk measure calibration during the financial crisis
in detail. We restrict our focus on the 2-year period, i.e. from the start of 2008 to
the end of 2009. We compare our SNRI to the Granger causality measure of Billio
et al. (2012) and the total connectedness measure based on variance decomposition
proposed by Diebold and Yılmaz (2014). Both measures are estimated using the same
set of financial institutions and a rolling window of 250 days. The results are dis-
played in Fig. 7. As reference dates, we have added the bailout of Bear Stearns and
the resulting acquisition by JP Morgan on 14 March 2008, as well as the bankruptcy
of Lehman Brothers on 15 September 2008. A few significant differences in the time
series of the risk measures are apparent. While the Granger causality measure and the
total connectedness increase sharply after the Bear Stearns event, the SNRI decreases
slightly. In contrast to both alternatives, our measure is exclusively concerned with
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Fig. 8 Co-movement of the SNRI (black line) and the aggregate SRISK (Brownlees and Engle (2017), red
line)

the lower quantile of the return distribution. We infer that the resulting intervention
had a calming effect on the financial markets and thus prevented an increase in lower
tail dependence. The Bear Stearns shock seemed to have a systematic but not nec-
essarily a systemic effect. In contrast, we observe a simultaneous sharp increase in
all three measures immediately after the Lehman Brothers bankruptcy. The increase
in connectedness thus affected the mean as well as the lower tail of the distribution.
We deduce that the shock from the Lehman bankruptcy had a truly systemic impact.
In the aftermath of the collapse, the SNRI has its maximal point in March of 2009
and remains at a high level until the second half of the same year. The comparing
measures have an earlier peak in the end of 2008 followed by a fast decrease. We
conclude that the SNRI complements the network-based risk measures proposed by
Billio et al. (2012) and Diebold and Yılmaz (2014) as it is more sensitive to shocks in
the lower tail.

We also compare the SNRI to the aggregated SRISK of Brownlees and Engle (2017)
in Fig. 8. One can identify a co-movement of both indices. In particular, both the finan-
cial crisis and the European debt crisis lead to a sharp increase in both risk measures.
However, we have to acknowledge that the aggregated SRISK already detects vulner-
abilities in the financial system as early as the beginning of 2008. The reason for this
is that the SRISK incorporates additional information on micro-prudential variables,
namely the book value of debt and the quasi value of assets. An advantage of the SNRI
is that it is entirely based on market data. Also, the SRISK requires assumptions on a
number of structural parameters, such as the prudential capital ratio and the threshold
loss, while our approach does not. Finally, another advantage of our approach is the
estimation of spillover effects in a network context.

While the SNRI is an index for total systemic risk, we now consider firm-specific
measures. Table 4 ranks financial firms according to their Systemic Fragility Index
(SFI). A large SFI indicates high systemic exposure to the financial system. Our
findings suggest that Citigroup is among the most fragile banks during the height of
the financial crisis, being top-ranked in the first and in the second half of 2008. Due
to heavy exposure to troubled mortgages, the US government decided to bail out the
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Table 4 Ranking of financial institutions according to their SFI averaged over different time intervals

Rank 2008 Q1-Q2 2008 Q3-Q4 2009 2010
Ticker SFI Ticker SFI Ticker SFI Ticker SFI

1 C 2.239 C 2.395 BAC 2.633 WCF 1.689

2 GS 1.962 MS 2.046 BK 2.426 JPM 1.640

3 WFC 1.822 BAC 1.983 MS 2.393 STT 1.541

4 MS 1.748 GS 1.970 JPM 2.222 BAC 1.472

5 BAC 1.709 WCF 1.907 GS 1.900 GS 1.442

6 JPM 1.546 JPM 1.752 WCF 1.847 BK 1.442

7 STT 1.300 STT 1.497 C 1.572 MS 1.260

8 BK 1.100 BK 1.365 STT 1.561 C 1.164

Table 5 Ranking of financial institutions according to their SH I averaged over different time intervals

Rank 2008 Q1-Q2 2008 Q3-Q4 2009 2010
Ticker SHI Ticker SHI Ticker SHI Ticker SHI

1 JPM 2.209 JPM 2.203 WCF 2.440 JPM 2.010

2 BAC 2.021 MS 2.149 JPM 2.438 BAC 1.616

3 MS 1.939 BAC 2.138 GS 2.377 STT 1.574

4 C 1.828 GS 1.981 BAC 2.349 WCF 1.555

5 GS 1.568 BK 1.976 BK 2.187 BK 1.488

6 BK 1.530 C 1.881 C 2.162 GS 1.475

7 WCF 1.426 WCF 1.820 MS 2.149 MS 1.254

8 STT 1.316 STT 1.721 STT 2.089 C 0.965

bank in November 2008. In the periods following the bail-out, Citigroup’s SFI rank
dropped sharply. Figure 9 shows the time dynamics of the SFI of Citigroup. Another
high-ranked financial institution is Bank of America, which is on position three in the
second half of 2008 and the number one in 2009. In contrast, State Street Corporation
is ranked at the bottom of the table throughout 2008 and 2009. This result is plausible
since State Street was the first major financial institution to pay back its loans to the
US Treasury in July 2009.

We conduct a similar ranking with respect to the Systemic Hazard Index (SHI),
which ranks the financial institutions according to the risk contributed to the financial
system. In each of the time periods, we consider, JP Morgan is listed in the top two
of the ranking. Similarly, Bank of America is ranked in the top four consistently,
being the second highest ranked bank in the first half of 2008. Figure 10 visualizes
the time dynamics of the SHI for Bank of America. In the aftermath of the crisis in
2009, Wells Fargo also emerges as a systemic risk factor to the financial system. An
advantage of our approach is that we are able to differentiate between firms, which
transmit systemic risk, and firms which are affected by systemic risk. By doing this,
we capture the asymmetric nature of the systemic risk. As an example, JP Morgan
is ranked high according to the SHI in 2008 but relatively low in SFI. The opposite
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Fig. 9 Time series of the SFI for Citigroup
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Fig. 10 Time series of the SHI for Bank of America

can be observed for Citigroup, which is ranked low in SHI and high in SFI during the
same time periods. However, State Street is at the bottom of both rankings during the
height of the financial crisis, implying that it is neither a large risk factor nor strongly
affected by the financial system.

5 Conclusion

This paper proposes a novel approach to estimate the conditional value-at-risk (CoVaR)
of financial institutions based on neural network quantile regression. Our methodol-
ogy allows for the identification of risk spillover effects across banks in a nonlinear
and multivariate context. We define three network-based measures for systemic risk,
the Systemic Fragility Index and the Systemic Hazard Index as firm-specific measures
and the Systemic Network Risk Index as a measure for the overall risk in the finan-
cial system. These measures quantify the connectedness of the financial system while
restricting the analysis on the lower tail of the distribution. The neural network frame-
work allows us to model systemic risk in a highly nonlinear setting. A comparison to a
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linear baseline model shows the predictive superiority of our neural network approach
in terms of the out-of-sample performance.

We apply our methodology to global systemically important banks (G-SIBs) from
the USA in the period 2007–2018. Consistent with previous findings in the literature,
we observe the Systemic Network Risk Index increasing sharply during the financial
crisis and during the European debt crisis. A comparison to the connectedness mea-
sures proposed in Billio et al. (2012) and Diebold and Yılmaz (2014) shows that our
systemic risk measure captures different aspects of connectedness and offers therefore
a new perspective on systemic risk. Furthermore, our approach allows to identify a
risk cluster of banks which corresponds to the list of banks that receive the largest
amount of funding from the US Department of Treasury. By ranking the financial
firms according to their Systemic Fragility Index and their Systemic Hazard Index, we
are able to identify those firms which bear significant exposure to the financial system
and those firms which impose the greatest risk to the financial system.
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Appendix A. Consistency of neural network sieve estimator for the
conditional quantile

White (1992) shows the consistency of the neural network quantile regression estima-
tor.

Assumption A.1: The data Zt = (X�
t ,Y�

t )� is generated from a bounded stochas-
tic process defined on a complete probability space (,F , P), Xt is a random r × 1
vector, Yt is a random scalar and

(i) Zt is an i.i.d. process or
(ii) Zt is a stationary φ- or α-mixing process with such that the mixing coefficients

φ(k) = φ0ξ
k or α(k) = α0ξ

k, 0 < ξ k < 1, φ0, α0, k > 0.

Without loss of generality, we may assume Zt :  → I
r+1 def= [0, 1]r+1.

Let ψ : R → R be a bounded function and let (�, ρ) be a metric space, where ρ

is the L1-metric. For any q ∈ N and � ∈ R
+ define T (ψ, q,�) = {θ ∈ � : θ(x) =

β0 + ∑q
j=1 β jψ(x�γ j ) for all x in I

r ,
∑q

j=0 |β j | ≤ �,
∑q

j=1

∑r
i=1 |γ j i | ≤ q�}.

Further let Qn(θ) = n−1 ∑n
t=1 |Yt − θ(Xt )||τ − I(Yt < θ(Xt ))|.

Assumption A.2: �n(ψ) = T (ψ, qn,�n), n = 1, 2, . . ., where ψ is bounded,
satisfies a Lipschitz condition and is either a cdf or is l-finite. qn and �n are such that
qn → ∞ and �n → ∞ as n → ∞. �n = o(n1/2) and either (i) qn�2

n log qn�n =
o(n) or (ii) qn�n log qn�n = o(n1/2).
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Assumption A.3: For given quantile level τ ∈ (0, 1), θτ : Ir → I is a measurable
function such that P {Yt ≤ θτ (Xt )|Xt } = τ and for every θ ∈ � and all ε > 0
sufficiently small E {θ(Xt ) − θτ (Xt )} > ε implies that for some δε > 0,

E [I {(θτ (Xt ) + θ(Xt ))/2 ≤ Yt < θτ (Xt )} |θ(Xt ) < θτ (Xt )] > δε

and

E [I {θτ (Xt ) ≤ Yt < (θτ (Xt ) + θ(Xt )) /2} |θ(Xt ) ≥ θτ (Xt ] > δε.

Theorem 2.5 White (1992): Given assumptions A.1(i), A.2(i) and A.3 or A.1(ii),
A.2(ii) and A.3, there exists a measurable connectionist sieve estimator θ̂n :  → �

such that Qn(θ̂n) ≤ Qn(θ), θ ∈ �n(ψ), n = 1, 2, . . .. Further, ρ(θ̂n, θτ )
p→ 0.

Appendix B. Estimation results
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Fig. 11 Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural network quantile
regression (red line) for Wells Fargo, τ = 1%
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Fig. 12 Co-movement of the SN RI (black line) and the SRI SK (Brownlees and Engle (2017), red line),
τ = 1%

Fig. 13 Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural network quantile
regression (red line), τ = 5%
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